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Signature maps from positive cones on
algebras with involution
Vincent Astier and Thomas Unger

Abstract. We introduced positive cones in an earlier paper as a notion of ordering on central simple
algebras with involution that corresponds to signatures of hermitian forms. In the current paper we
describe signatures of hermitian forms directly out of positive cones, and also use this approach to
rectify a problem that affected some results in the previously mentioned paper.
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1 Introduction

In [4] we introduced the notion of positive cones for central simple algebraswith involu-
tion, inspired by the classical real algebra of ordered fields. They are linked to signatures
of hermitian forms, whose investigation we started in [1], inspired by [6]. We also gave a
complete description of the kernels of the signatures maps in [2].

In the current paper, after providing the necessary background in Section 2, we show
in Section 3 how to directly obtain such a kernel out of a given positive cone. This con-
struction also allows us to rectify a recently discovered mistake in [4]. Specifically, the
mistake occurs in the proof of [4, Lemma 5.5], and the lemma itself is likely incorrect.
Hence, the lemmas in the remainder of [4, Section 5] (and their consequences) are poten-
tially incorrect. These lemmas are used to prove [4, Proposition 5.8] which is the only

AMS subject classification: 13J30, 16W10, 06F25, 16K20, 11E39.
Keywords: Real algebra, Algebras with involution, Orderings, Hermitian forms.

2025/11/05 10:31

This is a ``preproof'' accepted article for Canadian Journal of Mathematics
This version may be subject to change during the production process.
DOI: 10.4153/S0008414X25101806

https://doi.org/10.4153/S0008414X25101806 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101806


2 V. Astier and T. Unger

result in [4, Section 5] that is used in the remainder of [4]. In this paperwe provide in par-
ticular an entirely different proof of [4, Proposition 5.8], so that all the results in [4] now
have correct proofs, except for [4, Lemmas 5.5, 5.6 and 5.7] which are no longer needed.

Note that in the process of reproving [4, Proposition 5.8], we provide more direct
proofs of results in [4] that were originally obtained as consequences of [4, Proposi-
tion 5.8]. Therefore, we clearly indicate in each statement in Sections 4 and 5 if it already
appeared in [4].

2 Preliminaries

All fields in this paper are assumed to have characteristic different from 2. Let 𝐹 be such
a field. We denote by𝑊 (𝐹) the Witt ring of 𝐹 , by 𝑋𝐹 the space of orderings of 𝐹 , and
by 𝐹𝑃 a real closure of 𝐹 at an ordering 𝑃 ∈ 𝑋𝐹 . We often denote the unique ordering
on 𝐹𝑃 by 𝑃.

By an 𝐹-algebra with involutionwemean a pair (𝐴, 𝜎)where 𝐴 is a finite-dimensional
simple 𝐹-algebra with centre a field 𝐾 = 𝑍 (𝐴), equipped with an involution 𝜎 : 𝐴 →
𝐴, such that 𝐹 = 𝐾 ∩ Sym(𝐴, 𝜎), where Sym(𝐴, 𝜎) := {𝑎 ∈ 𝐴 | 𝜎(𝑎) = 𝑎}. More
generally we let Sym𝜀 (𝐴, 𝜎) := {𝑎 ∈ 𝐴 | 𝜎(𝑎) = 𝜀𝑎} for 𝜀 ∈ {−1, +1}. If 𝐴 is a
division algebra, we call (𝐴, 𝜎) an 𝐹-division algebra with involution.

Observe that [𝐾 : 𝐹] ⩽ 2. We say that 𝜎 is of the first kind if 𝐾 = 𝐹 and of the second
kind (or of unitary type) otherwise. Involutions of the first kind can be further subdivided
into those of orthogonal type and those of symplectic type, depending on the dimension of
Sym(𝐴, 𝜎), cf. [13, Sections 2.A and 2.B]. We let 𝜄 = 𝜎 |𝐾 and note that 𝜄 = id𝐹 if 𝜎 is of
the first kind.

We denote by 𝑊 (𝐴, 𝜎) the Witt group of Witt equivalence classes of nonsingu-
lar hermitian forms over (𝐴, 𝜎) defined on finitely generated right 𝐴-modules. Note
that𝑊 (𝐴, 𝜎) is a𝑊 (𝐹)-module. We denote isometry of forms by ≃. For 𝑎1, . . . , 𝑎𝑘 in
Sym(𝐴, 𝜎) the notation ⟨𝑎1, . . . , 𝑎ℓ⟩𝜎 stands for the diagonal hermitian form

(
(𝑥1, . . . , 𝑥ℓ), (𝑦1, . . . , 𝑦ℓ)

)
∈ 𝐴ℓ × 𝐴ℓ ↦→

ℓ∑︁
𝑖=1

𝜎(𝑥𝑖)𝑎𝑖𝑦𝑖 ∈ 𝐴.

We often identify nonsingular quadratic and hermitian forms with their Witt classes
if no confusion is possible. If ℎ is a hermitian form over (𝐴, 𝜎), we denote the set of
elements represented by ℎ by 𝐷 (𝐴,𝜎) (ℎ).

We denote by Int(𝑢) the inner automorphism determined by 𝑢 ∈ 𝐴× , i.e.,
Int(𝑢) (𝑥) := 𝑢𝑥𝑢−1 for 𝑥 ∈ 𝐴. We also write 𝜎𝑡 for the involution (𝑎𝑖 𝑗 ) ↦→ (𝜎(𝑎 𝑗𝑖))
on 𝑀𝑛 (𝐴).

2.1 Signatures of hermitian forms over quadratic field extensions and
quaternions

Let 𝑘 be a field and let 𝐷𝑘 ∈ {𝑘, 𝑘 (
√
𝑑), (𝑎, 𝑏)𝑘}, where 𝑎, 𝑏, 𝑑 ∈ 𝑘 , 𝑘 (

√
𝑑) ≠ 𝑘 and

(𝑎, 𝑏)𝑘 is a quaternion division algebra over 𝑘 . Let 𝜗𝑘 denote the canonical involution
on 𝐷𝑘 , i.e., the identity map on 𝑘 or conjugation in the remaining cases.
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Signature maps from positive cones on algebras with involution 3

If ℎ is a hermitian formover (𝐷𝑘 , 𝜗𝑘), then 𝑏ℎ (𝑥) := ℎ(𝑥, 𝑥) is a quadratic formover
𝑘 . A straightforward computation shows that if ℎ ≃ ⟨𝑎1, . . . , 𝑎𝑛⟩𝜗𝑘

with 𝑎1, . . . , 𝑎𝑛 ∈
Sym(𝐷𝑘 , 𝜗𝑘) = 𝑘 , then

𝑏ℎ ≃


⟨𝑎1, . . . , 𝑎𝑛⟩ if 𝐷𝑘 = 𝑘
⟨1,−𝑑⟩ ⊗ ⟨𝑎1, . . . , 𝑎𝑛⟩ if 𝐷𝑘 = 𝑘 (

√
𝑑)

⟨1,−𝑎,−𝑏, 𝑎𝑏⟩ ⊗ ⟨𝑎1, . . . , 𝑎𝑛⟩ if 𝐷𝑘 = (𝑎, 𝑏)𝑘
. (2.1)

By Jacobson’s theorem (cf. [18, Chapter 10, Theorems 1.1 and 1.7, Remark 1.3]) the map

𝑊 (𝐷𝑘 , 𝜗𝑘) → 𝑊 (𝑘), ℎ ↦→ 𝑏ℎ

is injective.
Let 𝑃 ∈ 𝑋𝑘 . The preceding paragraph motivates defining the signature of ℎ at 𝑃 in

terms of the Sylvester signature sign𝑃 𝑏ℎ as follows:

sign𝑃 ℎ :=


sign𝑃 𝑏ℎ if 𝐷𝑘 = 𝑘
1
2 sign𝑃 𝑏ℎ if 𝐷𝑘 = 𝑘 (

√
𝑑) with 𝑑 <𝑃 0

1
4 sign𝑃 𝑏ℎ if 𝐷𝑘 = (𝑎, 𝑏)𝑘 with 𝑎, 𝑏 <𝑃 0
0 in all remaining cases

. (2.2)

Remark 2.1 If 𝐷𝑘 = 𝑘 (
√
𝑑), skew-hermitian forms over (𝐷𝑘 , 𝜗𝑘) are equivalent to

hermitian forms, cf. [1, Lemma 2.1(iii)].
If 𝐷𝑘 ∈ {𝑘, (𝑎, 𝑏)𝑘} and ℎ is a skew-hermitian form over (𝐷𝑘 , 𝜗𝑘), or a hermitian

or skew-hermitian form over (𝐷𝑘 × 𝐷
op
𝑘
, ̂ ) with �(𝑥, 𝑦op) := (𝑦, 𝑥op) the exchange

involution, then (the nonsingular part of) ℎ is torsion in the Witt group and we let

sign𝑃 ℎ := 0, (2.3)

cf. [1, Section 3.1 and Lemma 2.1].

2.2 Signatures of hermitian forms over 𝐹-algebras with involution

Returning to the general case of an 𝐹-algebra with involution (𝐴, 𝜎), let 𝑃 ∈ 𝑋𝐹 and let

(𝐷𝑃 , 𝜗𝑃) := (𝐷𝐹𝑃
, 𝜗𝐹𝑃

) ∈ {(𝐹𝑃 , id), (𝐹𝑃 (
√
−1),−), ((−1,−1)𝐹𝑃

,−)},

using the notation from Section 2.1. We define the signature of a hermitian form ℎ over
(𝐴, 𝜎) by extending scalars to 𝐹𝑃 . Write 𝑍 (𝐴) = 𝐹 (

√
𝑑) with 𝑑 ∈ 𝐹 . We consider two

cases:
(1) If𝜎 is of the second kind and 𝑑 >𝑃 0, then 𝑍 (𝐴)⊗𝐹 𝐹𝑃 � 𝐹𝑃×𝐹𝑃 andwe obtain

(𝐴 ⊗𝐹 𝐹𝑃 , 𝜎 ⊗ id) � (𝑀𝑛𝑃 (𝐷𝑃) × 𝑀𝑛𝑃 (𝐷𝑃)op, ̂ ), (2.4)

cf. [13, Proposition 2.14]. Since (the nonsingular part of) ℎ is zero in the Witt group (cf.
[1, Lemma 2.1(iv)]), we will define the signature of ℎ at 𝑃 to be zero in this case, cf. (2.7)
below.
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4 V. Astier and T. Unger

(2) If 𝜎 is of the second kind and 𝑑 <𝑃 0, or if 𝜎 is of the first kind, then by the
Skolem-Noether theorem we obtain an isomorphism of 𝐹𝑃-algebras with involution

(𝐴 ⊗𝐹 𝐹𝑃 , 𝜎 ⊗ id) � (𝑀𝑛𝑃 (𝐷𝑃), Int(Φ𝑃) ◦ 𝜗𝑃𝑡 ), (2.5)

whereΦ𝑃 ∈ Sym𝜀 (𝑀𝑛𝑃 (𝐷𝑃), 𝜗𝑃𝑡 ) is invertible and 𝜀 = 1 if𝜎 and 𝜗𝑃 are of the same
type and 𝜀 = −1 otherwise, cf. [13, Propositions 2.7 and 2.18].

The 𝐹𝑃-algebra with involution (𝑀𝑛𝑃 (𝐷𝑃), Int(Φ𝑃) ◦ 𝜗𝑃𝑡 ) is hermitian Morita
equivalent to (𝑀𝑛𝑃 (𝐷𝑃), 𝜗𝑃𝑡 ) (via scaling byΦ−1

𝑃
), which in turn is hermitian Morita

equivalent to (𝐷𝑃 , 𝜗𝑃), cf. [1, Section 2.4]. We denote the composition of these equiv-
alences, and its induced map on hermitian forms, by𝔪𝑃 .

Remark 2.2 Observe that if𝜎 is orthogonal and𝐷𝑃 = (−1,−1)𝐹𝑃
or if𝜎 is symplectic

and 𝐷𝑃 = 𝐹𝑃 , then 𝜀 = −1 and 𝔪𝑃 (ℎ ⊗𝐹 𝐹𝑃) is skew-hermitian over (𝐷𝑃 , 𝜗𝑃).
Therefore, in accordance with Remark 2.1, we will define the signature of ℎ at 𝑃 to be
zero in this case, cf. (2.7) below.

Definition 2.3 (See also (2.8) below) We say that𝑃 is anil-ordering of (𝐴, 𝜎) if (2.4) holds
or if one of the cases described in Remark 2.2 occurs. We denote the set of nil-orderings
of (𝐴, 𝜎) by Nil[𝐴, 𝜎] , where the square brackets indicate that this set depends only on
the Brauer class of 𝐴 and the type of 𝜎.

Assume now that 𝑃 ∈ 𝑋𝐹 \ Nil[𝐴, 𝜎]. As already mentioned, the idea is to define
the signature of ℎ at 𝑃 as sign

𝑃
𝔪𝑃 (ℎ ⊗𝐹 𝐹𝑃) via (2.2), where 𝑃 denotes the unique

ordering on 𝐹𝑃 . There is however a problem: while a different choice of real closure
does not affect this definition (cf. [1, Proposition 3.3]) there is no canonical choice of
Morita equivalence, and different choices can result in sign changes (cf. [1, Proposi-
tion 3.4]). This problem can be addressed as follows: we showed in [1, Theorem 6.4] and
[2, Sections 2 and 3] that there exists a hermitian form 𝜇 over (𝐴, 𝜎), called a reference
form for (𝐴, 𝜎), with the property that the signature of the hermitian form𝔪𝑄 (𝜇⊗𝐹𝑄)
over (𝐷𝑄, 𝜗𝑄) is nonzero at all𝑄 ∈ 𝑋𝐹 \ Nil[𝐴, 𝜎]. Let 𝑠𝑃 ∈ {−1, 1} denote the sign
of sign

𝑃
𝔪𝑃 (𝜇 ⊗ 𝐹𝑃). The 𝜇-signature of ℎ at 𝑃 is then defined as

sign𝜇
𝑃
ℎ := 𝑠𝑃 · sign

𝑃
𝔪𝑃 (ℎ ⊗ 𝐹𝑃). (2.6)

This definition ensures that the use of differentMorita equivalences does not change the
result, cf. [1, Lemma 3.8]. The choice of a different reference formmay result in sign𝜇

𝑃
ℎ

changing sign continuously at all 𝑃 ∈ 𝑋𝐹 \ Nil[𝐴, 𝜎] , cf. [2, Proposition 3.3(iii)].
Finally, if 𝑃 ∈ Nil[𝐴, 𝜎] we define

sign𝜇
𝑃
ℎ := 0. (2.7)

Note that by [1, Theorem 6.4] we actually have

𝑃 ∈ Nil[𝐴, 𝜎] ⇔ sign𝜇
𝑃
= 0. (2.8)

Remark 2.4 Observe that if 𝑃 ∈ 𝑋𝐹 \Nil[𝐴, 𝜎] , then there exists 𝑎 ∈ Sym(𝐴, 𝜎)∩𝐴×

such that sign𝜇
𝑃
⟨𝑎⟩𝜎 ≠ 0. Indeed, if ℎ is such that sign𝜇

𝑃
ℎ ≠ 0, this follows from “weak

diagonalization” (cf. [4, Lemma 2.2]) and the fact that sign𝜇
𝑃
is additive.
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Remark 2.5 The definition of 𝜇-signature implies that

sign𝜇
𝑃
ℎ = sign𝜇⊗𝐹𝑃

𝑃
(ℎ ⊗ 𝐹𝑃).

Furthermore, if (𝐴, 𝜎) = (𝐷𝐹 , 𝜗𝐹) (with notation as in Section 2.1), then 𝜇 := ⟨1⟩𝜎 is
a reference form for (𝐴, 𝜎) (since sign𝑃 ⟨1⟩𝜎 = 1 for all 𝑃 ∈ 𝑋𝐹 \ Nil[𝐴, 𝜎]) and

sign𝜇
𝑃
= sign𝑃 .

Assumption for the remainder of the paper: (𝐴, 𝜎) is an 𝐹-algebra with involution
and 𝜇 is a reference form for (𝐴, 𝜎).

2.3 Signatures under ordered field embeddings

We recall the following consequence of [2, Lemma 4.1]:

Lemma 2.6 Let 𝐹𝑃 ⊆ 𝐿 be a field extension with 𝐿 real closed. We denote by𝔪 the hermi-
tian Morita equivalence between (𝐴 ⊗𝐹 𝐹𝑃 , 𝜎 ⊗ id) and (𝐷𝑃 , 𝜗𝑃) as well as the induced
isomorphism of Witt groups. Then 𝔪 extends to a hermitian Morita equivalence 𝔪′ between
(𝐴 ⊗𝐹 𝐹𝑃 ⊗𝐹𝑃

𝐿, 𝜎 ⊗ id ⊗ id) = (𝐴 ⊗𝐹 𝐿, 𝜎 ⊗ id) and (𝐷𝑃 ⊗𝐹𝑃
𝐿, 𝜗𝑃 ⊗ id) such that

(denoting the induced isomorphism ofWitt groups also by𝔪′), the following diagram commutes:

𝑊 (𝐴 ⊗𝐹 𝐹𝑃 , 𝜎 ⊗ id) 𝔪 //

��

𝑊 (𝐷𝑃 , 𝜗𝑃)

��
𝑊 (𝐴 ⊗𝐹 𝐹𝑃 ⊗𝐹𝑃

𝐿, 𝜎 ⊗ id ⊗ id) 𝔪′
// 𝑊 (𝐷𝑃 ⊗𝐹𝑃

𝐿, 𝜗𝑃 ⊗ id)

Lemma 2.7 Let (𝐷, 𝜗) ∈ {(𝐹, id), (𝐹 (
√
−1),−), ((−1,−1)𝐹 ,−)} with 𝐹 real closed.

Let (𝐹, 𝑃) ⊆ (𝐿,𝑄) be an extension of ordered fields with 𝐿 real closed, and let ℎ be a
nonsingular hermitian form over (𝐷, 𝜗). Then

sign𝑃 ℎ = sign𝑄 (ℎ ⊗ 𝐿).

Proof Since 𝐷 is a division algebra, ℎ can be diagonalized with entries from
Sym(𝐷, 𝜗) = 𝐹 . Since ℎ is nonsingular and 𝐹 is real closed, we have ℎ ≃ 𝑟 × ⟨1⟩𝜗 ⊥
𝑠 × ⟨−1⟩𝜗 , and so sign𝑃 ℎ = 𝑟 − 𝑠. Then ℎ ⊗ 𝐿 ≃ 𝑟 × ⟨1⟩𝜗⊗id ⊥ 𝑠 × ⟨−1⟩𝜗⊗id, so that
sign𝑄 (ℎ ⊗ 𝐿) = 𝑟 − 𝑠. ■

Lemma 2.8 Let 𝑃 ∈ 𝑋𝐹 and let 𝜆 : (𝐹𝑃 , 𝑃) → (𝐿,𝑄) be an embedding of ordered fields
with (𝐿,𝑄) real closed. Let ℎ be a nonsingular hermitian form over (𝐴, 𝜎). Then

sign𝜇
𝑃
ℎ = sign𝜇⊗𝜆𝐿

𝑄
(ℎ ⊗𝜆 𝐿).

Proof The proof has two parts.
Part 1:Assume that𝜆 is an inclusion. Observe that by Lemma 2.6,𝔪(ℎ⊗𝐹𝑃)⊗𝐹𝑃

𝐿 =

𝔪′ (ℎ ⊗𝐹 𝐹𝑃 ⊗𝐹𝑃
𝐿) = 𝔪′ (ℎ ⊗ 𝐿) in𝑊 (𝐷𝑃 ⊗𝐹𝑃

𝐿, 𝜗𝑃 ⊗ id) � 𝑊 (𝐷𝐿 , 𝜗𝐿). Let 𝑠𝑃
and 𝑠𝑄 ∈ {−1, +1} denote the sign of sign

𝑃
𝔪(𝜇 ⊗ 𝐹𝑃) and sign𝑄𝔪′ ((𝜇 ⊗ 𝐹𝑃) ⊗ 𝐿),
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respectively. Observe that 𝑠𝑃 = 𝑠𝑄 by Lemma 2.6. It follows that

sign𝜇
𝑃
ℎ = 𝑠𝑃 · sign

𝑃
𝔪(ℎ ⊗ 𝐹𝑃) by (2.6)

= 𝑠𝑃 · sign𝑄 (𝔪(ℎ ⊗ 𝐹𝑃) ⊗ 𝐿) by Lemma 2.7

= 𝑠𝑄 · sign𝑄𝔪′ ((ℎ ⊗ 𝐹𝑃) ⊗ 𝐿) by Lemma 2.6

= sign𝜇⊗𝐿
𝑄

(ℎ ⊗ 𝐿) by (2.6).

Part 2: Returning to the general case of a morphism 𝜆 : (𝐹𝑃 , 𝑃) → (𝐿,𝑄), we have

sign𝜇
𝑃
ℎ = sign𝜇⊗𝜆𝐿

𝑄
(ℎ ⊗𝜆 𝐿)

since both ℎ ⊗𝜆 𝐿 and 𝜇 ⊗𝜆 𝐿 are obtained by applying the isomorphism 𝜆 : 𝐹𝑃 →
𝜆(𝐹𝑃), which preserves signatures by [2, Theorem 4.2], followed by the inclusion
𝜆(𝐹𝑃) ⊆ 𝐿, which also preserves signatures by the argument above. ■

Theorem 2.9 Let ℎ be a hermitian form over (𝐴, 𝜎) and let 𝑃 ∈ 𝑋𝐹 . Let 𝜆 : (𝐹, 𝑃) →
(𝐿,𝑄) be an embedding of ordered fields. Then

sign𝜇
𝑃
ℎ = sign𝜇⊗𝜆𝐿

𝑄
(ℎ ⊗𝜆 𝐿).

Proof We may assume that ℎ is nonsingular since otherwise we can write ℎ ≃
ℎns ⊥ ℎ0, where ℎns is nonsingular and ℎ0 is a zero form of appropriate rank, cf. [3,
Proposition A.3], and thus sign𝜇

𝑃
ℎ = sign𝜇

𝑃
ℎns.

Part 1: Assume that 𝜆 is an inclusion. Let (𝐿𝑄, 𝑄) be a real closure of (𝐿,𝑄). By [19,
Exercise 1.4.3(b)] there is a real closed field (𝑁, 𝑆) and embeddings of ordered fields 𝜆𝑃
and 𝜆𝑄 such that the following diagram commutes:

(𝐹𝑃 , 𝑃)
𝜆𝑃

$$
(𝐹, 𝑃)

::

$$

(𝑁, 𝑆)

(𝐿𝑄, 𝑄)
𝜆𝑄

:: (2.9)

(This can also be obtained as a consequence of elimination of quantifiers for real closed
fields by [9, Proposition 3.5.19].) By definition,

sign𝜇
𝑃
ℎ = sign𝜇⊗𝐹𝑃

𝑃
(ℎ ⊗ 𝐹𝑃)

and

sign𝜇⊗𝐿
𝑄

(ℎ ⊗ 𝐿) = sign(𝜇⊗𝐿)⊗𝐿𝑄
𝑄

((ℎ ⊗ 𝐿) ⊗ 𝐿𝑄).

By Lemma 2.8 we have

sign𝜇⊗𝐹𝑃

𝑃
(ℎ ⊗ 𝐹𝑃) = sign(𝜇⊗𝐹𝑃 )⊗𝜆𝑃

𝑁

𝑆
((ℎ ⊗ 𝐹𝑃) ⊗𝜆𝑃 𝑁)
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and

sign𝜇⊗𝐿⊗𝐿𝑄
𝑄

(ℎ ⊗ 𝐿 ⊗ 𝐿𝑄) = sign
(𝜇⊗𝐿⊗𝐿𝑄 )⊗𝜆𝑄

𝑁

𝑆
((ℎ ⊗ 𝐿 ⊗ 𝐿𝑄) ⊗𝜆𝑄 𝑁).

The result follows, since (ℎ⊗𝐹𝑃) ⊗𝜆𝑃 𝑁 � (ℎ⊗ 𝐿⊗ 𝐿𝑄) ⊗𝜆𝑄 𝑁 and (𝜇⊗𝐹𝑃) ⊗𝜆𝑃 𝑁 �
(𝜇 ⊗ 𝐿 ⊗ 𝐿𝑄) ⊗𝜆𝑄 𝑁 by commutativity of diagram (2.9).

Part 2: Assume that 𝜆 is any embedding. We conclude as in Part 2 of the proof of
Lemma 2.8. ■

2.4 Positive cones

Positive cones on algebras with involutionwere introduced in [4] as an attempt to define
a notion of ordering that corresponds to signatures of hermitian forms and that has good
real-algebraic properties.

Definition 2.10 ([4, Definition 3.1]) A prepositive cone 𝒫 on (𝐴, 𝜎) is a subset 𝒫 of
Sym(𝐴, 𝜎) such that

(P1) 𝒫 ≠ ∅;
(P2) 𝒫 +𝒫 ⊆ 𝒫;
(P3) 𝜎(𝑎) ·𝒫 · 𝑎 ⊆ 𝒫 for every 𝑎 ∈ 𝐴;
(P4) 𝒫𝐹 := {𝑢 ∈ 𝐹 | 𝑢𝒫 ⊆ 𝒫} is an ordering on 𝐹;
(P5) 𝒫 ∩ −𝒫 = {0} (we say that𝒫 is proper).

A prepositive cone 𝒫 is over 𝑃 ∈ 𝑋𝐹 if 𝒫𝐹 = 𝑃, and a positive cone is a prepositive
cone that is maximal with respect to inclusion. We denote the set of all positive cones
on (𝐴, 𝜎) by 𝑋(𝐴,𝜎) .

Note that 𝒫 is a (pre)positive cone over 𝑃 if and only if −𝒫 is a (pre)positive cone
over 𝑃.

Example 2.11 The simplest non-trivial example of a positive cone is given by the set
of positive semidefinite matrices in any of the following central simple algebras with
involution:

(𝑀𝑛 (R), 𝑡), (𝑀𝑛 (R(
√
−1)),−𝑡 ), (𝑀𝑛 ((−1,−1)R),−𝑡 )

(see [4, Example 3.11 and Remark 4.11] for the case of (𝑀𝑛 (R), 𝑡); the exact same argu-
ment works for the other two cases, using the principal axis theorem, which also holds
for matrices over quaternions by [20, Corollary 6.2]).

Definition 2.12 Let 𝑆 ⊆ Sym(𝐴, 𝜎) and let 𝑃 ∈ 𝑋𝐹 . We define

𝒞𝑃 (𝑆) :=
{ 𝑘∑︁
𝑖=1

𝑢𝑖𝜎(𝑥𝑖)𝑠𝑖𝑥𝑖
��� 𝑘 ∈ N, 𝑢𝑖 ∈ 𝑃, 𝑥𝑖 ∈ 𝐴, 𝑠𝑖 ∈ 𝑆

}
,
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8 V. Astier and T. Unger

and for 𝑎 ∈ Sym(𝐴, 𝜎) and𝒫 a prepositive cone on (𝐴, 𝜎) over 𝑃,

𝒫[𝑎] :=
{
𝑝 +

𝑘∑︁
𝑖=1

𝑢𝑖𝜎(𝑥𝑖)𝑎𝑥𝑖
��� 𝑝 ∈ 𝒫, 𝑘 ∈ N, 𝑢𝑖 ∈ 𝑃, 𝑥𝑖 ∈ 𝐴

}
.

It is clear that𝒞𝑃 (𝑆) and𝒫[𝑎] both satisfy properties (P1), (P2) and (P3). Moreover,
they are prepositive cones if and only if they are proper, i.e., satisfy (P5) (since they will
both satisfy (P4) if they satisfy (P5)).

Definition 2.13 We define, for 𝑃 ∈ 𝑋𝐹 ,

𝑚𝑃 (𝐴, 𝜎) := max{sign𝜇
𝑃
⟨𝑎⟩𝜎 | 𝑎 ∈ Sym(𝐴, 𝜎) ∩ 𝐴×}

and, for 𝑃 ∈ 𝑋𝐹 \ Nil[𝐴, 𝜎] ,

ℳ
𝜇

𝑃
(𝐴, 𝜎) := {𝑎 ∈ Sym(𝐴, 𝜎) ∩ 𝐴× | sign𝜇

𝑃
⟨𝑎⟩𝜎 = 𝑚𝑃 (𝐴, 𝜎)} ∪ {0}.

Observe that if 𝑃 ∈ 𝑋𝐹 \ Nil[𝐴, 𝜎] then 𝑚𝑃 (𝐴, 𝜎) > 0 and soℳ𝜇

𝑃
(𝐴, 𝜎) ≠ {0},

by Remark 2.4.

Proposition 2.14 Let 𝑃 ∈ 𝑋𝐹 \Nil[𝐴, 𝜎]. If 𝐴 is an 𝐹-division algebra, thenℳ𝜇

𝑃
(𝐴, 𝜎)

is a prepositive cone on (𝐴, 𝜎) over 𝑃. Otherwise,𝒞𝑃 (ℳ𝜇

𝑃
(𝐴, 𝜎)) is a prepositive cone over

𝑃.

Proof The first statement is [4, Example 3.13]. For the second statement, it suffices
to check that𝒞𝑃 (ℳ𝜇

𝑃
(𝐴, 𝜎)) is proper, since properties (P1) to (P4) are clear. Assume

that this is not the case. Then 𝒞𝑃 (ℳ𝜇

𝑃
(𝐴, 𝜎)) = Sym(𝐴, 𝜎) by [4, Proposition 3.5].

In particular there are elements 𝑎1, . . . , 𝑎𝑟 , 𝑏1, . . . , 𝑏𝑠 ∈ ℳ
𝜇

𝑃
(𝐴, 𝜎) \ {0} such that

1 ∈ 𝐷 (𝐴,𝜎) ⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 and −1 ∈ 𝐷 (𝐴,𝜎) ⟨𝑏1, . . . , 𝑏𝑠⟩𝜎 . Since both 1 and −1 are
invertible, a standard argument shows that ⟨1⟩𝜎 ⊥ 𝜑 ≃ ⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 and ⟨−1⟩𝜎 ⊥
𝜓 ≃ ⟨𝑏1, . . . , 𝑏𝑠⟩𝜎 for some nonsingular hermitian forms 𝜑 and 𝜓 over (𝐴, 𝜎). There-
fore, ⟨1,−1⟩𝜎 ⊥ 𝜑 ⊥ 𝜓 ≃ ⟨𝑎1, . . . , 𝑎𝑟 , 𝑏1, . . . , 𝑏𝑠⟩𝜎 . By “weak diagonalization”, cf. [4,
Lemma 2.2], we have

ℓ × ⟨1,−1⟩𝜎 ⊥ ⟨𝑐1, . . . , 𝑐𝑘⟩𝜎 ≃ ℓ × ⟨𝑎1, . . . , 𝑎𝑟 , 𝑏1, . . . , 𝑏𝑠⟩𝜎
for some ℓ ∈ N, 𝑐1, . . . , 𝑐𝑘 ∈ Sym(𝐴, 𝜎) ∩ 𝐴× , and 2ℓ + 𝑘 = ℓ(𝑟 + 𝑠). Comparing
signatures at𝑃, we obtain that the right-hand side has signature ℓ(𝑟+𝑠) ·𝑚𝑃 (𝐴, 𝜎) (with
𝑚𝑃 (𝐴, 𝜎) > 0 since 𝑃 ∉ Nil[𝐴, 𝜎]), which is the maximal value that can be obtained
by the signature of a diagonal form of dimension ℓ(𝑟 + 𝑠). But the left-hand side can
only have signature at most 𝑘 · 𝑚𝑃 (𝐴, 𝜎), which is smaller than ℓ(𝑟 + 𝑠) · 𝑚𝑃 (𝐴, 𝜎),
contradiction. ■

2.5 Reduction to diagonal forms

We recall from [5, Section 4.4] that there exists a pairing ∗ of hermitian forms over
(𝐴, 𝜎) (first studied in detail by N. Garrel in [10]) such that 𝜑 ∗ 𝜓 is a hermitian form
over (𝑍 (𝐴), 𝜄), where 𝜄 := 𝜎 |𝑍 (𝐴) , and which preserves orthogonal sums, isometries
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and nonsingularity, cf. [5, Corollary 4.8]. Furthermore, ∗ satisfies the following “pivot
property”

(𝜑 ∗ 𝜓) ⊗𝑍 (𝐴) 𝜒 ≃ (𝜒 ∗ 𝜓) ⊗𝑍 (𝐴) 𝜑, (2.10)

cf. [5, Theorem 4.9]. We also note that if 𝑎, 𝑏 ∈ Sym(𝐴, 𝜎) ∩ 𝐴× , then by [10,
Proposition 4.9] or [5, Lemma 4.11] we have

⟨𝑎⟩𝜎 ∗ ⟨𝑏⟩𝜎 ≃ 𝜑𝑎,𝑏,𝜎 ,

where 𝜑𝑎,𝑏,𝜎 (𝑥, 𝑦) := Trd𝐴(𝜎(𝑥)𝑎𝑦𝑏).

Observe that by [4, Lemma 3.6] there exists an invertible element 𝑎 in𝒫.

Proposition 2.15 Let𝒫 be a positive cone on (𝐴, 𝜎) over 𝑃 ∈ 𝑋𝐹 and let 𝑎 ∈ 𝒫 ∩ 𝐴× .
Then sign𝜇

𝑃
⟨𝑎⟩𝜎 ≠ 0 and sign𝑃 (⟨𝑎⟩𝜎 ∗ ⟨𝑎⟩𝜎) ≠ 0.

Proof Assume for the sake of contradiction that sign𝜇
𝑃
⟨𝑎⟩𝜎 = 0. By continuity of the

total signature map sign𝜇• ⟨𝑎⟩𝜎 (cf. [1, Theorem 7.2]), there exist 𝑢1, . . . , 𝑢𝑘 ∈ 𝐹× such
that 𝑃 belongs to theHarrison set𝐻 (𝑢1, . . . , 𝑢𝑘) and sign𝜇• ⟨𝑎⟩𝜎 = 0 on𝐻 (𝑢1, . . . , 𝑢𝑘).
Consider the Pfister form ⟨⟨𝑢1, . . . , 𝑢𝑘⟩⟩ := ⟨1, 𝑢1⟩ ⊗ · · · ⊗ ⟨1, 𝑢𝑘⟩. Then we have
sign𝜇

𝑄
⟨⟨𝑢1, . . . , 𝑢𝑘⟩⟩ ⊗ ⟨𝑎⟩𝜎 = 0, for all 𝑄 ∈ 𝑋𝐹 . It then follows from Pfister’s local-

global principle (cf. [15, Theorem 4.1] or [7, Theorem 6.5]) that there exists 𝑛 ∈ N such
that 2𝑛 × ⟨⟨𝑢1, . . . , 𝑢𝑘⟩⟩ ⊗ ⟨𝑎⟩𝜎 is hyperbolic. Since this form is a diagonal form with
2𝑘+𝑛 entries we can write it as a sum of hyperbolic planes as follows:

2𝑛 × ⟨⟨𝑢1, . . . , 𝑢𝑘⟩⟩ ⊗ ⟨𝑎⟩𝜎 ≃ 2𝑘+𝑛−1 × ⟨−𝑎, 𝑎⟩𝜎 .

In particular,−𝑎 is represented by the form on the left-hand side and so 𝑎 ∈ −𝒫, which
contradicts that𝒫 is proper.

Next we prove the second statement. Since𝜎(𝑎−1)𝑎𝑎−1 = 𝑎−1𝑎𝑎−1 = 𝑎−1, we have
⟨𝑎⟩𝜎 ≃ ⟨𝑎−1⟩𝜎 . Therefore,

⟨𝑎⟩𝜎 ∗ ⟨𝑎⟩𝜎 ≃ ⟨𝑎⟩𝜎 ∗ ⟨𝑎−1⟩𝜎 ≃ 𝜑𝑎,𝑎−1 ,𝜎 = 𝑇(𝐴,𝜎𝑎 ) ,

where 𝜎𝑎 := Int(𝑎−1) ◦ 𝜎 and

𝑇(𝐴,𝜎𝑎 ) (𝑥, 𝑦) := Trd𝐴(𝜎𝑎 (𝑥)𝑦) = Trd𝐴(𝑎−1𝜎(𝑥)𝑎𝑦).

It then follows from [3, Equation (4.1) and Proposition 4.4(i)] that

sign𝑃 (⟨𝑎⟩𝜎 ∗ ⟨𝑎⟩𝜎) = sign𝑃 𝑇(𝐴,𝜎𝑎 ) = (sign𝑃 𝜎𝑎)2 = 𝜆𝑃
2 (sign𝜇

𝑃
⟨𝑎⟩𝜎)2,

where 𝜆𝑃 ≠ 0. (We can actually be more precise and observe that 𝜆𝑃 ∈ {1, 2}: If
𝑃 ∈ Nil[𝐴, 𝜎] we can take 𝜆𝑃 = 1, cf. [3, Proposition 4.4(i)] and the observation
after [3, Equation (4.2)], while if 𝑃 ∉ Nil[𝐴, 𝜎] , then 𝜆𝑃 := deg𝐷𝑃 and so 𝜆𝑃 = 1
if (𝐷𝑃 , 𝜗𝑃) ∈ {(𝐹𝑃 , id), (𝐹𝑃 (

√
−1),−)} and 𝜆𝑃 = 2 if (𝐷𝑃 , 𝜗𝑃) = ((−1,−1)𝐹𝑃

,−),
cf. [1, Lemma 4.5].) ■

Proposition 2.16 Let𝒫 be a positive cone on (𝐴, 𝜎) over 𝑃 ∈ 𝑋𝐹 and let 𝑎 ∈ 𝒫∩𝐴× . Let
𝜑 be a nonsingular hermitian form over (𝐴, 𝜎). Then there exist 𝑢1, . . . , 𝑢𝑟 , 𝑣1, . . . , 𝑣𝑠 ∈
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𝑃 \ {0} such that

(⟨𝑎⟩𝜎 ∗ ⟨𝑎⟩𝜎) ⊗𝑍 (𝐴) 𝜑 ≃ (⟨𝑢1, . . . , 𝑢𝑟 ⟩ ⊥ ⟨−𝑣1, . . . ,−𝑣𝑠⟩) ⊗𝐹 ⟨𝑎⟩𝜎

and there exists a nonsingular quadratic form 𝑞 over 𝐹 such that sign𝑃 𝑞 ≠ 0 and

𝑞 ⊗𝐹 𝜑 ≃ (⟨𝑢1, . . . , 𝑢𝑟 ⟩ ⊥ ⟨−𝑣1, . . . ,−𝑣𝑠⟩) ⊗𝐹 ⟨𝑎⟩𝜎 .

Proof Using (2.10), we have

(⟨𝑎⟩𝜎 ∗ ⟨𝑎⟩𝜎) ⊗𝑍 (𝐴) 𝜑 ≃ (𝜑 ∗ ⟨𝑎⟩𝜎) ⊗𝑍 (𝐴) ⟨𝑎⟩𝜎 . (2.11)

The forms ⟨𝑎⟩𝜎 ∗ ⟨𝑎⟩𝜎 and 𝜑 ∗ ⟨𝑎⟩𝜎 are both nonsingular hermitian over (𝑍 (𝐴), 𝜄),
and are thus diagonalizable with coefficients in Sym(𝑍 (𝐴), 𝜄) ∩ 𝑍 (𝐴)× = 𝐹× . Hence
there exist 𝑤1, . . . , 𝑤𝑡 ∈ 𝐹× such that

⟨𝑎⟩𝜎 ∗ ⟨𝑎⟩𝜎 ≃ ⟨𝑤1, . . . , 𝑤𝑡 ⟩ 𝜄

and there exist 𝑢1, . . . , 𝑢𝑟 , 𝑣1, . . . , 𝑣𝑠 ∈ 𝑃 \ {0} such that

𝜑 ∗ ⟨𝑎⟩𝜎 ≃ ⟨𝑢1, . . . , 𝑢𝑟 ⟩ 𝜄 ⊥ ⟨−𝑣1, . . . ,−𝑣𝑠⟩ 𝜄 . (2.12)

The first part of the proposition follows from (2.11) and (2.12). For the second part,
applying [5, Lemma 2.1] to (2.11), we obtain

⟨𝑤1, . . . , 𝑤𝑡 ⟩ ⊗𝐹 𝜑 ≃ ⟨𝑤1, . . . , 𝑤𝑡 ⟩ 𝜄 ⊗𝑍 (𝐴) 𝜑
≃ (⟨𝑢1, . . . , 𝑢𝑟 ⟩ 𝜄 ⊥ ⟨−𝑣1, . . . ,−𝑣𝑠⟩ 𝜄) ⊗𝑍 (𝐴) ⟨𝑎⟩𝜎
≃ (⟨𝑢1, . . . , 𝑢𝑟 ⟩ ⊥ ⟨−𝑣1, . . . ,−𝑣𝑠⟩) ⊗𝐹 ⟨𝑎⟩𝜎 .

It follows from Proposition 2.15 that sign𝑃 ⟨𝑤1, . . . , 𝑤𝑡 ⟩ 𝜄 ≠ 0, and thus that
sign𝑃 ⟨𝑤1, . . . , 𝑤𝑡 ⟩ ≠ 0 by (2.1) and (2.2). ■

Lemma 2.17 Let𝒫 be a positive cone on (𝐴, 𝜎) over 𝑃 ∈ 𝑋𝐹 . In an isometry of diagonal
hermitian forms with coefficients in𝒫 ∩ 𝐴× and −𝒫 ∩ 𝐴× , if there are as many elements in
𝒫 as in −𝒫 on one side, it must be the same on the other side.

Proof Assume that, for some 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 , 𝑑𝑖 ∈ 𝒫 ∩ 𝐴× we have

⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨−𝑏1, . . . ,−𝑏𝑟 ⟩𝜎 ≃ ⟨𝑐1, . . . , 𝑐𝑠⟩𝜎 ⊥ ⟨−𝑑1, . . . ,−𝑑𝑡 ⟩𝜎 ,

with, for instance, 𝑠 > 𝑡. Then 𝑠 > 𝑟 > 𝑡 and

⟨𝑐1, . . . , 𝑐𝑠⟩𝜎 ⊥ ⟨𝑏1, . . . , 𝑏𝑡 ⟩𝜎 ≃⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨𝑑1, . . . , 𝑑𝑡 ⟩𝜎 ⊥
⟨−𝑏𝑡+1, . . . ,−𝑏𝑟 ⟩𝜎 .

Since the entries on the left-hand side are all in𝒫 ∩ 𝐴× , the entries on the right-hand
sidemust be in𝒫 (they are represented by the first form, and𝒫 is closed under the oper-
ations presented in properties (P2) and (P3)). In particular −𝑏𝑟 ∈ 𝒫, which contradicts
that𝒫 is proper. ■
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3 Signature maps from positive cones

Consider a positive cone𝒫 on (𝐴, 𝜎) over 𝑃 ∈ 𝑋𝐹 . In this section we will define the
signaturemap sign𝜇

𝑃
𝑊 (𝐴, 𝜎) → Z directly out of𝒫 via the concept of primem-ideals,

that was introduced in [2], and that we recall now.

Definition 3.1 ([2, Definition 5.1]) We say that a pair (𝐼, 𝑁) is anm-ideal of𝑊 (𝐴, 𝜎) if:

(1) 𝐼 is an ideal of𝑊 (𝐹) and 𝑁 is a𝑊 (𝐹)-submodule of𝑊 (𝐴, 𝜎);
(2) 𝐼 ·𝑊 (𝐴, 𝜎) ⊆ 𝑁 .

In addition we say that the m-ideal (𝐼, 𝑁) is prime if 𝐼 is a proper prime ideal of𝑊 (𝐹),
𝑁 ≠ 𝑊 (𝐴, 𝜎) and, for every 𝑞 ∈ 𝑊 (𝐹) and every ℎ ∈ 𝑊 (𝐴, 𝜎), 𝑞 · ℎ ∈ 𝑁 implies that
𝑞 ∈ 𝐼 or ℎ ∈ 𝑁 .

We recall [2, Proposition 6.5]:

Proposition 3.2 Let (𝐼, 𝑁) be a primem-ideal of𝑊 (𝐴, 𝜎) such that 2 ∉ 𝐼 and𝑊 (𝐴, 𝜎)/𝑁
is torsion-free. Then there exists 𝑃 ∈ 𝑋𝐹 such that (𝐼, 𝑁) = (ker sign𝑃 , ker sign𝜇

𝑃
).

We will define a prime m-ideal (𝐼𝒫, 𝑁𝒫) such that 2 ∉ 𝐼𝒫 and the quotient
𝑊 (𝐴, 𝜎)/𝑁𝒫 is torsion-free directly from𝒫, thus recovering the signature map sign𝜇

𝑃

out of the positive cone𝒫.
Therefore, and since we will ultimately have 𝑁𝒫 = ker sign𝜇

𝑃
, we need to determine

the nonsingular hermitian forms over (𝐴, 𝜎) that are good candidates for having zero
signature at 𝑃, and use their Witt classes as elements of 𝑁𝒫 .

Definition 3.3 For a hermitian form ℎ over (𝐴, 𝜎) we define the following property:
There exists a nonsingular quadratic form 𝑞ℎ over 𝐹
such that
• sign𝑃 𝑞ℎ ≠ 0 and
• 𝑞ℎ ⊗ ℎ ≃ ⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨−𝑏1, . . . ,−𝑏𝑟 ⟩𝜎 for some
𝑟 ∈ N and 𝑎1, . . . , 𝑎𝑟 , 𝑏1, . . . , 𝑏𝑟 ∈ 𝒫 ∩ 𝐴× .

(3.1)

Lemma 3.4 Property (3.1) is preserved under Witt equivalence (of nonsingular forms).

Proof Let ℎ be a nonsingular hermitian form over (𝐴, 𝜎) that satisfies Property (3.1).
Let ℎ′ be a nonsingular hermitian form over (𝐴, 𝜎) such that

ℎ ⊥ 𝐻 ≃ ℎ′ ⊥ 𝐻′, (3.2)

where𝐻 and𝐻′ are hyperbolic forms over (𝐴, 𝜎). Let 𝑎 ∈ 𝒫∩𝐴× . By Proposition 2.16
there exist nonsingular quadratic forms 𝑞′, 𝑞1, 𝑞2 over 𝐹 that all have nonzero signature
at 𝑃 and such that 𝑞′ ⊗ ℎ′, 𝑞1 ⊗𝐻 and 𝑞2 ⊗𝐻′ are diagonal hermitian forms of the form
𝜋 ⊗ ⟨𝑎⟩𝜎 ⊥ 𝜈 ⊗ ⟨−𝑎⟩𝜎 , for some diagonal quadratic forms 𝜋 and 𝜈 with coefficients in
𝑃× . Let 𝜒 := 𝑞ℎ ⊗ 𝑞′ ⊗ 𝑞1 ⊗ 𝑞2. It then follows from (3.2) that

𝜒 ⊗ ℎ ⊥ 𝜒 ⊗ 𝐻 ≃ 𝜒 ⊗ ℎ′ ⊥ 𝜒 ⊗ 𝐻′.
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12 V. Astier and T. Unger

Observe that by taking signatures at 𝑃, the form 𝜒 ⊗ 𝐻 has as many entries in𝒫 ∩ 𝐴×

as in −𝒫 ∩ 𝐴× since it is still a hyperbolic form and thus has signature zero. The same
argument applies to 𝜒 ⊗ 𝐻′. We now consider

𝜒 ⊗ ℎ = (𝑞ℎ ⊗ 𝑞′ ⊗ 𝑞1 ⊗ 𝑞2) ⊗ ℎ ≃ 𝑞′ ⊗ 𝑞1 ⊗ 𝑞2 ⊗ (𝑞ℎ ⊗ ℎ).

Since the form 𝑞ℎ ⊗ ℎ has as many entries in𝒫 ∩ 𝐴× as in −𝒫 ∩ 𝐴× by definition of
𝑞ℎ (cf. Definition 3.3), the same holds for 𝜒 ⊗ ℎ. It then follows from Lemma 2.17 that
the form 𝜒 ⊗ ℎ′ has as many entries in𝒫 ∩ 𝐴× as in −𝒫 ∩ 𝐴× . Since sign𝑃 𝜒 ≠ 0, we
conclude that ℎ′ satisfies Property (3.1) with 𝑞ℎ′ = 𝜒. ■

Definition 3.5 Denoting Witt classes with square brackets, we define

𝑁𝒫 := {[ℎ] ∈ 𝑊 (𝐴, 𝜎) | Property (3.1) holds for ℎ}

and

𝐼𝒫 := {[𝑞] ∈ 𝑊 (𝐹) | sign𝑃 𝑞 = 0},
the ideal of𝑊 (𝐹) corresponding to the ordering 𝑃 (which is clearly generated by the
classes in𝑊 (𝐹) of all elements of the form ⟨1,−𝑢⟩ for 𝑢 ∈ 𝑃).

Recall again that by [4, Lemma3.6] there exists an invertible element 𝑎 in𝒫. It follows
that the form ⟨𝑎,−𝑎⟩𝜎 satisfies Property (3.1), and in particular that 𝑁𝒫 ≠ ∅.

Proposition 3.6 The pair (𝐼𝒫, 𝑁𝒫) is an m-ideal of𝑊 (𝐴, 𝜎), and 𝑁𝒫 ≠ 𝑊 (𝐴, 𝜎).

Proof We have to check the following:

(1) 𝑁𝒫 + 𝑁𝒫 ⊆ 𝑁𝒫 ;
(2) 𝑊 (𝐹) · 𝑁𝒫 ⊆ 𝑁𝒫 ;
(3) 𝐼𝒫 ·𝑊 (𝐴, 𝜎) ⊆ 𝑁𝒫 ;
(4) 𝑁𝒫 ≠ 𝑊 (𝐴, 𝜎).

We do it in order. For the verification of (1) and (2) we fix two hermitian forms 𝜑 and
𝜓 over (𝐴, 𝜎) that satisfy Property 3.1, so that [𝜑], [𝜓] ∈ 𝑁𝒫 . Therefore, there are
quadratic forms 𝑞𝜑 , 𝑞𝜓 over 𝐹 such that

𝑞𝜑 ⊗ 𝜑 ≃ ⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨−𝑏1, . . . ,−𝑏𝑟 ⟩𝜎

and

𝑞𝜓 ⊗ 𝜓 ≃ ⟨𝑐1, . . . , 𝑐𝑠⟩𝜎 ⊥ ⟨−𝑑1, . . . ,−𝑑𝑠⟩𝜎
for some 𝑎1, . . . , 𝑎𝑟 , 𝑏1, . . . , 𝑏𝑟 , 𝑐1, . . . , 𝑐𝑠 , 𝑑1, . . . , 𝑑𝑠 ∈ 𝒫 ∩ 𝐴× , and where
sign𝑃 𝑞𝜑 ≠ 0 and sign𝑃 𝑞𝜓 ≠ 0.

(1) We show that [𝜑] + [𝜓] = [𝜑 ⊥ 𝜓] ∈ 𝑁𝒫 by showing that 𝜑 ⊥ 𝜓 satisfies
Property (3.1). We have

(𝑞𝜑 ⊗ 𝑞𝜓) ⊗ (𝜑 ⊥ 𝜓) ≃ 𝑞𝜓 ⊗ (⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨−𝑏1, . . . ,−𝑏𝑟 ⟩𝜎) ⊥
𝑞𝜑 ⊗ (⟨𝑐1, . . . , 𝑐𝑠⟩𝜎 ⊥ ⟨−𝑑1, . . . ,−𝑑𝑠⟩𝜎). (3.3)
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Writing 𝑞𝜑 = 𝑞+ ⊥ 𝑞− and 𝑞𝜓 = 𝑞′+ ⊥ 𝑞′− with 𝑞+, 𝑞′+ positive definite at 𝑃 and 𝑞− , 𝑞′−
negative definite at 𝑃, we have that the number of entries in𝒫 ∩ 𝐴× on the right-hand
side of (3.3) is

(dim 𝑞′+)𝑟 + (dim 𝑞′−)𝑟 + (dim 𝑞+)𝑠 + (dim 𝑞−)𝑠 = (dim 𝑞𝜓)𝑟 + (dim 𝑞𝜑)𝑠,

and that the number of entries in −𝒫 ∩ 𝐴× on the right-hand side of (3.3) is

(dim 𝑞′−)𝑟 + (dim 𝑞′+)𝑟 + (dim 𝑞−)𝑠 + (dim 𝑞+)𝑠 = (dim 𝑞𝜓)𝑟 + (dim 𝑞𝜑)𝑠.

Both are equal, so 𝜑 ⊥ 𝜓 satisfies Property (3.1).

(2) Since𝑊 (𝐹) is additively generated by classes of one-dimensional forms, it suffices
to check that [⟨𝑢⟩ ⊗ 𝜑] ∈ 𝑁𝒫 for every 𝑢 ∈ 𝐹× , which follows from the fact that the
form ⟨𝑢⟩ ⊗ 𝜑 clearly satisfies Property (3.1).

(3) Let 𝜑 be a nonsingular hermitian form over (𝐴, 𝜎). Since 𝐼𝒫 is additively gener-
ated by the classes of the forms ⟨1,−𝑢⟩ for 𝑢 ∈ 𝑃× , it suffices to check that ⟨1,−𝑢⟩ ⊗ 𝜑
satisfies Property (3.1) for every 𝑢 ∈ 𝑃× . By Proposition 2.16 there is a nonsingular
quadratic form 𝑞𝜑 over 𝐹 such that sign𝑃 𝑞𝜑 ≠ 0 and

𝑞𝜑 ⊗ 𝜑 ≃ ⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨−𝑏1, . . . ,−𝑏𝑠⟩𝜎

for some 𝑎1, . . . , 𝑎𝑟 ,−𝑏1, . . . ,−𝑏𝑠 ∈ 𝒫 ∩ 𝐴× . Then

𝑞𝜑 ⊗ (⟨1,−𝑢⟩ ⊗ 𝜑) ≃ ⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨𝑢𝑏1, . . . , 𝑢𝑏𝑠⟩𝜎 ⊥
⟨−𝑢𝑎1, . . . ,−𝑢𝑎𝑟 ⟩𝜎 ⊥ ⟨−𝑏1, . . . ,−𝑏𝑠⟩𝜎 ,

which shows that 𝜑 satisfies Property (3.1).

(4) Let 𝑎 ∈ 𝒫∩ 𝐴× . We show that [⟨𝑎⟩𝜎] ∉ 𝑁𝒫 . Assume that it is not the case. Then
there is a nonsingular hermitian form ℎ over (𝐴, 𝜎) such that ℎ satisfies Property (3.1)
and [ℎ] = [⟨𝑎⟩𝜎]. It follows fromLemma 3.4 that ⟨𝑎⟩𝜎 also satisfies Property (3.1), and
thus that

𝑞⟨𝑎⟩𝜎 ⊗ ⟨𝑎⟩𝜎 ≃ ⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨−𝑏1, . . . ,−𝑏𝑟 ⟩𝜎 , (3.4)

with 𝑎1, . . . , 𝑎𝑟 , 𝑏1, . . . , 𝑏𝑟 ∈ 𝒫 ∩ 𝐴× . We write

𝑞⟨𝑎⟩𝜎 ≃ ⟨𝑢1, . . . , 𝑢𝑠⟩ ⊥ ⟨−𝑣1, . . . ,−𝑣𝑡 ⟩

with 𝑢1, . . . , 𝑢𝑠 , 𝑣1, . . . , 𝑣𝑡 ∈ 𝑃× . Since sign𝑃 𝑞⟨𝑎⟩𝜎 ≠ 0 we have 𝑠 ≠ 𝑡. Equation (3.4)
then becomes

⟨𝑢1𝑎, . . . , 𝑢𝑠𝑎⟩𝜎 ⊥ ⟨−𝑣1𝑎, . . . ,−𝑣𝑡𝑎⟩𝜎 ≃ ⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨−𝑏1, . . . ,−𝑏𝑟 ⟩𝜎 .

By Lemma 2.17, since the right-hand side has the same number of elements in𝒫 as in
−𝒫, we must have 𝑠 = 𝑡, contradiction. ■

Proposition 3.7 The quotient 𝑊 (𝐴, 𝜎)/𝑁𝒫 is torsion-free and (𝐼𝒫, 𝑁𝒫) is a prime m-
ideal.
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Proof Let ℓ[ℎ] = [ℓ × ℎ] ∈ 𝑁𝒫 for some ℓ ∈ N, where ℎ is a nonsingular hermitian
form over (𝐴, 𝜎). By Lemma 3.4, ℓ × ℎ satisfies Property (3.1). Then

𝑞ℓ×ℎ ⊗ (ℓ × ℎ) ≃ ⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨−𝑏1, . . . ,−𝑏𝑟 ⟩𝜎

for some 𝑎1, . . . , 𝑎𝑟 , 𝑏1, . . . , 𝑏𝑟 ∈ 𝒫 ∩ 𝐴× , and so, clearly

(ℓ × 𝑞ℓ×ℎ) ⊗ ℎ ≃ ⟨𝑎1, . . . , 𝑎𝑟 ⟩𝜎 ⊥ ⟨−𝑏1, . . . ,−𝑏𝑟 ⟩𝜎 ,

proving that ℎ satisfies Property (3.1) and thus [ℎ] ∈ 𝑁𝒫 .
We now prove the second statement: Assume that [𝑞ℎ] ∈ 𝑁𝒫 for some [𝑞] ∈ 𝑊 (𝐹)

and [ℎ] ∈ 𝑊 (𝐴, 𝜎). Since 𝐼𝒫 is the kernel of sign𝑃 : 𝑊 (𝐹) → Z, there is 𝑘 ∈ Z such
that [𝑞] = 𝑘 mod 𝐼𝒫 . Thus (and using that 𝐼𝒫 ·𝑊 (𝐴, 𝜎) ⊆ 𝑁𝒫) we obtain 𝑘 [ℎ] ∈ 𝑁𝒫 .
It follows that 𝑘 = 0 (and thus [𝑞] ∈ 𝐼𝒫), or that [ℎ] ∈ 𝑁𝒫 by the first part. ■

Theorem 3.8 We have (𝐼𝒫, 𝑁𝒫) = (ker sign𝑃 , ker sign𝜇
𝑃
) and 𝑃 ∉ Nil[𝐴, 𝜎].

Proof By definition, 𝐼𝒫 = ker sign𝑃 ∌ 2. By [2, Proposition 6.5] we obtain that 𝑁𝒫 =

ker sign𝜇
𝑃
. Therefore, 𝑃 ∉ Nil[𝐴, 𝜎] since 𝑁𝒫 ≠ 𝑊 (𝐴, 𝜎) by Proposition 3.6 and the

equivalence in (2.8). ■

Corollary 3.9 Let 𝒫 be a positive cone on (𝐴, 𝜎) over 𝑃 ∈ 𝑋𝐹 . Then, for every 𝑎, 𝑏 ∈
𝒫 ∩ 𝐴× , sign𝜇

𝑃
⟨𝑎⟩𝜎 = sign𝜇

𝑃
⟨𝑏⟩𝜎 .

Proof The hermitian form ⟨𝑎,−𝑏⟩𝜎 trivially satisfies Property (3.1). Therefore
[⟨𝑎,−𝑏⟩𝜎] ∈ 𝑁𝒫 = ker sign𝜇

𝑃
, so that sign𝜇

𝑃
⟨𝑎⟩𝜎 = sign𝜇

𝑃
⟨𝑏⟩𝜎 . ■

Remark 3.10 We will actually show in Proposition 5.6 that sign𝜇
𝑃
⟨𝑎⟩𝜎 = ±𝑛𝑃 (𝐴, 𝜎)

for every 𝑎 ∈ 𝒫 ∩ 𝐴× .

4 Description of positive cones and the topology of 𝑋(𝐴,𝜎)

We use the previous results to describe positive cones in terms of sign𝜇
𝑃
and to establish

some properties of the (Harrison) topology T𝜎 on the space of positive cones 𝑋(𝐴,𝜎) of
(𝐴, 𝜎). Recall from [4, Section 9] that T𝜎 is the topology generated by the sets

𝐻𝜎 (𝑎1, . . . , 𝑎𝑘) := {𝒫 ∈ 𝑋(𝐴,𝜎) | 𝑎1, . . . , 𝑎𝑘 ∈ 𝒫},

where 𝑎1, . . . , 𝑎𝑘 ∈ Sym(𝐴, 𝜎).
Let (𝐷, 𝜗) be an 𝐹-division algebra with involution, and let 𝜂 be a reference form

for (𝐷, 𝜗).

Proposition 4.1 Let 𝑃 ∈ 𝑋𝐹 \ Nil[𝐷, 𝜗]. Then ℳ𝜂

𝑃
(𝐷, 𝜗) is a positive cone on (𝐷, 𝜗)

over 𝑃.

Proof By [4, Example 3.13] it suffices to show that ℳ𝜂

𝑃
(𝐷, 𝜗) is maximal. Let 𝒫 be

a positive cone such that ℳ𝜂

𝑃
(𝐷, 𝜗) ⊆ 𝒫. By [4, Lemma 3.16], 𝒫 is over 𝑃, and by

Corollary 3.9,𝒫 = ℳ
𝜂

𝑃
(𝐷, 𝜗). ■
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Lemma 4.2 Let𝒫 be a prepositive cone on (𝐷, 𝜗) over 𝑃 ∈ 𝑋𝐹 . Assume that sign𝜂
𝑃
⟨𝑏⟩𝜗 >

−𝑚𝑃 (𝐷, 𝜗) for every 𝑏 ∈ 𝒫. Let 𝑎 ∈ Sym(𝐷, 𝜗) ∩ 𝐷× be such that sign𝜂
𝑃
⟨𝑎⟩𝜗 =

𝑚𝑃 (𝐷, 𝜗). Then:

(1) 𝒫[𝑎] is a prepositive cone on (𝐷, 𝜗) over 𝑃.
(2) For every 𝑥 ∈ 𝒫[𝑎] , sign𝜂

𝑃
⟨𝑥⟩𝜗 > −𝑚𝑃 (𝐷, 𝜗).

Proof (1) Properties (P1) to (P4) are straightforward to check for𝒫[𝑎]. We show that
property (P5) holds, i.e., that𝒫[𝑎] is proper. Assume𝒫[𝑎] is not proper, and let 𝑏 ∈
𝒫[𝑎] ∩ −𝒫[𝑎] , 𝑏 ≠ 0. Then there exist 𝑝1, 𝑝2 ∈ 𝒫, 𝑘, 𝑟 ∈ N ∪ {0}, 𝑢𝑖 , 𝑣 𝑗 ∈ 𝑃 and
𝑥𝑖 , 𝑦 𝑗 ∈ 𝐷 such that

𝑏 = 𝑝1 +
𝑘∑︁
𝑖=1

𝑢𝑖𝜗(𝑥𝑖)𝑎𝑥𝑖︸            ︷︷            ︸
𝛼

= −𝑝2 −
𝑟∑︁
𝑗=1
𝑣 𝑗𝜗(𝑦 𝑗 )𝑎𝑦 𝑗︸              ︷︷              ︸

𝛽

.

Observe that at least one of𝛼 or 𝛽 is nonzero, since𝒫 is proper. Furthermore,𝛼+𝛽 ≠ 0.
(Indeed, if 𝛼 + 𝛽 = 0, then 𝛼 = −𝛽 ≠ 0, contradicting thatℳ𝜂

𝑃
(𝐷, 𝜗) is proper since

𝑎 ∈ ℳ
𝜂

𝑃
(𝐷, 𝜗).) It follows that

𝑝1 + 𝑝2 = −
𝑘∑︁
𝑖=1

𝑢𝑖𝜗(𝑥𝑖)𝑎𝑥𝑖 −
𝑟∑︁
𝑗=1
𝑣 𝑗𝜗(𝑦 𝑗 )𝑎𝑦 𝑗 = −𝛼 − 𝛽.

The right-hand side is a nonzero sum of elements that are in −ℳ𝜂

𝑃
(𝐷, 𝜗) (since 𝑎 ∈

ℳ
𝜂

𝑃
(𝐷, 𝜗)), and thus belongs to −ℳ𝜂

𝑃
(𝐷, 𝜗). The left-hand side, being in𝒫, does not

belong to −ℳ𝜂

𝑃
(𝐷, 𝜗) by hypothesis, contradiction.

(2) Let 𝑥 = 𝑝 +
𝑘∑︁
𝑖=1

𝑢𝑖𝜗(𝑥𝑖)𝑎𝑥𝑖︸            ︷︷            ︸
𝛼

∈ 𝒫[𝑎]. Observe that 𝛼 ∈ ℳ
𝜂

𝑃
(𝐷, 𝜗). If 𝛼 = 0, then

𝑥 = 𝑝 and sign𝜂
𝑃
⟨𝑥⟩𝜗 > −𝑚𝑃 (𝐷, 𝜗) by hypothesis. If 𝛼 ≠ 0, assume that sign𝜂

𝑃
⟨𝑥⟩𝜗 =

−𝑚𝑃 (𝐷, 𝜗). We have 𝑥−𝛼 = 𝑝. The left-hand side is a nonzero element of−ℳ𝜂

𝑃
(𝐷, 𝜗)

(the sum of two nonzero elements of a prepositive cone is nonzero by (P5)), while the
right-hand side is not (by hypothesis), contradiction. ■

Lemma 4.2 leads to a proof of the following theorem, which was stated in [4] and
whose original proof relied on the incorrect [4, Lemma 5.5].

Theorem 4.3 ([4, Proposition 7.1]) Let 𝒫 be a prepositive cone on (𝐷, 𝜗) over 𝑃 ∈ 𝑋𝐹 .
Then 𝑃 ∉ Nil[𝐷, 𝜗] and either𝒫 ⊆ ℳ

𝜂

𝑃
(𝐷, 𝜗), or𝒫 ⊆ −ℳ𝜂

𝑃
(𝐷, 𝜗).

In particularℳ𝜂

𝑃
(𝐷, 𝜗) and −ℳ𝜂

𝑃
(𝐷, 𝜗) are the only positive cones on (𝐷, 𝜗) over 𝑃,

i.e.,
𝑋(𝐷,𝜗) = {−ℳ𝜂

𝑃
(𝐷, 𝜗),ℳ𝜂

𝑃
(𝐷, 𝜗) | 𝑃 ∈ 𝑋𝐹 \ Nil[𝐷, 𝜗]}.

Proof Since 𝒫 is contained in a positive cone over 𝑃, we have 𝑃 ∉ Nil[𝐷, 𝜗] by
Theorem 3.8. We now consider two cases.
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Case 1: There is 𝑐 ∈ 𝒫 such that sign𝜂
𝑃
⟨𝑐⟩𝜗 = −𝑚𝑃 (𝐷, 𝜗). Then by Lemma 3.9,

𝒫 ⊆ −ℳ𝜂

𝑃
(𝐷, 𝜗).

Case 2: For every 𝑐 ∈ 𝒫, sign𝜂
𝑃
⟨𝑐⟩𝜗 > −𝑚𝑃 (𝐷, 𝜗). Then, using Lemma 4.2, we

can add all elements ofℳ𝜂

𝑃
(𝐷, 𝜗) to𝒫 and we obtain in this way a prepositive cone𝒬

containing both𝒫 andℳ𝜂

𝑃
(𝐷, 𝜗). Sinceℳ𝜂

𝑃
(𝐷, 𝜗) is a maximal prepositive cone (cf.

Proposition 4.1) we obtain𝒬 = ℳ
𝜂

𝑃
(𝐷, 𝜗) and thus𝒫 ⊆ ℳ

𝜂

𝑃
(𝐷, 𝜗). ■

Recall from [4, (2.1)] (with 𝜀 = 1) that there is a hermitian Morita equivalence

𝑔 : ℌ𝔢𝔯𝔪(𝑀ℓ (𝐷), 𝜗𝑡 ) → ℌ𝔢𝔯𝔪(𝐷, 𝜗)

and that its inverse 𝑔−1 sends any diagonal form ⟨𝑎1, . . . , 𝑎ℓ⟩𝜗 to the form
⟨diag(𝑎1, . . . , 𝑎ℓ)⟩𝜗𝑡 .

If𝒫 is a prepositive cone on (𝐷, 𝜗) over 𝑃 ∈ 𝑋𝐹 , we define

PSDℓ (𝒫) := {𝐵 ∈ Sym(𝑀ℓ (𝐷), 𝜗𝑡 ) | ∀𝑋 ∈ 𝐷ℓ 𝜗(𝑋)𝑡𝐵𝑋 ∈ 𝒫},

cf. [4, Section 4.1].

Lemma 4.4 ([4, Lemma 7.2]) We have

𝒞𝑃 (ℳ𝑔−1 (𝜂)
𝑃

(𝑀ℓ (𝐷), 𝜗𝑡 )) = PSDℓ (ℳ𝜂

𝑃
(𝐷, 𝜗)).

Proof Let 𝐵 ∈ PSDℓ (ℳ𝜂

𝑃
(𝐷, 𝜗)). Then by [4, Lemma 4.5] there is𝐺 ∈ GLℓ (𝐷) such

that 𝜗(𝐺)𝑡𝐵𝐺 = diag(𝑎1, . . . , 𝑎ℓ) with 𝑎1, . . . , 𝑎ℓ ∈ ℳ
𝜂

𝑃
(𝐷, 𝜗), and we may assume

that

𝜗(𝐺)𝑡𝐵𝐺 = diag(𝑎1, . . . , 𝑎𝑟 , 0, . . . , 0)
with 𝑎1, . . . , 𝑎𝑟 ∈ ℳ

𝜂

𝑃
(𝐷, 𝜗) \ {0}.

Since 𝑎𝑖 𝐼ℓ ∈ ℳ
𝑔−1 (𝜂)
𝑃

(𝑀ℓ (𝐷), 𝜗𝑡 ), it is now easy to represent 𝜗(𝐺)𝑡𝐵𝐺 , and thus
𝐵, as an element of𝒞𝑃 (ℳ𝑔−1 (𝜂)

𝑃
(𝑀ℓ (𝐷), 𝜗𝑡 )), proving that

PSDℓ (ℳ𝜂

𝑃
(𝐷, 𝜗)) ⊆ 𝒞𝑃 (ℳ𝑔−1 (𝜂)

𝑃
(𝑀ℓ (𝐷), 𝜗𝑡 )).

The equality follows since PSDℓ (ℳ𝜂

𝑃
(𝐷, 𝜗)) is a positive cone by Theorem 4.3 and

[4, Proposition 4.7], and 𝒞𝑃 (ℳ𝑔−1 (𝜂)
𝑃

(𝑀ℓ (𝐷), 𝜗𝑡 )) is a prepositive cone by Proposi-
tion 2.14. ■

Assume now that (𝐷, 𝜗) is the 𝐹-division algebra with involution that is Morita
equivalent to (𝐴, 𝜎). Observe that if (𝐴, 𝜎) has at least one positive cone, we may
assume that the involutions 𝜗 and𝜎 are of the same type, cf. [4, Assumption on p. 8], and
it follows from [12, Chapter I, Theorem 9.3.5] that there is a hermitian Morita equiva-
lence𝔪 between the categories of hermitian formsℌ𝔢𝔯𝔪(𝐴, 𝜎) andℌ𝔢𝔯𝔪(𝐷, 𝜗). We
let the reference form 𝜂 be equal to𝔪(𝜇).

Remark 4.5 We note that [4, Lemma 7.4] is now valid with its original proof, after
replacing the reference to [4, Lemma 7.2] by a reference to Lemma 4.4, since they both
prove the same statement.
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Theorem 4.6 ([4, Theorem 7.5]) Let𝒫 be a prepositive cone on (𝐴, 𝜎) over 𝑃 ∈ 𝑋𝐹 . Then
either

𝒫 ⊆ 𝒞𝑃 (ℳ𝜇

𝑃
(𝐴, 𝜎)), or𝒫 ⊆ −𝒞𝑃 (ℳ𝜇

𝑃
(𝐴, 𝜎)).

In particular

𝑋(𝐴,𝜎) = {−𝒞𝑃 (ℳ𝜇

𝑃
(𝐴, 𝜎)),𝒞𝑃 (ℳ𝜇

𝑃
(𝐴, 𝜎)) | 𝑃 ∈ 𝑋𝐹 \ Nil[𝐴, 𝜎]},

and for each𝒫 ∈ 𝑋(𝐴,𝜎) there exists 𝜀 ∈ {−1, 1} such that𝒫∩ 𝐴× = 𝜀ℳ
𝜇

𝑃
(𝐴, 𝜎) \ {0}.

Proof The original proof is still valid, but the references in it to the results in [4] stated
after [4, Section 5] need to be replaced by the same results obtained in the current paper,
as follows:

Original proof in [4]: Corresponding statement in this paper:

Proposition 6.6 Theorem 3.8
Proposition 7.1 Theorem 4.3
Lemma 7.2 Lemma 4.4
Proposition 7.1 Theorem 4.3
Lemma 7.4 cf. Remark 4.5

■

Corollary 4.7 Let 𝑃 ∈ 𝑋𝐹 . Then

𝒞𝑃 (ℳ𝜇

𝑃
(𝐴, 𝜎)) =

⋃
{𝐷 (𝐴,𝜎) ⟨𝑎1, . . . , 𝑎𝑘⟩𝜎 | 𝑘 ∈ N, 𝑎1, . . . , 𝑎𝑘 ∈ ℳ

𝜇

𝑃
(𝐴, 𝜎)}.

In particular, if𝒫 is a positive cone on (𝐴, 𝜎) over 𝑃 ∈ 𝑋𝐹 such that𝒫∩𝐴× = ℳ
𝜇

𝑃
(𝐴, 𝜎)\

{0}, then

𝒫 =
⋃

{𝐷 (𝐴,𝜎) ⟨𝑎1, . . . , 𝑎𝑘⟩𝜎 | 𝑘 ∈ N, 𝑎1, . . . , 𝑎𝑘 ∈ ℳ
𝜇

𝑃
(𝐴, 𝜎)}.

Proof The first statement is clear by definition of𝒞𝑃 and sinceℳ𝜇

𝑃
(𝐴, 𝜎) is closed

under multiplication by elements of 𝑃 \ {0}. The second statement follows immediately
from Theorem 4.6. ■

Proposition 4.8 ([4, Proposition 9.11(3)]) The topology T𝜎 is compact (by which me mean
quasicompact).

Proof Apositive cone𝒫 is a subset of Sym(𝐴, 𝜎), so can be identifiedwith amap from
Sym(𝐴, 𝜎) to {0, 1} (with𝒫(𝑎) = 1 iff 𝑎 ∈ 𝒫). Thus we can view 𝑋(𝐴,𝜎) as a subset
of 𝑍 := {0, 1}Sym(𝐴,𝜎) and the topology T𝜎 as the topology induced by the product
topology 𝑇 on 𝑍 of the discrete topology on {0, 1}. Since 𝑇 is compact, it suffices to
show that 𝑋(𝐴,𝜎) is a closed subset of 𝑍 . We slightly reformulate the prepositive cone
properties (P1), (P4) and (P5) in order to make it easier to check them:

(P1) 0 ∈ 𝒫.
(P4) ∀𝑢 ∈ 𝐹 𝑢 ∈ 𝒫𝐹 ∨−𝑢 ∈ 𝒫𝐹 . (This reformulation is equivalent to the original (P4)

since𝒫𝐹 is always a preordering, so we only need to check that it is total.)
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(P5) ∀𝑎 ∈ Sym(𝐴, 𝜎) \ {0} ¬(𝑎 ∈ 𝒫 ∧ −𝑎 ∈ 𝒫).

We now show that the subset 𝑆𝑖 of 𝑍 of subsets satisfying property (P𝑖) is closed, for
𝑖 = 1, . . . , 5. The result follows since 𝑋(𝐴,𝜎) = 𝑆1 ∩ · · · ∩ 𝑆5.

𝑆1 = {𝒫 ∈ 𝑍 | 𝒫(0) = 1},
which is closed in 𝑇 .

𝑆2 = {𝒫 ∈ 𝑍 | ∀𝑎, 𝑏 ∈ Sym(𝐴, 𝜎) 𝑎, 𝑏 ∈ 𝒫 ⇒ 𝑎 + 𝑏 ∈ 𝒫}
= {𝒫 ∈ 𝑍 | ∀𝑎, 𝑏 ∈ Sym(𝑎, 𝜎) ¬(𝑎, 𝑏 ∈ 𝒫) ∨ 𝑎 + 𝑏 ∈ 𝒫}
= {𝒫 ∈ 𝑍 | ∀𝑎, 𝑏 ∈ Sym(𝑎, 𝜎) 𝑎 ∉ 𝒫 ∨ 𝑏 ∉ 𝒫 ∨ 𝑎 + 𝑏 ∈ 𝒫}

=
⋂

𝑎,𝑏∈Sym(𝐴,𝜎)
{𝒫 ∈ 𝑍 | 𝒫(𝑎) = 0 ∨𝒫(𝑏) = 0 ∨𝒫(𝑎 + 𝑏) = 1},

which is an intersection of closed sets in 𝑇 , and therefore closed.

𝑆3 = {𝒫 ∈ 𝑍 | ∀𝑎 ∈ Sym(𝐴, 𝜎)∀𝑥 ∈ 𝐴 𝑎 ∈ 𝒫 ⇒ 𝜎(𝑥)𝑎𝑥 ∈ 𝒫}
= {𝒫 ∈ 𝑍 | ∀𝑎 ∈ Sym(𝐴, 𝜎)∀𝑥 ∈ 𝐴 𝑎 ∉ 𝒫 ∨ 𝜎(𝑥)𝑎𝑥 ∈ 𝒫}

=
⋂

𝑎∈Sym(𝐴,𝜎) , 𝑥∈𝐴
{𝒫 ∈ 𝑍 | 𝒫(𝑎) = 0 ∨𝒫(𝜎(𝑥)𝑎𝑥) = 1},

which is an intersection of closed sets in 𝑇 , and therefore closed.

𝑆4 = {𝒫 ∈ 𝑍 | ∀𝑢 ∈ 𝐹 𝑢 ∈ 𝒫𝐹 ∨ −𝑢 ∈ 𝒫𝐹 }
= {𝒫 ∈ 𝑍 | ∀𝑢 ∈ 𝐹 (∀𝑎 ∈ 𝒫 𝑢𝑎 ∈ 𝒫) ∨ (∀𝑎 ∈ 𝒫 − 𝑢𝑎 ∈ 𝒫)}

=
⋂
𝑢∈𝐹

{𝒫 ∈ 𝑍 | (∀𝑎 ∈ 𝒫 𝑢𝑎 ∈ 𝒫) ∨ (∀𝑎 ∈ 𝒫 − 𝑢𝑎 ∈ 𝒫)}

=
⋂
𝑢∈𝐹

{𝒫 ∈ 𝑍 | ∀𝑎 ∈ 𝒫 𝑢𝑎 ∈ 𝒫} ∪ {𝒫 ∈ 𝑍 | ∀𝑎 ∈ 𝒫 − 𝑢𝑎 ∈ 𝒫}

=
⋂
𝑢∈𝐹

(
{𝒫 ∈ 𝑍 | ∀𝑎 ∈ Sym(𝐴, 𝜎) 𝑎 ∉ 𝒫 ∨ 𝑢𝑎 ∈ 𝒫}∪

{𝒫 ∈ 𝑍 | ∀𝑎 ∈ Sym(𝐴, 𝜎) 𝑎 ∉ 𝒫 ∨ −𝑢𝑎 ∈ 𝒫}
)

=
⋂
𝑢∈𝐹

( ⋂
𝑎∈Sym(𝐴,𝜎)

{𝒫 ∈ 𝑍 | 𝒫(𝑎) = 0 ∨𝒫(𝑢𝑎) = 1}
)
∪( ⋂

𝑎∈Sym(𝐴,𝜎)
{𝒫 ∈ 𝑍 | 𝒫(𝑎) = 0 ∨𝒫(−𝑢𝑎) = 1}

)
,

which is a closed set in 𝑇 .

𝑆5 = {𝒫 ∈ 𝑍 | ∀𝑎 ∈ Sym(𝐴, 𝜎) \ {0} ¬(𝑎 ∈ 𝒫 ∧ −𝑎 ∈ 𝒫)}
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= {𝒫 ∈ 𝑍 | ∀𝑎 ∈ Sym(𝐴, 𝜎) \ {0} 𝑎 ∉ 𝒫 ∨ −𝑎 ∉ 𝒫}

=
⋂

𝑎∈Sym(𝐴,𝜎)\{0}
{𝒫 ∈ 𝑍 | 𝒫(𝑎) = 0 ∨𝒫(−𝑎) = 0},

which is closed in 𝑇 . ■

Proposition 4.9 ([4, Proposition 9.7(2)]) The map

𝜋 : 𝑋(𝐴,𝜎) → 𝑋𝐹 , 𝒫 ↦→ 𝒫𝐹

is continuous, where 𝑋𝐹 is equipped with the usual Harrison topology.

Proof The proof is the same as the proof of [4, Proposition 9.7(2)], except that we use
an infinite union instead of a finite one in the final part: Let 𝑢 ∈ 𝐹 \ {0}. We show that
𝜋−1 (𝐻 (𝑢)) is open. By definition,

𝜋−1 (𝐻 (𝑢)) = {𝒫 ∈ 𝑋(𝐴,𝜎) | 𝑢 ∈ 𝒫𝐹 }.

Observe that if 𝑐 ∈ 𝒫 \ {0}, then 𝑢 ∈ 𝒫𝐹 if and only if 𝑢𝑐 ∈ 𝒫 (indeed, 𝑢 ∈ 𝒫𝐹 or
𝑢 ∈ −𝒫𝐹 , and only one of them occurs by (P5); the first case corresponds to 𝑢𝑐 ∈ 𝒫).
Therefore,𝒫 ∈ 𝜋−1 (𝐻 (𝑢)) if and only if there is 𝑐 ∈ Sym(𝐴, 𝜎) \ {0} such that 𝑐 ∈ 𝒫

and 𝑢𝑐 ∈ 𝒫. Thus

𝜋−1 (𝐻 (𝑢)) =
⋃

𝑐∈Sym(𝐴,𝜎)\{0}
(𝐻𝜎 (𝑐) ∩ 𝐻𝜎 (𝑢𝑐)),

which is open in T𝜎 . ■

Corollary 4.10 The map 𝜋 is closed.

Proof Since 𝑋(𝐴,𝜎) is compact, 𝑋𝐹 is Hausdorff, and 𝜋 is continuous, the map 𝜋 is
necessarily closed. ■

Proposition 4.11 ([4, Proposition 9.7(1)]) The map 𝜋 is open.

Proof We show that 𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎𝑘)) is open for all 𝑘 ∈ N and 𝑎1, . . . , 𝑎𝑘 ∈
Sym(𝐴, 𝜎). Letting 𝑋𝐹 := 𝑋𝐹 \ Nil[𝐴, 𝜎] , we first observe that

𝑋𝐹 \ 𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎𝑘)) = Nil[𝐴, 𝜎] ∪ (𝑋𝐹 \ 𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎𝑘))) (4.1)

since Im 𝜋 ⊆ 𝑋𝐹 , and we show

𝑋𝐹 \ 𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎𝑘)) = 𝜋
(
𝑋(𝐴,𝜎) \ (𝐻𝜎 (𝑎1, . . . , 𝑎𝑘)

∪ 𝐻𝜎 (−𝑎1, . . . ,−𝑎𝑘))
)
. (4.2)

“⊆”: Let𝑃 ∈ 𝑋𝐹\𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎𝑘)) and let𝒫 be a positive cone over𝑃, so that𝑃 =

𝜋(𝒫) = 𝜋(−𝒫). We want to show that𝒫 ∉ 𝐻𝜎 (𝑎1, . . . , 𝑎𝑘) ∪ 𝐻𝜎 (−𝑎1, . . . ,−𝑎𝑘).
If 𝒫 ∈ 𝐻𝜎 (𝑎1, . . . , 𝑎𝑘), then 𝑃 ∈ 𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎𝑘)), contradiction. If 𝒫 ∈
𝐻𝜎 (−𝑎1, . . . ,−𝑎𝑘), then 𝑃 = 𝜋(−𝒫) ∈ 𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎𝑘)), contradiction again.
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“⊇”: Let𝒫 ∈ 𝑋(𝐴,𝜎) \ (𝐻𝜎 (𝑎1, . . . , 𝑎𝑘) ∪ 𝐻𝜎 (−𝑎1, . . . ,−𝑎𝑘)) be over 𝑃 ∈ 𝑋𝐹 ,
so that 𝜋(𝒫) = 𝑃. If 𝑃 ∈ 𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎𝑘)), then there is a positive cone 𝒬 over
𝑃 such that 𝒬 ∈ 𝐻𝜎 (𝑎1, . . . , 𝑎𝑘). In particular 𝒬 = 𝒫 or 𝒬 = −𝒫 by Theorem 4.6
since 𝒬, 𝒫 and −𝒫 are all over 𝑃. Then 𝒫 ∈ 𝐻𝜎 (𝑎1, . . . , 𝑎𝑘) in the first case, and
𝒫 ∈ 𝐻𝜎 (−𝑎1, . . . ,−𝑎𝑘) in the second case, which are both contradictions.

The right-hand side of (4.2) is 𝜋 of a closed set, so is closed by Corollary 4.10. There-
fore the left-hand side is closed, which shows that the set 𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎𝑘)) is open in
𝑋𝐹 by (4.1) and since Nil[𝐴, 𝜎] is clopen by [1, Corollary 6.5]. ■

5 Maximum signatures and extension of positive cones

Let 𝑃 ∈ 𝑋𝐹 \ Nil[𝐴, 𝜎]. Recall from Section 2.2 that

(𝐴 ⊗𝐹 𝐹𝑃 , 𝜎 ⊗ id) � (𝑀𝑛𝑃 (𝐷𝑃), Int(Φ𝑃) ◦ 𝜗𝑃𝑡 ), (5.1)

where 𝐷𝑃 ∈ {𝐹𝑃 , 𝐹𝑃 (
√
−1), (−1,−1)𝐹𝑃

}, 𝜗𝑃 is the canonical involution on 𝐷𝑃 , and
Φ𝑃 ∈ Sym𝜀 (𝑀𝑛𝑃 (𝐷𝑃), 𝜗𝑃𝑡 )∩𝑀𝑛𝑃 (𝐷𝑃)× . By Proposition 2.14 there exists a positive
cone on (𝐴, 𝜎) over 𝑃. Therefore we may assume that 𝜀 = 1 by [4, Corollary 3.8].

We denote the integer 𝑛𝑃 that occurs in (5.1) by 𝑛𝑃 (𝐴, 𝜎) if we want to emphasize
the dependence on (𝐴, 𝜎).

Proposition 5.1 Assume that 𝐹 is dense in 𝐹𝑃 (for the topology induced by the ordering 𝑃).
Then 𝑚𝑃 (𝐴, 𝜎) = 𝑛𝑃 (𝐴, 𝜎).

Proof Observe that by the definition of signatures, 𝑚𝑃 (𝐴, 𝜎) ⩽ 𝑛𝑃 (𝐴, 𝜎), cf.
[3, Proposition 4.4(iii)]. For ease of notation we assume that (𝐴 ⊗𝐹 𝐹𝑃 , 𝜎 ⊗ id) =

(𝑀𝑛𝑃 (𝐷𝑃), Int(Φ𝑃) ◦ 𝜗𝑃𝑡 ). Let

PD𝑛𝑃 (𝐷𝑃 , 𝜗𝑃) := {𝐵 ∈ Sym(𝑀𝑛𝑃 (𝐷𝑃), 𝜗𝑃𝑡 ) | 𝜗𝑃 (𝑋)𝑡𝐵𝑋 > 0 in 𝐹𝑃 ,
for every 𝑋 ∈ (𝐷𝑃)𝑛𝑃 \ {0}}.

Then Φ𝑃 · PD𝑛𝑃 (𝐷𝑃 , 𝜗𝑃) is an open subset of Sym(𝐴 ⊗𝐹 𝐹𝑃 , 𝜎 ⊗ id) by [5,
Lemma 2.21]. Since 𝐹 is dense in 𝐹𝑃 , 𝐴 ⊗ 1𝐹𝑃

is dense in 𝐴 ⊗𝐹 𝐹𝑃 , and there is 𝑎 ∈ 𝐴
such that 𝑎 ⊗ 1𝐹𝑃

∈ Φ𝑃 · PD𝑛𝑃 (𝐷𝑃 , 𝜗𝑃).
Let 𝔰𝑃 denote the hermitian Morita equivalence

ℌ𝔢𝔯𝔪(𝑀𝑛𝑃 (𝐷𝑃), Int(Φ𝑃) ◦ 𝜗𝑡 ) → ℌ𝔢𝔯𝔪(𝑀𝑛𝑃 (𝐷𝑃), 𝜗𝑡 )

given by the scaling map ℎ ↦→ Φ−1
𝑃
ℎ. Denoting the unique ordering on 𝐹𝑃 by 𝑃, we

then have

sign𝜇
𝑃
⟨𝑎⟩𝜎 = sign𝜇⊗1

𝑃
⟨𝑎 ⊗ 1𝐹𝑃

⟩𝜎⊗id = sign𝔰𝑃 (𝜇⊗1)
𝑃

⟨Φ−1
𝑃 · 𝑎 ⊗ 1⟩𝜗𝑃

𝑡 = ±𝑛𝑃 (𝐴, 𝜎),

where the second equality follows from [2, Theorem 4.2], the final equality holds since
we are computing the signature of a positive definite 𝑛𝑃 × 𝑛𝑃 matrix, and where the ±
is due to the reference form 𝔰𝑃 (𝜇 ⊗ 1), which may induce a sign change in the result.
Replacing 𝑎 by −𝑎 if necessary, the conclusion follows. ■
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Proposition 5.2 Let 𝐹 be a finitely generated extension of Q. Then the set of archimedean
orderings on 𝐹 is dense in 𝑋𝐹 .

Proof Since 𝐹 is finitely generated overQ, we can write 𝐹 = Q(𝑆) for some finite set
𝑆. By [11, Chapter IV, Theorem 8.6], 𝐹 has a transcendence basis {𝑋1, . . . , 𝑋𝑛} over Q
which is included in 𝑆. Thus, by the primitive element theorem, 𝐹 = Q(𝑋1, . . . , 𝑋𝑛) (𝛼)
with 𝛼 algebraic overQ(𝑋1, . . . , 𝑋𝑛).

Let 𝑚𝑋̄ (𝑋) be the minimal polynomial of 𝛼 over Q( 𝑋̄), where 𝑋̄ = (𝑋1, . . . , 𝑋𝑛).
Let 𝑃 ∈ 𝑋𝐹 and let𝑈 be a basic open set containing 𝑃. The set𝑈 is of the form

{𝑄 ∈ 𝑋𝐹 | 𝑔1 ( 𝑋̄, 𝛼) >𝑄 0, . . . , 𝑔𝑟 ( 𝑋̄, 𝛼) >𝑄 0},

where the rational functions 𝑔1, . . . , 𝑔𝑟 can be chosen to be polynomials in
Q[𝑋1, . . . , 𝑋𝑛, 𝛼].

Claim There are 𝑦1, . . . , 𝑦𝑛, 𝛽 ∈ R such that:

(1) {𝑦1, . . . , 𝑦𝑛} is algebraically independent overQ;
(2) 𝑔 𝑗 (𝑦1, . . . , 𝑦𝑛, 𝛽) > 0 for 𝑗 = 1, . . . , 𝑟 (the ordering is the one from R);
(3) 𝛽 is a root of 𝑚 𝑦̄ (𝑋), where 𝑦̄ = (𝑦1, . . . , 𝑦𝑛).

We will prove the Claim in the course of the next two lemmas, but we use it now.
The map 𝜆 : 𝐹 = Q(𝑋1, . . . , 𝑋𝑛, 𝛼) → R defined by 𝜆(𝑋𝑖) = 𝑦𝑖 and 𝜆(𝛼) = 𝛽

is a morphism of fields, and 𝑄 := 𝜆−1 (R⩾0) is an ordering on 𝐹 such that 𝑄 ∈ 𝑈.
Writing 𝐹′ := Im𝜆 = Q(𝑦1, . . . , 𝑦𝑚, 𝛽), the map 𝜆 gives an isomorphism of ordered
fields (𝐹,𝑄) � (𝐹′, 𝐹′ ∩R⩾0), which is an ordered subfield of (R,R⩾0) and therefore
archimedean. ■

Lemma 5.3 With notation as in the proof of Proposition 5.2, let

𝑆 := {𝑥 := (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 | 𝑚 𝑥̄ (𝑋) has a root 𝛼 such that
𝑔𝑖 (𝑥, 𝛼) > 0 for 𝑖 = 1, . . . , 𝑟}.

Then 𝑆 contains a non-empty open subset of R𝑛.

Proof For 𝑒 ∈ {1, 2}𝑟 , let 𝑔𝑒 := 𝑔𝑒1
1 · · · 𝑔𝑒𝑟𝑟 and

𝑁𝑒 (𝑥) :=
∑︁

𝑐∈R: 𝑚𝑥̄ (𝑐)=0

sgn 𝑔𝑒 (𝑥, 𝑐),

where sgn denotes the sign function. By [19, Proposition 1.3.36] we have��{𝑐 ∈ R | 𝑚 𝑥̄ (𝑐) = 0, 𝑔1 (𝑥, 𝑐) > 0, . . . , 𝑔𝑟 (𝑥, 𝑐) > 0}
�� = 2−𝑟

∑︁
𝑒∈{1,2}𝑟

𝑁𝑒 (𝑥),

for all 𝑥 ∈ R𝑛, and thus,

𝑆 =

{
𝑥 ∈ R𝑛

��� ∑︁
𝑒∈{1,2}𝑟

𝑁𝑒 (𝑥) ⩾ 2𝑟
}
.
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Using this description of 𝑆, we show that 𝑆 contains an open subset. Listing all the possi-
ble values of 𝑁𝑒 (𝑥), for 𝑒 ∈ {1, 2}𝑟 , whose sum gives a result greater than or equal to 2𝑟 ,
we see that 𝑆 can be expressed as a finite union of finite intersections of sets of the form

𝑆𝑒,ℓ := {𝑥 ∈ R𝑛 | 𝑁𝑒 (𝑥) = ℓ},

for some 𝑒 ∈ {1, 2}𝑟 and ℓ ∈ N ∪ {0}. More precisely, we write

𝑆 =
⋃
𝑖∈𝐼

⋂
(𝑒,ℓ ) ∈𝐸𝑖

𝑆𝑒,ℓ ,

where 𝐼 and each 𝐸𝑖 are finite index sets. We will show that each set 𝑆𝑒,ℓ ∩ 𝑍 is an open
subset of R𝑛 (for 𝑖 ∈ 𝐼 and (𝑒, ℓ) ∈ 𝐸𝑖 ), where 𝑍 is an open set that will be defined
below, thus proving that 𝑆 ∩ 𝑍 is open. We will then show that 𝑆 ∩ 𝑍 is non-empty.

We first show that 𝑆𝑒,ℓ ∩ 𝑍 is open (this will help us decide what 𝑍 should be). For
𝑖 ∈ 𝐼 and (𝑒, ℓ) ∈ 𝐸𝑖 , let ( 𝑓𝑒,0, . . . , 𝑓𝑒,𝑡𝑒 ) ∈ Q(𝑥1, . . . , 𝑥𝑛) [𝑋] be the Sturm sequence
of 𝑚 and 𝑔𝑒 , and

• let 𝑝𝑒 := (𝑝𝑒,1, . . . , 𝑝𝑒,𝑡𝑒 ) be the sequence of coefficients of the highest degree
terms of ( 𝑓𝑒,1 (𝑋), . . . , 𝑓𝑒,𝑡𝑒 (𝑋));

• let 𝑝𝑒 := (𝑝𝑒,1, . . . , 𝑝𝑒,𝑡𝑒 ) be the sequence of coefficients of the highest degree
terms of ( 𝑓𝑒,1 (−𝑋), . . . , 𝑓𝑒,𝑡𝑒 (−𝑋)).

Let 𝑣(𝑚 𝑥̄ , 𝑔𝑒) be the number of sign changes in the sequence 𝑝𝑒 and 𝑣̃(𝑚 𝑥̄ , 𝑔𝑒) the
number of sign changes in the sequence 𝑝𝑒 . By [8, Corollary 1.2.12], 𝑁𝑒 (𝑥) is equal to
𝑣̃(𝑚 𝑥̄ , 𝑔𝑒) − 𝑣(𝑚 𝑥̄ , 𝑔𝑒), and thus

𝑆𝑒,ℓ = {𝑥 ∈ R𝑛 | 𝑣̃(𝑚 𝑥̄ , 𝑔𝑒) − 𝑣(𝑚 𝑥̄ , 𝑔𝑒) = ℓ}.

Listing all the possible values of 𝑣̃(𝑚 𝑥̄ , 𝑔𝑒) and 𝑣(𝑚 𝑥̄ , 𝑔𝑒) whose difference gives ℓ, we
see that 𝑆𝑒,ℓ is a finite union of sets of the form

𝑇1 := {𝑥 ∈ R𝑛 | 𝑣̃(𝑚 𝑥̄ , 𝑔𝑒) = 𝑘1 ∧ 𝑣(𝑚 𝑥̄ , 𝑔𝑒) = 𝑘2},

with 𝑘1, 𝑘2 ∈ N ∪ {0}. We define

𝑍 := {𝑥 ∈ R𝑛 | all 𝑝𝑒, 𝑗 and all 𝑝𝑒, 𝑗 are ≠ 0, for all 𝑖 ∈ 𝐼 and (𝑒, ℓ) ∈ 𝐸𝑖}.

The idea behind the introduction of 𝑍 is that, if 𝑥 ∈ 𝑍 , then the various sequences 𝑝𝑒
and 𝑝𝑒 never contain a zero, which makes it easier to describe their sign changes.

The set 𝑍 is clearly open. We show that𝑇1 ∩ 𝑍 is open, and for this it suffices to show
that if

𝑇2 := {𝑥 ∈ R𝑛 | 𝑣(𝑚 𝑥̄ , 𝑔𝑒) = 𝑘}

with 𝑘 ∈ N ∪ {0}, then 𝑇2 ∩ 𝑍 is open (since the other condition, on 𝑣̃, can be checked
in the same way).

Since, for 𝑥 ∈ 𝑍 , the coefficients of 𝑝𝑒 are all non-zero, we can express that 𝑥 is in
𝑇2∩𝑍 by listing all the configurations 𝑝𝑒,𝑖 < 0 / 𝑝𝑒,𝑖 > 0 that enumerate all the different
ways in which 𝑘 sign changes can be obtained in the sequence (𝑝𝑒,1, . . . , 𝑝𝑒,𝑡𝑒 ). But this
clearly defines an open subset of R𝑛.

2025/11/05 10:31

https://doi.org/10.4153/S0008414X25101806 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101806


Signature maps from positive cones on algebras with involution 23

We now check that 𝑆 ∩ 𝑍 is non-empty using some basic model theory. Let
𝜑(𝜔1, . . . , 𝜔𝑛) be the following first-order formula in the language of rings:

∃𝛼 𝑚 𝜔̄ (𝛼) = 0 ∧
𝑟∧
𝑖=1
𝑔𝑖 (𝜔1, . . . , 𝜔𝑛, 𝛼) > 0.

By choice of 𝑃 ∈ 𝑋𝐹 in the proof of Proposition 5.2, we have

(𝐹, 𝑃) |= 𝜑(𝑋1, . . . , 𝑋𝑛),

Since {𝑋1, . . . , 𝑋𝑛} is a transcendence basis of 𝐹 overQ, if

{𝑟 𝑗 (𝑥1, . . . , 𝑥𝑛)} 𝑗∈𝐽
is the finite list of all polynomials that appear in the definition of the set 𝑍 above (the
polynomials 𝑝𝑒, 𝑗 and 𝑝𝑒, 𝑗 ), we have

(𝐹, 𝑃) |= 𝜑(𝑋1, . . . , 𝑋𝑛) ∧
∧
𝑗∈𝐽

𝑟 𝑗 (𝑋1, . . . , 𝑋𝑛) ≠ 0.

Since the formula 𝜑 is existential, it follows that

(𝐹𝑃 , 𝑃) |= 𝜑(𝑋1, . . . , 𝑋𝑛) ∧
∧
𝑗∈𝐽

𝑟 𝑗 (𝑋1, . . . , 𝑋𝑛) ≠ 0.

In particular,

(𝐹𝑃 , 𝑃) |= ∃𝑥1, . . . , 𝑥𝑛 𝜑(𝑥1, . . . , 𝑥𝑛) ∧
∧
𝑗∈𝐽

𝑟 𝑗 (𝑥1, . . . , 𝑥𝑛) ≠ 0,

and thus, by Tarski’s transfer principle (cf. [16, Corollary 11.5.4]),

(R,R⩾0) |= ∃𝑥1, . . . , 𝑥𝑛 𝜑(𝑥1, . . . , 𝑥𝑛) ∧
∧
𝑗∈𝐽

𝑟 𝑗 (𝑥1, . . . , 𝑥𝑛) ≠ 0.

The open set 𝑆 ∩ 𝑍 is thus non-empty. ■

Lemma 5.4 The set 𝑆 defined in Lemma 5.3 contains a tuple (𝑥1, . . . , 𝑥𝑛) of elements that
is algebraically independent over Q. In particular, the Claim in the proof of Proposition 5.2 is
verified.

Proof By Lemma 5.3, there exist non-empty open intervals 𝐼1, . . . , 𝐼𝑛 of R such that
𝐼1 × · · · × 𝐼𝑛 ⊆ 𝑆. Let 𝑥1 ∈ 𝐼1 be transcendental overQ. Assume that we have obtained
𝑥1 ∈ 𝐼1, . . . , 𝑥𝑘 ∈ 𝐼𝑘 with (𝑥1, . . . , 𝑥𝑘) algebraically independent overQ, for some 𝑘 <
𝑛. Since 𝐼𝑘+1 is uncountable, there is 𝑥𝑘+1 ∈ 𝐼𝑘+1 such that (𝑥1, . . . , 𝑥𝑘+1) is algebraically
independent overQ, and we conclude by induction. ■

Let 𝐿 be the language of rings 𝐿𝑟 togetherwith {𝜎, 𝐹, 𝑃,𝒫}, where𝜎 is a newunary
function symbol and 𝐹, 𝑃,𝒫 are new unary relation symbols.

If𝒫 is a prepositive cone on (𝐴, 𝜎) over 𝑃 ∈ 𝑋𝐹 , we denote by 𝔄 the 𝐿-structure
consisting of the algebra 𝐴 with the obvious interpretation of the symbols of 𝐿: 𝜎 is
interpreted by 𝜎, 𝐹 by 𝐹 , 𝑃 by 𝑃, and𝒫 by𝒫.
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Lemma 5.5 Let 𝑃 ∈ 𝑋𝐹 and let 𝒫 be a positive cone on (𝐴, 𝜎) over 𝑃. Assume that 𝑃
belongs to the closure of the set of archimedean orderings of 𝐹 . Then there is an elementary
extension 𝑁 of 𝐹 (in the language 𝐿𝑟 ) and an ordering𝑄 on 𝑁 extending 𝑃 such that

(1) (𝑁,𝑄) is dense in its real closure;
(2) There is a positive cone𝒬 on (𝐴 ⊗𝐹 𝑁, 𝜎 ⊗ id) over𝑄 such that𝒫 ⊗ 1 ⊆ 𝒬.

Proof Let Φ be the collection of formulas (without parameters) in the language of
ordered fields expressing that an ordered field is dense in its real closure (cf. [14,
Remark 4.4] and the references mentioned there), with quantifiers relativized to 𝐹 (the
formulas will be interpreted in an 𝐿-structure such as 𝔄, in which case we want them
to be true if and only if they are true in the interpretation of 𝐹).

Let Δ(𝐹) be the complete theory (with parameters) of 𝐹 in the language 𝐿𝑟 (i.e., the
set of all first-order 𝐿𝑟 -formulas with parameters in 𝐹 that are true in 𝐹), and where
the quantifiers are relativized to 𝐹 .

Fix an 𝐹-basis {𝑒1, . . . , 𝑒𝑚} of 𝐴. We define the structure constants 𝑓𝑖 𝑗𝑘 ∈ 𝐹 of 𝐴
with respect to this basis by:

𝑒𝑖𝑒 𝑗 =

𝑚∑︁
𝑘=1

𝑓𝑖 𝑗𝑘𝑒𝑘 , for 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚,

and the constants 𝑓𝜎𝑖𝑘 defining 𝜎 by

𝜎(𝑒𝑖) =
𝑚∑︁
𝑘=1

𝑓𝜎𝑖𝑘𝑒𝑘 , for 1 ⩽ 𝑖 ⩽ 𝑚.

We consider the set of 𝐿-formulas:

Ω :=Δ(𝐹) ∪Φ ∪ {𝑃 ordering on 𝐹} ∪ {𝒫 is a prepositive cone over 𝑃}

∪ {{𝑒1, . . . , 𝑒𝑚} is a basis over 𝐹} ∪
{
𝑒𝑖𝑒 𝑗 =

𝑚∑︁
𝑟=1

𝑓𝑖 𝑗𝑘𝑒𝑘

��� 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚
}

∪
{
𝜎(𝑒𝑖) =

𝑚∑︁
𝑘=1

𝑓𝜎𝑖𝑘𝑒𝑘

��� 1 ⩽ 𝑖 ⩽ 𝑚
}

∪ {𝑢 ∈ 𝑃 | 𝑢 ∈ 𝑃} ∪ {𝑎 ∈ 𝒫 | 𝑎 ∈ 𝒫}.

Let 𝑆 be a finite subset ofΩ. Thus, 𝑆 is included in

𝑆′ :=Δ(𝐹) ∪Φ ∪ {𝑃 ordering on 𝐹} ∪ {𝒫 is a prepositive cone over 𝑃}

∪ {{𝑒1, . . . , 𝑒𝑚} is a basis over 𝐹} ∪
{
𝑒𝑖𝑒 𝑗 =

𝑚∑︁
𝑟=1

𝑓𝑖 𝑗𝑘𝑒𝑘

��� 1 ⩽ 𝑖, 𝑗 ⩽ 𝑚
}

∪
{
𝜎(𝑒𝑖) =

𝑚∑︁
𝑘=1

𝑓𝜎𝑖𝑘𝑒𝑘

��� 1 ⩽ 𝑖 ⩽ 𝑚
}

∪ {𝑢1 ∈ 𝑃, . . . , 𝑢𝑘 ∈ 𝑃} ∪ {𝑎1 ∈ 𝒫, . . . , 𝑎ℓ ∈ 𝒫},

for some 𝑢1, . . . , 𝑢𝑘 ∈ 𝑃 and 𝑎1, . . . , 𝑎ℓ ∈ 𝒫.
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Consider the open set 𝐻 (𝑢1, . . . , 𝑢𝑘) of 𝑋𝐹 and the open set 𝐻𝜎 (𝑎1, . . . , 𝑎ℓ) of
𝑋(𝐴,𝜎) . Clearly, 𝑃 ∈ 𝐻 (𝑢1, . . . , 𝑢𝑘) and 𝒫 ∈ 𝐻𝜎 (𝑎1, . . . , 𝑎ℓ). Recall that the map
𝜋 : 𝑋(𝐴,𝜎) → 𝑋𝐹 , 𝜋(𝒬) = 𝒬𝐹 is open by Proposition 4.11. Therefore𝐻 (𝑢1, . . . , 𝑢𝑘) ∩
𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎ℓ)) is an open subset of 𝑋𝐹 containing𝑃, and thus contains an ordering
𝑃′ such that (𝐹, 𝑃′) is archimedean by hypothesis. Since 𝑃′ ∈ 𝜋(𝐻𝜎 (𝑎1, . . . , 𝑎ℓ)),
there is a positive cone𝒫′ on (𝐴, 𝜎) over 𝑃′ such that 𝑎1, . . . , 𝑎ℓ ∈ 𝒫

′.
In particular, the 𝐿-structure (𝐴, 𝜎, 𝐹, 𝑃′,𝒫′) is a model of 𝑆′. (Recall that an

archimedean ordered field is dense in its real closure. This follows directly from [17,
Theorem 1.1.5].) Therefore every finite subset of Ω has a model, so that Ω has a model
B = (𝐵, 𝜏, 𝑁, 𝑄,𝒮) by the compactness theorem.

By construction, 𝑁 is an elementary extension of 𝐹 , 𝑃 ⊆ 𝑄,𝒫 ⊆ 𝒮, and (𝑁,𝑄) is
dense in its real closure.

To prove statement (2), we first check that (𝐵, 𝜏) � (𝐴⊗𝐹 𝑁, 𝜎⊗ id𝑁 ): the structure
constants of 𝐵 with respect to {𝑒1, . . . , 𝑒𝑚} are by construction the same as those of 𝐴,
and therefore as those of 𝐴 ⊗𝐹 𝑁 . Thus, since both 𝐵 and 𝐴 ⊗𝐹 𝑁 are algebras over 𝑁
of the same dimension, they are isomorphic, and the isomorphism is induced by 𝑒𝑖 ↦→
𝑒𝑖 ⊗ 1 for 1 ⩽ 𝑖 ⩽ 𝑚. Similarly, the 𝑁-linear maps 𝜏 and 𝜎 ⊗ id𝑁 have the same matrix
with respect to {𝑒1, . . . , 𝑒𝑚} and {𝑒1 ⊗ 1, . . . , 𝑒𝑚 ⊗ 1}, respectively, so that the algebras
with involution (𝐵, 𝜏) and (𝐴 ⊗𝐹 𝑁, 𝜎 ⊗ id𝑁 ) are isomorphic via

𝜉 : 𝐵 → 𝐴 ⊗𝐹 𝑁, 𝑒𝑖 ↦→ 𝑒𝑖 ⊗ 1.

The set 𝜉 (𝒮) is a prepositive cone on (𝐴 ⊗𝐹 𝑁, 𝜎 ⊗ id𝑁 ) over 𝑄, so is included in
a positive cone𝒬 on (𝐴 ⊗𝐹 𝑁, 𝜎 ⊗ id𝑁 ) over𝑄. We have𝒫 ⊆ 𝒮, so that 𝜉 (𝒫) ⊆ 𝒬,
i.e.,𝒫 ⊗ 1 ⊆ 𝒬. ■

Proposition 5.6 ([4, Proposition 6.7]) Let 𝒫 be a positive cone on (𝐴, 𝜎) over 𝑃 ∈ 𝑋𝐹 .
There is 𝜀 ∈ {−1, 1} such that for every 𝑎 ∈ 𝒫 ∩ 𝐴× , sign𝜇

𝑃
⟨𝑎⟩𝜎 = 𝜀𝑛𝑃 (𝐴, 𝜎). In

particular, 𝑚𝑃 (𝐴, 𝜎) = 𝑛𝑃 (𝐴, 𝜎) for every 𝑃 ∈ 𝑋𝐹 \ Nil[𝐴, 𝜎].

Proof By Theorem 4.6 there is 𝜀 ∈ {−1, 1} such that sign𝜇
𝑃
⟨𝑎⟩𝜎 = 𝜀𝑚𝑃 (𝐴, 𝜎) for

every 𝑎 ∈ 𝒫 ∩ 𝐴× . Let 𝑎 ∈ 𝒫 ∩ 𝐴× , cf [4, Lemma 3.6]. Since 𝑚𝑃 (𝐴, 𝜎) ⩽ 𝑛𝑃 (𝐴, 𝜎)
(cf. [3, Proposition 4.4(iii)]) and sign𝜇

𝑃
⟨−𝑎⟩𝜎 = − sign𝜇

𝑃
⟨𝑎⟩𝜎 , we prove the result by

showing that sign𝜇
𝑃
⟨𝑎⟩𝜎 = ±𝑛𝑃 (𝐴, 𝜎).

Fix a basis B = {𝑒𝑖}𝑖∈𝐼 of 𝐴 over 𝐹 , and let 𝐹0 be the field obtained by adding
the following elements to Q, all determined with respect to the basis B: the structure
constants of 𝐴, the elements of the matrix of 𝜎, and the coordinates of 𝑎. Let 𝐴0 be
the 𝐹0-algebra determined by these structure constants for a given basis B0 = {𝑒′

𝑖
}𝑖∈𝐼

(i.e., we build the free 𝐹0-algebra generated by the elements 𝑒′
𝑖
and quotient out by the

relations determined by the structure constants), let𝜎0 be the 𝐹0-linear map on 𝐴0 with
the samematrix as𝜎, and let 𝑎0 ∈ 𝐴0 be the element with the same coordinates as 𝑎 (all
with respect to B0). Let 𝜉 : 𝐴0 ⊗𝐹0 𝐹 → 𝐴, 𝑒′

𝑖
⊗ 1 ↦→ 𝑒𝑖 . Since 𝐴0 ⊗𝐹0 𝐹 and 𝐴 are

𝐹-algebras with the same structure constants with respect to {𝑒′
𝑖
⊗ 1}𝑖∈𝐼 and {𝑒𝑖}𝑖∈𝐼 ,

respectively, and the linear maps 𝜎0 ⊗ 1 and 𝜎 have the same matrices with respect
to these same bases, the map 𝜉 is an isomorphism of 𝐹-algebras with involution from
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(𝐴0⊗𝐹0𝐹, 𝜎0⊗id) to (𝐴, 𝜎), and 𝜉 (𝑎0⊗1) = 𝑎. Therefore,we can assume for simplicity
that 𝜉 is the identity map, so that (𝐴0 ⊗𝐹0 𝐹, 𝜎0 ⊗ id) = (𝐴, 𝜎), 𝑎0 ⊗1 = 𝑎, and 𝐴0 ⊆ 𝐴.

Let𝑃0 := 𝐹0∩𝑃 and𝒫0 := 𝐴0∩𝒫. Note that 𝑎0 ∈ 𝒫0. By construction,𝐹0 is finitely
generated over Q, and (𝐹, 𝑃) is an ordered extension of (𝐹0, 𝑃0). By Theorem 2.9 we
have, for any reference form 𝜇0 for (𝐴0, 𝜎0):

sign𝜇0
𝑃0
⟨𝑎0⟩𝜎0 = sign𝜇0⊗𝐹

𝑃
⟨𝑎0 ⊗ 1⟩𝜎0⊗1 = sign𝜇0⊗𝐹

𝑃
⟨𝑎⟩𝜎 = ± sign𝜇

𝑃
⟨𝑎⟩𝜎 ,

where the final equality holds since a change of reference forms atmost changes the sign
of the signature, cf. [2, Proposition 3.3(iii)]. In particular it suffices to prove the result for
(𝐴0, 𝜎0) and 𝑃0,𝒫0, 𝑎0. Therefore, we simply use the original notation and assume that
𝐹 is finitely generated overQ.

It follows by Proposition 5.2 that 𝑃 is in the closure of the set of archimedean order-
ings on 𝐹 . Let 𝑁 , 𝑄 and 𝒬 be as in Lemma 5.5. By Proposition 5.1, and using that
invertible elements in a given positive cone have signature equal to ±𝑚𝑃 (𝐴, 𝜎) by
Theorem 4.6, we know that for every 𝑏 ∈ 𝒬 ∩ (𝐴 ⊗𝐹 𝑁)× ,

sign𝜇⊗𝑁
𝑄

⟨𝑏⟩𝜎⊗id = ±𝑛𝑄 (𝐴 ⊗𝐹 𝑁, 𝜎 ⊗ id) = ±𝑛𝑃 (𝐴, 𝜎),

where the final equality follows from the fact that (𝑁,𝑄) is an ordered extension of
(𝐹, 𝑃) and Lemma 5.7 below. Since 𝑎 ⊗ 1 ∈ (𝒫 ⊗ 1) ∩ (𝐴 ⊗𝐹 𝑁)× ⊆ 𝒬 ∩ (𝐴 ⊗𝐹 𝑁)× ,
it follows that

sign𝜇
𝑃
⟨𝑎⟩𝜎 = sign𝜇⊗𝑁

𝑄
⟨𝑎 ⊗ 1⟩𝜎⊗id = ±𝑛𝑃 (𝐴, 𝜎).

■

Lemma 5.7 Let 𝑃 ∈ 𝑋𝐹 and let (𝐿,𝑄) be an ordered field extension of (𝐹, 𝑃). Then
𝑛𝑃 (𝐴, 𝜎) = 𝑛𝑄 (𝐴 ⊗𝐹 𝐿, 𝜎 ⊗ id).

Proof Recall that 𝑛𝑃 (𝐴, 𝜎) is defined via the isomorphism 𝐴 ⊗𝐹 𝐹𝑃 � 𝑀𝑛𝑃 (𝐷𝐹𝑃
),

with notation as in Sections 2.1 and 2.2. Let (𝐿𝑄, 𝑄) be a real closure of (𝐿,𝑄). Observe
that we may assume that 𝐹𝑃 ⊆ 𝐿𝑄 , and thus that 𝐷𝐹𝑃

⊗𝐹𝑃
𝐿𝑄 � 𝐷𝐿𝑄 , because

𝐷𝐹𝑃
∈ {𝐹𝑃 , 𝐹𝑃 (

√
−1), (−1,−1)𝐹𝑃

}. Therefore,

𝐴 ⊗𝐹 𝐿𝑄 � 𝐴 ⊗𝐹 𝐹𝑃 ⊗𝐹𝑃
𝐿𝑄 � 𝑀𝑛𝑃 (𝐷𝐹𝑃

) ⊗𝐹𝑃
𝐿𝑄 � 𝑀𝑛𝑃 (𝐷𝐿𝑄 ).

Hence, 𝑛
𝑄
(𝐴 ⊗𝐹 𝐿𝑄, 𝜎 ⊗ id) = 𝑛𝑃 = 𝑛𝑃 (𝐴, 𝜎). The result follows since 𝑛𝑄 (𝐴 ⊗𝐹

𝐿, 𝜎 ⊗ id) = 𝑛
𝑄
(𝐴 ⊗𝐹 𝐿𝑄, 𝜎 ⊗ id) by definition. ■

Theorem 5.8 ([4, Proposition 5.8]) Let 𝑃 ∈ 𝑋𝐹 , let (𝐿,𝑄) be an ordered field extension of
(𝐹, 𝑃) and let𝒫 be a prepositive cone on (𝐴, 𝜎) over 𝑃. Then𝒫⊗1𝐿 := {𝑎⊗1𝐿 | 𝑎 ∈ 𝒫}
is contained in a prepositive cone on (𝐴 ⊗𝐹 𝐿, 𝜎 ⊗ id) over𝑄.

Proof Up to replacing 𝒫 by a positive cone that contains it, we may assume that 𝒫
is a positive cone. By Theorem 4.6 we have 𝑃 ∈ 𝑋𝐹 \ Nil[𝐴, 𝜎] , and so there is 𝑎 ∈
Sym(𝐴, 𝜎) such that sign𝜇

𝑃
⟨𝑎⟩𝜎 ≠ 0, cf. Remark 2.4. Therefore, by Theorem 2.9,

sign𝜇⊗𝐿
𝑄

⟨𝑎 ⊗ 1⟩𝜎⊗id = sign𝜇
𝑃
⟨𝑎⟩𝜎 ≠ 0,
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and𝑄 ∉ Nil[𝐴 ⊗ 𝐿, 𝜎 ⊗ id]. In particular there are positive cones on (𝐴 ⊗ 𝐿, 𝜎 ⊗ id)
and they are described by Theorem 4.6. By Corollary 4.7,

𝒫 =
⋃

{𝐷 (𝐴,𝜎) ⟨𝑎1, . . . , 𝑎𝑘⟩𝜎 | 𝑘 ∈ N, 𝑎1, . . . , 𝑎𝑘 ∈ ℳ
𝜇

𝑃
(𝐴, 𝜎)}.

Therefore (using (a) and (b) below),

𝒫 ⊗ 1𝐿 ⊆
⋃

{𝐷 (𝐴⊗𝐿,𝜎⊗id) ⟨𝑎1 ⊗ 1, . . . , 𝑎𝑘 ⊗ 1⟩𝜎 | 𝑘 ∈ N,
𝑎1, . . . , 𝑎𝑘 ∈ ℳ

𝜇

𝑃
(𝐴, 𝜎)}

⊆
⋃

{𝐷 (𝐴⊗𝐿,𝜎⊗id) ⟨𝑏1, . . . , 𝑏𝑘⟩𝜎 | 𝑘 ∈ N,

𝑏1, . . . , 𝑏𝑘 ∈ ℳ
𝜇⊗𝐿
𝑄

(𝐴 ⊗ 𝐿, 𝜎 ⊗ id)}

= 𝒞𝑄 (ℳ𝜇⊗𝐿
𝑄

(𝐴 ⊗ 𝐿, 𝜎 ⊗ id)),

which is a positive cone over𝑄 by Theorem 4.6, and where:

(a) The second inclusion uses the fact that 𝑎 ∈ ℳ
𝜇

𝑃
(𝐴, 𝜎) implies 𝑎⊗1 ∈ ℳ

𝜇⊗𝐿
𝑄

(𝐴⊗
𝐿, 𝜎 ⊗ id) which follows from the fact that 𝑚𝑃 (𝐴, 𝜎) = 𝑛𝑃 (𝐴, 𝜎) = 𝑛𝑄 (𝐴 ⊗𝐹
𝐿, 𝜎 ⊗ id) = 𝑚𝑄 (𝐴 ⊗𝐹 𝐿, 𝜎 ⊗ id) by Proposition 5.6 and Lemma 5.7.

(b) The final equality follows from Corollary 4.7.

■
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