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MONOTONE UTILITY CONVERGENCE

STEFAN ANKIRCHNER,∗ Imperial College London

Abstract

We show that the maximal expected utility satisfies a monotone continuity property
with respect to increasing information. Let (Gnt ) be a sequence of increasing filtrations
converging to (G∞

t ), and let un(x) and u∞(x) be the maximal expected utilities when
investing in a financial market according to strategies adapted to (Gnt ) and (G∞

t ),
respectively. We give sufficient conditions for the convergence un(x) → u∞(x) as
n → ∞. We provide examples in which convergence does not hold. Then we consider
the respective utility-based prices, πn andπ∞, of contingent claims under (Gnt ) and (G∞

t ).
We analyse to what extent πn → π∞ as n → ∞.
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1. Introduction

The decisions of an investor in a financial market strongly depend on the information he has
access to. Naturally, the questions arise of how the behaviour changes if the investor obtains
additional information and how strong on average this change will be. Intuitively, we expect
that if the (amount of) information increases only slightly, then the optimal investment will not
change much either. Put differently, if the information converges then the optimal investment
and the related maximal expected utility will converge also. In this paper we first aim at providing
sufficient conditions for this convergence. We can interpret the monotone convergence property
as information robustness of the financial market model we consider. In a second step, we look
at the information dependence of utility-based prices of contingent claims. We will analyse to
what extent the prices satisfy a continuity property under increasing information.

We will model the information dependence of optimal investment by using different filtra-
tions to which the investment strategies have to be adapted. This technique has been widely
used to model insiders on financial markets (see, e.g. [8] and [12]). Summaries of main results
concerning enlargements of filtrations can be found in [10] and [11].

Here is a rough outline of the results. Let (Gnt ) be a sequence of increasing filtrations and
denote by (G∞

t ) their union. Let un(x) and u∞(x) be the suprema of the expected utility when
investing in a continuous financial market according to standard sets of strategies adapted to
(Gnt ) and (G∞

t ), respectively. We will show, under some weak assumptions depending on the
type of the utility function, that un(x) converges to u∞(x) as n → ∞.

Let un(x, B) and u∞(x, B) be the suprema of the expected utility if, in addition, there is a
contingent claim B in the portfolio. Again under some natural conditions, un(x, B) converges
to u∞(x, B) as n → ∞. We provide examples in which convergence does not hold.
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Monotone utility convergence 623

Finally, we consider the respective utility-based prices, πn and π∞, of contingent claims
under (Gnt ) and (G∞

t ). We analyse to what extent πn → π∞ as n → ∞.

2. Preliminaries

Let (�,F ,P) be a probability space and let S : �× [0, T ] → R be a continuous stochastic
process starting at 0. We interpret S as a price process and T as the time horizon. Suppose that
(Ft ) is a filtration satisfying the usual conditions. If S is a semimartingale with respect to (Ft ),
we denote by A(F ) the set of all (Ft )-predictable processes θ which satisfy θ0 = 0 and which
are integrable with respect to S and (Ft ) in the usual sense (see, e.g. [13, p. 165]). The elements
of A(F ) will be called strategies. Moreover, a strategy is called a-admissible if the stochastic
integral process, denoted by (θ · S), satisfies (θ · S)t ≥ −a for all t ∈ [0, T ]. More generally,
θ will be called admissible if it is a-admissible for some a. Finally, we say that S satisfies the
no-arbitrage (NA) condition with respect to (Ft ) if there exists no admissible θ ∈ A(F ) such
that (θ · S)T ≥ 0 and P((θ · S)T > 0) > 0.

By a utility function U we mean any concave function U : R → R ∪ {−∞}. The maximal
expected utility with respect to (Ft ) is defined by

uF (x) = sup{EU(x + (θ · S)T ) : θ ∈ A(F ) is admissible}.
We will also consider the function

uF
a (x) = sup{EU(x + (θ · S)T ) : θ ∈ A(F ) is a-admissible}.

Now let (Gnt ) be a sequence of increasing filtrations satisfying the usual conditions. More-
over, suppose that S is a semimartingale relative to any (Gnt ). The smallest filtration satisfying
the usual conditions and containing every filtration (Gnt ) will be denoted by

G∞
t =

⋂
s>t

∨
n≥1

Gns .

Throughout, we suppose that S is a continuous (G∞
t )-semimartingale with decomposition

St = Mt +
∫ t

0
αs d〈M,M〉s , (2.1)

where M is a (G∞
t )-local martingale starting at 0, 〈M,M〉 is the quadratic variation of M , and

α is a (G∞
t )-predictable process satisfying

∫ T
0 α2

t d〈M,M〉t < ∞ almost surely (a.s.). Note
that some no-arbitrage-type conditions, e.g. the ‘no free lunch with vanishing risk’ condition,
imply the existence of such a semimartingale decomposition (see [5], [6], and Chapter 9 of [7]).
Alternatively, if limx→∞ U(x) = ∞ and uG∞

a (x) is finite for some a > 0, then there exists a
decomposition of the form (2.1) (see [2] and [3] ).

Note that, with respect to every subfiltration (Gnt ), we can also find a decomposition of
S = Mn + αns · 〈M,M〉 such that αn is locally square integrable. This guarantees that, for
every (Gnt )-measurable strategy θ , the stochastic integrals (θ ·Gn S) and (θ ·G∞ S), defined with
respect to (Gnt ) and (G∞

t ), respectively, are the same. We therefore omit the filtrations in the
definition of the integrals.

We denote by un(x) the maximal expected utility with respect to (Gnt ), and by u∞(x) the
maximal expected utility with respect to (G∞

t ). We use the similarly abbreviated notation una(x)
and u∞

a (x), for a > 0.
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624 S. ANKIRCHNER

Since the sequence (Gnt ) is increasing, un(x) is also increasing. We will provide sufficient
conditions for the convergence un(x) → u∞(x) as n → ∞. We will have to distinguish
between two types of our utility functions, on the basis of the so-called domain of U , which is
defined by dom(U) = {y : U(y) > −∞}. We will first consider the case dom(U) = R and
then the case dom(U) 	= R.

3. Monotone utility convergence

3.1. Convergence in the case dom(U) = R

Throughout this subsection we assume that dom(U) = R. We start with the observation
that the utility maximum can be attained by using strategies in

L2(M) =
{
θ measurable : E

∫ T

0
θ2
t d〈M,M〉t < ∞

}
.

For any filtration (Ft ), we denote by L2
F (M) the set of all (Ft )-predictable processes θ ∈

L2(M).

Lemma 3.1. Let (Ft ) be a filtration with respect to which S is a semimartingale. Let x ∈ R

and a ∈ (0,∞). Then

uF
a (x) = sup{EU(x + (θ · S)T ) : θ ∈ L2

F (M) ∩ A is (a − ε)-admissible for some ε > 0}.
(3.1)

Proof. We first prove that, for all x ∈ R,

u∞(x) = sup
ε>0

sup{EU(x + (θ · S)T ) : θ ∈ A(G∞) is (x − ε)-admissible}. (3.2)

We have to show only that the left-hand side does not exceed the right-hand side. For this, let
θ ∈ A(G∞) such that EU(x + (θ · S)T ) > −∞. Set θn = (1 − 1/n)θ for all n ≥ 1. Clearly,
θn is (x − x/n)-admissible. Monotone convergence applied to the negative and positive parts
of U(x + (θn · S)T )− U(x) implies that

lim
n

EU(x + (θn · S)T ) = EU(x + (θ · S)T );
hence, u∞(x) is smaller than the right-hand side of (3.2).

Obviously, the right-hand side of (3.1) is not greater than the left-hand side. For the reverse
inequality, choose an ε > 0 and an (a−ε)-admissible strategy θ satisfying EU(x+(θ ·S)T ) >
−∞. By (3.2), it is sufficient to show that EU(x + (θ · S)T ) is not greater than the right-hand
side of (3.1). Since θ is S-integrable, the stopping times

Tn = T ∧ inf

{
t ≥ 0 :

∫ t

0
θ2
r d〈M,M〉r ≤ n

}

converge almost surely to T for n → ∞. Note that the strategies

θn = 1[0,Tn] θ

are (a − ε)-admissible and belong to L2
F (M). Fatou’s lemma implies that

lim inf
n

EU(x + (θn · S)T ) ≥ EU(x + (θ · S)T ),
from which the result follows.
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Let us return to the filtrations (Gnt ) and (G∞) introduced in Section 2. We start by showing
that the sequence (una(x)) satisfies a monotone convergence property.

Theorem 3.1. Let x ∈ R and a ∈ (0,∞). Then limn u
n
a(x) = u∞

a (x).

Proof. Let θ ∈ L2
G∞(M) be (a − ε)-admissible. The stopping times

τk = T ∧ inf

{
t ≥ 0 :

∫ t

0
α2
s d〈M,M〉s ≥ k

}

converge to T a.s., and, hence,

lim inf
k

EU(x + (θ · S)τk ) ≥ EU(x + (θ · S)T ).

By Lemma 3.1, it suffices to show that, for all k ≥ 1, EU(x + (θ · S)τk ) is not greater than
supn u

n
a(x). To simplify our notation we assume that τk = T for some k.

Now let θn be the projection of θ onto L2
Gn . Note that

E[((θn − θ) · S)∗T ] ≤ E[((θn − θ) ·M)∗T ] + E[((θn − θ)α · 〈M,M〉)∗T ],
where ‘∗’stands for the bilateral supremum (i.e.X∗

t = sup{|Xs | : 0 ≤ s ≤ t} for any processX).
By Doob’s L2-inequality (see, e.g. Theorem 1.7, Chapter II, of [14]), there is a constant C > 0
such that

E[((θn − θ) · S)∗T ] ≤ (E[((θn − θ) ·M)∗T ]2)1/2 + E[((θn − θ)α · 〈M,M〉)∗T ]
≤ C(E[((θn − θ) ·M)T ]2)1/2 + E[(|θn − θ | |α| · 〈M,M〉)T ].

The first summand in the preceding line tends to 0 as n → ∞, because (θn) converges to θ
in L2(M). The second vanishes due to the Kunita–Watanabe inequality (see Corollary 1.16,
Chaper IV, of [14]) and due to our assumption that

∫ T
0 α2

s d〈M,M〉s is bounded. Consequently,
by choosing a subsequence, if necessary, the sequence (θn · S) almost everywhere converges
uniformly to (θ ·S) on [0, T ]. Now setTn = T ∧inf{t ≥ 0 : (θn ·S)t ≤ −a} andπn = 1[0,Tn] θn.
The strategies πn are a-admissible and satisfy

lim
n
(πn · S)T = (θ · S)T a.s.

Using Fatou’s lemma, we obtain

lim inf
n

EU(x + (πn · S)T ) ≥ EU(x + (θ · S)T )

and, hence, the result.

We immediately obtain the following corollary.

Corollary 3.1. For all x ∈ R, we have limn u
n(x) = u∞(x).

3.2. Convergence in the case dom(U) �= R

Throughout this subsection we assume that dom(U) 	= R. To simplify our notation we
suppose that sup{y : U(y) = −∞} = 0. The analogue of Lemma 3.1 is as follows.
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626 S. ANKIRCHNER

Lemma 3.2. For x > 0 and a ∈ (0, x], we have

uF
a (x) = sup{EU(x + (θ · S)T ) : θ ∈ L2

F (M) is (a − ε)-admissible for some ε > 0}.

Proof. This can be proved in the way Lemma 3.1 was. Notice that Fatou’s lemma can only
be applied if a ≤ x.

From this we can deduce the analogue of Theorem 3.1.

Theorem 3.2. For x > 0 and a ∈ (0, x], we have limn u
n
a(x) = u∞

a (x).

Proof. The proof is similar to that of Theorem 3.1. We have only to replace the stopping
times Tn by T ′

n = T ∧ inf{t ≥ 0 : (θn · S)t ≤ −a + ε/2}. Then the strategies πn = 1[0,T ′
n] θ

n

are (a − ε/2)-admissible, and we again apply Fatou’s lemma.

We will see in Example 3.1 that Theorem 3.2 is not valid without the assumption that
a ∈ (0, x]. However, we can do without this assumption if S satisfies the NA condition. To
prove this we need the following result.

Lemma 3.3. Let a > 0 and θ ∈ A(G∞). Suppose that S satisfies the NA condition relative to
(G∞
t ). If (θ · S)T ≥ −a a.s., then θ is a-admissible.

Proof. For every ε > 0, define a stopping time by

τε = inf{t > 0 : (θ · S)t = −a − ε} ∧ T .

Suppose that θ is not a-admissible. Then, for some ε > 0, we must have P(τε < T ) >

0. The strategy π = 1(τε,T ] θ satisfies (π · S)T = 1{τε<T }[(θ · S)T − (θ · S)τε ] ≥ 0, and
P((π · S)T > 0) = P(τε < T ) > 0. Hence, π is an arbitrage opportunity, in contradiction to
the NA condition.

Corollary 3.2. If S satisfies the NA condition relative to (G∞
t ), then, for all x > 0, we have

limn u
n(x) = u∞(x).

Proof. Let θ be a (G∞
t )-predictable strategy such that EU(x + (θ · S)T ) > −∞. Then

(θ · S)T ≥ −x a.s., Lemma 3.3 implies that θ is x-admissible, and we thus have u∞(x) =
u∞
x (x). Similarly, we obtain un(x) = unx(x), n ≥ 1. The claim now follows from Theorem 3.2.

The next example shows that imposition of the NA condition is necessary in Corollary 3.2.

Example 3.1. Let W be a Brownian motion with respect to (Ft ) and suppose that the price
process is given by St = S0+Wt , with S0 > 0 a constant. Moreover, let (ψn) be an independent,
identically distributed sequence of random variables with standard normal distribution N(0, 1),
independent of (Ft ). Let G = 1(1,2)(WT ) and Gn = G + ψn. We consider the increasing
sequence of filtrations

Gnt =
⋂
s>t

σ (G1, . . . ,Gn) ∨ Fs ,

and set G∞
t = ⋂

s>t

∨
n Gns . Notice that G∞

0 contains all the information in G, since, owing to
the law of large numbers, limn(1/n)(G1 + · · · +Gn) = G a.s. As a consequence, under (Gt )
there is arbitrage and, hence, u∞(x) = ∞.
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Under (Gnt ), however, there are no arbitrage opportunities, since it is possible to construct
an equivalent local martingale measure for (Gnt ). Let πt ((G1, . . . ,Gn) ∈ da, ω) be a regular
conditional distribution with respect to Ft . Then, for almost all ω, we have

πt ((G1, . . . ,Gn) ∈ da, ω) ∼ P(G1,...,Gn)(da),

where P(G1,...,Gn) is the joint distribution of (G1, . . . ,Gn). It follows from known results (see,
e.g. [1] and [9]) that there exists an equivalent measure under which the vector (G1, . . . ,Gn)

is independent of FT ; hence, there exists an equivalent local martingale measure for S under
the filtration (Gnt ).

The preceding argument shows that the NA condition holds under (Gnt ). Therefore, un(x) =
unx(x), n ≥ 1. Now, unx(x) ≤ u∞

x (x). For U(x) = log(x), it has been shown in [4] that
u∞
x (x) is equal to the mutual information between G and S, which is given by I (G, S) =
p logp + (1 − p) log(1 − p), where p = P(G = 1). Consequently, the sequence un(x) is
bounded by I (G, S) < ∞, which shows that limn u

n(x) 	= u∞(x).
Finally, observe that supa>0 u

∞
a (x) = u∞(x) = ∞. Therefore, there exists an a > 0 and

an a-admissible strategy θ such that EU(x + (θ · S)T ) > I (G, S). Consequently, u∞
a (x) >

I (G, S) ≥ lim supn u
n
a(x), which shows that Theorem 3.2 does not hold without the assumption

that a ∈ (0, x].
3.3. Why not use arbitrary price processes?

We close this section with an example showing that Theorems 3.1 and 3.2 and Corollaries 3.1
and 3.2 are not valid without some regularity assumption being made about S.

Example 3.2. Let T > 1 and let φ be a random variable with standard normal distribution
N(0, 1). Suppose that the price process is given by

St =
{

1 if 0 ≤ t < 1,

1 + φ + 1
2 if 1 ≤ t ≤ T ,

and let (F S
t ) be the completed filtration generated by S. Moreover, let (εn) be a sequence of

independent normal random variables with mean 0 and var(εn) = 1/n. Let ξn = 1{|φ|≥1} +εn
and Gnt = Ft ∨ σ(ξ1, . . . , ξn), 0 ≤ t ≤ T . We claim that un(x) = U(x) for all x > 0. To
prove this, let θ be (Gnt )-predictable and S-integrable. If θ1 	= 0 a.s., then the integral (θ ·S)1 is
unbounded from below and, hence, θ is not admissible. Since the process S is constant on the
remaining part of the trading interval, we have una(x) = U(x). A trader having access to the
information represented by G∞

t = ∨
n≥1 Gnt knows whether the absolute value of φ is bigger

or smaller than 1. Therefore, he has access to nontrivial admissible trading strategies. As a
consequence, u∞(x) > U(x) and, hence,

lim
n
una(x) 	= u∞

a (x), lim
n
un(x) 	= u∞(x).

Note that the price process S satisfies the NA condition with respect to (G∞
t ). Therefore, the

assumption that S is continuous cannot be dropped in Corollary 3.2.

4. Monotone convergence with random endowments

We aim to prove a continuity property of utility-based prices of contingent claims. To this
end we have to generalise the results of the previous section to the case where the terminal
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628 S. ANKIRCHNER

wealth of an investor is not only determined by his investment strategy but also by a random
payment or endowment due at time T .

LetB be a random variable (endowment). For any semimartingale filtration (Ht ), we define

uH (x, B) = sup{EU(x + (θ · S)T + B) : θ ∈ A(H)}.
We will analyse to what extent the maximal expected utility with random endowment B has
the monotone convergence property. For this, let (Gnt ) again be an increasing sequence with
limit (G∞

t ), in which case the assumptions of Section 2 are satisfied. As above, we will use the
abbreviated notation un(x, B) ≡ uGn(x, B) and u∞(x, B) ≡ uG∞

(x, B).

4.1. Convergence in the case dom(U) = R

We need an integrability condition on our random endowment. We use the following one:

EU(B + a) > −∞ for all a ∈ R. (4.1)

Note that if U is the exponential utility function, then the integrability of U(B + a0) for one
point a0 ∈ R suffices to imply condition (4.1).

Theorem 4.1. If (4.1) holds then limn u
n(x, B) = u∞(x, B).

Proof. Let θ be (G∞
t )-predictable and admissible, say a-admissible. Note that (4.1) implies

EU(x+ (θ ·S)T +B) > −∞. We can find (Gnt )-predictable strategies θn such that (θn ·S) →
(θ · S) uniformly on [0, T ] a.s. By stopping at τn = inf{t ≥ 0 : |((θn − θ) · S)t | ≥ δ}, where
δ > 0, we obtain (a+ δ)-admissible strategies πn = 1[0,τn] θn for which (πn · S)T → (θ · S)T
a.s. and x + (πn · S)T + B ≥ x − a − δ + B. Since the negative part of U(x − a − δ + B) is
integrable, the negative parts of U(x + (πn · S)T + B) are uniformly integrable. Therefore,

lim
n

E[U(x + (πn · S)T + B)]− = E[U(x + (θ · S)T + B)]−.

Consequently, by Fatou’s lemma,

lim inf
n

EU(x + (πn · S)T + B)

= lim inf
n

E[U(x + (πn · S)T + B)]+ − lim
n

E[U(x + (πn · S)T + B)]−

≥ E[U(x + (θ · S)T + B)]+ − E[U(x + (θ · S)T + B)]−
= EU(x + (θ · S)T + B)

and, hence, lim infn un(x, B) ≥ u∞(x, B). Since obviously un(x, B) ≤ u∞(x, B), the result
follows.

4.2. Convergence in the case dom(U) �= R

Throughout this subsection we again assume that sup{y : U(y) = −∞} = 0. We start by
showing that, in this case, a monotone convergence result like Theorem 4.1 may no longer be
true (even if there is no arbitrage under (G∞

t )).

Example 4.1. LetW be a Brownian motion with respect to a filtration (Ft ), let dSt = St (dWt+
α dt) with S0 > 0 and α > 0, let B be independent of (Ft ) and such that P(B = −1) = 1

2 =
P(B = 1), and let (Vt ) be another Brownian motion which is independent of B and (Ft ). Let
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Hn = σ(B+Vr : r ≥ 1/n) and Gnt = ⋂
s>t H

n∨Fs , forn ≥ 1. The union G∞
t = ⋂

s>t

∨
n Gns

contains σ(B). Now suppose that U(x) = log(x) and that x > 1. Under (Gnt ), we have

un(x, B) = unx−1(x, B) ≤ u∞
x−1(x, B) = 1

2u
F
x−1(x − 1)+ 1

2u
F
x−1(x + 1).

Under (G∞
t ), we know from the beginning whether B = −1 or B = 1. Therefore,

u∞(x, B) = 1
2u

F
x−1(x − 1)+ 1

2u
F
x+1(x + 1).

Note that uF
x−1(x + 1) 	= uF

x+1(x + 1) and, thus, limn u
n(x, B) 	= u∞(x, B).

This example shows that we have to make additional assumptions in order to guarantee the
convergence of un(x, B) to u∞(x, B). We continue with some auxiliary results that hold for
any filtration (Ft ) with respect to which S is a semimartingale.

Lemma 4.1. Let x > 0 and a > 0, and suppose that EU(B + x) > −∞. Then

uF
a (x, B) = sup

ε>0
uF
a−ε(x, B).

Proof. Let θ be an a-admissible strategy such that EU(x + (θ · S)T + B) > −∞. Set
θn = (1 − 1/n)θ for all n ≥ 1. Clearly θn is (a − a/n)-admissible. Observe that

[U(x + (θn · S)T + B)− U(x + B)]− ≤ [U(x + (θ · S)T + B)− U(x + B)]−

and, therefore, that [U(x+ (θn ·S)T +B)−U(x+B)]− is uniformly integrable. By applying
Fatou’s lemma to the positive parts, we obtain

lim inf
n

EU(x + (θn · S)T + B)

= lim inf
n

E[U(x + (θn · S)T + B)− U(x + B)] + EU(x + B)

= EU(x + B)+ lim inf
n

E[U(x + (θn · S)T + B)− U(x + B)]+

− lim
n

E[U(x + (θn · S)T + B)− U(x + B)]−

≥ EU(x + B)+ E[U(x + (θ · S)T + B)− U(x + B)]+
− E[U(x + (θ · S)T + B)− U(x + B)]−

= EU(x + (θ · S)T + B).

Therefore, uF
a (x, B) ≤ supε>0 u

F
a−ε(x, B). Since the right-hand side of this inequality obvi-

ously does not exceed the left-hand side, the proof is complete.

Lemma 4.2. Let a, b > 0. If ess infB ≥ −b then, for all x ≥ a + b,

uF
a (x, B) = sup{EU(x + (θ · S)T + B) :

θ ∈ L2
G(M) ∩ A(F ) is (a − ε)-admissible for some ε > 0}.

Proof. Let θ ∈ A(F ) be (a − ε)-admissible. The stopping times

Tn = T ∧ inf

{
t ≥ 0 :

∫ t

0
θ2
r d〈M,M〉r ≤ n

}
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converge almost surely to T . The strategies θn = 1[0,Tn] θ are (a − ε)-admissible and belong
to L2

G(M). Fatou’s lemma implies that

lim inf
n

EU(x + (θn · S)T + B) ≥ EU(x + (θ · S)T + B),

from which, by Lemma 4.1, the result follows.

Theorem 4.2. Let a, b > 0. If ess infB ≥ −b then, for all x ≥ a + b,

lim
n
una(x, B) = u∞

a (x, B).

Proof. Let θ ∈ L2
G(M) ∩ A(G) be (a− ε)-admissible. By Lemma 4.2, it is enough to show

that limn u
n
a(x, B) ≥ EU(x+ (θ ·S)T +B). As in the proof of Theorem 3.1, we can construct

(a−ε/2)-admissible and (Gnt )-predictable strategiesπn such that (πn ·S)T converges to (θ ·S)T
a.s. Fatou’s lemma then implies that

lim inf
n

EU(x + (πn · S)T + B) ≥ EU(x + (θ · S)T + B),

and the result follows.

If B is independent of the filtration (G∞
t ), we can weaken the assumptions of Theorem 4.2.

Theorem 4.3. Let B be a random variable independent of (G∞
t ). Suppose that ess infB = −b

and x > b. If the NA condition holds under (G∞
t ), then limn u

n(x, B) = u∞(x, B).

Proof. We first show that u∞(x, B) = u∞
x−b(x, B). Suppose that P((θ ·S)T < −x+b) > 0.

Then, independence of B implies that x + (θ · S)T + B < 0 with positive probability and,
hence, that EU(x + (θ · S)T + B) = −∞. Therefore, u∞(x, B) is attained by strategies
satisfying (θ · S)T ≥ −x + b almost everywhere. Since the NA condition holds, θ must be
(x − b)-admissible. As a consequence, we have u∞(x, B) = u∞

x−b(x, B). From Lemma 4.1,
we obtain u∞(x, B) = supε>0 u

∞
x−b−ε(x, B). Now we proceed as in the proof of Theorem 4.2.

Note that Example 4.1 shows that the independence assumption cannot be omitted in
Theorem 4.3.

5. Convergence of indifference prices

Definition 5.1. Let B be a random endowment and suppose that there exists a unique real
number π such that uH (x − π,B) = uH (x). Then π is called the indifference price or
utility-based price of B relative to (Ht ).

Do the indifference prices, πn, of an increasing sequence of filtrations converge to the indif-
ference price, π∞, of their union? Before we provide sufficient conditions for the convergence,
notice that if we enlarge the filtration, then a priori we do not know whether the indifference
price will increase or decrease. This is illustrated in the next example.

Example 5.1. Let U be a power utility function, i.e. U(x) = xp, 0 < p < 1, for x ≥ 0 and
U(x) = −∞ for x < 0. Let St = Wt + αt , where α > 0 and W is a Brownian motion with
respect to (Gt ).

First consider an endowment B which is independent of (Gt ) and satisfies P(B = 0) = 1
2 =

P(B = −1). The indifference price, πG, ofB under (Gt ) has to satisfy uG(1, B−πG) = uG(1).
Observe that

uG(1, B − πG) = u
G
−πG

(1, B − πG) ≤ 1
2u

G(−πG)+ 1
2u

G
−πG

(1 − πG).
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Now let Ht = ⋂
s>t σ (B) ∨ Gs . If πH is the indifference price under (Ht ), then

uH (1) = uH (1, B − πH ) = 1
2u

G(−πH )+ 1
2u

G(1 − πH ).

Note that uH (1) = uG(1) and, therefore, that

1
2u

G(−πH )+ 1
2u

G(1 − πH ) ≤ 1
2u

G(−πG)+ 1
2u

G
−πG

(1 − πG). (5.1)

Since πG and πH are negative, (5.1) can only be satisfied if πG < πH .

Now let (H̃t ) be an enlargement of (Gt ) such that uG(x) < uH̃ (x) for all x > 0 and with
respect to which there exists an optimal strategy θ∗. Moreover, suppose that S satisfies the NA
condition with respect to (H̃t ). As an example, consider H̃t = ⋂

s>t σ (ST + ψ) ∨ Gs , where
the random variable ψ is independent of GT and has the standard normal distribution.

Now let B̃ = (θ∗ · S)T be the optimal pay-off under (H̃t ). We claim that

uH̃ (x, B̃) = uH̃ (x) = uG(x, B̃). (5.2)

To prove this, suppose that η ∈ A(H̃) is a strategy such that

EU(x + (η · S)T + B) = EU(x + ((η + θ∗) · S)T ) > −∞.

Note that S does not allow arbitrage. Therefore, from Lemma 3.3, the strategy η + θ∗ is
x-admissible. Consequently, EU(x + (η · S)T + B) ≤ uH̃ (x). Hence,

uH̃ (x) ≤ uG(x, B̃) ≤ uH̃ (x, B̃) = xH̃ (x)

and, thus, (5.2) holds.
From (5.2) we immediately deduce that, under (H̃t ), the indifference price of B̃ is equal to

0. However, uG(x) < uH̃ (x) = uG(x, B̃), and the indifference price of B̃ with respect to (Gt )
has to be greater than 0.

Henceforth, let (Gnt ) again be an increasing sequence of filtrations converging to (G∞
t ) such

that the assumptions of Section 2 are satisfied. Let B be a random endowment. In this section,
we will assume that, under (G∞

t ) and each (Gnt ), the indifference prices ofB are always defined,
and we denote them by π∞ and πn, respectively. In our analysis of convergence we again start
with the simpler case, with dom(U) = R.

5.1. Convergence in the case dom(U) = R

We will need to make the assumption that

u∞(x) and u∞(x, B) are finite and strictly increasing on R. (5.3)

Note that (5.3) implies that the indifference prices πn and π∞ are defined.

Lemma 5.1. Suppose that (4.1) and (5.3) hold. Then the sequence of indifference prices (πn)
is bounded from below and from above.

Proof. We first show that (πn) is bounded from above. Indeed, suppose that it is not. Then
we can find a subsequence converging to ∞, and to simplify our notation we assume that
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limn πn = ∞. Concavity of the function x �→ u∞(x, B) implies that limx→−∞ u∞(x, B) =
−∞. Therefore,

−∞ < u∞(x) = lim
n
un(x) = lim

n
un(x − πn, B) ≤ lim

n
u∞(x − πn, B) = −∞,

which is a contradiction.
Now we show that (πn) is bounded from below. Suppose that there exists a subsequence

converging to −∞, and to simplify notation again assume that limn πn = −∞. Let k < π∞.
Then, from Theorem 4.1,

u∞(x) = lim
n
un(x) = lim

n
un(x − πn, B) ≥ lim

n
un(x − k, B)

= u∞(x − k, B) > u∞(x − π∞, B)
= u∞(x),

which is a contradiction. Consequently, the indifference prices πn all lie in a bounded interval.

Theorem 5.1. Suppose that (4.1) and (5.3) hold. Then limn πn = π∞.

Proof. By Lemma 5.1 the indifference prices πn are bounded, say by C > 0. Suppose
that p ∈ [−C,C] is a cluster point of (πn), and let (λn) = (πl(n)) be a subsequence of
(πn) converging to p. The concave functions un(x, B) converge pointwise to u∞(x, B). As
a consequence, they converge uniformly on compact intervals (see Theorem 10.8 of [15]).
Therefore, limn u

l(n)(x − λn, B) = u∞(x − p,B). Note that, in addition,

lim
n
ul(n)(x − λn, B) = lim

n
ul(n)(x) = u∞(x) = u∞(x − π,B)

and, hence, u∞(x − p,B) = u∞(x − π,B). Since u∞(x, B) is strictly increasing in x, we
have p = π . As this is the case for any cluster point p of (πn), the result holds.

The following lemma provides a sufficient condition for assumption (5.3) to be satisfied.

Lemma 5.2. Let B be bounded. If u∞(x) is finite and strictly increasing on R, then so is
u∞(x, B).

Proof. Let B be bounded by C > 0. It is straightforward to show that u∞(x, B) is concave
and finite. Now suppose that it is not strictly increasing. It then has to be eventually constant,
i.e. there exist constants d and e such that u∞(x, B) = d for all x ≥ e. Now observe that
u∞(x − C,B) ≤ u∞(x) ≤ u∞(x, B + C) and, therefore, that u∞(x) = d for all x ≥ e + C,
which is a contradiction.

5.2. Convergence in the case dom(U) �= R

Let sup{y : U(y) = −∞} = 0. In this subsection we fix a > 0 and consider only
a-admissible strategies. Let B be an endowment such that ess infB ≥ −b, 0 ≤ b < ∞.
We assume that

u∞
a (x) and u∞

a (x, B) are finite and strictly increasing on their respective domains. (5.4)

Henceforth, πn and π∞ will denote the indifference prices determined by una(x − πn, B) =
una(x) and u∞

a (x − π∞, B) = u∞
a (x), respectively.

Theorem 5.2. Let x ≥ a and suppose that (5.4) holds. If x − πn ≥ a + b for all n, then the
indifference prices satisfy limn πn = π∞.
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Proof. We again need to first show that (πn) is bounded from below. This can be done in
exactly the same way as in the proof of Lemma 5.1. Suppose that limn πn = −∞ and let
k < min(x − a − b, π∞). Then, by Theorem 4.2, we have

u∞
a (x) = lim

n
una(x − πn, B) ≥ lim

n
una(x − k, B)

= u∞
a (x − k, B) > u∞

a (x − π∞, B)
= u∞

a (x),

which is a contradiction.
Note that una(a+b, B) ≥ U(a) > −∞ and, similarly, u∞

a (a+b, B) > −∞. Consequently,
we have uniform convergence of the concave functions on the compact interval [a+b, C], where
C is the upper bound of (x − πn), and we deduce the result as in the proof of Theorem 5.1.
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