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KAC-MOODY LIE ALGEBRAS AND THE 
CLASSIFICATION OF NILPOTENT LIE 

ALGEBRAS OF MAXIMAL RANK 

L. J. SANTHAROUBANE 

Introduction. The natural problem of determining all the Lie algebras 
of finite dimension was broken in two parts by Levi's theorem: 

1) the classification of semi-simple Lie algebras (achieved by Killing 
and Cartan around 1890) 

2) the classification of solvable Lie algebras (reduced to the classifica­
tion of nilpotent Lie algebras by Malcev in 1945 (see [10])). 

The Killing form is identically equal to zero for a nilpotent Lie algebra 
but it is non-degenerate for a semi-simple Lie algebra. Therefore there was 
a huge gap between those two extreme cases. But this gap is only illusory 
because, as we will prove in this work, a large class of nilpotent Lie 
algebras is closely related to the Kac-Moody Lie algebras. These last 
algebras could be viewed as infinite dimensional version of the semi-
simple Lie algebras. 

Acknowledgment. This work is the chapter II of my thesis [13]. I am 
grateful to M. P. Malliavin who guided me all through the preparation 
of my work. During his short visit to Paris R. V. Moody helped my in 
studying the cases Ai(1), A2

(2) and agreed to be an examinator of the 
thesis; I am grateful to him. 

All the structures are on an algebraically closed field K of charac­
teristic 0. 

1. Kac-Moody Lie algebras. 

1.1. Definition. One calls Generalized Cartan Matrix (denoted G.C.M.) 
a matrix A = ( i f ; ) i ^ i , j ^ with entries in Z satisfying: 

(i) Ati = 2\/i= 1 . . . / 
(ii) AtJ £0 Vi,j = l...l,i*j 

(iii) Aij = 0 <=*Ajt = 0 S/iJ = 1 . . . /. 
All through this paper the G.C.M. will be / X /. 

1.2. Definition. We will say that two G.C.M.s A and B are equivalent 
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1216 L. J. SANTHAROUBANE 

if there exists a G @* (permutation group of {1. . . /}) such that 
JJ ij = Aa^ j V% J ~ I . . . I. 

1.3. Definition. We will call Kac-Moody Lie algebra associated to the 
G.C.M. A, the Lie algebra L(A) generated by a set {/i . . .fh hi . . . hh 

ei . . . ei) satisfying relations: 

\/i,j — 1 . . . / [hit hj] = 0 [efjfj] — ôfjhi (5 0 : Kronecker's symbol) 

[hi, ej\ = Aijejj [h^jj] = Aijjj\ 

ViJ = 1 . . . /, i ^ j ( ad ej-^^ej = 0 ( a d / , ) - ^ + 1 / ; = 0. 

1.4. Let {«i. . .at} be the canonical basis of Zl. For a G N*\{0}, 
a = Yldiai denote by La (resp. L_«) the subvector space of L(A) gener­
ated by the elements [en . . . eir] (resp. [fu . . .fir]) where et (resp. /,-) 
appears dt times ([xi . . . xn] = [xi[x2 ... xn] ...]). li a = J^d^i Ç Zl 

are such that all the d /s are not of the same sign, let La = (0). Denote 

L0 = H = Khi® ... ® Kht. 

One calls root system of L(A) the set 

A = {a eZl;a 9* 0 and La 9* (0)}. 

The Lie algebra L(A) is graded by 

A U {0}: L(A) =0 a ,AU{o)^a [La,Lfi] C ^ V « , i 3 G A U ( 0 | . 

One calls positive root system the set 

A+ = {a € N ' ; a ^ 0 and La 9^ (0)} 

and we let A - = — A+ (negative roots). We have then 

A = A_U {0} VJ A+. 

Furthermore L(A) = L-(A) © H 0 L+(4) where L+04) = e a e A + i a 
is called the positive part and L_(A) = 0 « Ç A _ £a the negative part. (For 
the proofs see [8] and [11].) 

1.5. If « = Yl/diOLi let |a| = ^ dt and call |a| the height of a. Denote 

A+n = {a £ A+; \a\ = n) for all » Ç N*. 

Remark that A+1 = {ai . . . at}. 

2, Root system for a nilpotent Lie algebra of maximal rank. All 
through Section 2, g is a Lie algebra of finite dimension, Derg and Autg 
denote its derivation algebra and automorphism group. 

2.1. Definition. One calls a torus on g a commutative subalgebra of 
Derg which consists of semi-simple endomorphisms. A torus is said to be 
maximal if it is not contained strictly in any other torus. 
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2.2. A torus defines a representation in g : T X g —» g (£, x) —̂» /x. 
Since T is a commutative family of semi-simple endomorphisms and since 
the ground field is algebraically closed, the elements of T can be dia-
gonalized simultaneously. In other words, g is decomposed into a direct 
sum of root spaces for 

where T* is the dual of the vector space T and 

g' = {x G g; to = P(t)x\/t G 7 1 

2.3. Definition. Let T be a maximal torus on g. One calls root system of 
g associated to T, the set: 

R(T) = {££ T * ; g ^ (0)}. 

2.4. LEMMA. 7/ g is a nilpotent Lie algebra, the two following assertions 
are equivalent: 

(i) (xi . . . Xi) is a minimal system of generators; 
(ii) (xi + C2g, . . . , Xj + C2g) is a basis for the vector space g/C2g 

{where C2g = [g, g]). 

Define the type of g to be the dimension of g/C2g. 

Proof. See example 4 on page 119 of [2]. 

2.5. Definition, (g nilpotent). Let T be a torus on g. One calls 7"-msg 
a minimal system of generators which consists of root vectors for T. 

2.6. LEMMA, (g nilpotent). For any torus T on g there exists a T-msg. 

Proof. Just take root vectors for T which form a basis for a T-stable 
supplement of C2g. 

2.7. LEMMA, (g nilpotent of type I). Let T be a maximal torus on g, 
(xi . . . Xi) a T-msg, fit the root of xt. The dimension of T is equal to the 
rank of {0i . . . 0,}. 

Proof. Let (h . . . tk) be a basis of T. The rank of (#1 . . . j3t) is equal 
to the rank of the matrix 

( 0 < ( ' ; ) ) i ^ i 

whose value is k as one can see easily. 

2.8. LEMMA, (g nilpotent of type I). The dimension of a maximal torus 
is an invariant of g called the rank of g. If k is the rank, one has k ^ /. 

Proof. By Mostow's theorem (4.1 of [12]), if Tand V are two maximal 
tori, there exists 6 Ç Aut g such that BT6~l = T', therefore dim T = 
dim V\ by 2.7, k £ I. 
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2.9. Definition, (g nilpotent of type /). One says that g is of maximal 

rank if its rank is /. 

2.10. THEOREM, (g nilpotent of maximal rank and of type I). Let T be 
a maximal torus on g, R(T) the associated root system, (xi . . . xi) a T-msg 
and (0i . . . Pi) the corresponding roots. 

(i) The set {Pi ... P1} is a basis for the vector space T*. 
(ii) For any p £ R(T) there exists (dx . . . di) Ç N1 unique such that 

P = ZdiPt. 
(iii) Furthermore if we let \p\ = E dt then 1 S \P\ Û p where p is the 

nilpotency of g. 

Proof. See p. 82 of [5]. 

3. Cartan matrix associated to a nilpotent Lie algebra of maximal 
rank. 

3.1. LEMMA, (g nilpotent of maximal rank and of type I). If T is a 
maximal torus on g and if (xi . . . xt) and (yi . . . y t) are two T-msgs 
then there exist a unique a 6 @z and (Xi . . . Xz) £ (K\(0))1 such that 
yt = Ma*, 1 ^ i ^ I. 

Proof. Let 

{xi . . . x^ KJ {[xu . . . xir]\ r ^ 2, (ii . . . ir) £ Ir} 

a basis of the vector space g generated by {xi . . . xt}; there exist 
yxv ym...ir £ K such that 

1 

yi = 2-*yiJxj + 2-< 3^ii...*rl#ii • • •*<»•]; 
J = l r ^ 2 , ( i i . . . f r ) € / r 

let Pi be the root of xt and 7* the root of y t (1 ̂  i S l)> For / ê T one 
has: 

*y< = 7i(t)yi = Eyi/y<(0*i + Ey«i...<r 7<(0[*<i. . .**,]; 

on the other hand: 

tyi = JlyijPj(t)xj+ T,yin...ir(Pn + • • • + /̂ rKOfcn • • •*»], 
therefore: 

3 ^ 0 ^ - 7<) = OViJ = 1 . . . / 

and 

y«i...<r (0<i + . . . + Pir - 7<) = OVi = l . . . / V r è 2 

V ( * l . . . * r ) G /r. 

By 2.4, for any i = 1 . . . /, there exists j = 1 . . . I such that ytj 5* 0 
thus jftj = 7i; the integer j is unique since the P/s are all distinct, there-
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fore one defines a map a: [I . . ./}—> {1 . . . /} by setting ai = j . Now, 
assume there exist i, r, (ii . . . ir) such that yax...ir 9^ 0 then 

7* = 0<i + • • • + /3fr 

thus 

which is impossible by 2.10 (since r ^ 2 ) thus y^..*,. = 0 for all 
i = 1 . . . / all r ^ 2 and all (ii . . . ir) G I r therefore y* = yiViXot with 
?**< ^ 0; this implies that a 6 ©* and that a- is unique; one then lets 
X* = yui> 

3.2. THEOREM. 2^ any nilpotent Lie algebra of maximal rank and of type 
/, one can associate an I X I Cartan matrix A whose equivalence class is an 
invariant of g and which is characterized by the following property: to any 
maximal torus T and any T-msg (xi . . . xz), there exists a Ç ©* such that 
for all i,j = l.../, i 9* j : 

(ad x<ri)-Aiixffj 7* 0 and (ad xoi)~
Aii+l xaj = 0. 

3.3. Definition. With the preceding notations one says that (xi . . . xt) 
is ordered relatively to A if a = Id. 

3.4. Proof of 3.2. We will proceed in four steps: 
(i) Let T be a maximal torus and (yi . . . yt) a 7^-msg. Since ady f 

is nilpotent, for j 9^ i there exists A iô £ Z^0 unique such that 

(adyO""A , 'y^ ^ Oand (adyO""4*''"4"1^ = 0; 

let ^4zi = 2; obviously A = (^40) is a G.C.M. 
(ii) Let (xi . . . Xi) be another T-msg. By 3.1 there exist a G @j and 

(Xi . . . Xz) 6 (iT\(0))z such that yt = X^- therefore 

( a d ^ , - ) " 4 * ^ 7* Oand ( a d ^ ) " 4 ' ' ^ 1 ! ^ = 0. 

(iii) Let T' be another maximal torus. By Mostow's theorem (4.1 of 
[12]) there exists 0Ç Autg such that BTB~l = T\ obviously (Byx . . . By%) 
is a T'-msg; by (i) there exists a G.C.M. A' such that 

(ad By i)"^By j 9* 0 and 

(ad ByJ-^i+iByj = 0 for all i 9* j ; 

this is equivalent to 

(ad yi)~Aiiyj 9^ 0 and 

(ad yi)-A'ii+lyj = 0 for all i ^ j ; 

thus A = A' by unicity. 
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(iv) In (i) we associated to (T, (yi . . . yù) a G.C.IVf. A. In (ii) we 
modified only (yi . . . yi) and we obtained an equivalent G.C.IVI. ; there­
fore the equivalence class of A depends only on T. In (iii) we modified T 
into T' and obtained for a suitable T'-msg the same G.C.M., thus the 
equivalence class of A does not depend on T either. 

4. Universal property . 

4.1. If X = {ei . . . ezJ is a set, the free Lie algebra F(X) generated 
by X is graded by N z \ (0) . If (ai . . .at) is the canonical basis of Zl and 
« = H di&i £ N*\(0), denote by Fa the subvector space of F(X) spanned 
by the [eu . . . eir]'s where et appears dt times for all i = 1 . . . /. One 
has then 

F(X) = ©«€N'\(O) ^ a and [F«, /*] C F«+e for all 

« J G N*\(0) (see [2], p. 22). 

4.2. Let p'.X —* F{X) be the canonical imbedding ([2], p. 19). The 
pair (p, F(X)) satisfies the following universal property: for any Lie 
algebra g and any map f:X —> g there exists a unique homomorphism 
ip : F(X) -> g such t h a t / = ^ o P ([2], p. 18). 

4.3. LEMMA. With the notation of 1A we have: 
(i) L+(A) is a Lie algebra generated by {ei . . . e^ satisfying only the 

relations 

(ade , ) - A , ' ; + 1 ^ = 0 \/i 7* J. 

(ii) L+(A) is graded by 

A+:L+(A) = 0« € A + L a , [Lat Lp] C La+(jfor all a, 0 G A+. 

(iii) There exists a unique homomorphism X from F(X) onto L+(A) 
such that Xei = et and satisfying the following properties: Ker X is generated 
by 

(ad €i)-Aii+1 €j, i}j=l...l, i 7± j and 

\Fa(X) = Lafor alia 6 N ' \ (0 ) . 

Proof. The proof is straightforward. 

4.4. LEMMA. With the above notation one has: 

CnL+(A) = ©,«,*„ La 

where CnL+(A) is the nth term of the central descending series. 

Proof. This, again, is straightforward. 

4.5. LEMMA. For all a £ A+\{ai . . . at} there exists i £ {1 . . . /} such 
that a — a{ £ A+. 
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Proof. This follows as in the semi-simple case. 

4.6. LEMMA. Let A+k = {a G A+; \a\ = k}. If A+
p = Q for some p G N* 

then A+p+n = 0 for all w ( N . 

Proof. This follows from 4.5. 

4.7. LEMMA. For all k G N and a// i,j G {1 . . . /) we fea^e 

Lay+jta,- = ^ ( a d e%Yej. 

Proof. This is clear from above. 

4.8. Let p G N* and 4̂ a G.C.M. We will need in the sequel two 
conditions on p and A. By commodity we gather them here. As shown in 
4.9 (ii) and (vi), without these two hypotheses, the Lie algebra mp(A) 
won't have the invariants p and A. 

(Hi) either dim L(A) = + oo or dimL(^l) < GO 

and in this case p ^ pA where pA is the height of the highest root of 
L+(A). 

(U2)p â; Sup {-Av + hiJ G { 1 . . . / } } . 

4.9. PROPOSITION. Let 

m = mp(A) = L+(A)/CP+1L+(A) (p ^ 1) and 

n:L+(A) —-> mp(A) X H X 

the canonical map. 
(i) The restriction of ^ to the vector spaces La such that \a\ ^ p is an 

isomorphism from La onto La and mp(A) is graded by 

{a G A+; \a\ ^ p) :mp(A) = (& \a\£P La[La, Lp] C £«+/*. 

(ii) The Lie algebra mp(A) is nilpotent and under the hypothesis Hi of 
4.8. its nilpotency is p. 

(iii) The set \e1 . . . et} is a minimal system of generators of mp(A). 
(iv) Let tt G Der mp(A) (1 ^ i S I) defined by ttëj = ôtjëj] then 

T = 0zLi Ktt is a maximal torus on mv(A) and the nilpotent Lie algebra 
mp (A ) is of maximal rank; furthermore (ëi . . . e t) is a T-msg. 

(v) Let (t*1 . . . t*1) be the dual basis of (ti . . . ti); if we identify t*i 

and at then the root space decomposition relative to T is identical to the 
decomposition 

1Tlp(^4) = @a£A+\a\^pLa. 

(vi) Under the hypothesis H2 of 4.8 A is a G.C.M. associated to mp(A) 
and (ëi ... ëi) is ordered relative to A. 

Proof, (i) is obvious from 4.4. 
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(ii) The lie algebra m is obviously nilpotent of nilpotency ^p. By 4.4, 

CPm = ÇB |a|=p La\ 

by (i) one has Cpm = (0) if and only if 

©|a|=p La = (0) ; 

by the definition of La one has © | a | = „ I « = (0) if and only if A+
p = 0; 

by 4.6 we have A+p = 0 if and only if A+
p+n = 0 \/n ^ 0; since 

&L+(A) = © ^ o © I a | =p+n -L'a 

we have A+p+n = 0 \/n ^ 0 if and only if CPL+(A) = (0). 
If dim £(.4) = + oo then CPL+(A) ^ (0) \/p ^ 1; d dim L(A) < oo 

then L{A) is a semi-simple Lie algebra and L+(A) is the nilpotent part 
([11], p. 230) of nilpotency pA thus CPL+(A) ^ (0) (since p S PA)- In 
both cases CPL+(A) ^ (0) therefore C*m ^ (0). 

(iii) We have 

i 

m/C2mÊË © La = ® Kët 
| a | = l z = l 

thus (ëi . . . ëj) is a minimal system of generators for m(2.4). 
(iv) Obviously T is a torus on m. Since the dimension of T is equal 

to the type of m (by (iii)), T is a maximal torus and rrt is of maximal 
rank. 

(v) Let 

ma = {x 6 L\ tec = « (0* V^ G JT} ; 

it is easy to prove both inclusions: m« C La and La C tna. 
(vi) By (iii) and (iv) (ëi . . . et) is a T-msg of m. We have 

(adëO-^ 'H- 1 ^ = 0. 

Assume that (ad ez)~
A*> ^ = Ô then 

(ad ei)~Ai> ej Ç Ker /x 

thus 

La 

(by 4.4 and 4.7) therefore 1 — A {j ^ p + 1 which contradicts H2. 

4.10. With the notation of 4.1, 4.2, 4.3 and 4.9 denote 

u = n o\o p'.X —> mp(^4) 

i.e., w(ez) = êi. We assume in the sequel that Hi and H2 of 4.8 are satis­
fied which implies that mp(A) is a nilpotent Lie algebra of nilpotency p 
and that A is a G.CM. associated to mp(A). 
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4.11. PROPOSITION, (i) The pair (u,mp(A)) satisfies the following 
universal property: for any nilpotent Lie algebra of type /, of maximal 
rank, of nilpotency q such that q ^ p, whose associated G.C.M. B is such 
that \Bij\ ^ \Aij\\/i,j; and for any map f:X —» çj such that (fei . . .fei) 
is a Tg-msg ordered relative to B (for a maximal torus T§ on çj), there 
exists a unique homomorphism ç from mp(A) onto g such that p o u — f. 

(ii) Let mp'(A) be a nilpotent Lie of nilpotency p, of type I, of maximal 
rank, whose associated G.C.M. is A; let uf :X —» mp(-4) be a map such 
that the pair (u', m/(-4)) satisfies the universal property of (i); then there 
exists an isomorphism \I>:mp(A) —> mp(A) such that ^ ou = uf. 

Proof, (i) By 4.2. there exists a unique homomorphism fi : F(X) —> g 
such t h a t / = / i o p. Since (fei . • .fei) is ordered relative to B one has 

(ndfeJ-AWfe, = 0Vi*j, 

therefore 

/ i ( ( ad € i ) - A < ' + 1 €i ) = 0 V * ^ J 

thus Ker/ i C Ker X, and this implies the existence of a unique homo­
morphism / 2 : L —> g such tha t / 2 o X = / i . Since g ^ £ and Cp+18 = (0) 
we have/2(Ker JU) = 0 therefore there exists a unique homomorphism 
if : m —•> g such that ^ o pt = /2 . This yields ^ o w = / . 

(ii) Apply (i). 

5. Classification theorem. 

5.1. Recall that Hi and H2 of 4.8 are assumed. If a is an ideal of 
mp(A) denote g = m/a and w:m —> g the canonical map; g is a nilpotent 
Lie algebra of nilpotency less than p. 

5.2. LEMMA. The two following assertions are equivalent: 
(i) a C C2m; 

(ii) (irëi . . . irëi) is a minimal system of generators of g. 

Proof. If a C C2m then 

ëy + C2m »-> 7rëy + C2g, m/C2m —> g/C2g 

is an isomorphism; one then applies 2.4. Conversely if a <£ C2nt there 
exist (Xi . . . Xj) Ç i£z\(0) such that ^£J\iëi £ a and thus 

S Xf7rez- = 0. 

5.3. LEMMA. / / a is homogenous and contained in C2m and if T is the 
maximal torus defined in 4.9 then: 

(i) For any y £ T there exists îr(t) G Der g unique such that w o t = 
ir(t) o 7T. 
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(ii) The nilpotent Lie algebra g is of maximal rank with i(T) as a 
maximal torus and (71-ëi . . . irëi) as a 7r(T)-msg. 

(iii) For any 7r(T)-msg (yi . . . yi) there exists a unique T-msg (xi. . . xt) 
of m such that 7rx7- = yt \/i = 1 . . . /. 

Proof, (i) By 4.9 (v) a is homogenous if and only if a is 7"-invariant; 
this allows us to define 7r(0 by 

7r(t)(wx) = Ttx\/x £ m. 

(ii) Since a C C2m, (71-ëi . . . irëi) is a minimal system of generators of 
g (by 5.2.) thus g is of type /. Obviously ir(T) is a torus on g with root 
vectors (irëi . . . wëi) ; let Ai . . . \ t Ç X such that 

£ x<*(*<) = 0 

then \jirej = 0 thus \j = 0 therefore dim w(T) = I and by 2.8 g is of 
maximal rank and T(T) is a maximal torus. 

(iii) Let 

W = @ Këù 

it is easy to see that 

g = TW ® C2gand W^irW; 

let (yi . . .yt) a îr(T) — msg of g; there exist x{ (z W unique and 
zt (z C2g unique such that yt = 7rxz- + 2 .̂ If /3f is the root of yt it is easy 
to see (by using the preceeding decomposition of g) that 

txt = PtiffiXi and zt 6 g^ H C2g = (0). 

5.4. LEMMA. If a is homogenous and if 

(ad et)-
Aii ëj £ a V*,7 = I ... I, i 7^ j 

then g is of maximal rank and A is a G.C.IVI. associated to g. 

Proof. By simple arguments one can prove that a C C2m; by applying 
5.3 (ii) it suffices to prove that 

(ad irëi)~Aii irëj 7e 0 and (ad wëi)~AiJ+l irëj = 0 \/i 9^ j 

which is obvious. 

5.5. LEMMA. The two following assertions are equivalent: 
(i) g is of nilpotency p. 

(ii) Cpm <£ a. 

Proof. This is straightforward. 
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5.6. Definition. We call the automorphism group of the G.C.M. A the 
group 

5.7. LEMMA. Le/ O- G ©Z- 77&ere exists â G Aut m swcfr that aet = eai 

\/i = I ... I if and only if a G &i(A). Write 

ëi(A) = {â G Autm;<7 G ©i(4)} . 

Proof. We can define a bijective linear map â:m —» m by setting 

0-e* = ëai\/i = 1 . . . I. 

We have cr G Aut m if and only if 

( ad^) - A *"> + 1 ^ = OVi^j 

i.e., (adeffi)-
Aii+1effj G C^L+(A) \/i ^j. 

Assume that â G Aut m and let (i,j) be such that 

( a d O " 4 < / + 1 ^ ^ 0 

then 

«o-i + (— Aij + l)a^- G A+ 

and we have 

\affj+ ( - Atj+ l)a„-| ^p + l; 

since p ^ — ^4^^- + 1 (by Hi of 4.8) it follows that Aai(Jj ^ Atj\ now 
let (i , i) such that 

then — yl̂ vy + 1 ^ — ^47;- + 1 and thus Aai<7j ^ ^40-; in both cases 
we have Aai(Tj è Atj and therefore 

there exists n G N* such that o-w = 1 therefore 

AtJ ^ 4 ^ ^ . . . ^ 4*, 

which implies that A{j = Aai<xj \/i ^ j thus a G © J C 4 ) . The converse 
is obvious. 

5.8. LEMMA. The set 

3 = 3p(A) = {a homogenous ideal of m; Cpm <Z a and 

(ad ei)~Aii ëj (? a V ^ V i i 
is stable under &i(A). 

Proof. This is clear. 
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5.9. PROPOSITION. Let g be a nilpotent Lie algebra of maximal rank, of 
nilpotency p and such that A is an associated G.C.M. 

(i) There exists a Ç 3 such that g = m/a. 
(ii) If a' € 3 is such that g == m/a' then there exists â Ç &i(A) such 

that ott = a'. 

Proof, (i) Let (x\ . . . Xi) be a T§ — msg ordered relative to A (where 
T§ is a maximal torus on g). Let f:X —» {xi . . . #*} be a map denned 
by/** = %i't by 4.11 there exists a homomorphism 7r from m onto g such 
that 7rêi = xt. Let a = Ker -K then g = m/a. Let us prove that a € 3 . 
By 5.5 we have Cpm (£ a. Secondly, we have 

(ad e,)~A{i lj £ a 

since 

(ad Xi)~Ai> Xj T^ 0. 

Finally to prove that a is homogenous one uses 2.10: let 

Z *n...irfoi • • >êir] 6 a\(0) 
( < l . . . i r ) € / 

with \u...ir 9e 0 and [ê^ . . . ëïr] (? a V(^i • • • iT) € / , we have then that 

with [xu . . . xir] 5*0 V(ii . . . i r) G I therefore there exists j8 = 
£ d^/3, 6 2?(r) such that 

$ = j8fl + . . . + 0,r V(*"i...*r) € / . 

(0i is the root of #f which implies that fitl + . . . + fiir is the root of 
[xl]L . . . xir].) Let diil,,,ir be the number of times that i appears in 
(ii . . . i r) . We have 

z i 

therefore, by 2.10, 

di = ditl..mir \/i = 1 . . . l\/(ii . . . ir) G J; 

thus li appears d{ times in [etl . . . eir\ \/ (i\ . . . ir) Ç / which means that 

[etl . . . eir] e La V(ii . . . i r ) 6 / 

where a = £ iiOj; therefore a is homogenous. 
(ii) Let a' Ç 3 be such that g ̂  m/a'. Let us make the following 

identification: 

g = m/a = m/a', 
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Let 7r':m —» Q associated to a' (see (i)). By 5.2 we have a C C2m and 
a' C C2m. By 5.3 (ii), ir(T) and TT'{T) are maximal tori on g and by 4.1 
of [12] there exists <p 6 Aut g such that 

* T ( 7 > - I = *'{T). 

By 5.2 (ii) (TT Î . . . 7rë*) is a 7r(r)-msg and therefore (<pwëi. . . <pwëi) is 
a 7r'(r)-msg. By 5.3 (iii) there exists a T-msg (ê/ . . . l{) of m such 
that 

ir'ëi = <p7rê, \A = 1 • • • l* 

By 3.1 there exist <r 6 ©, and (Xi . . . X,) 6 ( A ( 0 ) ) ' such that 

ë / = Xi^i V^ = 1 • • • /• 

Since (l\ . . . ë/) and (ëi. . . êt) are ordered relative to A we have 
a G ®i{A) and therefore we define 0 6 Aut m by setting Bët = ë / ; we 
then have <pir' = 7r'0 and thus 0a C a'; since 0 is one to one and dim a = 
dim a' this implies 0a = a' ; on the other hand 0a = âa thus âa = a' with 
er G ®,(i4). 

5.10. THEOREM. The isomorphism classes of nilpotent Lie algebras of 
maximal rank, of nilpotency p and such that A is an associated G.C.M. are 
in bijection with the orbits of %{A) under the action of (g>i(A). 

Proof. To each a Ç 3 associate the isomorphism class of tn/a; by the 
preceeding results this gives the bijection. 

6. Model of nilpotent Lie algebra. 

6.1. LEMMA. Let m(Z, p) = F(X)/CP+1F(X) (p ^ 1) and r:F(X) -> 
m x *—> % be the canonical map. 

(i) The restriction of T to the sub spaces Fa such that \a\ ^ p is an 
isomorphism from Fa onto Fa and m(l, p) is graded by {a£ N*\(0) ; \a\ S p\ : 

m(/, p) = ©,„,$, F« and [F», fi] C F"^-

(ii) m(/, p) is a nilpotent Lie algebra of nilpotency p. 
(iii) (ei. . . êi) is a minimal system of generators of m(/, p). 
(iv) Let Dt 6 Der m (1 ^ i ^ /) be defined by 

Dilj = ôijêj, 

then D — 0 Li KD t is a maximal torus on m(/, p) and m(/, p) is of maximal 
rank; furthermore ( i i . . . i/) is a D-msg. 

(v) Let (D*1. . . D*1) be the dual basis of D*. If we identify Dt and 
at then the root space decomposition relative to D is identical to the decom­
position of (i). 
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(vi) Define the G.C.M. A by 

AtJ = - p + IWi^j. 

Then A is associated to m(/, p) and (h . . . li) is ordered relative to A. 

Proof, (i), . . . , (v) as for rrt(/, p). Since F(X) is free one has 

(ad €,)*-% ^ 0; 

on the other hand 

(ad €,)%• = 0. 

This proves (vi). 

6.2. PROPOSITION. Let A be a G.C.M. such that 

Atj= -p + IVi^j. 

One has the following graded isomorphism mp(A) ~ m(/, p) i.e., La = Fa 

for all a G N*\(0) such that \a\ ^ p. 

Proof. It is easy to check that Hi and H2 of 4.8 are satisfied for p and 
A. One uses now the universal property of mp(A) (4.11) and of nt(/, p): 
any nilpotent Lie algebra of nilpotency p and of type / is a quotient of 
m(/, p) (which comes from 4.2). 

6.3. PROPOSITION. ([1], [5], [6]). The isomorphism classes of nilpotent 
Lie algebras of nilpotency p and of type I are in bijection with the orbits 
°f 3 (l> P) under the action of © i {We denote by 3 (/, p) the set of homogenous 
ideals contained in C2m and not contained in Cpm; the action of ©z is 
vet = eai.) 

Proof. This follows from 5.10 and 6.2. 

7. Examples. 

7.1. We shall refer to the tables given in [4]. We drop the obvious 
study of algebras with direct factor. 

7.2. Dimension 3. 

Definition. 

Q3 = Kxi © . . . © Kxz:[xix2] = x3. 

Maximal torus: 

T = Kt\ © Kt2, ttXj = ôijXj, i,j = 1, 2. 

T-msg: (xix2). Roots: 

(0i02),0,(*,) = Stj,ifj = 1,2. 
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Root space decomposition: 

g = g£i © g02 © fl/»i+/ï» 

with 

Ô** = ifxx, g<*2 = i£x2, ^ 1 + / J | = #*3. 

• U D Type: / = 2. Nilpotency: p = 2. G.C.M. ^ = ( _ 1 0 ) = A2. Dyn 

kin diagram: (see [7]) . Conclusion: 

Ô3 = m2(A2)/(0) = L+(A2). 

7.3. Dimension 4. 

Definition: 

g4 = -Kxi © . . . © Kx±\ [xix2] = x3, [#1*3] = Xi. 

Maximal torus: 

T = Kh © i£/2; ttXj = ôi;Xy, i, j = 1, 2. 

T-msg: (xix2). Roots: (j3ij82): 

0<(*i) = *<**,j = 1,2. 

Root space decomposition: 

g = g/Sl © g^2 © g£l+/32 © g20i+02? 

with 

^ = Kxu Ĝ 2 = #*2, 9 ^ 2 = Kx3, qWi+0* = Kx,. 

(-J D • Type: / = 2. Nilpotency: £ = 3. G.C.M.: A = ( _ ; J = J32 Dyn-

kin diagram: . Conclusion: 

94 = m3(J32)/(0) = L+(B2). 

7.4. Dimension 5. 

7.4.1. Definition. 

g5,2 = i£*i © . . . © i£x5:[xix2] = x4, [x2x3] = x5 

(we made the following change of notation: x\ <-> x2 x4 —» — x4). Maximal 
torus: 

T = Kh® ...® KhUtXj = S^x,-, i,j = 1, 2, 3. 

T-msg: (x 1X2X3). Roots: (PifcPz): 
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Root space decomposition: 

9 = ^ 0 tf* © tf* © Q +̂02 0 ^2+^3 

with 

B* = Kxu tf> = Kx2, ^ 3 = Kxz, Q ^ 2 = Kxh 8*»+*» = Kx0. 

Type: / = 2. Nilpotency: p = 2. G.C.M.: 

/ 2 - 1 0\ 
- 4 = 1 — 1 2 - 1 1 = ^ 3 . 

\ 0 - 1 2 / 

Dynkin diagram: 

0 — 0 — 0 
1 2 3. 

Conclusion: g5,2 = m2C43)/(0) with 

m 2 ( ^ 3 ) = Z,+ G43)/Lai+«2+«3-

7.4.2. Definition. 

05,4 = i£*i © . . . © i^x5:[xix2] = x3, [xix3] = *4, [x2x3] = x5. 

Maximal torus: 

T = i£/i © Kfa\tiXj = ô^Xy, i , j = 1, 2. 

T-msg: (xix2). Roots: 

(0ij82) :£,(/,) = *<i>*\j = 1.2. 

Root space decomposition: 

g = fl01 0 Q^2 © £01+02 © Q2/3l+02 0 Q01 + 202 

with 

A* = 2&clf ^ = Kx2} ft'i+'« = Xxg, 
g20i+02 = ^ ^ i + 2 ^ 2 = K x h 

Type: / = 2. Nilpotency: £ = 3. G.C.M.: A = ( J ""?} = ^ i ( 1 ) . 
0 = 0 ^ ' 

Dynkin diagram: . Conclusion: 

95,4 = mMiil))/(P) 

with 

m3(ii ( 1 )) = L+{Ax
a))/ 0 La. 
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7.4.3. Definition. 

g5(5 = Kxi © . . . © Kxb:[xix2] = xd[xixz] = x4, [xix*] = x5. 

Maximal torus: 

T = Kt\ © Kh'.tiXj = ô0Xy, i, j = 1, 2. 

T-msg (xix2). Roots: (frfo): 

0<(*i) = «<**,./ = 1,2. 

Root space decomposition: 

g = tfl © g^2 0 gfll+02 @ g2/3l+02 @ g30i+02 

with 

8* = X*i, ĝ 2 = Kx2j g<^ 2 = 2£K8, 8 2 ^ 2 = i£x4, Ô3/?1+/Î2 = #*5. 

Type: / = 2. Nilpotency: p = 4. G.C.M.: 4 = ( ? j? ) = G2 

i diagram: 

g5l5 = m3(G2) 

Dynkin diagram: " ' . Conclusion: 

with 

1113(^2) = L + (G 2 ) /Z /3a i + 2a2-

8. The semi-simple and the Euclidian (of rank 2) case. 

8.1. All through Section 8 we assume that A is of semi-simple type i.e., 

A e {AlBlClDlE6E7E8F,G2} 

(see [7]) or Euclidian (of rank 2) type i.e., A 6 Ui ( 1 ) , ^42
(2)| with 

(see [9]). Those types have in common the fact that dim La = 1 \/a G A 
(the converse is true). We assume also that Hi and H2 of 4.8. hold. 

8.2. Denote by JVP{A) the set of isomorphism classes of nilpotent Lie 
algebras of maximal rank, of nilpotency p such that A is an associated 
G.C.M. 

8.3. Let a be an homogenous ideal of mv{A) ; then 

a = ©a€Ap aC\La 

where 

Ap = {a G A+;|a| ^ p\ ; 
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since a C\ La = (0) or La we have 

Cl = ©açAp(a) La 

with 

Ap(a) = [a Ç A p : a n l a ^ (0)}. 

By 1.5 and 4.4, Cpm Ç£ a is equivalent to A+p <£ Ap(a). By 4.7 

( ad ët-)"~Aï'' ëj- ^ a 

is equivalent to 

OLJ — A ifiLi (t Ap(a). 

Let £ be a subset of Ap, and call £ ideal of Ap if for all a Ç £ and all 
i = 1 . . . / such that a + a* 6 Ap one has a + a1-6 E. Obviously a is 
an ideal of m if and only if Ap(a) is an ideal of Ap. Define 

\V(A) = \E ideal of Av\ (z)A+
p(lE ( & ) « , - 4 , ^ , g E\/i * j \ . 

By the above remarks the map 

&P(A)-> h(A) a ^ A p ( a ) 

is a bijection with inverse 

The group &i(A) operates on Ap by 

Denote by jp(yl) the set of orbits. With the notation of 5.9 (i) and by 
5.9 (ii), @iG4) • Ap(ct) does not depend on a. By 5.10 one gets 

8.4. THEOREM. If A is of semi-simple type or Euclidian type of rank 2 
and if p satisfies Hi and H2j?/ 4.8 then the <& t(A)-orbits of \P(A) classify 
canonically the elements of jVp{A). More precisely, the map 

(a defined in 5.9 (i)) is a bijection and <&>t(A) -E -—• (m/aE) is the inverse 
(aE defined in 8.3). 

8.5. Semi-simple case of rank 2. 

8.5.1. Start with the G.C.M. A2 = I _ . ~ I . The root system is 

A+ = {«i, a2, «i + a2}. 

The hypotheses Hi and H2 give 2 ^ p ^ 2 thus p = 2, A2 = A+, A+2 = 
{«i + a2}. The conditions A+

2 Çf E and E ideal of A2 imply E = 0. Thus 
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h(A2) = {0} and therefore %2{A2) = {(0)} which gives JV2{A2) = 
{m2(A2)\. Since nt2(^2) = L+(A2) = 93 (7.2) we have the following 

THEOREM. Up to isomorphism g3 defined in 7.2 is the only nilpotent 
Lie algebra of maximal rank with A2 as an associated G.C.M. 

8.5.2. Case 

Root system: 

A+ = {«i, a2, ai + a2j 2a 1 + a2\. 

Hypothesis: 3 ^ p S 3. Consequences: 

p = 3, A3 = A+, A+3 = {2d + a2}, U(B2) = {0}, 

^ 3 ( ^ 2 ) = { ( 0 ) } , ^ 3 ( 3 2 ) = Î94Î (7.3). 

THEOREM. Up to isomorphism g4 defined in 7.4 is /fee 0tt/;y nilpotent 
Lie algebra of maximal rank with B2 as an associated G.C.M. 

8.5.3. Case 

G l = \ - 1 2 / ' 

Root system: 

A+ = {ai, a2, ai + a2, 2ax + a2, 3ai + a2, 3ai + 2a2}. 

Hypothesis: 4 ^ p ^ 5. Consequences: £ = 4 or 5, 

A4 = {ai, a2, ai + a2, 2ai + a2}, A5 = A+, 
A+

4 = {3a! + a2}, A+5 = {3ai + 2a2}, 

j4(G2) = U(G2) = {0},34(G2) = %(G2) = {(0)}, 

^*(G2) = {95,5} (7.4.3), ^ 5 ( G 2 ) = {L+(G2)Î. 

THEOREM, £/£ to isomorphism g5>5 defined in 7.4.3 and 

L+(G2) = Kxi © . . . 0 i£x6:[xix2] = #3, [#1X3] = x4, 

[X1X4] = #5, [X2X5] = [X3X4] = XQ 

are the only nilpotent Lie algebras of maximal rank with G2 as an associated 
G.C.M. 

8.6. The case of AJ». 

8.6.1. We use the presentation of [9], Section 3. Let K[t] be the vector 
space of polynomials with one indeterminate, Km[t] the vector space of 
polynomials of degree <m and sl(2, K) = Kf + Kh + Ke with brackets 
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[e,f] = h,[h,e] = 2e, [*,/] = - 2/. If 

then 

L+(A) = Ke ® 1 + sl(2, K) <g> /£[ / ] ; 

the brackets in L+C4) are defined by: 

[x ® /', y ® />] = [*, y] <g> **+'. 

The root spaces are: 

Lai =Ke®\, 

Liy.ai = # / ® *', (7 = a i + « 2 ) 

L i 7 = Kh <g> *', 

L fy+a i = Ke®t\ i ^ 1. 

The set of positive roots is 

A+ = {a\\ yj [iy — au iy, iy + «iî i ^ 1|-

2 3 4 5 6 

Picture of A9 for A^^y = ai + «2) 

8.6.2. LEMMA. Ŵe have 

i2«(4i(1)) = {0} ^ 

i2ff+iWi(1)) = {0, {(Z7+«il, {((7 + 1)7 - a i } ) 

m//& g ^ 2. 
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Proof. The condition A+p (£ E implies qy $ E if p = 2g and {qy + ai, 
(q + l)y — on] <Z E i{ p = 2q + I. By the picture, the fact that an 
element E of \2q is an ideal gives E = 0; if E G j^+i then, obviously, 

£ £ {#7 + ah (q + 1)7 — ai}, 

thus 

£ = 0, ÎÇY + «i}, {(g + 1 )T - «i). 

Since Sup{ — A {j + 1 ; i ^ j) = 2 we have g ^ 2. 

8.6.3. THEOREM. £/£ /0 isomorphism, there exist exactly 3 infinite series 
of nilpotent Lie algebras of maximal rank such that A\{1) is an associated 
G.C.M.: {we write down respectively the algebra g, the nilpotency p, the 
dimension n, the element Ap(a) in \P(A) (8.3), and the root system R): 

(1) i4jft,i = Ke ® 1 + 0 sl(2,K) ® tl + Kf ® t*\ q â 1, 

£ = 2g + 1, rc = 3g + 2, Ap(a) = 0, 

i?i = {ai} U {n — «i, i y . n + a j ; 1 ^ i ^ g} W{(g + 1)7 — ai}. 

(2) 4f t , 2 = i4ft,i + Kh® t9+\ q^l, 

p = 2g + 2, * - 3g + 3, Ap(a) = 0, 

i?2 = i ? 1 U { ( g + l ) 7 | . 

(3) i4i«i8 = Ai\2 +Ke® tQ+\ g è l , 

£ = 2g + 3, n = 3g + 4, Ap(a) = {(q + 2)y - ai}, 

R, = R2KJ{(q + 1)7 + a,}. 

(Notations are such that dim A(i?q,r = 3g + r + 1.) 

Proof. The ideals {57 + «i} and {(q + 1)7 — «ij of 8.6.2 are inter­
changed by non-trivial element of ©i(i4). We then apply 8.4. 

8.6.4. Remark. The algebra g5,4 (7.4.2) given by [4] is the first term 
of the series (AiiQti)q^i. 

8.7. The case A2
i2). 

8.7.1. Let y = sl(3, K) = Kf2 + Kfx + Khx + Kh2 + Kei + Ke2 be 
/ 2 — 1 \ 

the Kac-Moody Lie algebra associated to A2 — I . I (1.3). The 

group ©2(^2) (= ©2 = {1, (T\ all <-* 2) operates on y by vet = e,,-, 
° / = /«•! °"̂ i = ^ ; the eigenvalues of c are ± 1 and the eigenspaces are 

y±i = {aey;aa= ±a}. 
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We have: 

y+i = K(f, + /2) + K{h, + hi) + K(ei + et) 

and 

y.x = K[ftft] + K(f1- h) + K{h, - hi) + K(ei - et) 

+ K[eiet]. 
We have 

L+(Ai{2)) = K(ei + e2)®i + ®y+i® tu + e y-i ® *2<+1 

where the brackets in L+{A<i(i)) are defined as in L+(^4i(1)) (8.6.1). The 
root spaces are 

Lai = K(ei + et) ® 1, 

£(2i+i>Y-2ai = ^ [ / i / 2 ] ® / 2 i + 1 , y = 2 a i + «,, 

L(2i+1)7_ai = i f ( / 1 - / 2 ) ® ^ + \ 

L(2,+i)T = 2C(fci - A2) ® *!'+1, 

i(2*+i)T-H.i = ^ («i - e2) <g> /*«+i, 

/>(2i+m+2a1 = #[eie2] ® /*i+1, (with* è 0), 

L2,T_ai = X ( / 1 + / 2 ) ® ^ ' , 

Z,2jT = X(fei + fe2) <g> *«, 

L2jT+01 = K{fii + e2) ® <", (with j è l ) . 

The set of positive roots is 

A+ - {a} VJ {2iy + kaûi è l.fe = 0, 1} 

U {(2* + 1)7 + ka1\i ^ 0, fe = 0, ± 1 , ± 2 } . 

(See [9] for details.) 

8.7.2. LEMMA. We have 

UQ+T = !0}/or<z i l , f = 0 ,2 ,3 ,4 , 

i6{+1 = {0, {2gT + a 1 [ , { ( 2 g + l)y - 2ai\\ for q £ 1 ^ 

i65+5 = {0,{(23 + l )7 + 2a1},{(2g + 2)7 - a , } } / o r g è l. 

Proof. This follows as for ,4iu> (8.6.2) with the help of the picture. 

8.7.3. THEOREM. Up to isomorphism there exist exactly 10 infinite series 
of nilpotent Lie algebras of maximal rank such that Ai(2) is an associated 
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G.C.M. (we use same notations as in 8.6.3): 

(1) AZ.i = K(ei + et) ® 1 + 0 y+i ® tu + 0 ^ - i ® tU+\ q^O, 
Ï - 1 i = 0 

p = 6g + 5, n = 8g + 6, Ap(a) = {(2g + 2)7 - a,}, 

2?! = |«i} U \2iy + ken; 1 ^ t g g, * = 0, ±1} 
U \{2i + 1)7 +fern; 0 ^ t ^ g, A = 0, ± 1 , ± 2}. 

(2) ,4ft,2 = AZ.i + K(fi + /,) ® t-Q+\ g ^ 0, 
£ = 6g + 5, n = 8g + 7, V<0 = 0, 

Rt = Ri U {(2g + 2)7 - a , } . 

(3) 4ft . , = 4ft,2 + KQi! + A,) 0 <2s+2, 
p = 6g + 6, n = 8g + 8, A„(a) = 0, 

i?3 = i?2W{(2g + 2)7}. 

(4) AZA = ^ft,3 + K(ei + e2) ® ^ + 2 , 

p = 6g + 7, n = 8g + 9, V<0 = |(2g + 3)7 - 2a,}, 

i?4 = i?3W j(2g + 2 )7+« i} . 
(5) 4ft,5 = ^ft,3 + K[fi,ft] ® ^ + 3 , g è 0, 

p = 6g + 7, M = 8g + 9, Ap(a) = {(2g + 2)7 + a,} , 

R-o = i?3W{(2g + 3)7 - 2^} . 

(6) 4ft,6 = AZ.z + £(«1 + et) ® <2?+2 + Xl/x,/,] ® tU+\ q ^ 0, 
£ = 6g + 7, n = 8g + 10, V « ) = 0, 

22, = J?, U {(2g + 2)7 + «i, (2g + 3)7 - 2a,}. 

(7) AZ.i = AZ,* + K{h - /,) ® <2«+3, g ^ 0 
£ = 6g + 8, n = 8g + 11, A„(a) = 0, 

2?7 = i?6U{(2g + 3)7 - a i } . 

(8) 4 ft,8 = 4 ft,, + X(Ai - A,) ® *2î+3, g £ 0, 
£ = 6g + 9, « = 8g + 12, V a ) = 0. 

R» = JR7VJ{(2g + 3)7}. 

(9) 4ft,9 = 4ft,8 + X(ei - et) ® *2î+3, g à 0 

p = 6g + 10, n = 8g + 13, V a ) = 0-

R, = R,\J {(2g+ 3 ) 7 + a i } . 

(10) 4ft,10 = 4,(?J., + i£(/i + /,) ® t2q+\ g ^ 0, 
p = 6g + 11, n = 8g + 14, V a ) = {(2? + 3)7 + 2a,}, 

i?10 = i?9U{(2g + 4)7 - a i } -

Proof. This follows as for Ai(ï). 
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