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KAC-MOODY LIE ALGEBRAS AND THE
CLASSIFICATION OF NILPOTENT LIE
ALGEBRAS OF MAXIMAL RANK

L. J. SANTHAROUBANE

Introduction. The natural problem of determining all the Lie algebras
of finite dimension was broken in two parts by Levi's theorem:

1) the classification of semi-simple Lie algebras (achieved by Killing
and Cartan around 1890)

2) the classification of solvable Lie algebras (reduced to the classifica-
tion of nilpotent Lie algebras by Malcev in 1945 (see [10])).

The Killing form is identically equal to zero for a nilpotent Lie algebra
but it is non-degenerate for a semi-simple Lie algebra. Therefore there was
a huge gap between those two extreme cases. But this gap is only illusory
because, as we will prove in this work, a large class of nilpotent Lie
algebras is closely related to the Kac-Moody Lie algebras. These last
algebras could be viewed as infinite dimensional version of the semi-
simple Lie algebras.
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of my work. During his short visit to Paris R. V. Moody helped my in
studying the cases 4:V, 4,® and agreed to be an examinator of the
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All the structures are on an algebraically closed field K of charac-
teristic 0.

1. Kac-Moody Lie algebras.

1.1. Definition. One calls Generalized Cartan Matrix (denoted G.C.M.)
a matrix 4 = (A44;)15:,;<; with entries in Z satisfying:
i) Adu=2Vi=1...1
(i) A,;=0Ve,j=1...0,i#]j
i) 4y =0=24;,=0Vs,j=1...L
All through this paper the G.C.M. will be / X I.

1.2. Definition. We will say that two G.C.M.s 4 and B are equivalent
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if there exists ¢ € &, (permutation group of {1...[}) such that
B,‘j = A“-,j vt,] =1... l

1.3. Definition. We will call Kac-Moody Lie algebra associated to the
G.C.M. 4, the Lie algebra L(A) generated by a set {fi...f, h1...hy,
e, . ..e,;} satisfying relations:

Vi,7 =1...0[hyh;]=0[es f;] = 8i5h:(8:5: Kronecker’s symbol)
(hi €51 = Aijes, [ho f5] = —Aufs;
V’L,] =1... l, 1 ;ﬁ]’(ad e,-)‘““""ej =0 (adfi)_Aij+lfj = 0.

1.4. Let {a:...a;} be the canonical basis of Z!. For o € N\{0},
a = d.u; denote by L, (resp. L_,) the subvector space of L(4) gener-
ated by the elements [e;, ... e;] (resp. [ fi - .- fi]) where e; (resp. f;)
appears d; times ([x1...%,] = [x1fx2...x,]...]). f a = 3> da;, €Z'
are such that all the d;'s are not of the same sign, let L, = (0). Denote

Ly=H=Kh®...® Kh,
One calls root system of L(A) the set
A={a€Z'a#0and L, # (0)}.
The Lie algebra L(A4) is graded by
AU {0}: L(4) = @Pacavio) La [Lay Lg] C Lais Ve, B € AU {0}.
One calls positive root system the set
A, = {a € Na 5 0and L, # (0)}
and we let A~ = — A% (negative roots). We have then
A=A_\U{0}\U A,

Furthermore L(4) = L_(4) ® H ® L, (4A) where L, (A) = @uca, La
is called the positive part and L_(A) = @Paca_ La the negative part. (For
the proofs see [8] and [11].)

1.5. If @« = > dia;let |a] = 3 d; and call |a| the height of a. Denote
A = {a € Ay; el = n} for all n € N*,
Remark that A}l = {a;...«ay).
2. Root system for a nilpotent Lie algebra of maximal rank. All

through Section 2, g is a Lie algebra of finite dimension, Derg and Autg
denote its derivation algebra and automorphism group.

2.1. Definition. One calls a torus on g a commutative subalgebra of
Derg which consists of semi-simple endomorphisms. A torus is said to be
maximal if it is not contained strictly in any other torus.
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2.2. A torus defines a representation in g:7 X g — g (¢, x) > fx.
Since T is a commutative family of semi-simple endomorphisms and since
the ground field is algebraically closed, the elements of 7" can be dia-
gonalized simultaneously. In other words, g is decomposed into a direct
sum of root spaces for

T:g = Dpere o*
where T* is the dual of the vector space 1" and
¢ ={x € g0 =pU)x Ve € T}

2.3. Definition. Let T be a maximal torus on g. One calls root system of
g assoctated to T, the set:

R(T) = {B € T™; ¢° # (0)}.

2.4. LEMMA. If g is a nilpotent Lie algebra, the two following assertions
are equivalent:

1) (x1...x;) 15 a minimal system of generators;

(ii) (x1 4+ C%g,...,x;+ C%g) is a basis for the vector space g¢/C2g
(where C*¢ = [0, g]).

Define the iype of g to be the dimension of g/C?g.
Proof. See example 4 on page 119 of [2].

2.5. Definition. (g nilpotent). Let T be a torus on g. One calls 7-msg
a minimal system of generators which consists of root vectors for 7.

2.6. LEMMA. (g nilpotent). For any torus T on g there exists a T-msg.

Proof. Just take root vectors for 7" which form a basis for a I-stable
supplement of C%g.

2.7. LEMMA. (g nilpotent of type 1). Let T be a maximal torus on g,
(x1...x;) a T-msg, B; the root of x, The dimension of T 1is equal to the

rank Of {Bl .. .61}.

Proof. Let (t;1...1t) be a basis of 7". The rank of (8;...8;) is equal
to the rank of the matrix

Bt hsisi
1S jsk
whose value is k as one can see easily.

2.8. LEMMA. (g nilpotent of type 1). The dimension of a maximal torus
1s an invariant of § called the rank of g. If k is the rank, one has k < 1.

Proof. By Mostow’s theorem (4.1 of [12]), if T and 7" are two maximal
tori, there exists § € Aut g such that 676—! = T”, therefore dim T =
dim T7; by 2.7, k < 1.
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2.9. Definition. (g nilpotent of type I). One says that g is of maximal
rank if its rank is /.

2.10. THEOREM. (g nilpotent of maximal rank and of type l). Let T be
a maximal torus on g, R(T) the associated root system, (xy...x,;) a T-msg
and (By . ..B;) the corresponding roots.

(i) The set {B1 ... B} is a basis for the vector space T*.

(ii) For any B € R(T) there exists (d,...d;) € N! unique such that
B = Z diB.

(iii) Furthermore if we let |8| = Y. d; then 1 < |B| < p where p is the
nilpotency of g.

Proof. See p. 82 of [5].

3. Cartan matrix associated to a nilpotentLie algebra of maximal
rank.

3.1. LEMMA. (g nilpotent of maximal rank and of type l). If T is a
maximal torus on § and if (x1...x;) and (y1...y:) are two T-msgs
then there exist a unique o € &, and (\...N) € (K\(0))*® such that
Yi= Ao, 1 S 1 = 1.

Proof. Let
{oeg oo Uy oo xi ;722,600 2,) € 1}

a basis of the vector space g generated by {x;...x,}; there exist
Yij Yin...ir € K such that
)
Yi = Zyi]‘xj + Z Vitgoirl®n oo %0 ]5

j=1 r22,(41...1r) € Ir

let 8; be the root of x; and v, the root of y;, (1 <7 £ /). For ¢t € T one
has:
tyi=vi®)yi = Zyirvi@®)x; + 2 Viaoo vill) (X4 oo x40 ]

on the other hand:

tyi=29iBi)x; + Xyt (Ba + oo+ B l@ s - x4,
therefore:

yiuB;— ) =0Vi,j=1...1
and

Yinooto B+ ..+ B, —v) =0Vi=1...I1Vr=2
V(il . zr) 6 Ir-

By 2.4, for any ¢ = 1.../, there exists j = 1 .../ such that y,; # 0
thus B8; = «v,; the integer j is unique since the 8,s are all distinct, there-
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fore one defines a map o: {1...l} = {1...1} by setting oz = j. Now,
assume there exist ¢, 7, (¢ .. . %,) such that y;,,...;, ¥ 0 then

Yi=Bu+ ...+ B
thus

6vi=ﬁi|+--~+ﬁir

which is impossible by 2.10 (since r = 2) thus y,.., = 0 for all
i=1...1all» 22 and all (¢1...4,) € I, therefore y;, = y4;x,; with
Yies # 0; this implies that ¢ € &, and that ¢ is unique; one then lets
A= Yioi-

3.2. THEOREM. To any nilpotent Lie algebra of maximal rank and of type
I, one can associate an 1 X | Cartan matrix A whose equivalence class is an
invariant of § and which is characterized by the following property: to any
maximal torus T and any T-msg (x; . ..x,), there exists ¢ € &, such that
foralle,j =1...1,15]:

(ad xg;) =4 ¥ix,; # 0 and (ad x,;)~44i*! x,; = 0.

3.3. Definition. With the preceding notations one says that (x;...x;)
is ordered relatively to A if o = 1d.

3.4. Proof of 3.2. We will proceed in four steps:
(i) Let T be a maximal torus and (y;...y;) a T-msg. Since ad vy,
is nilpotent, for j # ¢ there exists 4;; € Z<o unique such that

(adyf)—A“yj #= Oand (ad yi)_A"i""lyj = 0;

let 4;; = 2; obviously 4 = (4;) is a G.C.M.
(ii) Let (x;...x;) be another T-msg. By 3.1 there exist ¢ € &, and
(A\1...N\) € (K\(0))'" such that y; = \;x,; therefore

(ad x,;)~*iix,; # 0 and (ad x,;) "4t x,; = 0.

(iii) Let 77 be another maximal torus. By Mostow's theorem (4.1 of
[12]) there exists §€ Autg such that 879! = T”; obviously (6y; . . . 6y;)
is a T’-msg; by (i) there exists a G.C.M. 4’ such that

(ad 6y,)—4%ify,; # 0 and

(ad 8y,)—4%i+19y, = 0 for all 1 # j;
this is equivalent to

(ad y,)~4%y, # 0 and

(ad y,)~4%itly; = 0 for all ¢  j;
thus 4 = A4’ by unicity.
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(iv) In (i) we associated to (T', (y1 ... v;) a G.C.M. 4. In (i) we
modified only (y1 . .. y,;) and we obtained an equivalent G.C.M.; there-
fore the equivalence class of A depends only on 7". In (iii) we modified 7°
into 77 and obtained for a suitable 7'-msg the same G.C.M., thus the
equivalence class of 4 does not depend on 7 either.

4. Universal property.

41. If X = {e1... ¢} is a set, the free Lie algebra F(X) generated
by X is graded by N\(0). If (a;...a;) is the canonical basis of Z' and
a = y da; € N\(0), denote by F* the subvector space of F(X) spanned
by the [es ... €;]'s where ¢; appears d; times for all ¢ = 1.../. One
has then

F(X) = @aentyoy F*and [Fe, F¥] C Fetb for all
a, B € NA\(0) (see (2], p. 22).

4.2. Let p:X — F(X) be the canonical imbedding ([2], p. 19). The
pair (p, F(X)) satisfies the following universal property: for any Lie
algebra g and any map f:X — g there exists a unique homomorphism
¢ F(X) — gsuch thatf = ¢ 0 p ([2], p. 18).

4.3. LEMMA. With the notation of 1.4 we have:
(1) Ly(A4) is a Lie algebra generated by {e, . . .e,} satisfying only the
relations

(ad e;)—4iitle; = 0 V1 # j.
(i1) Ly(A) 1s graded by
AyiL(A) = @aca,Lay [Lay Lg) C Layg for all a, B € A,.

(iii) There exists a unmique homomorphism N from F(X) onto L,(A4)
such that Ne; = e; and satisfying the following properties: Ker \ is generated
by

(ad €)= it e, 4,7 =1...1,71 5 jand
N (X) = L, for all a € N\ (0).
Proof. The proof is straightforward.
4.4. LEMMA. With the above notation one has:
C'Ly(4) = Daizn La
where C"L(A) s the nth term of the central descending series.
Proof. This, again, is straightforward.

4.5. LEMMA. For all a € A \{a1...a,} there exists 1 € {1...1} such
thata —_ a; e A+.
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Proof. This follows as in the semi-simple case.

4.6. LEMMA. Let AL* = {a € Ay;la] = k). If A? = @ for some p € N*
then AP = @ for all n € N.

Proof. This follows from 4.5.
4.7. LEMMA. For allk € Nand all 1,7 € {1...1} we have
Lojire; = K (ad e;)%e;.
Proof. This is clear from above.
4.8. Let p € N* and 4 a G.C.M. We will need in the sequel two
conditions on p and 4. By commodity we gather them here. As shown in

4.9 (ii) and (vi), without these two hypotheses, the Lie algebra m,(4)
won’t have the invariants p and A.

(H,) either dim L(4) = + o or dimL(4) < o

and in this case p < p4 where p, is the height of the highest root of
Ly (4).

(Hs) p = Sup {— Ay + 1;4,7 € {1...1}}.
4.9. PROPOSITION. Let
m=m,(4) = L, (4)/C* L (4A) (p = 1) and
pili(4) »mp(d) x >z
the canonical map.

(1) The restriction of p to the vector spaces Lo such that |a| < p is an
isomorphism from Lo onto L, and m,(A4) is graded by

fo € Arilal = p)imy(4) = Daizp LalLay Lg] C Lays.

(i1) The Lie algebra m,(A) is nilpotent and under the hypothesis H, of
4.8. its nilpotency is p.

(iii) The set {&1 . .. &} is a minimal system of generators of m,(4).

(iv) Let t; € Derm,(4) (1 =7 =1) defined by tg; = 8,2; then
T = @i, Kt, is a maximal torus on m,(A) and the nilpotent Lie algebra
m,(A4) is of maximal rank; furthermore (&, . . .&;) is a T-msg.

(v) Let (£*1...t*") be the dual basis of (t1...t,); if we identify t**
and o; then the root space decomposition relative to T 1is identical to the
decomposition

my(4) = Pacasiaiz La.

(vi) Under the hypothesis H, of 4.8 A is a G.C.M. associated to m,(A)
and (&, ...¢&;) is ordered relative to A.

Proof. (i) is obvious from 4.4.
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(i1) The lie algebra m is obviously nilpotent of nilpotency <p. By 4.4,
Crm = D ajop La;
by (i) one has C’m = (0) if and only if
D a1 La = (0);
by the definition of L, one has @ =, L. = (0) if and only if A,? = @;
by 4.6 we have A,? = @ if and only if A,*»*" = @ VVn = 0; since
C?Li(4) = D20D a)=pin La

we have A?t" = f Vx = 0 if and only if C°L.(4) = (0).

If dim L(4) = + oo then C?L,(4) # (0) Vp = 1;if dim L(4) < =
then L(A4) is a semi-simple Lie algebra and L, (4) is the nilpotent part
([11], p. 230) of nilpotency p, thus C?L,(A4) # (0) (since p < p4). In
both cases C?L,(A4) # (0) therefore C?m # (0).

(iit) We have

l
m/C'm = 16?1]:" = eBlKéi
al= i=

thus (&; ... é&,;) is a minimal system of generators for m(2.4).

(iv) Obviously T is a torus on m. Since the dimension of T is equal
to the type of m (by (iii)), 7 is a maximal torus and m is of maximal
rank.

(v) Let

My = {X € Litx =a®)zVte T};

it is easy to prove both inclusions: m. C L, and L, C m,.
(vi) By (iii) and (iv) (&:...¢&,) isa T-msg of m. We have

(ad g;)—4iitle; = 0.
Assume that (ad &;)~4¢i&; = 0 then
(ad e;)~%iie; € Ker p
thus
Laj—sijai CDiarzpt1 La
(by 4.4 and 4.7) therefore 1 — A ,; = p + 1 which contradicts H,.
4.10. With the notation of 4.1, 4.2, 4.3 and 4.9 denote
u=porop: X —>m,(4)

i.e., u(e;) = &;. We assume in the sequel that H; and H; of 4.8 are satis-
fied which implies that m,(4) is a nilpotent Lie algebra of nilpotency p
and that 4 is a G.C.M. associated to m,(4).
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4.11. ProposiTION. (i) The pair (u, my,(A4)) satisfies the following
unwversal property: for any nilpotent Lie algebra of type I, of maximal
rank, of nilpotency q such that ¢ < p, whose associated G.C.M. B 1s such
that |By| £ 144\V4,7; and for any map f:X — g such that (fei . . . fe;)
ts a Tg-msg ordered relative to B (for a maximal torus Tg on g), there
extsts a unique homomorphism ¢ from m,(A4) onto g such that pou = f.

(ii) Let m,’ (4) be a nilpotent Lie of nilpotency p, of type I, of maximal
rank, whose associated G.C.M. is A; let ' :X — m,’(4) be a map such
that the parr (u', m,’ (A)) satisfies the universal property of (i); then there
extsts an tsomorphism ¥:im,(4) — m,’ (4) such that ¥ ou = u'.

Proof. (i) By 4.2. there exists a unique homomorphism f;: F(X) — ¢
such that f = f; 0 p. Since (fe1. .. fe,) is ordered relative to B one has
(ad fe;)~4iitl fe; = 0 Vi # j,
therefore
fil(ad e))=*iitl ¢;) = OV #j

thus Ker f; C Ker A, and this implies the existence of a unique homo-
morphism f2:L — ¢ such that fo o A = f1. Since ¢ £ p and C?*1g = (0)
we have fo(Ker u) = 0 therefore there exists a unique homomorphism
¢:m — g such that ¢ o u = f,. This yields p o u = f.

(i) Apply (i).

5. Classification theorem.

5.1. Recall that H; and H, of 4.8 are assumed. If a is an ideal of
m,(4) denote g = m/a and 7:m — ¢ the canonical map; ¢ is a nilpotent
Lie algebra of nilpotency less than p.

5.2. LEMMA. The two following assertions are equivalent:
(1) a C Cm;

(ii) (wéy . ..we,) is a minimal system of generators of g.

Proof. If & C C?m then
é; + Cm — re; + C*g, m/C*m — g/Cg

is an isomorphism; one then applies 2.4. Conversely if a ¢Z C>m there
exist (\1...\;) € KA\(0) such that 3 N\, € a and thus

Z xﬂl’éi = O

5.3. LEMMA. If a is homogenous and contained in C*m and if T 1s the
maximal torus defined in 4.9 then:
(1) For any y € T there exists #(t) € Der g unique such that wot =
#(t) o .
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(ii) The nilpotent Lie algebra g is of maximal rank with (1) as a
maximal torus and (wé, . .. we,;) as a #(1)-msg.

(ii1) For any #(T)-msg (y1 . .. y1) there exists a unique T-msg (x;...x;)
of m such that mx; = y, Vi =1...1

Proof. (i) By 4.9 (v) a is homogenous if and only if a is 7-invariant;
this allows us to define #(¢) by

#(t) (7x) = wix Vx € m.

(i1) Since a C C*m, (wé, . .. we,;) is a minimal system of generators of
g (by 5.2.) thus ¢ is of type . Obviously #(7’) is a torus on ¢ with root
vectors (wé, ... we;);let \y ...\, € K such that

then \;me; = 0 thus \; = 0 therefore dim #(1") =/ and by 2.8 g is of
maximal rank and #(7) is a maximal torus.
(iii) Let
l
W = 69 Ke,;
i=1
it is easy to see that
g=7W ® C*qand W= 7W;

let (y1...%;) a #(7) — msg of g; there exist x; € W unique and
z; € C?g unique such that y;, = 7x; + z,. If 8, is the root of y, it is easy
to see (by using the preceeding decomposition of g) that

tx; = By(7t)x;and z; € ¢gf+M\ C2g = (0).
5.4. LEMMA. If a s homogenous and if
(adey)~vie; daVi,j=1...5,i#]
then g is of maximal rank and 4 is a G.C.Nl. associated to g.

Proof. By simple arguments one can prove that a C C?m; by applying
5.3 (ii) it suffices to prove that

(ad we;)~*iire; # 0 and (ad we,)~*iitlwe; = 0 Vi # 7
which is obvious.

5.5. LEMMA. The two following assertions are equivalent:
(1) g s of nilpotency p.
(ii) C*m  a.

Proof. This is straightforward.
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5.6. Definition. We call the automorphism group of the G.C.M. 4 the
group
@I(A) = {0' € @l; Aa;’o’j = Aij Vl,] =1... l}

5.7. LEMMA. Let ¢ € ©,. There exists ¢ € Autm such that Gé; = &,
Vi=1...lif and only if ¢ € S,(A4). Write

Si(4) = {6 € Autm; o € S,(4)}.
Proof. We can define a bijective linear map ¢ :m — m by setting
oe; =&;Vi=1...1L
We have ¢ € Aut m if and only if
(ad &) ~*iitle,; = OVi #j
ie., (ad e;)~tiitl e, € CPHILL(A) Vi # .
Assume that ¢ € Aut m and let (¢, j) be such that
(ad ;) ~4iitl e,y # 0
then
ag; + (— A+ Do € Ay
and we have
la; + (= Ay + Dag| 2 p + 1,

since p = — Aow; + 1 (by Hi of 4.8) it follows that A,.; = 44;; now
let (z,7) such that

(ad eq;) =it e; = 0;

then — 4,0 + 1 = — A4 + 1 and thus Age; = 4455 in both cases
we have A,;; = A4; and therefore

A” é Aaiuj § A,zi,zj § ey
there exists # € N* such that ¢ = 1 therefore
Aij é Avioj é e é Ai]‘

which implies that 4;; = Aeo; Vi # j thus ¢ € &;(4). The converse
is obvious.

5.8. LEMMA. The set

& = 3,(4) = {a homogenous ideal of m; C*Pm ¢ a and

) (ad &;)~4iie; ¢ a Vi # j}
is stable under S ,(4).
Proof. This is clear.
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5.9. PROPOSITION. Let g be a nilpotent Lie algebra of maximal rank, of
nilpotency p and such that A is an associated G.C.M.

(i) There exists a €  such that ¢ = m/a.

(i) If o’ € & is such that ¢ = m/a’ then there exists ¢ ¢ S,(A) such
that 6o = o',

Proof. (i) Let (x1...x;) be a Tg — msg ordered relative to 4 (where
Tg is a maximal torus on g). Let f:X — {x;...x,} be a map defined
by fe; = x4; by 4.11 there exists a homomorphism = from m onto ¢ such
that 7; = x,. Let a = Ker v then g = m/a. Let us prove that a € &.
By 5.5 we have C*m ¢ a. Secondly, we have

(ad &;,)~4%ie; ¢ a
since
(ad x;)~4iix; # 0.
Finally to prove that a is homogenous one uses 2.10: let

Nioirl€iy - - - 85,] € a\(0)
(i1 ir)€T
with N;;..;, # 0and [é;,...6;,] ¢ aV(4:1...1,) € I, we have then that
Z )\il...ir[x“ . xir] =0

with [x,...2,]# 0 V(@:1...7,) € I therefore there exists g =
S dB: € R(T) such that

B=Bi1++ﬁzrV(7’17'r)€I

(B¢ is the root of x; which implies that 8, + ...+ B, is the root of
[xi ...x:]).) Let disy...;, be the number of times that ¢ appears in
(t1...12,;). We have

2 difi= 2 dun..Bs;

therefore, by 2.10,
di=diy....Vi=1...1V(G:1...2,) €I

thus &; appears d; timesin [é;, ... &;,] V(41 ... 1,) € I which means that
6o...8,] €Ly VY(i1...%,) €T

where @ = Y da;; therefore a is homogenous.
(ii) Let @’ € & be such that g = m/a’. Let us make the following
identification:

g = m/a = m/a’.
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Let #':m — ¢ associated to a’ (see (i)). By 5.2 we have a C C*m and
o’ C Cm. By 5.3 (ii), #(T) and #'(T) are maximal tori on g and by 4.1
of [12] there exists ¢ € Aut g such that

eit(T)e™ = #(T).

By 5.2 (ii) (7&,...we;) is a #(T)-msg and therefore (¢weé; ... omé,) is
a 7 (T)-msg. By 5.3 (iii) there exists a T-msg (&’ ...&,) of m such
that

el = ome,Vi=1...1
By 3.1 there exist ¢ € S;and (A1...A;) € (K\(0))* such that
ég = )\‘é.y(vi = ]....l.

Since (&...&/) and (¢,...¢&;) are ordered relative to 4 we have
o € ©,(4) and therefore we define 6 € Aut m by setting 6¢; = &/; we
then have ¢n’ = 7’0 and thus 6a C a’; since 6 is one to one and dima =
dim q’ this implies 6a = ¢’; on the other hand 6a = da thus da = o’ with
7€ &,(4).

5.10. THEOREM. The isomorphism classes of milpotent Lie algebras of
maximal rank, of nilpotency p and such that A is an associated G.C.M. are
in bijection with the orbits of I,(A) under the action of S,(4).

Proof. To each a € & associate the isomorphism class of m/a; by the
preceeding results this gives the bijection.

6. Model of nilpotent Lie algebra.

6.1. LEmMA. Let m(l, p) = F(X)/CP"'F(X) (p =2 1) and =:F(X) —
mx +— X be the canonical map.

(i) The restriction of w to the subspaces F* such that || £ p is an

isomorphism from F= onto F and m(l, p) is graded by {a € N'\(0); |a| < p}:

m(l, p) = Diaig, F*and [Fo, FF] C Fatb,

(ii) m(l, p) s a nilpotent Lie algebra of nilpotency p.
(iii) (& . . . &) 15 a minimal system of generators of m(l, p).
(iv) Let D; € Derm (1 £ 7 < 1) be defined by

D{Ej = 5112],

then D = @ {1 KD, is a maximal torus on m(l, p) and m(l, p) is of maximal
rank; furthermore (& . . . &) is a D-msg.

(v) Let (D*'...D*Y) be the dual basis of D*. If we identify D, and
a; then the root space decomposition relative to D is identical to the decom-
position of (i).
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(vi) Define the G.C.M. 4 by
Ayy=—p+1Vi#].
Then A is associated to m(l, p) and (& . .. &) is ordered relative to A.
Proof. (i), . .., (v) as for m(l, p). Since F(X) is free one has
(ad &) '¢; # 0;
on the other hand
(ad &)%¢; = 0.
This proves (vi).
6.2. ProposITION. Let A be a G.C.M. such that
Ay =—p+1Vi#].

One has the following graded isomorphism m,(A) = m(l, p) i.e., L, = [
for all @« € N\ (0) such that |a| < p.

Proof. 1t is easy to check that H; and H, of 4.8 are satisfied for  and
A. One uses now the universal property of m,(4) (4.11) and of m(l, p):
any nilpotent Lie algebra of nilpotency p and of type ! is a quotient of
m(l, p) (which comes from 4.2).

6.3. ProprosITION. ([1], [5], [6]). The isomorphism classes of nilpotent
Lie algebras of nilpotency p and of type |l are in bijection with the orbits
of (1, p) under the action of S, (We denote by (I, p) the set of homogenous
ideals contained in C*m and not contained in CPm; the action of &, is

‘-Tgi = é-vri-)

Proof. This follows from 5.10 and 6.2.

7. Examples.

7.1. We shall refer to the tables given in [4]. We drop the obvious
study of algebras with direct factor.

7.2. Dimension 3.
Definition.
gs = Ky @ ... ® Kxj:[x1x2] = x3.
Maximal torus:
T =Kt ® Kto, tix; = 6:x5,1,7 = 1, 2.
T-msg: (x1x2). Roots:

(:3162)1 Bi(tl) = 61]'1 ’Lrj = 1r 2,
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Root space decomposition:
g = gft @ gfr @ gfrhe
with
gft = Kx;, gf2 = Kx,, ¢f1F2 = Ku;.
Type: I = 2. Nilpotency: p = 2. G.C.M. 4 = (_2 _1) = A,. Dyn-

kin diagram: (see [7]) (1)- g Conclusion:

85 = mM2(42)/(0) = Li(4o).
7.3. Dimension 4.
Definition:
gs = Kx, @ ... ® Kxy:[x1x2] = x3, [x1%3] = x4
Maximal torus:
T = Kt; ® Koy tx; = 8¢5 1,7 =1, 2.
T-msg: (x1x2). Roots: (8182):
Bi(t;) = b6ij2,7 =1,2.
Root space decomposition:

g = gﬁx ® gﬂz ® gﬁl+52 @ g251+ﬂz,

with
gﬂl = Kx,, gﬂz = Kx,, gf11f2 = Kx;, g2ﬁl+ﬁz = Kx,.
Type: I = 2. Nilpotency: p = 3. G.C.M.: 4 = (_f —g) = B, Dyn-

kin diagram: (1) = (2) . Conclusion:

g4 = m3(Bs)/(0) = Ly(B»).
7.4. Dimension 5.
7.4.1. Definition.
gso = Kx1 @ ... ® Kxs:[x1x2] = x4, [x2x3] = x5

(we made the following change of notation: x; < x; x4 — — x4). Maximal
torus:

T=Kt®.. @ Kts:tix,- = 6,~,»xj, 1,] =1,2,3.
T-msg: (x1x2x3). Roots: (B18:8;) -
Bf(tj) = 6ij, 1,j = 1, 2, 3.
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Root space decomposition:
g = gﬁl @ QBQ ® gﬂa ® QBH-Bz ® gﬂz-i-ﬂs
with
gﬁl = Kx,, gﬁz = Kx,, gﬁs = Kx;, gﬂ1+ﬂz = Kx, gﬂz+ﬂs = Kx;.

Type: I = 2. Nilpotency: p = 2. G.C.M.:

2-1 0
A=|-1 2 —-1]= 4,
0 -1 2

Dynkin diagram:

0—0—0
1 2 3.

Conclusion: gs2 = ma2(43)/(0) with

mz(43) = Ly(43)/Laytartas

7.4.2. Definition.

G54 = Kx1 @ ... @ Kuxs:[xixs] = x3, [x1203] = x4, [®ox3] = «s.
Maximal torus:

T =Kt ® Kipitx; = 8:15%5, 0,7 = 1, 2.
T-msg: (x1x2). Roots:

(B1B2) :B4(t;) = dij 1,7 = 1,2
Root space decomposition:

g=gh1 @ gfr @ gfithr @ it @ ghitas:
with

gf1 = Kux,, ¢°2 = Kx,, ¢f17F2 = Ku;,

g2ﬂ1+ﬁz = Kx,, gﬁx+2ﬁz = Kx;.

o _
Type: ! = 2. Nilpotency: p = 3. G.CM.: 4 = (_'2' ;) = A4,V,

Dynkin diagram: ?E

85,4 = m3(4:V)/(0)

0 .
o Conclusion:

with

ms(4,Y) = Ly (4,")) @ L.
lal24
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7.4.3. Definition.
g5 = Kx; @ ... @ Kus:[xixz] = xsfwixs] = x4, [x1204] = 5.
Maximal torus:
T =Kt ® Ktoitix; = 8455, 1,7 = 1, 2.
T-msg (x1x2). Roots: (8182):
Bi(t;) = b5 8,7 = 1,2.
Root space decomposition:
g= ¢ @ g @ ghrthr @ githr @ ga+Bs
with
g8t = Kuxy, ¢°2 = Ko, ¢81+62 = Kuy, g2%61+82 = Ku,, g961+62 = K.

Type: 1 = 2. Nilpotency: p = 4. G.C.M.: 4 = ( 2 —3) - G,

0=0 -2

L o Conclusion:

Dynkin diagram:

35,5 = ma(Gz)
with
1113(62) = L+(G2)/L3a1+2a2'

8. The semi-simple and the Euclidian (of rank 2) case.
8.1. All through Section 8 we assume that 4 is of semi-simple type i.e.,
A € {AB,C\D E¢E1EsF.G,)
(see [7]) or Euclidian (of rank 2) type i.e., 4 € {4,(V, 4,2} with

@ _ 2 "2) (2)_( 2 —4)
41 ”(—2 o) A =\_1 o

(see [9]). Those types have in common the fact that dim L, = 1 Va € A
(the converse is true). We assume also that H; and H, of 4.8. hold.

8.2. Denote by 4,(4) the set of isomorphism classes of nilpotent Lie
algebras of maximal rank, of nilpotency ¢ such that 4 is an associated
G.C.M.

8.3. Let a be an homogenous ideal of m,(4); then
a = @aGAp aMm I_Ja
where

Ay = {o € Ay o] = p);

https://doi.org/10.4153/CJM-1982-084-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-084-5

1232 L. J. SANTHAROUBANE

since « N L = (0) or L, we have
a = ®aeAp<a) za
with
Ay(a) = {a € ApiaM L, = (0)}.
By 1.5 and 4.4, C?m { a is equivalent to A,? ¢ A,(a). By 4.7
(ad &)-4iie, ¢ a
is equivalent to
a; — Ayay ¢ Ay(a).

Let E be a subset of A,, and call E ideal of 4, if for all « € E and all
i =1...1such that « + a; € A, one has a + a; € E. Obviously a is
an ideal of m if and only if A,(a) is an ideal of A,. Define

i,(A) = {Eideal of 4,; (a)A?*Z E (b)a; — Aijou; ¢ EV1 # j}.
By the above remarks the map

F(4) = 1(4) ar 4,(a)
is a bijection with inverse

E— ag = Pacr La.
The group &,(4) operates on A, by

o(X de;) = Y diag.

Denote by IT,,(A) the set of orbits. With the notation of 5.9 (i) and by
5.9 (ii), ©,(4) - A,(a) does not depend on a. By 5.10 one gets

8.4. THEOREM. If A is of semi-simple type or Euclidian type of rank 2
and if p satisfies Hy and Ho of 4.8 then the ©,(4)-orbits of 1,(A) classify
canonically the elements of N ,(A). More precisely, the map

Np(d) =3,(4) § — S,(4) - 8,(a)

(a defined in 5.9 (1)) is a bijection and ©,(A)-E — (m/ag) is the inverse
(ag defined in 8.3).

8.5. Semi-simple case of rank 2.
2 —1

8.5.1. Start with the G.C.M. 4, = (_1 9

) . The root system is
Ay = {ay, as, a1 + asf.

The hypotheses H; and Hogive 2 < p < 2thusp = 2, A = Ay, A2 =
{a; + a3}. The conditions A2 Z E and E ideal of A; imply E = 0. Thus
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j2(42) = {0} and therefore J2(4:) = {(0)} which gives A3(4,) =
{ma(42)}. Since m2(42) = Ly(4:) = g3 (7.2) we have the following

THEOREM. Up to isomorphism @3 defined in 7.2 is the only nilpotent
Lie algebra of maximal rank with A, as an associated G.C.M.

8.5.2. Case

2 —2
By = (—1 2)'

Root system:
Ay = {ag, as, a1 + g, 201 + as}.
Hypothesis: 3 < p < 3. Consequences:

p = 3, Az = Ay, A+3 = {2(11 +a2}y i3(B2> = {ﬂ},
F3(Bs) = {(0)}, Na(B2) = {g4} (7.3).

THEOREM. Up to isomorphism g, defined in 7.4 is the only nilpotent
Lie algebra of maximal rank with B: as an associated G.C.M.

8.5.3. Case

2 —3
G2 = (—1 2)‘

Root system:

A, = {a1, @z a1 + a2, 201 + az, a1 + @z, 3a; + 2a,}.
Hypothesis: 4 = p < 5. Consequences: p = 4 or 5,

Ay = {ay, @y a1 + a3, 201 + s}, A5 = Ay,

At = {Ba; + az}, A5 = {3a;1 + 202},

4(G2) = 15(G2) = {8}, J4(G2) = Js5(G2) = {(0)},
Ni(G2) = {gs5) (7.4.3), N5(Ga) = {L(Gy)}.

THEOREM. Up to isomorphism g5 5 defined in 7.4.3 and
L+(Gz) = le ®...® szz[xlxg] = X3, [x1x3] = X4,

[X1xs] = x5, [x2x5] = [wawa] = a6

are the only nilpotent Lie algebras of maximal rank with G, as an associated
G.C.M.

8.6. The case of A,V.

8.6.1. We use the presentation of [9], Section 3. Let K[¢] be the vector
space of polynomials with one indeterminate, K,[¢] the vector space of
polynomials of degree <m and s/(2, K) = Kf + Kh + Ke with brackets
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le,f1=h [he]l =2 [hf]=—2f1f
then

Ly(4) = Ke@ 1+ sl(2, K) QtK[t];
the brackets in L, (4) are defined by:
[x ® t,y @ '] = [x,y] @ '+,

The root spaces are:

Lal = Ke ® 11
Li7—a| = Kf® ti, (’Y = o; + a2)
Li‘)‘ = Kh ® ti,

Liyiar = Ke @ th, i 2 1.
The set of positive roots is

Ay = {an} U ity —an, oy, 0y + a0 2 1.

5‘)’—011

47_‘11 47 4’Y+(11

3y—ay| 3y 3’Y+a1\

2y—ay 2y 2y+ay

233 Y v+ax \

1 2 3 4 5 6
Picture of Ag for 4,V (y = a1 + a»)
8.6.2. LEMMA. We have
120(A41V) = {0} and
forr1 (A1) = {0, {gy + i}, {(g + D)y — au}}
with ¢ = 2.
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Proof. The condition A  E implies ¢y ¢ Eif p = 2¢ and {gy + a3,
(g+ 1)y — a1}  E if p = 2g + 1. By the picture, the fact that an
element E of s, is an ideal gives E = @; if E € .41 then, obviously,

E G {gy +ay, (g + 1)y — ai},
thus
E=0,{gv + a}, {(g + Dy — au}.
Since Sup{— 4,; + 1;7 # j} = 2 we have g = 2.

8.6.3. THEOREM. Up to isomorphism, there exist exactly 3 infinite series
of nilpotent Lie algebras of maximal rank such that A,V is an associated
G.C.M.: (we write down respectively the algebra ¢, the nilpotency p, the
dimension n, the element Ay(a) in i,(4) (8.3), and the root system R):

(1) AP, =Ke®1+ ;QEI sSIQK) @t +Kf @t g2 1,
p =29+ 1,n =3¢+ 2, A,(a) =6,
Ry ={ai} Uiy —ay,tv, 0y + ;1 212 ¢ U{(g+ 1)y —au}.
@) A=Al + K@ g2 1,
P =2¢4+2,n=3¢+ 3, 4,(a) = 6,
Ry = RV {(g + v}
B) A =AP,+Ke@ ™ g21,
p=2¢+3,n=237+4, 8(a) = {(g+2)y — au},
Ry = R, \J {(g + 1)y + ai}.
(Notations are such that dim A, = 3¢ + r + 1.)

Proof. The ideals {¢gy + a1} and {(¢g + 1)y — a1} of 8.6.2 are inter-
changed by non-trivial element of &,(4). We then apply 8.4.

8.6.4. Remark. The algebra g5« (7.4.2) given by [4] is the first term
of the series (41,4,1).21-

8.7. The case AP,

8.7.1. Let ¥ = si(3, K) = Kf, + Kfi + Kh, + Khy + Ke, + Ke, be

2 —1

1 2) (1.3). The
group ©:(4;) (= &, = {1, ¢} ¢:1 < 2) operates on .¥ by ce; = e,
of = fo;, ohy = hy;; the eigenvalues of ¢ are = 1 and the eigenspaces are

the Kac-Moody Lie algebra associated to 4, = (

Li1=1{a € F0a = £al.
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We have:
y+1 = K(fl +f2) + K(hl + h2) + K(ex + e?.)
and
y—l = K[flfz] + K(fl —fz) + K(hl - hz) + K(Cl - 82)
+ Klese.].
We have

Li(4:") =K1 +e)®1+P L ut+@ 7,0
i=1

i20

where the brackets in L, (A4.?) are defined as in L(4,?V) (8.6.1). The
root spaces are

Loy = K(ex + €2) @ 1,
Liy—tar = K[ fifs] @ 1211 v = 2a; + as,
Lgiyryya = K(f1 — f2) @ t2it1

Loy = K(hy — hy) @ #2141,

Ligtstyrrar = K(er — €2) & 1241,

Laistyyr20 = Klees] @ 2041 (with 1 = 0),
Lojyay = K(fi + f2) & %,

Loy = K(hy + hy) @ 1%,

Lojtar = K(er + e2) @ 12, (with j

(W%

1).
The set of positive roots is

U2t 4+ 1)y + kay;i 2 0,k =0, =1, £2}.
(See [9] for details.)
8.7.2. LEMMA. We have

iﬁq+r = {ﬂ}f"rq g 177 = 01 2y 3r 4v
foerr = 10, {2¢v + au}, { (2 + 1)y — 2au}} for g = 1 and
foors = 10, {(2¢ + 1)v + 21}, {20 + 2)y — au}} forg = 1.

Proof. This follows as for 4;V (8.6.2) with the help of the picture.

8.7.3. THEOREM. Up to isomorphism there exist exactly 10 infinite series
of nilpotent Lie algebras of maximal rank such that A,'® is an associated
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G.C.M. (we use same notations as in 8.6.3):

1) A(Z)I—K(el+e2)®1+@y+1®t21+@y-®t21+1 2 0,

= 6g+51n = 8q+6y Ap(a) - {(QQ+2)’Y _al}y
Ry = {1} U {20y + kay;1 2= ¢, k=0, £1}
U2+ 1)y + ka0 12 ¢, k=0, 1, £ 2},
(2) AL = AP+ K(fi+f2) ® £ g 20,
p=6q+5,n—8g+7,Ap(a) = @,
Ry = Ri\U{(20 + 2)y — au}.
3) Aé?i,,s = 223,2 + K (hy + hy) ® £/,
p =6q+6,n—8q+8,A,,(a) = @,
R; = {(24 + 2)7}
4) Aé?im = 522 s+ K(er+e)® 52q+2
p=6g+7n=28¢+9 4(a) = {(2¢ + 3)y — 21},
1{4 = I€3 U {(2(_7 + 2)'7 + Otl}
(%) Ag;.s = 52; s + K[f1, f2] ® £, qg=0,
p=06g+7n=28¢+9, 4A(a) = {(2¢ + 2)y + ai},
(6) Ais=A: + K+ e) ® t“” + K[ fu fo] ® %%, ¢ 2 0,
p = 6q+7,n = 8¢ + 10, A,(a) = 0,
Rs = U Qg+ 2)y + a1, (29 + 3)y — 2a4}.
7) Aé?im = é"’f, s+ K(fr—f) ® %20
p =6g+ 8, n =8¢+ 11, A)(a) = 0,
Ry = Re\U {(2¢ + 3)y — au}.
(8) Aé‘z,s = ézé 1+ Kby — k) @ t24+3 g0,
p = 6q+9,n=8q+12,A,,(a) = 0,
Rg = U {(2¢ + 3)v}.
9) Ag)q,s = gzz s+ K(er — e) ® t2q+3 =0
Rg = I{g {(2g + 3)’7 + al}.
(10) As%a0 = Ashe + K(fi + f2) ® £
p =6g + 11, n = 8¢ + 14, A,(a) =
R10 = Rg U {(2q + 4:)7 - al}.
Proof. This follows as for 4,V.

g=20,
{(2¢ + 3)y + 2a4},
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