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1. Introduction
In the full linear theory of thermoelasticity f there is a coupling between

the thermal and the purely mechanical effects so that not only does a non-
uniform distribution of temperature in the solid produce a state of stress but
dynamical body forces or applied surface tractions produce variations in
temperature throughout the body. In a recent paper (Eason and Sneddon,
(2)) an account was given of the calculation of the dynamic stresses produced
in elastic bodies, both infinite and semi-infinite, by uneven heating. In this
paper we shall consider the propagation of thermal stresses in an infinite
medium when, in addition to heat sources, there are present body forces which
vary with the time.

In § 2 we derive the general solution of thermoelastic equations, written
in terms of cartesian coordinates, by using four-dimensional Fourier transforms,
and in § 3 we get the solution for axially symmetrical problems by using a
mixed Fourier-Hankel transform. In §§ 5, 6 we consider the effects produced
by time-dependent body forces ; the expressions for the temperature and the
components of the displacement vector are given in the form of multiple
integrals which, in the general case, are difficult to evaluate in closed form.

The solution assumes a simpler form in the quasi-static approximation in
which the stress-strain relation and the equation governing the conduction
of heat remain unaltered but the equations of motion are replaced by equations
of equilibrium. The quasi-static approximation is valid when the heat sources
and body forces do not vary too violently with the time, $ and it is considered
in § 7. One result of physical interest emerges from this analysis. In the quasi-
static approximation we find that the temperature field due to a body force
F(x, y, z)f(t) in the z-direction can be determined from the classical equation
for the conduction of heat (i.e. with no term involving the time rate of change
of the dilatation) by replacing the body force by an equivalent heat source
which is proportional to

(z-z')F(x', y', z')dx'dy'dz'

2. General Theory : Solution in Rectangular Cartesian Coordinates
Using rectangular cartesian coordinates and the dimensionless forms due

t For references see (2). ... .
% The numerical values are considered in (2).
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to Sneddon and Berry (3), the thermoelastic equations can be written as

i,j=l, 2, 3 (2.1)

i,j= 1 ,2 ,3 (2.2)

(2.3)

where the rectangular cartesian coordinates are denoted by xx, x2, x3 and the
other quantities have a similar convention.

If we eliminate the stresses between (2.1) and (2.2) we get an equation

= aiii (2.4)

which can be differentiated with respect to xt to give

pb,ti-b6,tt + Xu t = a'A (2.5)

We now define the multiple integral transform

Mi, &. fs. to) = ^-J f(xlt x2, x3, t) exV {i&Xi+ootftdV (2.6)

where dV = dx1dx2dxtflt and where the integration is taken over the entire

Then by multiplying throughout equations (2.3), (2.4) and (2.5) by

(4**)-1 exp {i(fat+wt)}

and integrating over F4, we get the transformed equations

®-$*6= -icofS-icugA (2.7)

Xi-iUp-^d + iHiQ-FUi-i^A = -aw2u( (2.8)

-iZiXi-p2l;2A + b!;W= -aw2A~ (2.9)

where « « = ^ + ̂  + f§.

The solutions of equations (2.7) and (2.9) are

)g

@(o>,?) ( '

and we can now use (2.8) to give

- _ Xt _ {(p-l)(?-uof)-iubg}M,Xg , Wi® (2 l2)

' "" ?2-oco2 ({«-flto*)®(o>, ?) ® ( « , ¥ ) '"K ' '

where we have defined

S(w, ^2) = iP?-acj*)(?-iu>f)-iwbgV (2.13)

Finally, application of the inverse transforms to the expressions (2.10)
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and (2.12) gives us the displacement and temperature fields

exp{ — i(£vXj,+wt)}dW... (2.14)

where dW = d^d^^^dcu and the integration is taken over the entire £1

space.

3. General Theory : Problems with Axial Symmetry
I t is often interesting to consider problems in which, if we use cylindrical

polar coordinates, there is symmetry about the z-axis. We shall therefore
consider this type of problem in its most general form.

Assuming symmetry about the z-axis, the thermoelastic field equations
can be written in the form

a2w .fl2 Shv 86 8*11
+ ( ^ l) + X b a <31>

8hv \8w ,RiShv n S ( 8 w , M l , T h86

IF + ~r Tr +fi &S- + ( ^ 1} 8-z\8-r+7] +X>~b 8~z =

- a2^ 1 86 826 .86 8 Idu u 8w
@+ W + r Tr + W> = / » +nt \Tr + r + ^

Thus, if we make use of the transforms

(«, Xr) = ^- f f e^+^dzdt f rJ^r)(u, XT)dr (3.4)
""J -ooJ - x J o

(w, 9, &, Xt) = i - P f e^+^dzdt f rJ0(fr)(w, 0, ©, Zf)dr ...(3.5)
^"•J - » J -oo J 0

then equations (3.1), (3.2) and (3.3) transform to

Xr= b& (3-6)

)iB-X, = ib£8 (3.7)

= iwgi&i-i&o) (3.8)

The solutions of these equations are

@{o>, I?) v • '
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- _

, {m + ¥-au>)(P+¥-ia>f)-i<obg¥}lz ^

where fa = £2 + £2 and 3) is defined by (2.13).
The expressions for u, w and 9 can now be obtained from (3.9), (3.10)

and (3.11) by means of the transforms inverse to (3.4) and (3.5). In some
of the most interesting applications the radial component of the body force
Xr is zero. The expressions for the components of displacement and for the
temperature distribution then become

Z7TJ - o o j -00 J O

1 /»00 /*00 /•

f I • I
"Rj — QO J —oo J

4. Effects due to Uneven Heating
RECTANGTJLAB CABTESIAN COOEDINATES. It is easily seen from the fore-

going work, that the components of displacement and the temperature dis-
tribution produced by a heat source 6>{xlt x2, x3> t) in the absence of body
forces are given by

§ (4.1)

0 = ^ J ^ W - ^ ^ erpi-Hte+vDVW (4.2)

which are the expressions derived by Eason and Sneddon (2). There are two
special cases which are of particular interest. These are the solutions to the
steady-state and the two-dimensional problems, and they can be found in the
reference mentioned above.

PEOBLEMS WITH AXIAL SYMMETBY. From equations (3.12)-(3.14) it is
immediately seen that the components of displacement and the temperature
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distribution due solely to the action of a heat source © which is symmetrical
about the z-axis are

u = £-[ [ e-ite+°*>aX,da>[ txg-i&J^rffi (4.3)
27TJ - o o j -oo JO

•1 /•» /»00 /.OO

w = 5- te-M+^dCdul |5®-V0(fr)d^ (4.4)
Z7TJ -ooj -oo Jo

0 = i - f f e-'«*+"«d£dai f (jS^-aw1)®-1^J0(fr)i£ (4.5)
Z 7 r J -oo j -oo J o

where 0 is denned by (3.5).

5. Effects produced by Time-dependent Body Forces : Rectangular
Coordinates

It is readily seen from expressions (2.14) and (2.15) that the components of
displacement and the temperature distribution due to body forces X are

4TT2J Wt | f - o w s (£2-aa)2)® J
.(5.1)

.(5.2)

where Xr is defined by (2.6). It may be noted that, since the classical equations
may be obtained from the linked equations by putting g = 0, the classical
solution for the temperature distribution will be d = 0. This is, of course,
obviously true, since in the classical solution the temperature is given by the
heat conduction equation quite independently of the other equations, which
contain the mechanical effects.

STEADY-STATE PROBLEM. If the body forces do not depend on the time t,
so that

Xt = Fi(xv x2, x3)
then we find that

where Ft is the three-dimensional Fourier transform of Ft.
On substituting this value into (5.1) and (5.2) we see that 6 = 0, showing

that a steady body force does not produce a thermal effect, and

„ _ *W2J w.
where dl; = d^d^d^. This latter expression can be converted to the standard
expression for the statical solution (see e.g. Easone< al. (1), p. 581). :

THE TWO-DIMENSIONAL PROBLEM. The solutions for the two-dimensional

problem can be obtained by putting X3 = 0 and
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where F{ is the three-dimensional Fourier transform of the components of
the body force Ft.

These solutions are

(5-4)

(5-5)

where dW3 = d^dgglw and y2 —

6. Effects produced by Time-dependent Body Forces : Axial Symmetry
From equations (3.12)-(3.14) we see that the solutions corresponding to

the application of body forces Xz are

o
- icof) - u

[ '

w
= ±-\ e-K'+^dZdu

) (g2 - *a>/ ) - icobg?}X$J0(€r)dt

(6-3)

whilst the complete solution, corresponding to the application of both com-
ponents Xr and Xz, can be easily obtained by inverting the relevant terms
of equations (3.9)-(3.11).

7. Quasi-static Solutions : Equivalent Heat Sources
The constant a is usually very small for problems in which the c.g.s. system

of units is the natural system to use (see Eason and Sneddon (2)). We would
therefore expect to get a good approximation to the exact solution by neglecting
the terms in which a occurs. This approximate solution is known as the
quasi-static solution. It can be seen from equation (2.1) that this approxima-
tion is physically equivalent to neglecting the inertia of the medium.

In the quasi-static approximation

Using (6.3) the quasi-static approximation to the temperature distribution
produced by a body force Xz is
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EQUIVALENT HEAT SOURCE. Let us consider the classical solution of the
problem of the temperature distribution produced by a distributed heat
source. The solution satisfies the heat conduction equation

+ + + e f
8r* + rdr + dz*+ J dt

which can be transformed, using (3.5), to the form

= i r r e_m+wt)dCdw r &_ ZJ0(Zr)d£ (7.2)
Z77V -ccj -oo J o 5 — w«y

so that

Thus, by comparing equations (6.3) and (7.2), we can see that the same
temperature distribution would be given by the body force Xz as would be
given, in the classical theory, by a heat source © obeying the equation

( 7 3 )

We call the heat source ©, given by (7.3), the equivalent heat source for
the body force Xz. Having found the equivalent heat source, the problem
is identical with a problem in the classical heat conduction theory.

Similarly we can see from (7.1) and (7.2) that the quasi-static solution
can be obtained from a solution of the classical heat conduction equation.
All we need do, is to replace / in that equation by fv and consider a heat
source 0 given by

togXl
( '

EQUIVALENT HEAT SOURCE for a POINT FORCE. AS an illustration of the
above, we shall calculate the heat source equivalent to the quasi-static treat-
ment of a point force at the origin. Thus

X2 = ±Hr)8
and

where
G{W) = I ^ \ -J{t)ei0*dt (7'6)

Inversion of (7.6) and differentiation with respect to t gives the relation

/'W = 75-f* f wO(c)e-Mdw (7.7)

Now, using (7.4) and (7.5), the required heat source is given by

E.M.S.—Q
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so that

using (7.7). Evaluating the integrals we finally get

^3 (7.8)

This result can be immediately generalised to give, in the quasi-static
approximation, the heat source equivalent to the distributed body force

Xz = F(x, y, z)f(t)

This heat source is given by

_fl£Wf° C
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