KAC-MOODY LIE ALGEBRAS AND THE CLASSIFICATION OF NILPOTENT LIE ALGEBRAS OF MAXIMAL RANK

L. J. SANTHAROUBANE

Introduction. The natural problem of determining all the Lie algebras of finite dimension was broken in two parts by Levi's theorem:

1) the classification of semi-simple Lie algebras (achieved by Killing and Cartan around 1890)

2) the classification of solvable Lie algebras (reduced to the classification of nilpotent Lie algebras by Malcev in 1945 (see [10])).

The Killing form is identically equal to zero for a nilpotent Lie algebra but it is non-degenerate for a semi-simple Lie algebra. Therefore there was a huge gap between those two extreme cases. But this gap is only illusory because, as we will prove in this work, a large class of nilpotent Lie algebras is closely related to the Kac-Moody Lie algebras. These last algebras could be viewed as infinite dimensional version of the semisimple Lie algebras.

Acknowledgment. This work is the chapter II of my thesis [13]. I am grateful to M. P. Malliavin who guided me all through the preparation of my work. During his short visit to Paris R. V. Moody helped my in studying the cases $A_1^{(1)}, A_2^{(2)}$ and agreed to be an examinator of the thesis; I am grateful to him.

All the structures are on an algebraically closed field K of characteristic 0.

1. Kac-Moody Lie algebras.

1.1. Definition. One calls Generalized Cartan Matrix (denoted G.C.M.) a matrix $A = (A_{ij})_{1 \le i, j \le l}$ with entries in Z satisfying:

(i) $A_{ii} = 2 \forall i = 1 \dots l$

(ii) $A_{ij} \leq 0 \quad \forall i, j = 1 \dots l, i \neq j$

(iii) $A_{ij} = 0 \Leftrightarrow A_{ji} = 0 \forall i, j = 1 \dots l$.

All through this paper the G.C.M. will be $l \times l$.

1.2. Definition. We will say that two G.C.M.s A and B are equivalent

Received November 22, 1979 and in revised form October 5, 1981. The author gratefully acknowledges the support of a grant from the French Government's "Délégation Générale à la Recherche Scientifique et Technique-Paris" (Contrat nº 77167).

if there exists $\sigma \in \mathfrak{S}_l$ (permutation group of $\{1 \dots l\}$) such that $B_{ij} = A_{\sigma i\sigma j} \forall i, j = 1 \dots l$.

1.3. Definition. We will call Kac-Moody Lie algebra associated to the G.C.M. A, the Lie algebra L(A) generated by a set $\{f_1 \ldots f_l, h_1 \ldots h_l, e_1 \ldots e_l\}$ satisfying relations:

$$\forall i, j = 1 \dots l [h_i, h_j] = 0 [e_i, f_j] = \delta_{ij} h_i (\delta_{ij}: \text{Kronecker's symbol})$$

$$[h_i, e_j] = A_{ij} e_j, [h_i, f_j] = -A_{ij} f_j;$$

$$\forall i, j = 1 \dots l, i \neq j (\text{ad } e_i)^{-A_{ij}+1} e_j = 0 \quad (\text{ad } f_i)^{-A_{ij}+1} f_j = 0.$$

1.4. Let $\{\alpha_1 \ldots \alpha_i\}$ be the canonical basis of \mathbb{Z}^i . For $\alpha \in \mathbb{N}^i \setminus \{0\}$, $\alpha = \sum d_i \alpha_i$ denote by L_α (resp. $L_{-\alpha}$) the subvector space of L(A) generated by the elements $[e_{i_1} \ldots e_{i_r}]$ (resp. $[f_{i_1} \ldots f_{i_r}]$) where e_i (resp. f_i) appears d_i times $([x_1 \ldots x_n] = [x_1[x_2 \ldots x_n] \ldots])$. If $\alpha = \sum d_i \alpha_i \in \mathbb{Z}^i$ are such that all the d_i 's are not of the same sign, let $L_\alpha = (0)$. Denote

 $L_0 = H = Kh_1 \oplus \ldots \oplus Kh_l.$

One calls root system of L(A) the set

 $\Delta = \{ \alpha \in \mathbf{Z}^{l} ; \alpha \neq 0 \text{ and } L_{\alpha} \neq (0) \}.$

The Lie algebra L(A) is graded by

$$\Delta \cup \{0\} \colon L(A) = \bigoplus_{\alpha \in \Delta \cup \{0\}} L_{\alpha} [L_{\alpha}, L_{\beta}] \subset L_{\alpha+\beta} \, \forall \alpha, \beta \in \Delta \cup \{0\}.$$

One calls positive root system the set

 $\Delta_{+} = \{ \alpha \in \mathbf{N}^{l}; \alpha \neq 0 \text{ and } L_{\alpha} \neq (0) \}$

and we let $\Delta^- = -\Delta^+$ (negative roots). We have then

 $\Delta = \Delta_{-} \cup \{0\} \cup \Delta_{+}.$

Furthermore $L(A) = L_{-}(A) \oplus H \oplus L_{+}(A)$ where $L_{+}(A) = \bigoplus_{\alpha \in \Delta_{+}} L_{\alpha}$ is called the *positive part* and $L_{-}(A) = \bigoplus_{\alpha \in \Delta_{-}} L_{\alpha}$ the *negative part*. (For the proofs see [8] and [11].)

1.5. If $\alpha = \sum d_i \alpha_i$ let $|\alpha| = \sum d_i$ and call $|\alpha|$ the height of α . Denote

 $\Delta_{+}^{n} = \{ \alpha \in \Delta_{+}; |\alpha| = n \}$ for all $n \in \mathbb{N}^{*}$.

Remark that $\Delta_{+^{1}} = \{\alpha_{1} \ldots \alpha_{l}\}.$

2. Root system for a nilpotent Lie algebra of maximal rank. All through Section 2, g is a Lie algebra of finite dimension, Derg and Autg denote its derivation algebra and automorphism group.

2.1. Definition. One calls a *torus* on \mathfrak{g} a commutative subalgebra of Derg which consists of semi-simple endomorphisms. A torus is said to be *maximal* if it is not contained strictly in any other torus.

2.2. A torus defines a representation in $\mathfrak{g}: T \times \mathfrak{g} \to \mathfrak{g}$ $(t, x) \mapsto tx$. Since *T* is a commutative family of semi-simple endomorphisms and since the ground field is algebraically closed, the elements of *T* can be diagonalized simultaneously. In other words, \mathfrak{g} is decomposed into a direct sum of root spaces for

$$T:\mathfrak{g} = \bigoplus_{\beta \in T^*} \mathfrak{g}^\beta$$

where T^* is the dual of the vector space T and

$$\mathfrak{g}^{\beta} = \{x \in \mathfrak{g}; tx = \beta(t)x \forall t \in T\}.$$

2.3. Definition. Let T be a maximal torus on g. One calls root system of g associated to T, the set:

 $R(T) = \{ \beta \in T^*; \mathfrak{g}^\beta \neq (0) \}.$

2.4. LEMMA. If g is a nilpotent Lie algebra, the two following assertions are equivalent:

(i) $(x_1 \dots x_l)$ is a minimal system of generators;

(ii) $(x_1 + C^2 \mathfrak{g}, \ldots, x_l + C^2 \mathfrak{g})$ is a basis for the vector space $\mathfrak{g}/C^2 \mathfrak{g}$ (where $C^2 \mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$).

Define the *type* of g to be the dimension of g/C^2g .

Proof. See example 4 on page 119 of [2].

2.5. Definition. (g nilpotent). Let T be a torus on g. One calls T-msg a minimal system of generators which consists of root vectors for T.

2.6. LEMMA. (g nilpotent). For any torus T on g there exists a T-msg.

Proof. Just take root vectors for T which form a basis for a T-stable supplement of $C^2\mathfrak{g}$.

2.7. LEMMA. (g nilpotent of type l). Let T be a maximal torus on g, $(x_1 \ldots x_l)$ a T-msg, β_i the root of x_i . The dimension of T is equal to the rank of $\{\beta_1 \ldots \beta_l\}$.

Proof. Let $(t_1 \ldots t_k)$ be a basis of *T*. The rank of $(\beta_1 \ldots \beta_l)$ is equal to the rank of the matrix

 $(\beta_i(t_j))_{\substack{1 \le i \le l \\ 1 \le j \le k}}$

whose value is k as one can see easily.

2.8. LEMMA. (g nilpotent of type l). The dimension of a maximal torus is an invariant of g called the rank of g. If k is the rank, one has $k \leq l$.

Proof. By Mostow's theorem (4.1 of [12]), if T and T' are two maximal tori, there exists $\theta \in \text{Aut } \mathfrak{g}$ such that $\theta T \theta^{-1} = T'$, therefore dim $T = \dim T'$; by 2.7, $k \leq l$.

2.9. Definition. (g nilpotent of type l). One says that g is of maximal rank if its rank is l.

2.10. THEOREM. (g nilpotent of maximal rank and of type l). Let T be a maximal torus on g, R(T) the associated root system, $(x_1 \ldots x_l)$ a T-msg and $(\beta_1 \ldots \beta_l)$ the corresponding roots.

(i) The set $\{\beta_1 \dots \beta_l\}$ is a basis for the vector space T^* .

(ii) For any $\beta \in R(T)$ there exists $(d_1 \dots d_l) \in \mathbf{N}^l$ unique such that $\beta = \sum d_i \beta_i$.

(iii) Furthermore if we let $|\beta| = \sum d_i$ then $1 \leq |\beta| \leq p$ where p is the nilpotency of g.

Proof. See p. 82 of [5].

3. Cartan matrix associated to a nilpotent Lie algebra of maximal rank.

3.1. LEMMA. (g nilpotent of maximal rank and of type l). If T is a maximal torus on g and if $(x_1 \ldots x_l)$ and $(y_1 \ldots y_l)$ are two T-msgs then there exist a unique $\sigma \in \mathfrak{S}_l$ and $(\lambda_1 \ldots \lambda_l) \in (K \setminus (0))^l$ such that $y_i = \lambda_i x_{\sigma_i}, 1 \leq i \leq l$.

Proof. Let

$${x_1 \dots x_l} \cup {[x_{i_1} \dots x_{i_r}]; r \ge 2, (i_1 \dots i_r) \in I_r}$$

a basis of the vector space g generated by $\{x_1 \ldots x_l\}$; there exist $y_{ij}, y_{ii_1 \ldots i_r} \in K$ such that

$$y_{i} = \sum_{j=1}^{i} y_{ij} x_{j} + \sum_{r \geq 2, (i_{1} \dots i_{r}) \in I_{r}} y_{i i_{1} \dots i_{r}} [x_{i_{1}} \dots x_{i_{r}}];$$

let β_i be the root of x_i and γ_i the root of y_i $(1 \le i \le l)$. For $t \in T$ one has:

$$ty_i = \gamma_i(t)y_i = \sum y_{ij}\gamma_i(t)x_j + \sum y_{ii_1\ldots i_r}\gamma_i(t)[x_{i_1}\ldots x_{i_r}];$$

on the other hand:

$$ty_i = \sum y_{ij}\beta_j(t)x_j + \sum y_{ii_1\ldots i_r}(\beta_{i_1} + \ldots + \beta_{i_r}](t)[x_{i_1}\ldots x_{i_r}],$$

therefore:

$$y_{ij}(\beta_j - \gamma_i) = 0 \forall i, j = 1 \dots l$$

and

$$y_{ii_1...i_r} (\beta_{i_1} + \ldots + \beta_{i_r} - \gamma_i) = 0 \forall i = 1 \ldots l \forall r \ge 2$$
$$\forall (i_1 \ldots i_r) \in I_r.$$

By 2.4, for any $i = 1 \dots l$, there exists $j = 1 \dots l$ such that $y_{ij} \neq 0$ thus $\beta_j = \gamma_i$; the integer j is unique since the β_j 's are all distinct, there-

fore one defines a map σ : $\{1 \dots l\} \rightarrow \{1 \dots l\}$ by setting $\sigma i = j$. Now, assume there exist $i, r, (i_1 \dots i_r)$ such that $y_{i_1 \dots i_r} \neq 0$ then

$$\gamma_i = \beta_{i_1} + \ldots + \beta_{i_r}$$

thus

$$\beta_{\sigma i} = \beta_{i_1} + \ldots + \beta_{i_r}$$

which is impossible by 2.10 (since $r \ge 2$) thus $y_{it_1..i_r} = 0$ for all i = 1 ... l all $r \ge 2$ and all $(i_1 ... i_r) \in I_r$ therefore $y_i = y_{i\sigma i} x_{\sigma i}$ with $y_{i\sigma i} \ne 0$; this implies that $\sigma \in \mathfrak{S}_l$ and that σ is unique; one then lets $\lambda_i = y_{i\sigma i}$.

3.2. THEOREM. To any nilpotent Lie algebra of maximal rank and of type l, one can associate an $l \times l$ Cartan matrix A whose equivalence class is an invariant of g and which is characterized by the following property: to any maximal torus T and any T-msg $(x_1 \dots x_l)$, there exists $\sigma \in \mathfrak{S}_l$ such that for all $i, j = 1 \dots l, i \neq j$:

$$(\operatorname{ad} x_{\sigma_i})^{-A_{ij}} x_{\sigma_i} \neq 0 \text{ and } (\operatorname{ad} x_{\sigma_i})^{-A_{ij+1}} x_{\sigma_i} = 0.$$

3.3. Definition. With the preceding notations one says that $(x_1 \ldots x_l)$ is ordered relatively to A if $\sigma = \text{Id}$.

3.4. Proof of 3.2. We will proceed in four steps:

(i) Let T be a maximal torus and $(y_1 \dots y_l)$ a T-msg. Since ad y_i is nilpotent, for $j \neq i$ there exists $A_{ij} \in \mathbb{Z}_{\leq 0}$ unique such that

$$(ad y_i)^{-A_{ij}} y_j \neq 0 and (ad y_i)^{-A_{ij+1}} y_j = 0;$$

let $A_{ii} = 2$; obviously $A = (A_{ij})$ is a G.C.M.

(ii) Let $(x_1 \ldots x_l)$ be another *T*-msg. By 3.1 there exist $\sigma \in \mathfrak{S}_l$ and $(\lambda_1 \ldots \lambda_l) \in (K \setminus \{0\})^l$ such that $y_i = \lambda_i x_{\sigma_i}$ therefore

 $(\operatorname{ad} x_{\sigma_i})^{-A_{ij}} x_{\sigma_j} \neq 0 \text{ and } (\operatorname{ad} x_{\sigma_i})^{-A_{ij+1}} x_{\sigma_j} = 0.$

(iii) Let T' be another maximal torus. By Mostow's theorem (4.1 of [12]) there exists $\theta \in \text{Autg}$ such that $\theta T \theta^{-1} = T'$; obviously $(\theta y_1 \dots \theta y_l)$ is a T'-msg; by (i) there exists a G.C.M. A' such that

$$(ad \ \theta y_i)^{-A'_{ij}} \theta y_j \neq 0 \text{ and} (ad \ \theta y_i)^{-A'_{ij}+1} \theta y_j = 0 \text{ for all } i \neq j;$$

this is equivalent to

$$(ad y_i)^{-A'_{ij}}y_j \neq 0 and$$
$$(ad y_i)^{-A'_{ij}+1}y_j = 0 for all i \neq j;$$

thus A = A' by unicity.

(iv) In (i) we associated to $(T, (y_1 \ldots y_l))$ a G.C.M. A. In (ii) we modified only $(y_1 \ldots y_l)$ and we obtained an equivalent G.C.M.; therefore the equivalence class of A depends only on T. In (iii) we modified T into T' and obtained for a suitable T'-msg the same G.C.M., thus the equivalence class of A does not depend on T either.

4. Universal property.

4.1. If $X = \{\epsilon_1 \dots \epsilon_l\}$ is a set, the free Lie algebra F(X) generated by X is graded by $\mathbf{N}^i \setminus (0)$. If $(\alpha_1 \dots \alpha_l)$ is the canonical basis of \mathbf{Z}^i and $\alpha = \sum d_i \alpha_i \in \mathbf{N}^i \setminus (0)$, denote by F^{α} the subvector space of F(X) spanned by the $[\epsilon_{i_1} \dots \epsilon_{i_r}]$'s where ϵ_i appears d_i times for all $i = 1 \dots l$. One has then

$$F(X) = \bigoplus_{\alpha \in \mathbb{N}^{l} \setminus (0)} F^{\alpha}$$
 and $[F^{\alpha}, F^{\beta}] \subset F^{\alpha+\beta}$ for all

 $\alpha, \beta \in \mathbf{N}^{n} \setminus (0)$ (see [2], p. 22).

4.2. Let $\rho: X \to F(X)$ be the canonical imbedding ([2], p. 19). The pair $(\rho, F(X))$ satisfies the following universal property: for any Lie algebra \mathfrak{g} and any map $f: X \to \mathfrak{g}$ there exists a unique homomorphism $\varphi: F(X) \to \mathfrak{g}$ such that $f = \varphi \circ \rho$ ([2], p. 18).

4.3. LEMMA. With the notation of 1.4 we have:

(i) $L_+(A)$ is a Lie algebra generated by $\{e_1 \dots e_l\}$ satisfying only the relations

 $(ad e_i)^{-A_{ij+1}}e_j = 0 \forall i \neq j.$

(ii) $L_+(A)$ is graded by

 $\Delta_{+}: L_{+}(A) = \bigoplus_{\alpha \in \Delta_{+}} L_{\alpha}, [L_{\alpha}, L_{\beta}] \subset L_{\alpha+\beta} \text{ for all } \alpha, \beta \in \Delta_{+}.$

(iii) There exists a unique homomorphism λ from F(X) onto $L_+(A)$ such that $\lambda \epsilon_i = e_i$ and satisfying the following properties: Ker λ is generated by

(ad ϵ_i)^{$-A_{ij+1}$} ϵ_j , $i, j = 1 \dots l$, $i \neq j$ and $\lambda F_{\alpha}(X) = L_{\alpha}$ for all $\alpha \in \mathbf{N}^{l} \setminus \{0\}$.

Proof. The proof is straightforward.

4.4. LEMMA. With the above notation one has:

 $C^n L_+(A) = \bigoplus_{|\alpha| \ge n} L_{\alpha}$

where $C^{n}L_{+}(A)$ is the nth term of the central descending series.

Proof. This, again, is straightforward.

4.5. LEMMA. For all $\alpha \in \Delta_+ \setminus \{\alpha_1 \dots \alpha_l\}$ there exists $i \in \{1 \dots l\}$ such that $\alpha - \alpha_i \in \Delta_+$.

Proof. This follows as in the semi-simple case.

4.6. LEMMA. Let $\Delta_{+}^{k} = \{ \alpha \in \Delta_{+}; |\alpha| = k \}$. If $\Delta_{+}^{p} = \emptyset$ for some $p \in \mathbb{N}^{*}$ then $\Delta_{+}^{p+n} = \emptyset$ for all $n \in \mathbb{N}$.

Proof. This follows from 4.5.

4.7. LEMMA. For all $k \in \mathbb{N}$ and all $i, j \in \{1 \dots l\}$ we have

 $L_{\alpha_i+k\alpha_i} = K(\text{ad } e_i)^k e_j.$

Proof. This is clear from above.

4.8. Let $p \in \mathbf{N}^*$ and A a G.C.M. We will need in the sequel two conditions on p and A. By commodity we gather them here. As shown in 4.9 (ii) and (vi), without these two hypotheses, the Lie algebra $\mathfrak{m}_p(A)$ won't have the invariants p and A.

(H₁) either dim $L(A) = +\infty$ or dim $L(A) < \infty$

and in this case $p \leq p_A$ where p_A is the height of the highest root of $L_+(A)$.

(H₂)
$$p \ge \sup \{-A_{ij} + 1; i, j \in \{1 \dots l\}\}$$

4.9. PROPOSITION. Let

$$\mathfrak{m} = \mathfrak{m}_p(A) = L_+(A)/C^{p+1}L_+(A) \ (p \ge 1) \ and$$
$$\mu: L_+(A) \to \mathfrak{m}_p(A) \ x \mapsto \bar{x}$$

the canonical map.

(i) The restriction of μ to the vector spaces L_{α} such that $|\alpha| \leq p$ is an isomorphism from L_{α} onto \overline{L}_{α} and $\mathfrak{m}_{p}(A)$ is graded by

 $\{\alpha \in \Delta_+; |\alpha| \leq p\} : \mathfrak{m}_p(A) = \bigoplus_{|\alpha| \leq p} \overline{L}_{\alpha}[\overline{L}_{\alpha}, \overline{L}_{\beta}] \subset \overline{L}_{\alpha+\beta}.$

(ii) The Lie algebra $\mathfrak{m}_p(A)$ is nilpotent and under the hypothesis H_1 of 4.8. its nilpotency is p.

(iii) The set $\{\bar{e}_1 \dots \bar{e}_l\}$ is a minimal system of generators of $\mathfrak{m}_p(A)$.

(iv) Let $t_i \in \text{Der } \mathfrak{m}_p(A)$ $(1 \leq i \leq l)$ defined by $t_i \overline{e}_j = \delta_{ij} \overline{e}_j$; then $T = \bigoplus_{i=1}^{l} K t_i$ is a maximal torus on $\mathfrak{m}_p(A)$ and the nilpotent Lie algebra $\mathfrak{m}_p(A)$ is of maximal rank; furthermore $(\overline{e}_1 \dots \overline{e}_l)$ is a T-msg.

(v) Let $(t^{*1} \dots t^{*l})$ be the dual basis of $(t_1 \dots t_l)$; if we identify t^{*i} and α_i then the root space decomposition relative to T is identical to the decomposition

$$\mathfrak{m}_p(A) = \bigoplus_{\alpha \in \Delta_+ |\alpha| \leq p} \overline{L}_{\alpha}.$$

(vi) Under the hypothesis H_2 of 4.8 A is a G.C.M. associated to $\mathfrak{m}_p(A)$ and $(\bar{e}_1 \ldots \bar{e}_l)$ is ordered relative to A.

Proof. (i) is obvious from 4.4.

(ii) The lie algebra m is obviously nilpotent of nilpotency $\leq p$. By 4.4, $C^{p} \mathfrak{m} = \overline{\bigoplus_{|\alpha|=p} L_{\alpha}};$

by (i) one has $C^{p}\mathfrak{m} = (0)$ if and only if

 $\bigoplus_{|\alpha|=p} L_{\alpha} = (0);$

by the definition of L_{α} one has $\bigoplus_{|\alpha|=p} L_{\alpha} = (0)$ if and only if $\Delta_{+}^{p} = \emptyset$; by 4.6 we have $\Delta_{+}^{p} = \emptyset$ if and only if $\Delta_{+}^{p+n} = \emptyset \forall n \ge 0$; since

$$C^{p}L_{+}(A) = \bigoplus_{n \ge 0} \bigoplus_{|\alpha| = p+n} L_{\alpha}$$

we have $\Delta_{+}^{p+n} = \emptyset \ \forall n \ge 0$ if and only if $C^{p}L_{+}(A) = (0)$.

If dim $L(A) = +\infty$ then $C^{p}L_{+}(A) \neq (0) \forall p \geq 1$; if dim $L(A) < \infty$ then L(A) is a semi-simple Lie algebra and $L_{+}(A)$ is the nilpotent part ([11], p. 230) of nilpotency p_{A} thus $C^{p}L_{+}(A) \neq (0)$ (since $p \leq p_{A}$). In both cases $C^{p}L_{+}(A) \neq (0)$ therefore $C^{p}\mathfrak{m} \neq (0)$.

(iii) We have

$$\mathfrak{m}/C^2\mathfrak{m}\cong \bigoplus_{|\alpha|=1}\bar{L}_{\alpha}=\bigoplus_{i=1}^{l}K\bar{e}_i$$

thus $(\bar{e}_1 \dots \bar{e}_l)$ is a minimal system of generators for $\mathfrak{m}(2.4)$.

(iv) Obviously T is a torus on \mathfrak{m} . Since the dimension of T is equal to the type of \mathfrak{m} (by (iii)), T is a maximal torus and \mathfrak{m} is of maximal rank.

(v) Let

$$\mathfrak{m}_{\alpha} = \{ \bar{x} \in \bar{L} ; t\bar{x} = \alpha(t)\bar{x} \forall t \in T \};$$

it is easy to prove both inclusions: $\mathfrak{m}_{\alpha} \subset \overline{L}_{\alpha}$ and $\overline{L}_{\alpha} \subset \mathfrak{m}_{\alpha}$.

(vi) By (iii) and (iv) $(\bar{e}_1 \dots \bar{e}_l)$ is a *T*-msg of m. We have

 $(ad \bar{e}_i)^{-A_{ij+1}} \bar{e}_i = 0.$

Assume that (ad \bar{e}_i)^{$-A_{ij}$} $\bar{e}_j = \bar{0}$ then

 $(ad e_i)^{-A_{ij}} e_j \in Ker \mu$

thus

$$L_{\alpha_j - A_i j \alpha_i} \subset \bigoplus_{|\alpha| \ge p+1} L_{\alpha}$$

(by 4.4 and 4.7) therefore $1 - A_{ij} \ge p + 1$ which contradicts H_2 .

4.10. With the notation of 4.1, 4.2, 4.3 and 4.9 denote

 $u = \mu \circ \lambda \circ \rho : X \to \mathfrak{m}_p(A)$

i.e., $u(\epsilon_i) = \bar{e}_i$. We assume in the sequel that H_1 and H_2 of 4.8 are satisfied which implies that $\mathfrak{m}_p(A)$ is a nilpotent Lie algebra of nilpotency p and that A is a G.C.M. associated to $\mathfrak{m}_p(A)$.

1222

4.11. PROPOSITION. (i) The pair $(u, \mathfrak{m}_p(A))$ satisfies the following universal property: for any nilpotent Lie algebra of type l, of maximal rank, of nilpotency q such that $q \leq p$, whose associated G.C.M. B is such that $|B_{ij}| \leq |A_{ij}| \forall i, j$; and for any map $f: X \to \mathfrak{g}$ such that $(f \epsilon_1 \dots f \epsilon_i)$ is a Tg-msg ordered relative to B (for a maximal torus Tg on g), there exists a unique homomorphism φ from $\mathfrak{m}_p(A)$ onto g such that $\varphi \circ u = f$.

(ii) Let $\mathfrak{m}_p'(A)$ be a nilpotent Lie of nilpotency p, of type l, of maximal rank, whose associated G.C.M. is A; let $u': X \to \mathfrak{m}_p'(A)$ be a map such that the pair $(u', \mathfrak{m}_p'(A))$ satisfies the universal property of (i); then there exists an isomorphism $\Psi:\mathfrak{m}_p(A) \to \mathfrak{m}_p'(A)$ such that $\Psi \circ u = u'$.

Proof. (i) By 4.2. there exists a unique homomorphism $f_1: F(X) \to \mathfrak{g}$ such that $f = f_1 \circ \rho$. Since $(f \epsilon_1 \dots f \epsilon_l)$ is ordered relative to B one has

$$(\operatorname{ad} f\epsilon_i)^{-A_{ij+1}} f\epsilon_j = 0 \ \forall i \neq j,$$

therefore

$$f_1((\text{ad }\epsilon_i)^{-A_{ij+1}}\epsilon_j) = 0 \ \forall i \neq j$$

thus Ker $f_1 \subset$ Ker λ , and this implies the existence of a unique homomorphism $f_2: L \to \mathfrak{g}$ such that $f_2 \circ \lambda = f_1$. Since $q \leq p$ and $C^{p+1}\mathfrak{g} = (0)$ we have $f_2(\text{Ker }\mu) = 0$ therefore there exists a unique homomorphism $\varphi: \mathfrak{m} \to \mathfrak{g}$ such that $\varphi \circ \mu = f_2$. This yields $\varphi \circ u = f$.

(ii) Apply (i).

5. Classification theorem.

5.1. Recall that H_1 and H_2 of 4.8 are assumed. If \mathfrak{a} is an ideal of $\mathfrak{m}_p(A)$ denote $\mathfrak{g} = \mathfrak{m}/\mathfrak{a}$ and $\pi: \mathfrak{m} \to \mathfrak{g}$ the canonical map; \mathfrak{g} is a nilpotent Lie algebra of nilpotency less than p.

5.2. LEMMA. The two following assertions are equivalent: (i) $\mathfrak{a} \subset C^2\mathfrak{m}$; (ii) $(\pi \bar{e}_1 \dots \pi \bar{e}_l)$ is a minimal system of generators of \mathfrak{g} .

Proof. If $\mathfrak{a} \subset C^2\mathfrak{m}$ then

 $\bar{e}_j + C^2 \mathfrak{m} \mapsto \pi \bar{e}_j + C^2 \mathfrak{g}, \mathfrak{m}/C^2 \mathfrak{m} \to \mathfrak{g}/C^2 \mathfrak{g}$

is an isomorphism; one then applies 2.4. Conversely if $\mathfrak{a} \not\subset C^2\mathfrak{m}$ there exist $(\lambda_1 \ldots \lambda_l) \in K^l \setminus (0)$ such that $\sum \lambda_i \overline{e}_i \in \mathfrak{a}$ and thus

$$\sum \lambda_i \pi \bar{e}_i = 0.$$

5.3. LEMMA. If a is homogenous and contained in C^2m and if T is the maximal torus defined in 4.9 then:

(i) For any $y \in T$ there exists $\tilde{\pi}(t) \in \text{Der } \mathfrak{g}$ unique such that $\pi \circ t = \tilde{\pi}(t) \circ \pi$.

(ii) The nilpotent Lie algebra \mathfrak{g} is of maximal rank with $\tilde{\pi}(T)$ as a maximal torus and $(\pi \tilde{e}_1 \dots \pi \tilde{e}_l)$ as a $\tilde{\pi}(T)$ -msg.

(iii) For any $\tilde{\pi}(T)$ -msg $(y_1 \dots y_l)$ there exists a unique T-msg $(x_1 \dots x_l)$ of m such that $\pi x_i = y_i \forall i = 1 \dots l$.

Proof. (i) By 4.9 (v) \mathfrak{a} is homogenous if and only if \mathfrak{a} is *T*-invariant; this allows us to define $\tilde{\pi}(t)$ by

$$\tilde{\pi}(t)(\pi x) = \pi t x \ \forall x \in \mathfrak{m}.$$

(ii) Since $\mathfrak{a} \subset C^2\mathfrak{m}$, $(\pi \bar{e}_1 \dots \pi \bar{e}_l)$ is a minimal system of generators of \mathfrak{g} (by 5.2.) thus \mathfrak{g} is of type *l*. Obviously $\tilde{\pi}(T)$ is a torus on \mathfrak{g} with root vectors $(\pi \bar{e}_1 \dots \pi \bar{e}_l)$; let $\lambda_1 \dots \lambda_l \in K$ such that

$$\sum \lambda_i \tilde{\pi}(t_i) = 0$$

then $\lambda_j \pi e_j = 0$ thus $\lambda_j = 0$ therefore dim $\tilde{\pi}(T) = l$ and by 2.8 g is of maximal rank and $\tilde{\pi}(T)$ is a maximal torus.

(iii) Let

$$W = \bigoplus_{i=1}^{l} K \bar{e}_i;$$

it is easy to see that

 $\mathfrak{g} = \pi W \oplus C^2 \mathfrak{g}$ and $W \cong \pi W$;

let $(y_1 \ldots y_i)$ a $\tilde{\pi}(T)$ – msg of \mathfrak{g} ; there exist $x_i \in W$ unique and $z_i \in C^2\mathfrak{g}$ unique such that $y_i = \pi x_i + z_i$. If β_i is the root of y_i it is easy to see (by using the preceeding decomposition of \mathfrak{g}) that

 $tx_i = \beta_i(\tilde{\pi}t)x_i \text{ and } z_i \in \mathfrak{g}^{\beta_i} \cap C^2\mathfrak{g} = (0).$

5.4. LEMMA. If a is homogenous and if

 $(\operatorname{ad} \bar{e}_i)^{-A_{ij}} \bar{e}_j \notin \mathfrak{a} \forall i, j = 1 \dots l, i \neq j$

then g is of maximal rank and A is a G.C.M. associated to g.

Proof. By simple arguments one can prove that $\mathfrak{a} \subset C^2\mathfrak{m}$; by applying 5.3 (ii) it suffices to prove that

 $(\operatorname{ad} \pi \bar{e}_i)^{-A_{ij}} \pi \bar{e}_j \neq 0 \text{ and } (\operatorname{ad} \pi \bar{e}_i)^{-A_{ij+1}} \pi \bar{e}_j = 0 \forall i \neq j$

which is obvious.

5.5. LEMMA. The two following assertions are equivalent:

(i) \mathfrak{g} is of nilpotency p.

(ii) $C^{p}\mathfrak{m} \not\subset \mathfrak{a}$.

Proof. This is straightforward.

5.6. *Definition*. We call the automorphism group of the G.C.M. A the group

$$\mathfrak{S}_{l}(A) = \{ \sigma \in \mathfrak{S}_{l}; A_{\sigma i \sigma j} = A_{ij} \forall i, j = 1 \dots l \}.$$

5.7. LEMMA. Let $\sigma \in \mathfrak{S}_i$. There exists $\tilde{\sigma} \in \text{Aut } \mathfrak{m}$ such that $\tilde{\sigma}\bar{e}_i = \bar{e}_{\sigma i}$ $\forall i = 1 \dots l \text{ if and only if } \sigma \in \mathfrak{S}_i(A)$. Write

$$\widetilde{\mathfrak{S}}_{l}(A) = \{ \widetilde{\sigma} \in \operatorname{Aut} \mathfrak{m}; \sigma \in \mathfrak{S}_{l}(A) \}.$$

Proof. We can define a bijective linear map $\tilde{\sigma}: \mathfrak{m} \to \mathfrak{m}$ by setting

$$\sigma \bar{e}_i = \bar{e}_{\sigma i} \forall i = 1 \dots l.$$

We have $\tilde{\sigma} \in \operatorname{Aut} \mathfrak{m}$ if and only if

$$(\text{ad } \bar{e}_{\sigma_i})^{-A_{ij+1}} \bar{e}_{\sigma_j} = 0 \quad \forall i \neq j$$

i.e.,
$$(\text{ad } e_{\sigma_i})^{-A_{ij+1}} e_{\sigma_j} \in C^{p+1}L_+(A) \quad \forall i \neq j.$$

Assume that $\tilde{\sigma} \in \text{Aut }\mathfrak{m}$ and let (i, j) be such that

$$(\text{ad } e_{\sigma i})^{-A_{ij+1}} e_{\sigma j} \neq 0$$

then

$$\alpha_{\sigma j} + (-A_{ij} + 1) \alpha_{\sigma i} \in \Delta_+$$

and we have

$$|\alpha_{\sigma j} + (-A_{ij} + 1)\alpha_{\sigma i}| \ge p + 1;$$

since $p \ge -A_{\sigma i\sigma j} + 1$ (by H₁ of 4.8) it follows that $A_{\sigma i\sigma j} \ge A_{ij}$; now let (i, j) such that

 $(ad e_{\sigma i})^{-A_{ij+1}} e_{\sigma j} = 0;$

then $-A_{\sigma_i\sigma_j} + 1 \leq -A_{ij} + 1$ and thus $A_{\sigma_i\sigma_j} \geq A_{ij}$; in both cases we have $A_{\sigma_i\sigma_j} \geq A_{ij}$ and therefore

 $A_{ij} \leq A_{\sigma i \sigma j} \leq A_{\sigma^2 i \sigma^2 j} \leq \ldots;$

there exists $n \in \mathbf{N}^*$ such that $\sigma^n = 1$ therefore

 $A_{ij} \leq A_{\sigma i \sigma j} \leq \ldots \leq A_{ij}$

which implies that $A_{ij} = A_{\sigma i\sigma j} \forall i \neq j$ thus $\sigma \in \mathfrak{S}_l(A)$. The converse is obvious.

5.8. LEMMA. The set

$$\mathfrak{F} = \mathfrak{F}_p(A) = \{\mathfrak{a} \text{ homogenous ideal of } \mathfrak{m}; C^p \mathfrak{m} \not\subset \mathfrak{a} \text{ and} \\ (\operatorname{ad} \bar{e}_i)^{-A_{ij}} \bar{e}_j \notin \mathfrak{a} \forall i \neq j\}$$

is stable under $\mathfrak{S}_{l}(A)$.

Proof. This is clear.

5.9. PROPOSITION. Let g be a nilpotent Lie algebra of maximal rank, of nilpotency p and such that A is an associated G.C.M.

(i) There exists $a \in \mathfrak{F}$ such that $\mathfrak{g} \cong \mathfrak{m}/\mathfrak{a}$.

(ii) If $\mathfrak{a}' \in \mathfrak{F}$ is such that $\mathfrak{g} \cong \mathfrak{m}/\mathfrak{a}'$ then there exists $\tilde{\sigma} \in \mathfrak{S}_{\mathfrak{l}}(A)$ such that $\tilde{\mathfrak{o}}\mathfrak{a} = \mathfrak{a}'$.

Proof. (i) Let $(x_1 \ldots x_l)$ be a $T\mathfrak{g}$ – msg ordered relative to A (where $T\mathfrak{g}$ is a maximal torus on \mathfrak{g}). Let $f: X \to \{x_1 \ldots x_l\}$ be a map defined by $f\epsilon_i = x_i$; by 4.11 there exists a homomorphism π from \mathfrak{m} onto \mathfrak{g} such that $\pi \bar{e}_i = x_i$. Let $\mathfrak{a} = \operatorname{Ker} \pi$ then $\mathfrak{g} \cong \mathfrak{m}/\mathfrak{a}$. Let us prove that $\mathfrak{a} \in \mathfrak{F}$. By 5.5 we have $C^p\mathfrak{m} \not\subseteq \mathfrak{a}$. Secondly, we have

$$(\mathrm{ad}\;\bar{e}_{i})^{-A_{ij}}\bar{e}_{j}\notin\mathfrak{a}$$

since

 $(\operatorname{ad} x_i)^{-A_{ij}} x_j \neq 0.$

Finally to prove that \mathfrak{a} is homogenous one uses 2.10: let

$$\sum_{(i_1\ldots i_r)\in I}\lambda_{i_1\ldots i_r}[\bar{e}_{i_1}\ldots \bar{e}_{i_r}]\in \mathfrak{a}\backslash (0)$$

with $\lambda_{i_1...i_r} \neq 0$ and $[\bar{e}_{i_1}...\bar{e}_{i_r}] \notin \mathfrak{a} \forall (i_1...i_r) \in I$, we have then that

 $\sum \lambda_{i_1 \ldots i_r} [x_{i_1} \ldots x_{i_r}] = 0$

with $[x_{i_1} \dots x_{i_r}] \neq 0 \quad \forall (i_1 \dots i_r) \in I$ therefore there exists $\beta = \sum d_i \beta_i \in R(T)$ such that

$$\beta = \beta_{i_1} + \ldots + \beta_{i_r} \forall (i_1 \ldots i_r) \in I.$$

 $(\beta_i \text{ is the root of } x_i \text{ which implies that } \beta_{i_1} + \ldots + \beta_{i_r} \text{ is the root of } [x_{i_1} \ldots x_{i_r}].)$ Let $d_{i_1 \ldots i_r}$ be the number of times that *i* appears in $(i_1 \ldots i_r)$. We have

$$\sum_{i} d_{i}\beta_{i} = \sum_{i} d_{ii_{1}\dots i}\beta_{i};$$

therefore, by 2.10,

$$d_i = d_{ii_1\ldots i_r} \forall i = 1 \ldots l \forall (i_1 \ldots i_r) \in I;$$

thus \bar{e}_i appears d_i times in $[\bar{e}_{i_1} \dots \bar{e}_{i_r}] \forall (i_1 \dots i_r) \in I$ which means that

$$[\bar{e}_{i_1}\ldots\bar{e}_{i_r}]\in \bar{L}_{\alpha} \quad \forall (i_1\ldots i_r)\in I$$

where $\alpha = \sum d_i \alpha_i$; therefore a is homogenous.

(ii) Let $\mathfrak{a}' \in \mathfrak{F}$ be such that $\mathfrak{g} \cong \mathfrak{m}/\mathfrak{a}'$. Let us make the following identification:

$$\mathfrak{g} = \mathfrak{m}/\mathfrak{a} = \mathfrak{m}/\mathfrak{a}'.$$

Let $\pi': \mathfrak{m} \to \mathfrak{g}$ associated to \mathfrak{a}' (see (i)). By 5.2 we have $\mathfrak{a} \subset C^2\mathfrak{m}$ and $\mathfrak{a}' \subset C^2\mathfrak{m}$. By 5.3 (ii), $\tilde{\pi}(T)$ and $\tilde{\pi}'(T)$ are maximal tori on \mathfrak{g} and by 4.1 of [12] there exists $\varphi \in \operatorname{Aut} \mathfrak{g}$ such that

$$\varphi \tilde{\pi}(T) \varphi^{-1} = \tilde{\pi}'(T).$$

By 5.2 (ii) $(\pi \bar{e}_1 \dots \pi \bar{e}_l)$ is a $\tilde{\pi}(T)$ -msg and therefore $(\varphi \pi \bar{e}_1 \dots \varphi \pi \bar{e}_l)$ is a $\tilde{\pi}'(T)$ -msg. By 5.3 (iii) there exists a T-msg $(\bar{e}_1' \dots \bar{e}_l')$ of m such that

$$\pi'\bar{e}_i' = \varphi\pi\bar{e}_i \forall i = 1 \dots l.$$

By 3.1 there exist $\sigma \in \mathfrak{S}_i$ and $(\lambda_1 \ldots \lambda_i) \in (K \setminus (0))^i$ such that

$$\bar{e}_i' = \lambda_i \bar{e}_{\sigma i} \forall i = 1 \dots l.$$

Since $(\bar{e}_1' \dots \bar{e}_i')$ and $(\bar{e}_1 \dots \bar{e}_i)$ are ordered relative to A we have $\sigma \in \mathfrak{S}_l(A)$ and therefore we define $\theta \in \operatorname{Aut} \mathfrak{m}$ by setting $\theta \bar{e}_i = \bar{e}_i'$; we then have $\varphi \pi' = \pi' \theta$ and thus $\theta \mathfrak{a} \subset \mathfrak{a}'$; since θ is one to one and dim $\mathfrak{a} = \dim \mathfrak{a}'$ this implies $\theta \mathfrak{a} = \mathfrak{o}'$; on the other hand $\theta \mathfrak{a} = \bar{\sigma} \mathfrak{a}$ thus $\bar{\sigma} \mathfrak{a} = \mathfrak{a}'$ with $\tilde{\sigma} \in \mathfrak{S}_l(A)$.

5.10. THEOREM. The isomorphism classes of nilpotent Lie algebras of maximal rank, of nilpotency p and such that A is an associated G.C.M. are in bijection with the orbits of $\mathfrak{Z}_p(A)$ under the action of $\mathfrak{S}_i(A)$.

Proof. To each $\mathfrak{a} \in \mathfrak{F}$ associate the isomorphism class of $\mathfrak{m}/\mathfrak{a}$; by the preceeding results this gives the bijection.

6. Model of nilpotent Lie algebra.

6.1. LEMMA. Let $\mathfrak{m}(l, p) = F(X)/C^{p+1}F(X)$ $(p \ge 1)$ and $\pi:F(X) \to \mathfrak{m} x \mapsto \tilde{x}$ be the canonical map.

(i) The restriction of π to the subspaces F^{α} such that $|\alpha| \leq p$ is an isomorphism from F^{α} onto \tilde{F}^{α} and $\mathfrak{m}(l, p)$ is graded by $\{\alpha \in \mathbb{N}^{l} \setminus \{0\}; |\alpha| \leq p\}$:

 $\mathfrak{m}(l, p) = \bigoplus_{|\alpha| \leq p} \tilde{F}^{\alpha} and [\tilde{F}^{\alpha}, \tilde{F}^{\beta}] \subset \tilde{F}^{\alpha+\beta}.$

(ii) $\mathfrak{m}(l, p)$ is a nilpotent Lie algebra of nilpotency p.

(iii) $(\tilde{\epsilon}_1 \dots \tilde{\epsilon}_l)$ is a minimal system of generators of $\mathfrak{m}(l, p)$.

(iv) Let $D_i \in \text{Der } \mathfrak{m}$ $(1 \leq i \leq l)$ be defined by

 $D_i \tilde{\epsilon}_j = \delta_{ij} \tilde{\epsilon}_j,$

then $D = \bigoplus_{i=1}^{l} KD_i$ is a maximal torus on $\mathfrak{m}(l, p)$ and $\mathfrak{m}(l, p)$ is of maximal rank; furthermore $(\tilde{\epsilon}_1 \dots \tilde{\epsilon}_l)$ is a D-msg.

(v) Let $(D^{*1} \dots D^{*l})$ be the dual basis of D^* . If we identify D_i and α_i then the root space decomposition relative to D is identical to the decomposition of (i).

(vi) Define the G.C.M. A by

 $A_{ij} = -p + 1 \; \forall i \neq j.$

Then A is associated to $\mathfrak{m}(l, p)$ and $(\tilde{\epsilon}_1 \dots \tilde{\epsilon}_l)$ is ordered relative to A.

Proof. (i), ..., (v) as for $\mathfrak{m}(l, p)$. Since F(X) is free one has

(ad $\tilde{\epsilon}_i$)^{p-1} $\tilde{\epsilon}_j \neq 0$;

on the other hand

$$(\mathrm{ad} \ \tilde{\epsilon}_i)^p \tilde{\epsilon}_i = 0.$$

This proves (vi).

6.2. PROPOSITION. Let A be a G.C.M. such that

 $A_{ij} = -p + 1 \forall i \neq j.$

One has the following graded isomorphism $\mathfrak{m}_p(A) \cong \mathfrak{m}(l, p)$ i.e., $\overline{L}_{\alpha} \cong \widetilde{F}^{\alpha}$ for all $\alpha \in \mathbf{N}^{l} \setminus (0)$ such that $|\alpha| \leq p$.

Proof. It is easy to check that H_1 and H_2 of 4.8 are satisfied for p and A. One uses now the universal property of $\mathfrak{m}_p(A)$ (4.11) and of $\mathfrak{m}(l, p)$: any nilpotent Lie algebra of nilpotency p and of type l is a quotient of $\mathfrak{m}(l, p)$ (which comes from 4.2).

6.3. PROPOSITION. ([1], [5], [6]). The isomorphism classes of nilpotent Lie algebras of nilpotency p and of type l are in bijection with the orbits of $\mathfrak{F}(l, p)$ under the action of \mathfrak{S}_l (We denote by $\mathfrak{F}(l, p)$ the set of homogenous ideals contained in $C^2\mathfrak{m}$ and not contained in $C^p\mathfrak{m}$; the action of \mathfrak{S}_l is $\sigma \tilde{\epsilon}_i = \tilde{\epsilon}_{\sigma i}$.)

Proof. This follows from 5.10 and 6.2.

7. Examples.

7.1. We shall refer to the tables given in [4]. We drop the obvious study of algebras with direct factor.

7.2. Dimension 3.

Definition.

 $\mathfrak{g}_3 = Kx_1 \oplus \ldots \oplus Kx_3 : [x_1x_2] = x_3.$

Maximal torus:

 $T = Kt_1 \oplus Kt_2, t_i x_j = \delta_{ij} x_j, i, j = 1, 2.$

T-msg: (x_1x_2) . Roots:

 $(\beta_1\beta_2), \beta_i(t_j) = \delta_{ij}, i, j = 1, 2.$

Root space decomposition:

$$\mathfrak{g} = \mathfrak{g}^{\beta_1} \oplus \mathfrak{g}^{\beta_2} \oplus \mathfrak{g}^{\beta_1+\beta_2}$$

with

$$\mathfrak{g}^{\beta_1} = K x_1, \ \mathfrak{g}^{\beta_2} = K x_2, \ \mathfrak{g}^{\beta_1 + \beta_2} = K x_3.$$

Type: l = 2. Nilpotency: p = 2. G.C.M. $A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = A_2$. Dynkin diagram: (see [7]) $\begin{pmatrix} 0 & -0 \\ 1 & 2 \end{pmatrix}$. Conclusion:

$$\mathfrak{g}_3 = \mathfrak{m}_2(A_2)/(0) = L_+(A_2).$$

7.3. Dimension 4.

Definition:

$$\mathfrak{g}_4 = Kx_1 \oplus \ldots \oplus Kx_4 : [x_1x_2] = x_3, [x_1x_3] = x_4$$

Maximal torus:

$$T = Kt_1 \oplus Kt_2; t_i x_j = \delta_{ij} x_j, i, j = 1, 2.$$

T-msg: (x_1x_2) . Roots: $(\beta_1\beta_2)$:

 $\beta_i(t_j) = \delta_{ij}, \, i, j = 1, 2.$

Root space decomposition:

$$\mathfrak{g} = \mathfrak{g}^{\beta_1} \oplus \mathfrak{g}^{\beta_2} \oplus \mathfrak{g}^{\beta_1+\beta_2} \oplus \mathfrak{g}^{2\beta_1+\beta_2},$$

with

$$\mathfrak{g}^{\beta_1} = K x_1, \ \mathfrak{g}^{\beta_2} = K x_2, \ \mathfrak{g}^{\beta_1 + \beta_2} = K x_3, \ \mathfrak{g}^{2\beta_1 + \beta_2} = K x_4.$$

Type: l = 2. Nilpotency: p = 3. G.C.M.: $A = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix} = B_2$ Dynkin diagram: $\begin{pmatrix} 0 \Rightarrow 0 \\ 1 & 2 \end{pmatrix}$. Conclusion:

$$\mathfrak{g}_4 = \mathfrak{m}_3(B_2)/(0) = L_+(B_2).$$

7.4. Dimension 5.

7.4.1. Definition.

$$\mathfrak{g}_{5,2} = Kx_1 \oplus \ldots \oplus Kx_5 : [x_1x_2] = x_4, [x_2x_3] = x_5$$

(we made the following change of notation: $x_1 \leftrightarrow x_2 x_4 \rightarrow -x_4$). Maximal torus:

$$T = Kt_1 \oplus \ldots \oplus Kt_3 : t_i x_j = \delta_{ij} x_j, \, i, j = 1, 2, 3.$$

T-msg: $(x_1x_2x_3)$. Roots: $(\beta_1\beta_2\beta_3)$:

$$\beta_i(t_j) = \delta_{ij}, i, j = 1, 2, 3.$$

Root space decomposition:

$$\mathfrak{g} = \mathfrak{g}^{\beta_1} \oplus \mathfrak{g}^{\beta_2} \oplus \mathfrak{g}^{\beta_3} \oplus \mathfrak{g}^{\beta_1+\beta_2} \oplus \mathfrak{g}^{\beta_2+\beta_3}$$

with

$$g^{\beta_1} = Kx_1, \ g^{\beta_2} = Kx_2, \ g^{\beta_3} = Kx_3, \ g^{\beta_1+\beta_2} = Kx_4, \ g^{\beta_2+\beta_3} = Kx_5.$$

Type: l = 2. Nilpotency: p = 2. G.C.M.:

$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} = A_3.$$

Dynkin diagram:

$$\begin{array}{cccc}
 0 & - & 0 & - & 0 \\
 1 & 2 & 3.
 \end{array}$$

Conclusion: $g_{5,2} = m_2(A_3)/(0)$ with

$$\mathfrak{m}_2(A_3) = L_+(A_3)/L_{\alpha_1+\alpha_2+\alpha_3}.$$

7.4.2. Definition.

$$\mathfrak{g}_{5,4} = Kx_1 \oplus \ldots \oplus Kx_5 : [x_1x_2] = x_3, [x_1x_3] = x_4, [x_2x_3] = x_5.$$

Maximal torus:

$$T = Kt_1 \oplus Kt_2: t_i x_j = \delta_{ij} x_j, i, j = 1, 2.$$

T-msg: (x_1x_2) . Roots:

$$(\boldsymbol{\beta}_1 \boldsymbol{\beta}_2) : \boldsymbol{\beta}_i(t_j) = \boldsymbol{\delta}_{ij}, \, i, j = 1, 2.$$

Root space decomposition:

$$\mathfrak{g} = \mathfrak{g}^{\beta_1} \oplus \mathfrak{g}^{\beta_2} \oplus \mathfrak{g}^{\beta_1+\beta_2} \oplus \mathfrak{g}^{2\beta_1+\beta_2} \oplus \mathfrak{g}^{\beta_1+2\beta_2}$$

with

$$\mathfrak{g}^{\beta_1} = K x_1, \ \mathfrak{g}^{\beta_2} = K x_2, \ \mathfrak{g}^{\beta_1 + \beta_2} = K x_3,$$

 $\mathfrak{g}^{2\beta_1 + \beta_2} = K x_4, \ \mathfrak{g}^{\beta_1 + 2\beta_2} = K x_5.$

Type: l = 2. Nilpotency: p = 3. G.C.M.: $A = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix} = A_1^{(1)}$. Dynkin diagram: $\begin{array}{c} 0 \equiv \equiv 0 \\ 1 & 2 \end{array}$. Conclusion:

$$\mathfrak{g}_{5,4} = \mathfrak{m}_3(A_1^{(1)})/(0)$$

with

$$\mathfrak{m}_{3}(A_{1}^{(1)}) = L_{+}(A_{1}^{(1)}) / \bigoplus_{|\alpha| \geq 4} L_{\alpha}.$$

1230

7.4.3. Definition.

 $\mathfrak{g}_{5,5} = Kx_1 \oplus \ldots \oplus Kx_5 : [x_1x_2] = x_3[x_1x_3] = x_4, [x_1x_4] = x_5.$

Maximal torus:

$$\Gamma = Kt_1 \oplus Kt_2 : t_i x_j = \delta_{ij} x_j, \, i, j = 1, 2.$$

T-msg (x_1x_2) . Roots: $(\beta_1\beta_2)$:

 $\beta_i(t_j) = \delta_{ij}, \, i, j = 1, 2.$

Root space decomposition:

$$\mathfrak{g} = \mathfrak{g}^{\beta_1} \oplus \mathfrak{g}^{\beta_2} \oplus \mathfrak{g}^{\beta_1+\beta_2} \oplus \mathfrak{g}^{2\beta_1+\beta_2} \oplus \mathfrak{g}^{3\beta_1+\beta_2}$$

with

$$g^{\beta_1} = Kx_1, \ g^{\beta_2} = Kx_2, \ g^{\beta_1+\beta_2} = Kx_3, \ g^{2\beta_1+\beta_2} = Kx_4, \ g^{3\beta_1+\beta_2} = Kx_5$$

Type: l = 2. Nilpotency: p = 4. G.C.M.: $A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} = G_2$. Dynkin diagram: $\begin{array}{c} 0 \Longrightarrow 0 \\ 1 & 2 \end{array}$. Conclusion:

$$\mathfrak{g}_{5,5} = \mathfrak{m}_3(G_2)$$

with

$$\mathfrak{m}_3(G_2) = L_+(G_2)/L_{3\alpha_1+2\alpha_2}.$$

8. The semi-simple and the Euclidian (of rank 2) case.

8.1. All through Section 8 we assume that A is of semi-simple type i.e.,

 $A \in \{A_{1}B_{1}C_{1}D_{1}E_{6}E_{7}E_{8}F_{4}G_{2}\}$

(see [7]) or Euclidian (of rank 2) type i.e., $A \in \{A_1^{(1)}, A_2^{(2)}\}$ with

$$A_1^{(1)} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}, A_2^{(2)} = \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$$

(see [9]). Those types have in common the fact that dim $L_{\alpha} = 1 \forall \alpha \in \Delta$ (the converse is true). We assume also that H₁ and H₂ of 4.8. hold.

8.2. Denote by $\overline{\mathcal{N}}_p(A)$ the set of isomorphism classes of nilpotent Lie algebras of maximal rank, of nilpotency p such that A is an associated G.C.M.

8.3. Let \mathfrak{a} be an homogenous ideal of $\mathfrak{m}_p(A)$; then

$$\mathfrak{a} = \bigoplus_{\alpha \in \Delta_p} \mathfrak{a} \cap \bar{L}_{\alpha}$$

where

$$\Delta_p = \{ \alpha \in \Delta_+; |\alpha| \leq p \};$$

since $\mathfrak{a} \cap \overline{L}_{\alpha} = (0)$ or \overline{L}_{α} we have

$$\mathfrak{a} = \bigoplus_{\alpha \in \Delta_p(\mathfrak{a})} \overline{L}_{\alpha}$$

with

$$\Delta_p(\mathfrak{a}) = \{ \alpha \in \Delta_p : \mathfrak{a} \cap \overline{L}_{\alpha} \neq (0) \}.$$

By 1.5 and 4.4, $C^p\mathfrak{m} \not\subset \mathfrak{a}$ is equivalent to $\Delta_+{}^p \not\subset \Delta_p(\mathfrak{a})$. By 4.7

 $(\mathrm{ad}\;\bar{e}_i)^{-A_{ij}}\bar{e}_j\notin\mathfrak{a}$

is equivalent to

 $\alpha_j - A_{ij}\alpha_i \notin \Delta_p(\mathfrak{a}).$

Let *E* be a subset of Δ_p , and call *E* ideal of Δ_p if for all $\alpha \in E$ and all $i = 1 \dots l$ such that $\alpha + \alpha_i \in \Delta_p$ one has $\alpha + \alpha_i \in E$. Obviously \mathfrak{a} is an ideal of \mathfrak{m} if and only if $\Delta_p(\mathfrak{a})$ is an ideal of Δ_p . Define

$$\mathfrak{j}_p(A) = \{ E \text{ ideal of } \Delta_p; (a) \Delta_+^p \not\subset E(b) \alpha_j - A_{ij} \alpha_i \notin E \forall i \neq j \}.$$

By the above remarks the map

 $\mathscr{F}_p(A) \to \mathfrak{j}_p(A) \mathfrak{a} \mapsto \Delta_p(\mathfrak{a})$

is a bijection with inverse

 $E \mapsto \mathfrak{a}_E = \bigoplus_{\alpha \in E} \overline{L}_{\alpha}.$

The group $\mathfrak{S}_{l}(A)$ operates on Δ_{p} by

 $\sigma\left(\sum d_{i}\alpha_{i}\right) = \sum d_{i}\alpha_{\sigma i}.$

Denote by $\overline{\mathfrak{j}}_p(A)$ the set of orbits. With the notation of 5.9 (i) and by 5.9 (ii), $\mathfrak{S}_l(A) \cdot \Delta_p(\mathfrak{a})$ does not depend on \mathfrak{a} . By 5.10 one gets

8.4. THEOREM. If A is of semi-simple type or Euclidian type of rank 2 and if p satisfies H_1 and H_2 of 4.8 then the $\mathfrak{S}_1(A)$ -orbits of $\mathfrak{j}_p(A)$ classify canonically the elements of $\overline{\mathcal{N}}_p(A)$. More precisely, the map

 $\overline{\mathscr{N}}_p(A) \to \overline{\mathfrak{j}}_p(A) \ \overline{\mathfrak{g}} \to \mathfrak{S}_l(A) \cdot \Delta_p(\mathfrak{a})$

(a defined in 5.9 (i)) is a bijection and $\mathfrak{S}_{l}(A) \cdot E \to \overline{(\mathfrak{m}/\mathfrak{a}_{E})}$ is the inverse $(\mathfrak{a}_{E} \text{ defined in 8.3}).$

8.5. Semi-simple case of rank 2.

8.5.1. Start with the G.C.M.
$$A_2 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
. The root system is $\Delta_+ = \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2\}.$

The hypotheses H₁ and H₂ give $2 \leq p \leq 2$ thus p = 2, $\Delta_2 = \Delta_+$, $\Delta_+^2 = \{\alpha_1 + \alpha_2\}$. The conditions $\Delta_+^2 \not\subset E$ and *E* ideal of Δ_2 imply $E = \emptyset$. Thus

 $j_2(A_2) = \{\emptyset\}$ and therefore $\Im_2(A_2) = \{(0)\}$ which gives $\mathscr{N}_2(A_2) = \{\mathfrak{m}_2(A_2)\}$. Since $\mathfrak{m}_2(A_2) = L_+(A_2) = \mathfrak{g}_3$ (7.2) we have the following

THEOREM. Up to isomorphism g_3 defined in 7.2 is the only nilpotent Lie algebra of maximal rank with A_2 as an associated G.C.M.

8.5.2. Case

$$B_2 = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$$

Root system:

$$\Delta_+ = \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2\}.$$

Hypothesis: $3 \leq p \leq 3$. Consequences:

$$p = 3, \Delta_3 = \Delta_+, \Delta_+^3 = \{2\alpha_1 + \alpha_2\}, j_3(B_2) = \{\emptyset\},$$

$$\mathscr{F}_3(B_2) = \{(0)\}, \mathscr{N}_3(B_2) = \{g_4\} (7.3).$$

THEOREM. Up to isomorphism g_4 defined in 7.4 is the only nilpotent Lie algebra of maximal rank with B_2 as an associated G.C.M.

8.5.3. Case

$$G_2 = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \, .$$

Root system:

$$\Delta_{+} = \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2, 3\alpha_1 + \alpha_2, 3\alpha_1 + 2\alpha_2\}$$

Hypothesis: $4 \leq p \leq 5$. Consequences: p = 4 or 5,

$$\begin{aligned} \Delta_4 &= \{ \alpha_1, \alpha_2, \alpha_1 + \alpha_2, 2\alpha_1 + \alpha_2 \}, \ \Delta_5 &= \Delta_+, \\ \Delta_{+}{}^4 &= \{ 3\alpha_1 + \alpha_2 \}, \ \Delta_{+}{}^5 &= \{ 3\alpha_1 + 2\alpha_2 \}, \\ \mathfrak{j}_4(G_2) &= \mathfrak{j}_5(G_2) &= \{ \emptyset \}, \ \mathfrak{F}_4(G_2) &= \mathfrak{F}_5(G_2) &= \{ (0) \}, \\ \mathcal{N}_4(G_2) &= \{ \mathfrak{g}_{5,5} \} \ (7.4.3), \ \mathcal{N}_5(G_2) &= \{ L_+(G_2) \}. \end{aligned}$$

THEOREM. Up to isomorphism $g_{5,5}$ defined in 7.4.3 and

$$L_{+}(G_{2}) = Kx_{1} \oplus \ldots \oplus Kx_{6} : [x_{1}x_{2}] = x_{3}, [x_{1}x_{3}] = x_{4},$$

$$[x_{1}x_{4}] = x_{5}, [x_{2}x_{5}] = [x_{3}x_{4}] = x_{6}$$

are the only nilpotent Lie algebras of maximal rank with G_2 as an associated G.C.M.

8.6. The case of $A_1^{(1)}$.

8.6.1. We use the presentation of [9], Section 3. Let K[t] be the vector space of polynomials with one indeterminate, $K_m[t]$ the vector space of polynomials of degree $\langle m$ and sl(2, K) = Kf + Kh + Ke with brackets

[e, f] = h, [h, e] = 2e, [h, f] = -2f. If $A = A_1^{(1)} = \begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$

then

$$L_{+}(A) = Ke \otimes 1 + sl(2, K) \otimes tK[t];$$

the brackets in $L_+(A)$ are defined by:

$$[x \otimes t^i, y \otimes t^j] = [x, y] \otimes t^{i+j}$$

The root spaces are:

$$L_{\alpha_1} = Ke \otimes 1,$$

$$L_{i\gamma-\alpha_1} = Kf \otimes t^i, (\gamma = \alpha_1 + \alpha_2)$$

$$L_{i\gamma} = Kh \otimes t^i,$$

$$L_{i\gamma+\alpha_1} = Ke \otimes t^i, i \ge 1.$$

The set of positive roots is

$$\Delta_{+} = \{\alpha_{1}\} \cup \{i\gamma - \alpha_{1}, i\gamma, i\gamma + \alpha_{1}; i \geq 1\}.$$

8.6.2. LEMMA. We have

with $q \geq 2$.

1234

Proof. The condition $\Delta_{+}^{p} \not\subset E$ implies $q\gamma \notin E$ if p = 2q and $\{q\gamma + \alpha_{1}, (q+1)\gamma - \alpha_{1}\} \not\subset E$ if p = 2q + 1. By the picture, the fact that an element E of \mathfrak{j}_{2q} is an ideal gives $E = \emptyset$; if $E \in \mathfrak{j}_{2q+1}$ then, obviously,

$$E \subsetneq \{q\gamma + \alpha_1, (q+1)\gamma - \alpha_1\},\$$

thus

$$E = \emptyset, \{q\gamma + \alpha_1\}, \{(q+1)\gamma - \alpha_1\}.$$

Since Sup{ $-A_{ij} + 1$; $i \neq j$ } = 2 we have $q \ge 2$.

8.6.3. THEOREM. Up to isomorphism, there exist exactly 3 infinite series of nilpotent Lie algebras of maximal rank such that $A_1^{(1)}$ is an associated G.C.M.: (we write down respectively the algebra g, the nilpotency p, the dimension n, the element $\Delta_p(\mathfrak{a})$ in $j_p(A)$ (8.3), and the root system R):

(1)
$$A_{1,q,1}^{(1)} = Ke \otimes 1 + \bigoplus_{i=1}^{q} sl(2,K) \otimes t^{i} + Kf \otimes t^{q+1}, q \ge 1,$$
$$p = 2q + 1, n = 3q + 2, \Delta_{p}(\mathfrak{a}) = \emptyset,$$
$$R_{1} = \{\alpha_{1}\} \cup \{i\gamma - \alpha_{1}, i\gamma, i\gamma + \alpha_{1}; 1 \le i \le q\} \cup \{(q + 1)\gamma - \alpha_{1}\}.$$

(2)
$$A_{1,q,2}^{(1)} = A_{1,q,1}^{(1)} + Kh \otimes t^{q+1}, q \ge 1,$$

 $p = 2q + 2, n = 3q + 3, \Delta_p(\mathfrak{a}) = \emptyset,$
 $R_2 = R_1 \cup \{(q+1)\gamma\}.$

(3)
$$A_{1,q,3}^{(1)} = A_{1,q,2}^{(1)} + Ke \otimes t^{q+1}, q \ge 1,$$

$$p = 2q + 3, n = 3q + 4, \Delta_p(\mathfrak{a}) = \{(q+2)\gamma - \alpha_1\},$$

$$R_3 = R_2 \cup \{(q+1)\gamma + \alpha_1\}.$$

(Notations are such that dim $A_{1,q,r}^{(1)} = 3q + r + 1$.)

Proof. The ideals $\{q\gamma + \alpha_1\}$ and $\{(q+1)\gamma - \alpha_1\}$ of 8.6.2 are interchanged by non-trivial element of $\mathfrak{S}_l(A)$. We then apply 8.4.

8.6.4. Remark. The algebra $\mathfrak{g}_{5,4}$ (7.4.2) given by [4] is the first term of the series $(A_{1,q,1})_{q\geq 1}$.

8.7. The case $A_2^{(2)}$.

8.7.1. Let $\mathscr{S} = sl(3, K) = Kf_2 + Kf_1 + Kh_1 + Kh_2 + Ke_1 + Ke_2$ be the Kac-Moody Lie algebra associated to $A_2 = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$ (1.3). The group $\mathfrak{S}_2(A_2)$ (= $\mathfrak{S}_2 = \{1, \sigma\} \sigma: 1 \leftrightarrow 2$) operates on \mathscr{S} by $\sigma e_i = e_{\sigma i}$, $\sigma f = f_{\sigma i}, \sigma h_i = h_{\sigma i}$; the eigenvalues of σ are ± 1 and the eigenspaces are

$$\mathscr{S}_{\pm 1} = \{a \in \mathscr{S}; \sigma a = \pm a\}.$$

We have:

$$\mathcal{S}_{+1} = K(f_1 + f_2) + K(h_1 + h_2) + K(e_1 + e_2)$$

and

$$\mathcal{S}_{-1} = K[f_1f_2] + K(f_1 - f_2) + K(h_1 - h_2) + K(e_1 - e_2) + K[e_1e_2].$$

We have

$$L_{+}(A_{2}^{(2)}) = K(e_{1} + e_{2}) \otimes 1 + \bigoplus_{i \ge 1} \mathscr{S}_{+1} \otimes t^{2i} + \bigoplus_{i \ge 0} \mathscr{S}_{-1} \otimes t^{2i+1}$$

where the brackets in $L_{+}(A_{2}^{(2)})$ are defined as in $L_{+}(A_{1}^{(1)})$ (8.6.1). The root spaces are

$$\begin{split} & L_{\alpha_1} = K(e_1 + e_2) \otimes 1, \\ & L_{(2i+1)\gamma-2\alpha_1} = K[f_1f_2] \otimes t^{2i+1}, \, \gamma = 2\alpha_1 + \alpha_2, \\ & L_{(2i+1)\gamma-\alpha_1} = K(f_1 - f_2) \otimes t^{2i+1}, \\ & L_{(2i+1)\gamma} = K(h_1 - h_2) \otimes t^{2i+1}, \\ & L_{(2i+1)\gamma+\alpha_1} = K(e_1 - e_2) \otimes t^{2i+1}, \\ & L_{(2i+1)\gamma+2\alpha_1} = K[e_1e_2] \otimes t^{2i+1}, \text{ (with } i \ge 0), \\ & L_{2j\gamma-\alpha_1} = K(f_1 + f_2) \otimes t^{2j}, \\ & L_{2j\gamma} = K(h_1 + h_2) \otimes t^{2j}, \\ & L_{2j\gamma+\alpha_1} = K(e_1 + e_2) \otimes t^{2j}, \text{ (with } j \ge 1). \end{split}$$

The set of positive roots is

$$\Delta_{+} = \{\alpha\} \cup \{2i\gamma + k\alpha_{1}; i \ge 1, k = 0, 1\}$$
$$\cup \{(2i+1)\gamma + k\alpha_{1}; i \ge 0, k = 0, \pm 1, \pm 2\}.$$

(See [9] for details.)

8.7.2. LEMMA. We have

$$\begin{aligned} \mathfrak{j}_{6q+r} &= \{\emptyset\} \text{ for } q \ge 1, r = 0, 2, 3, 4, \\ \mathfrak{j}_{6q+1} &= \{\emptyset, \{2q\gamma + \alpha_1\}, \{(2q+1)\gamma - 2\alpha_1\}\} \text{ for } q \ge 1 \text{ and} \\ \mathfrak{j}_{6q+5} &= \{\emptyset, \{(2q+1)\gamma + 2\alpha_1\}, \{(2q+2)\gamma - \alpha_1\}\} \text{ for } q \ge 1. \end{aligned}$$

Proof. This follows as for $A_1^{(1)}$ (8.6.2) with the help of the picture.

8.7.3. THEOREM. Up to isomorphism there exist exactly 10 infinite series of nilpotent Lie algebras of maximal rank such that $A_2^{(2)}$ is an associated

1236

G.C.M. (we use same notations as in 8.6.3):

$$\begin{array}{ll} (1) & A_{2,q,1}^{(2)} = K(e_1 + e_2) \otimes 1 + \bigoplus_{i=1}^{q} \mathscr{S}_{+1} \otimes t^{2i} + \bigoplus_{i=0}^{q} \mathscr{S}_{-1} \otimes t^{2i+1}, q \geq 0, \\ p = 6q + 5, n = 8q + 6, \Delta_p(\mathfrak{a}) = \{(2q + 2)\gamma - \alpha_1\}, \\ R_1 = \{\alpha_1\} \cup \{2i\gamma + k\alpha_1; 1 \leq i \leq q, k = 0, \pm 1\} \\ \cup \{(2i + 1)\gamma + k\alpha_1; 0 \leq i \leq q, k = 0, \pm 1, \pm 2\}. \\ \end{array}$$

$$\begin{array}{ll} (2) & A_{2,q,2}^{(2)} = A_{2,q,1}^{(2)} + K(f_1 + f_2) \otimes t^{2q+2}, q \geq 0, \\ p = 6q + 5, n = 8q + 7, \Delta_p(\mathfrak{a}) = \emptyset, \\ R_2 = R_1 \cup \{(2q + 2)\gamma - \alpha_1\}. \\ \end{array}$$

$$\begin{array}{ll} (3) & A_{2,q,3}^{(2)} = A_{2,q,2}^{(2)} + K(h_1 + h_2) \otimes t^{2q+2}, \\ p = 6q + 6, n = 8q + 8, \Delta_p(\mathfrak{a}) = \emptyset, \\ R_3 = R_2 \cup \{(2q + 2)\gamma\}. \end{array}$$

(4)
$$A_{2,q,4}^{(2)} = A_{2,q,3}^{(2)} + K(e_1 + e_2) \otimes t^{2q+2},$$

$$p = 6q + 7, n = 8q + 9, \Delta_p(\mathfrak{a}) = \{(2q + 3)\gamma - 2\alpha_1\},$$

$$R_4 = R_3 \cup \{(2q + 2)\gamma + \alpha_1\}.$$

(5)
$$A_{2,q,5}^{(2)} = A_{2,q,3}^{(2)} + K[f_1, f_2] \otimes t^{2q+3}, q \ge 0,$$

$$p = 6q + 7, n = 8q + 9, \Delta_p(\mathfrak{a}) = \{(2q + 2)\gamma + \alpha_1\},$$

$$R_5 = R_3 \cup \{(2q + 3)\gamma - 2\alpha_1\}.$$

(6)
$$A_{2,q,6}^{(2)} = A_{2,q,3}^{(2)} + K(e_1 + e_2) \otimes t^{2q+2} + K[f_1, f_2] \otimes t^{2q+3}, q \ge 0,$$

$$p = 6q + 7, n = 8q + 10, \Delta_p(\mathfrak{a}) = \emptyset,$$

$$R_6 = R_3 \cup \{(2q + 2)\gamma + \alpha_1, (2q + 3)\gamma - 2\alpha_1\}.$$

(7)
$$A_{2,q,7}^{(2)} = A_{2,q,6}^{(2)} + K(f_1 - f_2) \otimes t^{2q+3}, q \ge 0$$

$$p = 6q + 8, n = 8q + 11, \Delta_p(\mathfrak{a}) = \emptyset,$$

$$R_7 = R_6 \cup \{(2q+3)\gamma - \alpha_1\}.$$

(8)
$$A_{2,q,8}^{(2)} = A_{2,q,7}^{(2)} + K(h_1 - h_2) \otimes t^{2q+3}, q \ge 0,$$

 $p = 6q + 9, n = 8q + 12, \Delta_p(\mathfrak{a}) = \emptyset,$
 $R_8 = R_7 \cup \{(2q + 3)\gamma\}.$

(9)
$$A_{2,q,9}^{(2)} = A_{2,q,8}^{(2)} + K(e_1 - e_2) \otimes t^{2q+3}, q \ge 0$$

 $p = 6q + 10, n = 8q + 13, \Delta_p(\mathfrak{a}) = \emptyset,$
 $R_9 = R_8 \cup \{(2q+3)\gamma + \alpha_1\}.$

(10)
$$A_{2,q,10}^{(2)} = A_{2,q,9}^{(2)} + K(f_1 + f_2) \otimes t^{2q+4}, q \ge 0,$$

$$p = 6q + 11, n = 8q + 14, \Delta_p(\mathfrak{a}) = \{(2q+3)\gamma + 2\alpha_1\},$$

$$R_{10} = R_9 \cup \{(2q+4)\gamma - \alpha_1\}.$$

Proof. This follows as for $A_1^{(1)}$.

References

- 1. D. Amiguet, Extensions inessentielles d'algèbres de Lie à noyau nilpotent, Thèse (1971), Ecole Polytechnique Fédérale de Lausanne.
- 2. Bourbaki, Groupes et algèbres de Lie, Chapter 1 (Hermann, Paris, 1968).
- 3. Groupes et algèbres de Lie, Chapters 2, 3 (Hermann, Paris, 1968).
- 4. Dixmier, Sur les représentations unitaires des groupes de Lie nilpotentes III, Can. J. Math. 10 (1958), 321-348.
- 5. F. Favre, Système de poids sur une algèbre de Lie nilpotente, Manuscripta Math. 9 (1973), 53-90.
- 6. M. A. Gauger, On the classification of metabelian Lie algebras, Trans. Amer. Math. Soc. 179 (1973), 293–329.
- 7. J. E. Humpreys, Introduction to Lie algebras and representation theory (Springer-Verlag).
- 8. V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Math. U.S.S.R. Izvestija 2 (1968), 1271-1311.
- 9. J. Lepowsky and S. Milne, Lie algebraic approaches to classical partition identities, Advances in Math. 29 (1978), 15-59.
- 10. A. I. Malcev, Solvable Lie algebras, Amer. Math. Soc. Transl. (1) 9 (1962), 228-262.
- 11. R. V. Moody, A new class of Lie algebras, Journal of Algebra 10 (1968), 211-230.
- 12. G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200-221.
- 13. L. J. Santharoubane, Structure et cohomologie des algèbres de Lie nilpotentes, Thesis (1979), University of Paris 6, France.

University of Poitiers, Poitiers, Cedex, France