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QUASI-INJECTIVE AND QUASI-PROJECTIVE MODULES 
OVER HEREDITARY NOETHERIAN PRIME RINGS 

SURJEET SINGH 

The structure theory of hereditary noetherian prime (hnp) rings—in par­
ticular of Dedekind prime rings—has been recently developed by many authors 
including Eisenbud, Griffith, Michler and Robson; this theory extends some of 
the well-known results concerning commutative Dedekind domains. In this 
paper we study quasi-injective modules and quasi-projective modules over 
those (hnp) rings which are not right primitive and establish some results 
which extend the corresponding well-known results concerning commutative 
Dedekind domains. Let R be an (hnp) ring, which is not right primitive. In 
section 3, we firstly determine the structure of a generalized uniserial ring with 
homogeneous socle (Theorem 2); this theorem generalizes [15, Theorem 15]. 
With the help of Theorem 2, the structure of an indecomposable injective tor­
sion right i^-module is determined in Theorem 4. Theorem 6 gives a sufficient 
condition for the existence of a proper ideal A of R such that the generalized 
uniserial ring R/A has homogeneous right socle. Michler, in [12; 13] deter­
mined the structure of a complete semi-perfect, hereditary noetherian prime 
ring. This structure is used to prove the following result, which generalizes 
the corresponding result due to Rangaswamy and Vanaja for Dedekind do­
mains [18]: Let R be an (hnp) ring which is not right primitive and Q be its 
classical quotient ring. Then Q is quasi-projective right i^-module if and only if 
R = Dn, where n is some positive integer and D is a local complete Dedekind 
domain (not necessarily commutative) ; further, in this case R is a Dedekind 
prime ring having J(R) as its maximal ideal and Q is quasi-projective as a 
left i^-module (Theorem 8). 

2. Pre l iminar ies . All rings considered here are associative, contain unity 
1 7^0 and all modules are unital. For definitions and basic properties of quasi 
injective modules and quasi projective modules, we refer to [9] and [20] 
respectively. A prime ring R which is left noetherian, left hereditary and right 
noetherian, right hereditary is called an (hnp) ring. An (hnp) ring with no 
idempotent proper ideal is called a Dedekind prime ring. For basic properties 
of these rings we refer to [2] and [3]. Since an (hpn) ring R satisfies Goldie's 
conditions on left as well as on right, it has a classical quotient ring Q which is 
simple artinian ; further, any one sided ideal of R is essential in R if and only if 
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it contains a regular element [7]. A ring R which satisfies the minimum condi­
tion on both sides is said to be a generalized uniserial ring if for every primit ive 
idempotent e of R the r ight (left) ideal eR (Re) has unique composition series; 
such rings are called serial rings by Eisenbud and Griffith [1]. A generalized 
uniserial ring which is a direct sum of pr imary rings is called a uniserial ring 
[5]. A ring R is called a principle ideal ring ( P I R ) if each of its left ideals is 
principal and each of its r ight ideals is principal [8]. Art inian P I R are precisely 
uniserial rings; this follows from [8, Chapte r 4, Theorems 37 and 40] and the 
fact t h a t every completely pr imary uniserial ring is a P I R and every uniserial 
ring is a finite direct sum of matr ix rings over such rings. In a r ight i^-module 
M, an element x is said to be a torsion element if xa = 0 for some regular 
element a of R; a module whose every element is a torsion element, is called a 
torsion module. For any module M, E(M) will denote its injective hull and for 
any ring R, J(R) will denote its Jacobson radical. A ring R is said to be a local 
ring if R/J(R) is a division ring. 

3. Genera l i zed un i ser ia l r i n g s a n d q u a s i - i n j e c t i v e m o d u l e s . A module 
X is said to be uniserial if it has a unique composition series of finite length [1]. 
T h e following generalization of the N a k a y a m a ' s Theorem was established by 
Eisenbud and Griffith [1, Theorem 17]. 

T H E O R E M 1. Let R be a generalized uniserial ring. Then every R-module is a 
direct sum of uniserial modules. 

Let X be a uniserial, r ight i?-module, where R is a generalized uniserial ring. 
Let 

(1) X = Xo > Xl > X2 > . . . > Xm = (0) 

be the composition series of X. If there exists a positive integer n such t h a t 
the ith and jth composition factors of (1) are isomorphic if and only if i = j 
(mod n), we say tha t X is of periodicity n. Trivially, if all the composition 
factors of (1) are pairwise, non-isomorphic, then for any n ^ m, we can say 
t h a t X is of periodicity n. Now we establish the following: 

T H E O R E M 2. Let R be an indecomposable generalized uniserial ring. Then the 
right socle of R is homogeneous if and only if it has a Kupisch series eiR, e2R, . . . , 
enR such that d(ei+iR) = d(efR) + 1 for i < n (here for any module X , d(X) 
denotes its length); further, if this condition holds, then every indecomposable right 
R-module is of periodicity n. 

Proof. By Kupisch [10] and Murase [15, Theorem 9] we can find orthogonal 
primitive idempotent et(i = 1, 2, . . . , n) of R, such t h a t for any primit ive 
idempotent e of R ,eR (Re) is isomorphic to one and only one of etR (Ret) and 
further for N = J(R), 

(2) d(etR) è 2 fori ^ 2 

https://doi.org/10.4153/CJM-1974-110-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-110-5


MODULES 1175 

etR/etN ^ ei+1N/ei+1N
2 for i < n, 

and 

(3) enR/enN ^ eiN/eiN
2 if exN * (0) 

d(ei+1R) ^ d(etR) + 1 for i < n 
and 

(4) dfotf) rg <2fei?) + 1. 

A series exR, e2Ry . . . , £wi? satisfying the above conditions is called a Kupisch 
series of R, of length n. Let pt = d(efR), then the composition series of <?^ is 

etR > etN > etN
2 > . . . > etN»-1 > (0) 

[15, p. 3] where N is the radical of R. If p is the index of nilpotency of N, then 
p = max (pt). 

Let i^ have a homogeneous right socle. Consider the case when e\N = (0). 
Then by [15, Theorem 15], p = n\ (3) and (4) yield t ha t d(etR) = i for any i; 
so t ha t p i + i = pi + 1 for every i < ?z. 

Consider the case when e\N 9^ (0). In this case it can be easily seen t ha t 
any sequence got by a cyclic rotat ion of eiR, . . . , enR is again a Kupisch series 
of R. Since the right socle of R is homogeneous, there exists k ^ n such tha t 
every minimal right ideal of R is isomorphic to ekR/ekN. By a cyclic rotat ion 
of e\R, eïR, . . . , £wi?, we can take k = n; so t ha t every minimal r ight ideal of 
R is isomorphic to enR/enN. In part icular the minimal right ideal enN

pn~l = 
enR/enN; so t h a t we can find smallest positive integer a, such t ha t enR/enN ~ 
enN

a/enN
a+1. By the periodicity theorem of Eisenbud and Griffith [1, Theorem 

(2.3)], for any i and j ^ pn - 1, e^'/e^^1 ^ enN
j/enN

j+1 if and only if 
i == j (mod a ) . By (3) and [15, Theorem 5], given any i < n, and /3 ^ 0, 

whenever et+1W
+l ^ (0) and enN^/enN^+1 ^ eiN^+1/e1N^+2

t whenever 
^iV/3+i j£ (0). Thus if a < w, then enN<*/enN

a+1 ^ en^aR/en„aN; hence 
£wi? == en-aR, which is a contradiction. If a > w, then 

enN
a/enN

a+1 ^ e1iV«- (n-1)AiiVa^ ,+2 ^ enN«~nIeJS*-^ ; 

the minimali ty of a and the fact t ha t o: — n < a yields a contradiction. Hence 
a = n. T h u s the periodicity of enR is w. Since enN

n/enN
n+l ^ enR/enN ^ 

e ^ 1 " 1 ^ enN^-^lenN^-x, we get pi - 2 = 0 (mod n), so t ha t pi = kxn + 2 
for some integer &i. In general pt = ktn + i + 1 for 1 fg i ^ w. For i < n, 
since p*+i ^ p* + 1, we get &<+i ^ fe*. Since pi ^ pre + 1, we get k\n + 2 ^ 
£nw + n + 2, i.e., &i ^ &w + 1. Hence 

(5) t i ^ 2 ^ . . . ^ ^ i i - l . 

Since the first and the last term differ only by one, there exists some j ^ n 
such t h a t ki = ki for i ^ j and kt = ki — 1 for i > j . If j = n, then obviously 
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Pi+i = Pi + 1 for every i < n. Let j < n. By putting fx = ej+i, f2 = ej+2 • . . 
fn-j = en,fn-j+i = ei, . . . , / n = e;- and by using (5) it follows immediately that 

flR, • • • jf^Rj • • • jfnP-

is a Kupisch series of R such that d{fi+\R) = d(ftR) + 1 for every i < n. 
Conversely, let R have a Kupisch series e\R, e2R, . . . , eni? satisfying the given 

conditions. In general if pi+i = pt + 1 then ei+iN ~ etR; and in that case the 
minimal right subideal of etR is isomorphic to that of ei+1R. Consequently 
under our hypothesis all etR have isomorphic minimal right subideals. Hence 
the right socle of R is homogeneous. 

Let X be a uniserial right i^-module. If X is of periodicity m then every 
submodule and every factor module of X is also of periodicity m. It is clear 
from the above, that every etR(i ^ n) is isomorphic to a submodule of enR. 
Since enR is of periodicity n, we get that every etR is of periodicity n. As X/XN 
is an irreducible right i^-module, X/XN = etR/eiN for some i\ then by [15, 
p. 3] there exists x G X such that 

x. etR > xetN > ,xetN
2 > . . . > x. e{N

s = (0) 

for some s ^ pz-, is a composition series of X. Hence X is also of periodicity n. 
A ring R is said to be right (left) bounded if every right (left) ideal of R 

containing a regular element contains a nonzero (two sided) ideal of R. The 
following theorem which we state without proof was proved by Eisenbud and 
Robson [3, Theorem 4.10]. 

THEOREM 3. Let R be a hereditary noetherian prime ring. Then R is a right 
primitive or right bounded and is both if and only if R is simple artinian. 

Henceforth R will denote an (hnp) ring which is not right primitive, unless 
otherwise stated. By Theorem 3, R is right bounded. Let Q be the classical 
quotient ring of R, which we know is simple artinian. Since by Matlis [11] 
every injective right i^-module is a direct sum of indecomposable injective 
right i^-modules, to determine the structure of an injective right i?-module it 
is enough to determine the structure of an indecomposable injective right 
i^-module. 

LEMMA 1. Any indecomposable injective torsion free right R-module E is iso­
morphic to a minimal right ideal of Q. 

Proof. Since E is divisible and torsion free, £ is a right Q-module. As Q is 
simple artinian the lemma follows. 

Hence it only remains to determine the structure of an indecomposable 
injective right i?-module which is not torsion free. 

LEMMA 2(i). If in a right R-module M, an element x is a torsion element, the 
xR is a torsion submodule with non-zero annihilator. 
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(ii) Any finitely generated, torsion, right R-module has nonzero annihilators. 
(iii) If an indecomposable, injective right R-module E is not torsion free, then 

it is a torsion module. 

Proof, (i) Let A = a n n ^ x ) . Since x is a torsion element, the right ideal A 
contains a regular element. Thus A is an essential right ideal of R. As R is right 
bounded, there exists a nonzero ideal B of R contained in A. Then xRB = (0). 
This yields that xR is a torsion module with non-zero annihilator. 

(ii) is an immediate consequence of (i). 
(iii) Since E is not torsion free it has an element x ^ 0, which is a torsion 

element. Since xR is essential in E, every essential right ideal of R contains a 
regular element and by (i) xR is a torsion module, we get that E is a torsion 
module. 

We now establish a theorem which generalizes the corresponding well known 
result for Dedekind's domains. 

THEOREM 4. Let R be an (hnp)-ring which is not right primitive. Let E be an 
indecomposable injective right R-module, which is not torsion free. Then E has an 
infinite properly ascending chain of sbumodules 
(6) 0 = XoR < x±R < x2R < . . . < xnR < . . . 
whose union is E such that 

(i) each xi+iR/xtR is a simple R-module; 
(ii) the members of the chain are the only submodules of E different from E; and 

(iii) either all xi+iR/xtR are pairwise non-isomorphic or there exists a positive 
integer n such that for any i, j , xi+1R/xtR ~ xj+iR/XjR if and only if i = j 
(mod n). 

Proof. By Lemma 2, £ is a torsion module. Consider x ^ 0 and y ^ 0 in E. 
Let A = ann (xR + yR). By Lemma 2(h), A j* (0). By Eisenbud and Griffith 
[1, Corollary (3.2)], R/A is a generalized uniserial ring. As xR + yR is a 
uniform right R/A -module, by Theorem 1, xR + yR is a uniserial module; so 
that either xR C yR or yR C xR and xR is of finite length. This shows that 
the family of all submodules of E is totally ordered. Let B = 2innR(xR). xR is 
a faithful right R/B-module. As R/B is artinian, R/B is embeddable in 
(xR)(m), a direct sum of m copies of xR for some integer m. Let 5 = R/B and 
e be any primitive idempotent of S. There exists m jR-homomorphisms at of 
eS into (xR)^, with zero as intersection of their kernels. Since the family of 
i^-submodules of eS is totally ordered (since S is a generalized uniserial ring), 
we get that at least one of the at is a monomorphism. Hence eS is embeddable 
in xR. Since xR is a uniserial module it also follows that S is an indecomposable 
ring and has homogeneous socle, so that we can find a Kupisch series eiS, 
e^S, . . . , enS of 5 such that d(ei+iS) = d(etS) + 1 for every i < n. Then 
xR ^ enS. 

Since every nonzero ideal of R contains a regular element, a nonzero divisible 
right i^-module must be faithful. Consequently E is faithful. As E is a torsion 
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module, Lemma 2(ii) yields t h a t E is of infinité length. Hence using the fact 
t h a t the family of submodules of E is total ly ordered and t h a t every element of 
E generates a submodule of finite length, we get t h a t there exists an infinite 
properly ascending chain of submodules of E 

0 = x0R < XxR < x2R < . . . < xkR < . . . 

whose union is E and every xi+iR/xiR is a simple P-module . Ei ther all the 
factors modules xi+i/R/xtR are non-isomorphic or there exists smallest non-
negative integers /, m with / < m such t h a t Xi+iR/xtR = xm+iR/xmR. T a k e 
xm±i = x. In the notat ions of the previous paragraphs the periodicity of xR is 
determined by the periodicity of enS\ so t h a t the periodicity of xR is n. Then 
it is clear t h a t for any i, j , xi+\R/XiR — xj+iR/xjR if and only if i = j (mod n). 
This completes the proof. 

COROLLARY 1. Let R be a Dedekind prime ring which is not right primitive. 
Let E be an indecomposable, infective right R-module, which is not torsion free. 
Then, in E there exists an infinite ascending chains of cylic submodules 

(0) = XoR < xiR < x2R < . . . < xkR < . . . 

such that its union is E and all xi+iR/xiR are simple and isomorphic. 

Proof. For any proper ideal A of R, R/A is a P I R with d . c . c , i.e., R/A is 
a uniserial ring; further if R/A is indecomposable clearly its Kupisch series is 
of length one. Hence the result follows. 

T H E O R E M 5. Let R be an (hnp)-ring which is not right primitive and Q be its 
classical quotient ring. Then every indecomposable injective right R-module is a 
homomorphic image of eQ, where e is a primitive idempotent of Q. Further every 
indecomposable injective torsion right R-module is a direct summand of Q/R. 

Proof. Consider any indecomposable injective r ight i^-module E. If E is 
torsion free, then the result follows from Lemma 1. Le t E be not torsion free. 
Then £ is a torsion module and it has a unique simple submodule yR. If P = 
ann (yR), we know t h a t P is a prime ideal and R/P is ar t inian. Now for P * = 
{£ € Q\qP C R], PP* = 0 , (P ) = {q G Q : qP C P) [2, L e m m a (1.2)]. Since 
0i(P) D R, we get P * > R, and hence there exists x G P * such t h a t x (? R. 
Then x — x + R is a nonzero element of the r ight P-module Q/R such t h a t 
xR is a faithful r ight P / P - m o d u l e . We can choose x to be such t h a t xR is simple. 
Then xR ~ yR. Consequently as Q/R is injective, E is embeddable in Q/R. 
This immediately concludes the proof. 

As an application of Theorem 4, we prove the following: 

T H E O R E M 6. Let R be an (hnp)-ring which is not right primitive and A be a 
proper ideal of R, such that R/A is an indecomposable ring. Then there exists a 
proper ideal B of R contained in A such that R/B is an indecomposable generalized 
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uniserial ring with homogeneous socle and further R/B and R/A have Kupisch 
series of same lengths. 

Proof. Let 5 = R/A and e\S> e2S . . . enS be a Kupisch series of S; further 
let J(S) be the radical of S. Each etS is a uniform torsion right i^-module, so 
that if Et is the right i^-injective hull of etS, then it is an indecomposable in­
fective, torsion, right i?-module. For any i < n, using (3) we get ei+1S etS = 
ei+iJ(S). So we have nonzero homomorphism at : etS —> ei+iS with image 
ei+iJ(S). This homomorphism can be extended to a homomorphism rjt : £t- —> 
Ei+i. As homomorphic image of an injective i^-module is injective, 77* is an 
epimorphism. So that for 1 < i ^ n we have epimorphism Xz- : E\ —» Et with 
\ t = 7]i-\ . . . y]\. Put Xi = identity map on E\. Let Tt = X* - 1 ^^) and 
Kt = Ker Xz, Then KtCKi+1 and 7 V i / 7 \ ~ ei+1S/ei+lN(S). Put T0 = 
eiJ(S). Since all etS/eiJ(S) (1 ^ i ^ n) are non-isomorphic, it follows that 
Tn/To is a uniserial module of length n and of periodicity n. Now Tw = xR 
for some x ( ^ 0 ) G -Ei. Let i? = ann^(x^). Since every eiS is a homomorphic 
image of some submodule of xR, SB = (0) so that from 5 = R/A, we get 
B C A. As seen during the proof of Theorem 4, R/B is an indecomposable 
generizaled uniserial ring with homogeneous right socle. We can find a Kupisch 
series fiS',f2S', . . . , fmS' of S' = £ / £ such that d(fi+1S') = d(fiS') + 1 and 
xR ^fmS' has periodicity w. If é?i/(S) = (0). Then as » = d(xi?) = d(fmS') 
and all the composition factors modules of xR are non-isomorphic; we get 
n = m. Suppose that eiJ(S) 9e (0) then as enS/enJ(S) = eiJ(S)/e1J(S)2 

we get Tn/Tn-i = eiJ(S)/eiJ(S)2 and that Tn/e\J(S)2 is a homomorphic image 
of xi^ such that it has periodicity n and length n + 1. Then as xi? is of per­
iodicity m, we get n = m. Hence we find that R/B has a Kupisch series of 
length n. This proves the theorem. 

Definition 1. Let E be an indecomposable injective torsion right i?-module, 
where R is an (hnp)-ring which is not right primitive. The unique infinite 
ascending chain of submodules of R 

(0) = XoR < xiR < x2R < . . . < xkR < . . . 

such that each xi+iR/xtR is simple, is called the composition series of E, and 
each of xi+iR/xiR is called ith composition factor module of E. Further if 
there exists a positive integer n such that ^th and j th composition factor 
modules are isomorphic if and only if i = j (mod n), then n is called the 
periodicity of E; if no such n exists, then E is said to be of periodicity zero or 
infinity. 

Let S be the class of all indecomposable injective torsion right i?-modules, 
where R is an (hnp)-ring which is not right primitive. It is clear that if E G $ 
is of periodicity n > 0, there exists n and only n non-isomorphic member of S 
which are homomorphic images of E. If F Ç <o is one such, then there exists 
a homomorphism of E onto F with kernel of lengths ^(n — 1) and kernel with 
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this property is a uniquely determined submodule of E. If E £ $ is of per­
iodicity zero and F is a homomorphic image of E, then there exists a unique 
submodule K of E, such that £/2C ^ F. For any E, F Ç <f, define M(£ , F) 
as follows: 

M"(E, F) = E, if F is not a homomorphic image of E; 

= the submodule K of £ such that E/ i£ ~ F, in case F is a 
homomorphic image of E; if further E is of periodicity w > 0 
we take d(K) ^ n — 1. 

For any E, F £ # , we define E equivalent to F if and only if there exists 
submodules E' of E and F' of F such that E' ^ E and Ff ^ F and £ / £ ' ^ 
F / J P . It can be easily seen that this relation is an equivalence relation. Further 
under this equivalence relation any two equivalent members of S are of same 
periodicity and if any one of them is of finite periodicity, then they are homo­
morphic images of each other. 

We now determine the structure of a quasi-injective right i^-module. 

THEOREM 7. Let R be an (hnp)-ring which is not right primitive. Then a right 
R-module N is quasi-injective if and only if it satisfies the following. 

I. If N is not a torsion module, then N is infective, 
II. If N is a torsion module, then 

N = © £ Ni9 
t<EA 

where Nt are uniform right R-modules with the following properties: Let Et = 
E(Nt). 

(i) For any i, j Ç A, d(N)t ^ d(Nj) + d(M(Eu £ , ) ) . 

Proof. We shall use the result that any module is quasi-injective if and only 
if it is invariant under every endomorphism of its injective hull [9, Theorem 

(i- i)] . 
Firstly, let us consider an indecomposable torsion free quasi-injective right 

i^-module T. Since any quasi injective module over a noetherian ring is a 
direct sum of uniform modules by Miyashito [14], T is uniform. Since E(T) is 
torsion free, for some primitive idempotent e of the classical quotient ring Q of 
R, E(T) = eQ. Since T is invarient under every i^-endomorphism of eQ, 
eQeT C T. However QeT = Q; we get T = eQ. So that T is injective. 

Let N be any quasi injective right i?-module. N = © X ^ A A ^ , for some 
uniform submodules Ni of N [14]. Suppose that N is not a torsion module, 
then one of these Nit say N/ must be torsion free. By the above paragraph 
N/ = eQ for some primitive idempotent e of Q. Let Et = E(Nt). Since N is 
invarient under every endomorphism of E(N) and by Theorem 5, every Et is 
a homomorphic image of eQ, we get Nt = Et. Hence N is injective. So let N 
be a torsion module. Now 

E(N) = © E Eu 
i€A 
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Consider any i, j £ A, it is clear from the definition of M(Ei} Ej) that there 
exists a homomorphism rj : Et—^ Ej such that ker rj = M(EU Ej). Since N is 
invariant under every endomorphism of E(N), we get rjfNt) C Nj. Then 
using the fact that the family of submodules of Et is totally ordered, it follows 
that d(Nt) g d(Nj) + d(M(Et, Ej)). Since the family of submodules of Et is 
totally ordered and the kernel of every homomorphism of Et into Ej contains 
M(Ei, Ej), it follows that if the above condition is satisfied, then <r(Ni) C Nj 
for any a : E* —» Ej and then as every endomorphism oîE(N) is determined by 
homomorphisms between various E / s the converse follows; 

COROLLARY 3. If N is a quasi-injective right R-module, then N = M © T, 
where M is injective and T is a direct sum of uniserial R-modules. Further if N 
is not a torsion module, then T = (0). 

Proof. If N is not a torsion module, by the above theorem N is injective. 
Let N be a torsion module. Now N = © 2*€A-Af* where Nt are uniform, 
Theorem 4 yields that if Nt is of infinite length then it must be injective, 
otherwise Nt is uniserial. Hence the corollary follows. 

4. Quasi-projective modules. Rangaswamy and Vanaja [18] proved that 
a Dedekind domain D (commutative) is a complete discrete valuation ring of 
rank one if and only if its quotient field K is a quasi-projective P-module. In 
this section we generalize the above result to (hnp) ring which are not right 
primitive. 

A Dedekind prime ring R which is complete with respect to the J-adic 
topology, where / = J(R) is said to be a complete Dedekind prime ring. We 
prove the following: 

THEOREM 8. Let R be an (hnp) ring which is not right primitive and let Q be 
its classical quotient ring. Then Q is quasi projective right R-module if and only if 
R = Dn, where n is a positive integer, and D is a complete local Dedekind domain 
(not necessarily commutative) ; further in that case R is a Dedekind prime ring 
having J(R) as its maximal ideal and Q is quasi projective as a left R-module. 

We firstly establish some other results. 

THEOREM 9. Let E be an indecomposable, injective, torsion right R-module, 
where R is an (hnp) ring, which is not right primitive. Then D = HomR(E, E) 
is a local Dedekind domain which is complete. 

Proof. Let (0) = x0R < X\R < x2R < . . . < xnR < . . . be the composition 
series of E. If E is of periodicity zero, then each of its nonzero endomorphisms 
is an automorphism ; so that D is a division ring. Let E be of periodicity n > 0. 
Since every nonzero endomorphism of E is an epimorphism, D is a domain. 
We consider any two nonzero elements a and rj of D. Now either ker a C ker rj 
or ker rj C ker a. To be definite let ker a C ker TJ we define X 6 D as follows: 
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As <r(E) = E, given u Ç E, there exists y Ç £ such t h a t <rfy) = w. Define 
X(w) = r?(y). Then X is well-defined and rj = Xa\ This proves t h a t the family 
of left ideals of D is total ly ordered, D is a left ( P I D ) . Fu r the r since the 
minimal submodules of <r(E) and E are same, this gives t h a t if ker a ^ 0, 
then ker a = xknR for some k. Then for J = J(D). 

Jm = {a G D | xmn G ker a}. 

We now prove t h a t D is / - comple te . Consider any sequence {am} in Z> such 
t ha t ak — ai G J* for every i ^ / ^ 1. This gives o-j and a* agree upon xinR 
whenever k ^ /. Hence we can find a £ D such t h a t ^ ( x ^ ) = <rk(xkn). Then 
a — <rk £ Jk for every fe. Hence Z> is / - comple te . Then by Michler [12, Satz 
(4.4)] D is also a principal r ight ideal ring. Then every one sided ideal of D is 
a power of its maximal ideal J. Hence the result follows. 

T H E O R E M 10. Let D be a local, complete, Dedekind prime ring and Q be its 
classical quotient ring. Then Q is quasi-projective as a right D-module and also 
as a left D-module. 

Proof. Since D is local by [2, Lemma 1.4], D is uniform as a r ight Z>-module. 
Hence D is free from zero divisors. Now by Theorem 3, D is r ight bounded. 
Consider any proper r ight ideal A of D. T h e n A contains a nonzero two sided 
ideal B. Since D/B is a local uniserial ring, i / 5 is a two sided ideal of D. 
Consequent ly A is a two sided ideal of D. Similarly every left ideal of D is 
two sided. Since in a local uniserial ring every ideal is a power of the maximal 
ideal, we get t h a t every proper ideal in D is a power of its maximal ideal J(D) 
so if we take a G J(D) — J(D)2, then J(D) = aD = Da and for any n ^ 1, 
anD = Dan. Hence if a G D is a uni t then aa = a/3, aa = ya for some uni ts jS 
and 7 in D. Consider 

Q 

\v 
Q — ^ Q/K * 0 

where rj is a r ight D-homomorphism and TT is na tura l homomorphism. Now 

K = alD for some integer t. For each n > 0 rj(a~n) = ana
kn = ana

kn + K for 

some uni t an in D and integer few. For n > m > 0, 

awia*« = 77(a-w) = y){a-n)an-n 

This yields 

ana*»+n - awafc-+w Ç aw+'Z>. 

Since / is fixed, for large enough m, m -\- t > 0. Consequent ly eventual ly 
either all kn + n are positive or eventual ly all are negative and equal. In the 
former case ana

kn+n is eventual ly in D and hence there exists b Ç D such t h a t 
eventual ly b — ana

kn+n G an+tD. T h u s if we define o- : Q —•» <2 by o-(x) = foe 
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for x G <2, we have ira = 77. In the later case there exists ra0 such t ha t w0 + t > 
0, hn + n = kmQ + ra0 for all n ^ ra0. If we put c = kmQ + m0, we get cxw — 
aw G am+t-c£) {or n ^ m ^ m0. Hence there exists a £ D such t h a t eventually 
a — aw G an+t~cD. If we define 0- : Ç —> <2 by o-(x) = aa~cx we get ira = 77. 
Hence Q is quasi projective as a right Z)-module. Similarly Q is a quasi projec­
tive left D-module. 

Proof of Theorem 8. Since R is not right primitive we have R ^ Q. Let Q be 
quasi projective as a right i?-module. Consider any a G Hom#(<2/i?, Q/R). 
Let IT : Q —* Q/R be the natural i?-homomorphism. Since <2 as a r ight i?-
module, is quasi-projective there exist r ight i^-homomorphism a' : Q —> Q 
such t h a t ira' = air. Since ker IT = R we get o-'CR) C ^ . Thus , if a'(I) = t, 
it follows t ha t t G i£ and for any x G Q, o-(x + i?) = tx + R. For any / G R 
let (7f denote the left multiplication of Q/R by /. I t follows t ha t t —• at; t G i^, 
is a ring homomorphism of R onto Hom#(<2/i£, Q/R). As i£ does not have any 
nonzero right ideal which is a divisible i^-module, it follows t ha t the above 
mapping is an isomorphism. The same mapping is also a right ^- isomorphism. 
Hence HomR(Q/R, Q/R) =R both as a ring and as a right i^-module. By 
using Theorem 5 and the fact t ha t Q/R is a torsion, injective right i^-module, 
we get Q/R is a direct sum of indecomposable injective torsion right i^-modules 
and every indecomposable injective torsion right i^-module is a direct sum-
mand of Q/R. Since HomR(Q/R, Q/R) ~ RR and R does not contain an 
infinite set of orthogonal idempotents , we get Q/R is a finite direct sum of 
indecomposable injective torsion right i?-modules. Thus there are finitely 
many non-isomorphic indecomposable injective, torsion right i?-modules. 
Consequently any indecomposable injective torsion right i^-module is of 
finite periodicity. Since R does not have any non-trivial central idempotent , 
we get t h a t all these injective modules are equivalent. So we can write 

(7) Q/R = (E1 + E2 + . . . + Etl) + (£ < 1 + 1 + . . . + Etl+t2) + . . . 

+ (...+£„) 
where all E / s are indecomposable and equivalent, bu t any two of the E / s 
are isomorphic if and only if they occur within the same bracket. By Fai th and 
Utumi [4, Theorem (3.1)] any a G R is in J(R) if and only if {q G Q/R\aq = 0} 
is an essential right i^-submodule of Q/R. Let us identify R with 
HomR(Q/R, Q/R). In a natural way we can regard H o m f l ( £ j , Ej) C 
HomR(Q/R, Q/R). Then any a G HomR(Q/R, Q/R) is expressible uniquely 
as 0- = ^2(Tji, with o-ji G H o m ^ I ^ , Ej). Using [4, Theorem (3.1)] we get 
a G J(R) if and only if ajt G J(R) for all i, j ; further for Et and Ej occurring 
in different brackets in (7) we have WomR(Eu Ej) C J{R)> I t can be easily 
seen t h a t given a maximal ideal M of R, for some fixed bracket on the right 
hand side of (7), M consists of all those a = J2aji such t ha t for all Ef, Ej 
occurring within t ha t bracket, ajt G J(R) i.e., ajt is not a monomorphism. 
Fur the r notice the following: Let E, E'f E" be any three indecomposable 
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injective torsion right i?-modules and a : E —» E', rj : Ef —> J5" be nonzero 
i^-homomorphisms. If d(ker o-) = /, then for every k ^ 0, the (& + t)th term 
in the composition series of E is mapped onto the &th term of the composition 
series of E'. From this it follows that if ker a 9e (0) and ker 77 ^ (0), then 
ker (rja) properly contains ker a. Using this fact and the above given form of 
the maximal ideals of R, it follows that no maximal ideal of R is an idempotent. 
Hence by [3, Propositions (2.2) and (4.5)] no proper ideal of R is an idempo­
tent. Hence R is a Dedekind prime ring. Hence by Corollary 1, any inde­
composable injective, torsion right i^-module is of periodicity one, and thus 
all the Et in (7) are isomorphic. Hence for D = Hom f if£i, E\) we get R = 
Dny where D by Theorem 9 is a local, complete Dedekind domain (not neces­
sarily commutative). 

Conversely, let R = Dn where D satisfies the given conditions. Let R be 
the classical quotient ring of D. Then Kn is the classical quotient ring of R. 
Now by Theorem 10, K is quasi-projective as a right .D-module (also as a 
left .D-module). Since by Golan [6, Theorem (1.1)] quasi-projective modules 
are preserved under category equivalence, by using the Morita duality 
Theorem, it follows that for any primitive idempotent e of Kn, eKn is quasi-
projective as a right Démodule (i.e. as a right i^-module). Since Kn is a direct 
sum of n isomorphic minimal right ideals and by de Robert [19], a direct sum 
of finitely many copies of a quasi-projective module is quasi-projective, it 
follows that Kn is a quasi-projective right i^-module. Similarly Kn is quasi-
projective as a left i^-module. The other part of the proof is immediate. 

Remark. Let R be any (hnp)-ring with enough invertible ideals. By Eisenbud 
and Robson every finitely generated torsion right i^-module is a direct sum of 
cyclic modules each of which is either unfaithful or completely faithful [2, 
Theorem (3.11)]. Let E be an indecomposable injective torsion right module. 
HE does not have any nonzero completely faithful submodule, by using the 
above mentioned result of Eisenbud and Robson, the same structure, as in 
Theorem 4, can be established for E. Theorem 6 also holds for any (hnp)-ring 
with enough invertible ideals. 
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