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ABSTRACT 
Visual representation of product architecture models is crucial in complex engineering systems design. 
However, when the number of entities in a model is large and when multiple levels of hierarchies are 
included, visual representations currently in use need to be more intuitive. As such, improved visual 
representations that enable better system overview and better communication of essential product-
related information among design participants are needed. This paper uses interactive information 
visualisation techniques – collapsible hierarchical tree, edge bundling and alluvial diagram – and 
provides the foundations of a computerised tool that improves the traceability of connections between 
design domains, including stakeholders, requirements, functions, behaviours and structure. The case of 
a cleaning robot is used as an illustrative example. The approach supports designers by providing an 
enhanced overview during the development of complex product architecture models, in particular in the 
communication with external stakeholders, in the identification of change propagation paths across 
several design domains, and in capturing the design rationale of previous design decisions. 
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1 INTRODUCTION 

Designed systems are often complex, with numerous elements interacting in a “non-simple way” 

(Simon, 1965). When such systems become sufficiently large, designers often struggle to keep an 

overview and to make sense of all critical relations between the constituent elements (Cross, 2008). To 

improve overview, enable sense making, and enhance communication with participants in the design 

process, visual product architecture models are widely used (Bruun and Mortensen, 2012). Such 

models are abstract representations of systems that capture different product-related aspects of design, 

e.g. stakeholder requirements, the functions that realise those requirements, the structural components 

and their physical characteristics - in this paper referred to as design domains. 

Typically, design domains are hierarchically broken down into smaller subsystems, whereas 

interactions between them are modelled as links. Traditional visual representations of product 

architectures include entity-relationship diagrams and matrix representations. While entity-relationship 

diagrams are straightforward to construct, their readability suffers drastically due to visual clutter 

introduced by numerous edge crossings (Maier et al., 2014), when the number of elements and 

connections between them becomes large. In contrast, matrix representations address this problem by 

providing a concise and structured view on connections between the elements (Eppinger and 

Browning, 2012; Keller et al., 2009). However, compared to the entity-relationship diagrams, they are 

less suitable for communication with external stakeholders, especially when multiple design domains 

are involved, where each domain consists of several levels of hierarchy. In sum, current visual 

representations of complex product architecture models are compromised. 

This paper conceptualises a novel visualisation approach to support modelling and analysis of 

complex product architectures in engineering systems design. As original contribution, this paper 

introduces and applies techniques from the field of Information Visualisation to Engineering Design, 

i.e. collapsible trees, edge bundling and alluvial diagrams to improve overview, sense making, and 

communication between design participants. The visualisation approach is envisaged to support the 

following design tasks: individual and shared building of product architecture models, navigation 

between different design domains and levels of hierarchy within the model, identification of change 

propagations paths, and tracking of rationale of previous design decisions. 

The remainder of the paper is structured as follows. Section 2 discusses the literature background on 

visual product architecture modelling. Section 3 proposes techniques from Information Visualisation 

to link design domains in product architecture modelling and applies the approach using a cleaning 

robot as an illustrative example. Section 4 discusses the contribution of linking design domains 

through Information Visualisation techniques. Section 5 concludes and discusses further research 

directions. 

2 BACKGROUND 

Maier and Rechtin define systems as “collections of different things that together produce results 

unachievable by the elements alone” (Maier and Rechtin, 2000). Thus, the primary goal of a system 

architect - the term is here used interchangeably with designer - is to establish that a system, with all 

interrelationships between its elements, works as a whole as intended. System architects ensure that 

the final combination of subsystems and components have compatible interfaces and satisfy all the 

necessary stakeholder requirements.  

Moreover, system architects are equally responsible for critical and sometimes very fine details that 

may undermine the overall performance of a system (Maier and Rechtin, 2000). Failure to consider 

such critical details may lead to grave consequences for the whole system. For instance, in September 

2009, Toyota had to recall 3,8 million vehicles due to incidents of gas pedal sticking to the floor mat 

and causing unintended dangerous acceleration (Gu, 2010). This case is illustrative from a systems 

architecting perspective, as the problem was caused by a mismatch between two seemingly unrelated 

subsystems - the function of a floor mat is hygienic, while the gas pedal serves the purpose of 

acceleration of the whole vehicle. This illustrates the need for system architects not only to have an 

overview about the system but also to be supported in their ability to concentrate on critical and 

concrete details at the lower levels of system abstraction. 
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2.1 Product architecture modelling 

Shannon’s definition of a model states “a model is a representation of an object, system or idea in some 

other form than itself” (Shannon and Johannes, 1976). The creation of product architecture models 

improves problem-solving in design by making knowledge surrounding the product explicit, enabling 

shared understanding of the system between multiple design participants and reducing complexity by 

providing abstractions for sophisticated concepts (Hehenberger, 2014; Maier and Rechtin, 2000). 

One of the modelling approaches in product development is Function-Behaviour-Structure (or State) 

(FBS) modelling (Gero and Kannengiesser, 2004; Qian and Gero, 1996; Umeda et al., 1990). In 

essence, FBS modelling aims to identify the relations between functional, behavioural and structural 

domains of design. While the functional domain subjectively describes the purpose of the design 

object, structural domain descriptions include representations of concrete components. Functional and 

structural domains are connected through the behavioural domain, which expresses physical 

phenomena behind the actual behaviour of entities in the structural domain (Van Beek and Tomiyama, 

2008; Hamraz et al., 2012; Koh, 2017). 

Taking FBS modelling as a base, several works have focused on its extension to include more aspects 

of the design process and to allow for a more holistic overview of the product architecture. Ahmad et 

al. (2010) propose to organise information in requirements, functional, component and detailed design 

domains by using Design Structure Matrix (DSM) representations (Eppinger and Browning, 2012) to 

manage engineering changes. Van Beek and Tomiyama (2012) propose to include design domains that 

capture stakeholders and their requirements and provide a rationale on how to connect these domains 

to FBS modelling. In Hamraz et al. (2012, 2014) a change prediction method (Clarkson et al., 2004) is 

combined with FBS and DSMs to identify change propagations. 

As developed systems can be rather complex, to reduce the complexity of models, FBS modelling 

schemes have adopted hierarchical decompositions of design domains (Hehenberger, 2014). For 

instance, in the functional domain of a cleaning robot, “to clean floors” is the highest level function, 

which is decomposed into three sub functions: “to release clean air”, “to collect dust” and “to move 

itself” (example adapted from Habib and Komoto, 2014). Each of these sub functions can then be 

decomposed into further lower level functions. Similarly, behavioural and structural domains can be 

broken down into lower levels and represented as a hierarchy. An example of hierarchical 

decomposition in the structural domain would be the part structure of a cleaning robot with moving 

and cleaning subsystems, where the latter is further decomposed into dust sensor, brush, fan and so on. 

Van Beek and Tomiyama (2012) connect customer requirements with hierarchical decomposition of 

FBS to support design of magnetic resonance imaging system. Habib and Komoto (2014) perform 

hierarchical FBS decomposition to find similarities and differences among existing products to design 

next generation product families. 

With respect to computational design support for product architecture modelling, several requirements 

for design support tools were outlined in Van Beek et al. (2010), Van Beek and Tomiyama (2008) and 

Alvarez Cabrera et al. (2011). They include: 

 to provide a “birds eye” overview of product architecture capturing relevant design domains, 

 to allow effortless change between levels of abstraction – from high level system descriptions to 

low level concrete details, 

 to perform traceability between stakeholder requirements and designed functions and embodying 

structures, and 

 to allow navigation according to how architects imagine product architecture in their minds for 

shared understanding of constructed models. 

However, even with the proliferation of computerised design support tools, it is not trivial to represent 

complex product architectures. The combination of multiple domains, each decomposed into multiple 

hierarchical layers introduces additional challenges of appropriate representation in design support 

tools. While seeing the link between the function and associated behaviour is trivial, as these domains 

are close to each other, tracking relations between stakeholders and related structural components 

across multiple design domains may result in unnecessary cognitive load for the user. In addition, 

there may be multiple levels of hierarchy even between the neighbouring domains (e.g. between 

higher level functions and lower level structural domain entities) which makes it hard to track these 

linkages. 
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2.2 Current representations of product architecture models 

Traditionally, a multi-domain product architecture has been represented as a vertical hierarchical 

entity-relationship diagram (Alvarez Cabrera et al., 2011; Mortensen et al., 2008; Umeda et al., 1990, 

1996). While being intuitively clear for simpler products, these types of diagrams become visually 

cluttered and hard to perceive as the number of entities and interconnections between them grows. 

Moreover, tracking connections across several domains becomes challenging when each domain is 

decomposed into multiple levels of hierarchy. 

Traditionally, UML diagrams (Booch et al., 1999) and later, SysML diagrams (Peak et al., 2007) were 

adopted in product development to visualise connections between system entities using software tools, 

such as UNICOM System Architect or MagicDraw. However, tracing relationships within diagrams 

and across different domains becomes challenging for complex products (Chandrasegaran et al., 

2013), as users have to constantly switch between different detailed views, while overall system views 

do not explicitly highlight connections across several domains. 

The Design Structure Matrix (DSM) (Steward, 1981) is a squared matrix, where columns and rows 

contain two types of connected entities and their intersection represents the nature of that connection. 

Used for tracking component-component connections (Pimmler and Eppinger, 1994), this visualisation 

was later extended to represent dependencies between people, organisations and processes (Eppinger and 

Browning, 2012). By combining several domains into one DSM, a multi-domain matrix (MDM) 

(Maurer and Lindemann, 2008) can be built to represent dependencies between multiple design domains. 

Nonetheless, studies have shown that it might be challenging to understand and construct DSMs and 

especially MDMs for complex product architectures. In a study by Keller et al. (2005), fish-eye 

network visualisations (Furnas, 1986) are used to display change propagations between components of 

a helicopter, as designers “seem to prefer a network representation, rather than a DSM” or normally 

“create a network first and then transformed it into a DSM”. Although this study concentrated on the 

structural domain, it is safe to assume that visualising connections across other domains will lead to 

difficulties in understanding a designed system. Additionally, according to Ghoniem et al. (1997), for 

path-finding tasks, network representations perform better than matrix representations. Another study 

by Novick and Hurley (2001) argues that network diagrams are inherently better suited to illustrate 

hierarchical structure, which is hard to capture by a matrix representation, although there are 

adaptations of DSMs for hierarchical information (Eppinger and Browning, 2012). 

Therefore, a unifying view of product architecture that would allow tracking of connections between 

entities throughout several domains and levels of hierarchy is required. Ideally, such a visual 

representation guides users during product architecture model construction and provides a history of 

design decisions for future reference. To address these issues, we propose to apply techniques from the 

field of Information Visualisation (InfoVis), which is a branch of Human-Computer Interaction that 

focuses on “computer-supported, interactive, visual representations of data to amplify cognition” 

(Card et al., 1999). In the next section, we combine three InfoVis techniques – alluvial diagram, 

collapsible hierarchical tree, and edge bundling – to visualise product architectures. It is then 

discussed, how such an approach addresses the abovementioned representation challenges and 

sketches potential applications in engineering systems design. 

3 USING INFORMATION VISUALISATION TO CONNECT AND TRACK 

CONNECTIONS BETWEEN DESIGN DOMAINS 

3.1 Connecting design domains 

In this paper, we consider a product architecture model that focuses on five design domains presented 

in Figure 1: stakeholders, stakeholder requirements, functional, behavioural and structural domains. 

This representation schema is an extended version of an FBS product architecture model and is 

motivated by works of Komoto and Tomiyama (2010), Ahmad, Wynn and Clarkson (2010), Van Beek 

and Tomiyama (2012), Habib and Komoto (2014). These studies, in addition to functional, 

behavioural and structural domains, discuss another two domains: stakeholders and stakeholder 

requirements. An explanation for the inclusion of these domains is provided below. Then, the 

approach proposed here explicitly links these five design domains, integrating their hierarchical 

decompositions and design decision history in the form of design rationale to improve traceability and 

holistic understanding of a product architecture.  
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Figure 1. Linking design domains of a product architecture model 

3.1.1 Stakeholder requirements 

Interdisciplinary teams of designers often jointly design systems with other stakeholders (e.g. 

customers, financial or legal teams). Thus, the stakeholder requirements domain acts as an overall map 

that guides the design process by constantly reminding the designers about the purpose of the system. 

Besides the requirement itself, requirement nodes may contain links to images, documents, 

video/audio interviews with additional explanations for the requirement in detail. Such modelling of 

stakeholder requirements “facilitates design team meetings and discussions by acting as an explicit 

and understandable medium for all stakeholders” (Van Beek and Tomiyama, 2012). 

3.1.2 Stakeholders 

Seeing not only stakeholder requirements but also the people and organisations that initiated said and 

often conflicting requirements provides designers with better insights. Adapting an example from 

Crawley et al. (2015), in the design of a hybrid car, marketing departments might require a car of low 

cost, customers need power to carry cargo, and the government may impose environmental regulations 

on the amount of produced emissions. Thus, by tracing a specific requirement back to its stakeholder, 

system architects can avoid incompatible design decisions and produce better overall system designs 

(Crawley et al., 2015). 

3.1.3 Hierarchical decomposition and linkage between design domains 

Similar to FBS, each domain of the model is hierarchically decomposed into the lowest adequate level 

suitable for building and redesigning the product. For instance, for larger systems it would be 

impractical to decompose standard components into individual parts. Stakeholder decomposition is 

performed similar to an organisational hierarchy; for example organisations are divided into 

departments, departments into divisions, divisions consist of people. Stakeholder requirements are 

decomposed into sub requirements; for example, the “easy to use” customer requirement for a 

cleaning robot design can be further decomposed into sub requirements, such as long battery lifetime, 

small form-factor, or intuitive controls.  

Mapping the stakeholder domain to the requirements domain is trivial: requirements are linked to the 

stakeholders that initiated them. Then, stakeholder requirements are mapped to the product 

architecture using Quality Functional Deployment (QFD) (Akao et al., 1990) or Axiomatic Design 

(AD) (Suh, 1990). Finally, mapping between functions, behaviour and structure domains is addressed 

by FBS Linkage (Hamraz et al., 2014). What is lacking, however, is a visual representation of such 

linkages for complex systems that would address the requirements outlined in Section 2. 

3.1.4 Design rationale 

A common criticism of hierarchical functional modelling approaches is that during functional 

decomposition, designers tend to choose temporary design solutions and subsequently improve them 

which leads to information overload (Fiorineschi et al., 2016). This issue is addressed by DRed tool 

(Aurisicchio and Bracewell, 2013; Bracewell et al., 2009). The design rationale approach allows 

designers to deconstruct their decision making process by keeping a diagram that shows why they 

have chosen a particular design solution and what the alternatives were. 

While we have described an example of a model that aims to provide a holistic understanding of a 

product architecture, in this paper, our focus is on the visual representation of complex product 

architecture models that contain decomposable and interlinking hierarchies. Although hierarchical 

decomposition and linkages between design domains may be performed differently than in FBS (e.g. 

3025

https://doi.org/10.1017/dsi.2019.309 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.309


   ICED19 

via function-means tree (Hansen and Andreasen, 2002), the aim of this paper is to demonstrate how to 

represent these models in a visual way. 

3.2 Applying information visualisation techniques 

To address the needs for a design support tool outlined above, we propose to employ interactive 

information visualisations to represent product architecture for complex systems. For each design 

domain, collapsible tree visualisations are constructed, where nodes represent entities of that design 

domain and edges represent connections between entities within one and simultaneously also between 

several design domains. The purpose of collapsible tree visualisations is to exhibit hierarchies across 

all design domains and it allows switching between different levels of hierarchy within each domain. 

To avoid edge crossings in complex models, edge bundling algorithms cluster similar edges together 

and improve readability of the visualisation. Then, the alluvial diagram highlights the path from the 

node of interest to all the connected nodes and edges across all design domains. In this way, design 

participants can observe connections between entities across all domains, even the ones that are 

distant. 

3.2.1 Collapsible tree diagrams 

While representing an ontology in an entity-relationship diagram is a popular technique, when the 

number of entities and links between them is sufficiently large, the display becomes cluttered with 

numerous intersecting links which makes it hard to read (Maier et al., 2014). The study by Plaisant et 

al. (2002) suggests that the collapsible tree visualisation, where the user can choose which entities to 

expand, while shrinking the rest, is well suited for both tree navigation and topology overview tasks. 

An example of a collapsible tree for the requirements domain is presented in Figure 2. When clicking 

on the “non-functional requirements” node, all the related sub requirements will be hidden (e.g. 

“lightweight”, “safe to use”, etc.). This lets designers choose an adequate level of abstraction and can 

support a large number of entities (Heer and Card, 2004). 

3.2.2 Edge bundling 

One of the ways to overcome visual edge clutter is edge bundling - a visualisation technique that clusters 

similar edges together, while preserving all connections between entities (Holten and Van Wijk, 2009; 

Zhou et al., 2013). Instead of drawing a direct edge between entities, edge bundling algorithm groups 

edges so that edge crossings are minimised. Figure 2 illustrates an example of such and edge bundling 

technique for representation of connections between stakeholders and their requirements. Similarly, edge 

bundling helps to minimise edge crossings when displaying connections between other domains. 

 

Figure 2. Edge bundling of inter-domain connections 

3.2.3 Alluvial diagrams 

Interactive alluvial diagrams are useful for highlighting and summarising structural changes while 

concisely providing overview in complex systems (Rosvall and Bergstrom, 2010). Taking as an 

example the model presented in Figure 3: Let us assume that a designer wants to know what parts of a 

cleaning robot are related to the “to suck air and dust” function in the functional domain. When the 

designer hovers over the entity of interest (e.g. the “to suck air and dust” node), all related entities in 

other domains are highlighted accordingly: e.g. the “marketing dept.” entity in the stakeholder domain, 

the “to collect dust/debris” requirement in the requirements domain, the “air flow” entity in the 

behavioural domain, and the “suction fan” and the “suction motor” entities in the structural domain. 
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Figure 3. Alluvial diagrams to highlight path connections 

In summary, by combining these three visualisation techniques, we aim to decrease the visual clutter 

that emerges when displaying complex product architectures. While a collapsible tree diagram 

represents complex hierarchies within a product architecture, interactive alluvial diagrams are 

designed to highlight connections between entities throughout several distant levels of hierarchies, 

edge bundling displays all related connections reducing the number of undesired edge crossings. 

3.3 Features of the proposed visualisation approach  

In this section, we discuss how the proposed visualisation approach could address the requirements for 

visual representations outlined in Section 2. 

3.3.1 Guided model construction 

First, similar to the suggestion of Van Beek and Tomiyama (2012), using market research or 

stakeholder interviews, system architects, together with marketing and other related departments, start 

by constructing stakeholder and stakeholder requirements domains. Once hierarchical decompositions 

for the domains of stakeholder and stakeholder requirements are constructed, interdisciplinary design 

teams jointly perform FBS decomposition linkages and connect them to the stakeholder requirements 

domain. Although in Van Beek and Tomiyama (2012), stakeholder requirements are directly 

connected to leaf nodes of the functional domain, to minimise edge crossings, we propose to use edge 

bundling (Holten and Van Wijk, 2009) and connect entities only through parent nodes. 

As the design progresses, designers add more detailed functions and concrete modules and structural 

parts. Depending on the domain of interest, whole domains can intently be hidden from the 

visualisation. This way, design decisions at various levels of detail are constantly discussed, depending 

on the maturity of the project and technical expertise of the stakeholders. 

3.3.2 Improved traceability between design domains 

When entities are distant from each other’s design domains (e.g. the stakeholder domain and structure 

domain are three domains apart), relationships between them become hard to track. This problem is 

especially evident when each domain consists of multiple levels of hierarchy. When the user hovers 

the mouse over an element of interest, the sequence of edges and nodes of an alluvial diagram 

accentuates the related entities and connections between them. In this way, non-obvious interactions 

between elements across all the design domains can be discovered and managed. While general 

traceability frameworks for design were proposed earlier (Martinec and Pavković, 2014; Pavković et 

al., 2013), the focus of this paper is on the visual traceability across design domains. 

Moreover, we note that such a visual representation scheme is not limited to only tree-like structures, 

as a structural element may realise several functions at once. In this case, connections between 

structural elements and the related functions are linked through parent nodes. 
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3.3.3 Shared modelling of the design process 

When dealing with complex products, it is hard for designers to keep track of all possible effects of 

changes on functions, behaviour and components, especially outside of their core expertise. By 

providing a collaborative design functionality to the tool, design teams can work on their respective 

subsystems across all domains, so that the system architect can have a bird’s eye view on the system, 

while having access to the detailed views as well. Nodes of a collapsible tree diagram show additional 

information about system entities on-demand: e.g. documents describing requirements in detail or 

formulae for physical behaviour or technical drawings of components in the structural domain. Having 

a common frame of reference guides not only the system architect, but also members of 

interdisciplinary design teams who may want to explore how other subsystems are constructed. 

3.3.4 Design rationale integration 

Entities in the structural domain contain not only the descriptions of the structural components but also 

a rationale about how and why these components were chosen over the other candidates. For instance, 

suppose that in order to embody the “to move” function during the design of a cleaning robot, a 

designer chose to use wheels instead of continuous tracks due to weight requirements. However, if the 

requirements change in the future and the robot’s ability to drive over obstacles becomes a priority 

over the robot’s weight, system architects can see that continuous tracks are available as an alternative 

design solution and a justification on why this concept was not chosen in the first place. Similarly, by 

showing such minified “history” of design decisions for each node, designers can later come back and 

re-evaluate other possible design decisions. Moreover, if such knowledge is available, component 

entities may indicate whether the chosen component is standard or custom, which helps system 

architects to assess the overall technological complexity of the proposed solution. 

4 CONCLUSION 

In the proposed approach, we display product architecture as hierarchically decomposed entities of 

stakeholders, requirements, functional, behavioural and structural domains. We introduce a visual 

representation of those domains and exemplify with an example of a cleaning robot using the 

combination of three information visualisation techniques: collapsible tree diagram, edge bundling, 

alluvial diagram. First, collapsible tree diagrams enable users to quickly transition between different 

levels of abstraction. Second, edge bundling techniques reduce visual clutter by grouping together 

connections and minimising edge crossings. Third, alluvial diagrams allow highlighting relationships 

between entities that are indirectly connected to each other across multiple domains. 

Besides the evaluation of connecting and tracing between design domains, a natural continuation of this 

work includes intuitive visualisation of other design aspects, for instance, interfaces between objects and 

modules, information about the manufacturing processes and supply chain, as suggested for further 

work, e.g. in Mortensen et al. (2008). Similarly to other functional modelling approaches, the approach 

proposed here requires time to build an initial model (Hamraz et al., 2012). Nonetheless, once the first 

model is built, the adaptation of the model to other products in a product family requires much less 

effort. We also assume the availability of a knowledge-base, which is needed for building such a model. 

While further evaluation is necessary, this novel approach is proposed to support shared model 

building and sense making of complex product architectures. When the number of observed entities in 

a system is large, the approach allows designers and system architects to trace connections between 

design domains. Moreover, capturing design rationale enables designers to iterate over the solution 

space. Compared to other discussed visual representations of product architecture models, this type of 

visual representation is closer to the conventional mental model of designers and can be conveniently 

presented to external stakeholders for further discussion and validation of design decisions. 
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