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Signature maps from positive cones on
algebras with involution

Vincent Astier and Thomas Unger

Abstract. We introduced positive cones in an earlier paper as a notion of ordering on central simple
algebras with involution that corresponds to signatures of hermitian forms. In the current paper we
describe signatures of hermitian forms directly out of positive cones, and also use this approach to
rectify a problem that affected some results in the previously mentioned paper.
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1 Introduction

In [4] we introduced the notion of positive cones for central simple algebras with involu-
tion, inspired by the classical real algebra of ordered fields. They are linked to signatures
of hermitian forms, whose investigation we started in [1], inspired by [6]. We also gave a
complete description of the kernels of the signatures maps in [2].

In the current paper, after providing the necessary background in Section 2, we show
in Section 3 how to directly obtain such a kernel out of a given positive cone. This con-
struction also allows us to rectify a recently discovered mistake in [4]. Specifically, the
mistake occurs in the proof of [4, Lemma 5.5], and the lemma itself is likely incorrect.
Hence, the lemmas in the remainder of [4, Section 5] (and their consequences) are poten-
tially incorrect. These lemmas are used to prove [4, Proposition 5.8] which is the only
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resultin [4, Section 5] that is used in the remainder of [4]. In this paper we provide in par-
ticular an entirely different proof of [4, Proposition 5.8], so that all the results in [4] now
have correct proofs, except for [4, Lemmas 5.5, 5.6 and 5.7] which are no longer needed.

Note that in the process of reproving [4, Proposition 5.8], we provide more direct
proofs of results in [4] that were originally obtained as consequences of [4, Proposi-
tion 5.8]. Therefore, we clearly indicate in each statement in Sections 4 and 5 if it already
appeared in [4].

2 Preliminaries

All fields in this paper are assumed to have characteristic different from 2. Let F be such
a field. We denote by W(F) the Witt ring of F, by Xr the space of orderings of F, and
by Fp areal closure of F at an ordering P € Xp. We often denote the unique ordering
on Fp by P.

By an F'-algebra with involution we mean a pair (A, o) where A is a finite-dimensional
simple F-algebra with centre a field K = Z(A), equipped with an involution o : A —
A, such that F = K N Sym(A, o), where Sym(A, o) := {a € A | o(a) = a}. More
generally we let Sym _(A,0) = {a € A | 0(a) = €a} fore € {-1,+1}.If Aisa
division algebra, we call (A, o) an F-division algebra with involution.

Observe that [K : F] < 2. We say that o is of the first kind if K = F and of the second
kind (or of unitary type) otherwise. Involutions of the first kind can be further subdivided
into those of orthogonal type and those of symplectic type, depending on the dimension of
Sym(A, o), cf. [13, Sections 2.A and 2.B]. We let t = 0|k and note that ¢ = idp if o is of
the first kind.

We denote by W(A, o) the Witt group of Witt equivalence classes of nonsingu-
lar hermitian forms over (A, o) defined on finitely generated right A-modules. Note

that W(A, o) is a W(F)-module. We denote isometry of forms by ~. For ay, . .., ag in
Sym(A, o) the notation {ay, . . ., as), stands for the diagonal hermitian form
14

((xla‘-~,xf)’ (}’1’”-7)’6)) € AfXA[ = Zo'(xi)aiYi €A.

i=1

We often identify nonsingular quadratic and hermitian forms with their Witt classes
if no confusion is possible. If A is a hermitian form over (A, o), we denote the set of
elements represented by 1 by D, o (h).

We denote by Int(u) the inner automorphism determined by u € A%, ie,
Int(u)(x) := uxu~" for x € A. We also write o' for the involution (a;;) — (0-(aj;))
on M, (A).

2.1 Signatures of hermitian forms over quadratic field extensions and
quaternions

Let k be a field and let Dy € {k, k(Vd), (a,b)x}, where a,b,d € k, k(Vd) # k and
(a, b)y, is a quaternion division algebra over k. Let 9% denote the canonical involution
on Dy, i.e, the identity map on k or conjugation in the remaining cases.

2025/11/05 10:31

https://doi.org/10.4153/S0008414X25101806 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101806

Signature maps from positive cones on algebras with involution 3

If 1 is a hermitian form over (D, ¥ ), then by, (x) := h(x, x) is a quadratic form over
k. A straightforward computation shows that if & =~ {a, ..., an)9, withay,...,a, €
Sym(Dy, ¥%) = k, then

{ai,...,an) ifDy =k
bp = 3(1,-d)®{ai,...,a,) if Dy = k(Vd) . (2.1)
(1,—-a,-b,ab) ®{ai,...,a,) ifDi=(a,b)

By Jacobson’s theorem (cf. [18, Chapter 10, Theorems 1.1 and 1.7, Remark 1.3]) the map
W(Dy, %) — W(k), h— by,

is injective.
Let P € Xj. The preceding paragraph motivates defining the signature of /4 at P in
terms of the Sylvester signature signp by, as follows:

signp by, if Dy =k
Lsignp by, if Dy = k(Vd) withd <p 0

. . . . (2.2)
signp by, ifDy = (a, b)k witha,b <p 0

signp h ==

O A=

in all remaining cases

Remark 2.1 If Dy = k(\/g), skew-hermitian forms over (Dy, Jy) are equivalent to
hermitian forms, cf. [1, Lemma 2.1(iii)].

If Dy € {k, (a,b);} and h is a skew-hermitian form over (D, ), or a hermitian
or skew-hermitian form over (D X sz, ) with m = (y,x°P) the exchange
involution, then (the nonsingular part of) % is torsion in the Witt group and we let

signp h =0, (2.3)
cf.[1, Section 3.1 and Lemma 2.1].

2.2 Signatures of hermitian forms over F-algebras with involution
Returning to the general case of an F-algebra with involution (A, o), let P € XF and let
(Dp,9p) = (DFp, 9r,) € {(Fp,id), (Fp(V=1),-), ((-1,=1)F,, -)},

using the notation from Section 2.1. We define the signature of a hermitian form % over
(A, o) by extending scalars to Fp. Write Z(A) = F(Vd) with d € F. We consider two
cases:

(1)If o is of the second kindand d >p O,then Z(A)®p Fp = Fp X Fp and we obtain

(A®p Fp,o®id) = (M, (Dp) X My, (Dp)®, ), (2.4

cf. [13, Proposition 2.14]. Since (the nonsingular part of) / is zero in the Witt group (cf.
[1, Lemma 2.1(iv)]), we will define the signature of / at P to be zero in this case, cf. (2.7)
below.
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(2) If o is of the second kind and d <p O, or if o is of the first kind, then by the
Skolem-Noether theorem we obtain an isomorphism of Fp-algebras with involution

(A®F Fp,o ®id) = (M,,(Dp),Int(®p) o Ip"), (2.5)

where ®p € Sym_(M,,(Dp),9p") isinvertible and & = 1 if 0~ and Jp are of the same
type and € = —1 otherwise, cf. [13, Propositions 2.7 and 2.18].

The Fp-algebra with involution (M,,,,(Dp), Int(®p) o #p’) is hermitian Morita
equivalent to (M,,, (D p), ¥p") (via scaling by <I);,1), which in turn is hermitian Morita
equivalent to (D p, #p), cf. [1, Section 2.4]. We denote the composition of these equiv-
alences, and its induced map on hermitian forms, by mp.

Remark 2.2 Observe thatif o is orthogonaland D p = (=1, —1)F,, orif o is symplectic
and Dp = Fp,thene = —1 and mp(h ®F Fp) is skew-hermitian over (Dp, 9p).
Therefore, in accordance with Remark 2.1, we will define the signature of % at P to be
zero in this case, cf. (2.7) below.

Definition 2.3 (See also (2.8) below) We say that P is anil-ordering of (A, o) if (2.4) holds
or if one of the cases described in Remark 2.2 occurs. We denote the set of nil-orderings
of (A, o) by Nil[ A, o], where the square brackets indicate that this set depends only on
the Brauer class of A and the type of .

Assume now that P € Xp \ Nil[A, o]. As already mentioned, the idea is to define
the signature of /1 at P as signp m p(h ®f Fp) via (2.2), where P denotes the unique
ordering on Fp. There is however a problem: while a different choice of real closure
does not affect this definition (cf. [1, Proposition 3.3]) there is no canonical choice of
Morita equivalence, and different choices can result in sign changes (cf. [1, Proposi-
tion 3.4]). This problem can be addressed as follows: we showed in [1, Theorem 6.4] and
[2, Sections 2 and 3] that there exists a hermitian form u over (A, o), called a reference
form for (A, o), with the property that the signature of the hermitian form mo (u® Fgp)
over (Do, ¥p) isnonzero atall Q € Xp \ Nil[A, o]. Let sp € {1, 1} denote the sign
of signg mp(u ® Fp). The p-signature of & at P is then defined as

signl;,h =sp -signgmp(h® Fp). (2.6)

This definition ensures that the use of different Morita equivalences does not change the
result, cf. [1, Lemma 3.8]. The choice of a different reference form may result in sign’;, h
changing sign continuously at all P € Xp \ Nil[A, o], cf. [2, Proposition 3.3(iii)].

Finally, if P € Nil[A, o] we define
sign’y, b := 0. 2.7)
Note that by [1, Theorem 6.4] we actually have
P e Nil[A, o] & sign, = 0. (2.8)
Remark 2.4 Observe thatif P € X \Nil[A, o], then there existsa € Sym(A, o)NA*

such that sign’lf, (a)s # 0.Indeed, if & is such that sign’; h # 0, this follows from “weak
diagonalization” (cf. [4, Lemma 2.2]) and the fact that sign’;, is additive.

2025/11/05 10:31

https://doi.org/10.4153/S0008414X25101806 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25101806

Signature maps from positive cones on algebras with involution 5

Remark 2.5 The definition of p-signature implies that

. M _ . _M®Fp
sign’, h = sign’s (h® Fp).

Furthermore, if (A, o) = (DF, 9F) (with notation as in Section 2.1), then y := (1) is
areference form for (A, o) (since signp(1), = 1 forall P € Xg \ Nil[A, o]) and

sign‘;, = signp .

Assumption for the remainder of the paper: (A, o) is an F-algebra with involution
and u is a reference form for (A, o).

2.3 Signatures under ordered field embeddings

We recall the following consequence of [2, Lemma 4.1]:

Lemma 2.6 Let Fp C L be a field extension with L real closed. We denote by m the hermi-
tian Morita equivalence between (A ®p Fp,o ® id) and (D p,Op) as well as the induced
isomorphism of Witt groups. Then mt extends to a hermitian Morita equivalence m’ between
(A®F Fp®F, L,o®id®id) = (A®F L,0 ®id) and (Dp ®F, L, ¥p ® id) such that
(denoting the induced isomorphism of Witt groups also by m’), the following diagram commutes:

W(A®F Fp,o ®id) ——— > W(Dp, 9p)

| |

W(A®F Fp ®p, L,o ®id ® id) —~> W(Dp &, L, Ip ® id)

Lemma 2.7 Let (D,9) € {(F,id), (F(V-1),-), ((-1,=1)F, —)} with F real closed.
Let (F,P) € (L,Q) be an extension of ordered fields with L real closed, and let h be a
nonsingular hermitian form over (D, ). Then

signp h =signy (h® L).
Proof Since D is a division algebra, & can be diagonalized with entries from
Sym(D, #) = F. Since h is nonsingular and F is real closed, we have h =~ r X (1)y L

sX(—1)g,andsosignph=r —s. Then h® L ~r X (1)ggia L 5§ X {(—1)9gid, so that
signg(h® L) =1 — . [ ]

Lemma 2.8 LetP € XpandletA: (Fp,P) — (L,Q) bean embedding of ordered fields

with (L, Q) real closed. Let h be a nonsingular hermitian form over (A, o). Then

. . L
sign, h = mgn’é@” (h®, L).

Proof The proof has two parts.

Part 1: Assume that A is an inclusion. Observe that by Lemma 2.6, m(h® Fp)®F, L =
m' (h®r Fp®p, L) =m'(h® L) in W(Dp ®F, L,9p ®id) = W(Dp, ). Letsp
and sg € {—1,+1} denote the sign of signy m(u ® Fp) and signp m’((u ® Fp) ® L),
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respectively. Observe that sp = 5o by Lemma 2.6. It follows that

sign’;, h=sp -signgm(h ® Fp) by (2.6)
sp - signg(m(h ® Fp) ® L) by Lemma 2.7
= s - signg m'((h ® Fp) ® L) by Lemma 2.6
= sign’s”" (h ® L) by (2.6).

Part 2: Returning to the general case of a morphism A : (Fp, F) — (L, Q), we have
sign’;, h= sign’é&’L(h ®, L)

since both 7 ®,) L and u ®, L are obtained by applying the isomorphism A : Fp —
A(Fp), which preserves signatures by [2, Theorem 4.2], followed by the inclusion
A(Fp) C L, which also preserves signatures by the argument above. |

Theorem 2.9  Let h be a hermitian form over (A, o) and let P € Xp. Let A : (F,P) —
(L, Q) be an embedding of ordered fields. Then

. . L
sign, h = 51gn’é®1 (h®, L).

Proof We may assume that 4 is nonsingular since otherwise we can write h =~
h" L ho, where h™ is nonsingular and Ay is a zero form of appropriate rank, cf. 3,
Proposition A.3], and thus sign’;) h= sign’;) h"s.

Part I: Assume that A is an inclusion. Let (L, é) be a real closure of (L, Q). By [19,
Exercise 1.4.3(b)] there is a real closed field (N, S) and embeddings of ordered fields A p
and A such that the following diagram commutes:

(Fp, P)
/ N
(F,P) (N, S) (2.9)
(Lg.Q)

(This can also be obtained as a consequence of elimination of quantifiers for real closed
fields by [9, Proposition 3.5.19].) By definition,
sign’y, h = sign’}i)@’FP (h® Fp)
and
sign’é®L(h ®L)= sign(Qfg’L)@LQ (h®L)® Lg).
By Lemma 2.8 we have

sign';i)@FP (h® Fp) = sign(Sﬂ®FP)®APN((h ® Fp) ®1, N)
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and

®L®Lo)®a, N
signlé®L®LQ(h ®L®Lg) = signéﬂ 2)®i0 (h®L®Lg)®a, N).

1R

The result follows, since (h® Fp) ®1, N = (h® L® Lg)®, N and (u® Fp)®,,, N
(M® L ® Lg) ®1, N by commutativity of diagram (2.9).

Part 2: Assume that A is any embedding. We conclude as in Part 2 of the proof of
Lemma 2.8. |

2.4 Positive cones

Positive cones on algebras with involution were introduced in [4] as an attempt to define
anotion of ordering that corresponds to signatures of hermitian forms and that has good
real-algebraic properties.

Definition 2.10 ([4, Definition 3.1]) A prepositive cone P on (A, o) is a subset P of
Sym(A, o) such that

(P1) &P + @;

(P2) 2+ C &

(P3) o(a)-P-acC Pforeverya € A;

(P4) Pp:={u e F|uP C P}isanorderingon F;
(P5) P N -9 = {0} (we say that P is proper).

A prepositive cone P is over P € Xp if PP = P, and a positive cone is a prepositive
cone that is maximal with respect to inclusion. We denote the set of all positive cones
on (A, o) by X4, o).

Note that & is a (pre)positive cone over P if and only if — is a (pre)positive cone
over P.

Example 2.11 The simplest non-trivial example of a positive cone is given by the set
of positive semidefinite matrices in any of the following central simple algebras with
involution:

(MH(R)’ t)’ (Mn(R(\/__l))’ _t)’ (Mn((_l’ _I)R)’ _t)

(see [4, Example 3.11 and Remark 4.11] for the case of (M,,(R), f); the exact same argu-
ment works for the other two cases, using the principal axis theorem, which also holds
for matrices over quaternions by [20, Corollary 6.2]).

Definition 2.12 Let S C Sym(A, o) and let P € Xp. We define
k

%p(S) = {Z uiO'(xi)sixi | k e N, u; € P, X; € A, S; € S},

i=1
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and for a € Sym(A, o) and & a prepositive cone on (A, o) over P,

k
Pla] = {p +Zuicr(x,-)ax,~ peEP keN u eP, x; € A}.

i=1

It is clear that €p (S) and P[a] both satisfy properties (P1), (P2) and (P3). Moreover,
they are prepositive cones if and only if they are proper, i.e., satisfy (P5) (since they will
both satisfy (P4) if they satisfy (P5)).

Definition 2.13 We define, for P € X,
mp(A,0) = max{sign’;,(a)g | a € Sym(A, o) N A*}
and, for P € Xr \ Nil[A, o],
./%g(A,(r) :={a € Sym(A, o) N A* | sign’é(a)a =mp(A,o)}U{0}.

Observe that if P € X \ Nil[A, o] thenmp(A, o) > 0and so .%g (A, o) # {0},
by Remark 2.4.

Proposition 2.14 Let P € Xp \Nil[A, o]. If A is an F-division algebra, then ﬂg (A, 0)
is a prepositive cone on (A, o) over P. Otherwise, € p (M g (A, 0)) is a prepositive cone over
P.

Proof The first statement is [4, Example 3.13]. For the second statement, it suffices
to check that €p (.%g (A, 0)) is proper, since properties (P1) to (P4) are clear. Assume
that this is not the case. Then %p(ﬂg(A, o)) = Sym(A, o) by [4, Proposition 3.5].
In particular there are elements ay,...,a,, by,...,bs € ﬂg(A, o) \ {0} such that
1 € Daoylai,...,ar)o and =1 € D4, 5)(b1,...,bs)o. Since both 1 and —1 are
invertible, a standard argument shows that (1), L ¢ =~ {(ay,...,a,)s and (—=1)5 L
W = (by,...,by)s for some nonsingular hermitian forms ¢ and ¢ over (A, o). There-
fore, (1,-1)s L @ Ly =~ {ay,...,a,,b1,...,bs)o.By “weak diagonalization”, cf. 4,
Lemma 2.2], we have

[X<l’_1>(fl (Cl,...,Ck)o— 2gx<ala-'~,ar’bla~*-’bs>(f

forsome £ € N, ¢y,...,cx € Sym(A,0) N A%, and 2¢€ + k = £(r + s5). Comparing
signatures at P, we obtain that the right-hand side has signature £ (r+s)-mp (A, o) (with
mp(A,o) > 0since P ¢ Nil[A, o]), which is the maximal value that can be obtained
by the signature of a diagonal form of dimension £(r + s). But the left-hand side can
only have signature at most k - mp (A, o), which is smaller than £(r + s) - mp(A, 0),
contradiction. |

2.5 Reduction to diagonal forms

We recall from [5, Section 4.4] that there exists a pairing * of hermitian forms over
(A, o) (first studied in detail by N. Garrel in [10]) such that ¢ * ¢ is a hermitian form
over (Z(A),t), where ¢ := 0|z(4), and which preserves orthogonal sums, isometries
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and nonsingularity, cf. [5, Corollary 4.8]. Furthermore, * satisfies the following “pivot
property”
(p*y¥) ®za) x = (X *¥) ®z(a) ¥, (2.10)
cf. [5, Theorem 4.9]. We also note that if a,b € Sym(A,o) N A%, then by [10,
Proposition 4.9] or [5, Lemma 4.11] we have
(@o * (D)o = Yab,o
where ¢4 b, (x,y) = Trda (o (x)ayb).

Observe that by [4, Lemma 3.6] there exists an invertible element a in .

Proposition 2.15  Let P be a positive cone on (A, o) over P € Xp andleta € P N A*.
Then sign’;(a)g # 0and signp({a)os * (a)s) # 0.

Proof Assume for the sake of contradiction that sign’; {a)s = 0. By continuity of the
total signature map sign’;l (@) (cf. [1, Theorem 7.2)), there exist uy, . ..,u; € F* such
that P belongs to the Harrison set H (uy, . . ., ux) and signf (a)o = Oon H(uy, . .., uy).
Consider the Pfister form {uy,...,ur) = (L,u;) ® --- ® (1,u). Then we have
sign’é Quy,...,ur) ® (a)o = 0, forall Q € Xp. It then follows from Pfister’s local-
global principle (cf. [15, Theorem 4.1] or [7, Theorem 6.5]) that there exists n € N such
that 2" X (uy,...,ux) ® {(a)o is hyperbolic. Since this form is a diagonal form with
2K+ entries we can write it as a sum of hyperbolic planes as follows:

2" X (uyy . uk) ® (@) = 2K X (—a, a) .

In particular, —a is represented by the form on the left-hand side and so a € —9, which
contradicts that & is proper.

Next we prove the second statement. Since o-(a™")aa™! =a~'aa™' = a~!, we have
(@) = {a™1) . Therefore,

(@) *(@)o = (a)o * (@ o = Paa.o = T(A0u)
where o, := Int(a™!) o o and
T(a.oy) (%, ¥) = Trda(04(x)y) = Trda(a™ o7 (x)ay).
It then follows from [3, Equation (4.1) and Proposition 4.4(i)] that
signp({a)o * (a)s) = signp T(a, &) = (signp 0'a)2 = /lpz(sign’;,(a)(r)z,

where Ap # 0. (We can actually be more precise and observe that Ap € {1,2}: If
P € Nil[A, o] we can take Ap = 1, cf. [3, Proposition 4.4(i)] and the observation
after [3, Equation (4.2)], while if P ¢ Nil[A, o], then Ap := degDp andso dp = 1
if (Dp, ﬁp) € {(Fp, id), (Fp(\/—_l), —)} and /lp =2if (Dp, ﬁp) = ((—1, —I)FP, —),
cf.[1, Lemma 4.5].) ]

Proposition 2.16  Let P be a positive cone on (A, o) over P € Xp andleta € PNA*. Let
¢ be a nonsingular hermitian form over (A, o). Then there exist uy, ..., Uy, V{,...,Vs €
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P\ {0} such that

(@Yo *(a)s) ®za) @ = (U1, ..., ur) L{(=Vi,...,=V)) ®F (@)

and there exists a nonsingular quadratic form q over F such that signp q # 0 and
q®F ¢ = (U1, ..., up) L{(~vi,...,=Vs5)) ®F (@)o-
Proof Using (2.10), we have

{a)o #{a)s) ®z(a) ¢ = (@ *{a)s) ®z(A) (@)c- (2.11)

The forms (@), * {a), and ¢ * (a), are both nonsingular hermitian over (Z(A), t),
and are thus diagonalizable with coefficients in Sym(Z(A), ) N Z(A)* = F*. Hence
there exist wy, ..., w; € F* such that

(@Yo # (@) = (Wi, ..., W),
and there exist uy, ..., Uy, vy,...,vs € P\ {0} such that
ex{aye = (Ul tr), L=V, —Vg). (2.12)

The first part of the proposition follows from (2.11) and (2.12). For the second part,
applying [5, Lemma 2.1] to (2.11), we obtain

Wis oo s W) ®F @ = (Wi, .., Wi), ®Z(a) @
= (Ui, esup ) L=V, =vg)) ®z(A) (@)o
= ((upyestty) L{(=v1,...,=Vs)) ®F {(@)o

It follows from Proposition 2.15 that signp(wi,...,w;), # 0, and thus that
signp(Wi,...,w;) # 0by(2.1) and (2.2). ]

Lemma 2.17  Let P be a positive cone on (A, o) over P € Xp. In an isometry of diagonal
hermitian forms with coefficients in P N A* and —P N A%, if there are as many elements in
P asin —P on one side, it must be the same on the other side.

Proof Assume that, for some a;, b;, ¢;, d; € P N A* we have

(al,. . .,Clr)o- 1 <—b1,. . .,_br>(r =~ <C],. . .,CS>0- 1 <—d1,. . .,—d;>a-,

with, for instance, s > t. Thens > r > t and

€1y sCsyo LDt .., b1)e =(ar,...,ar )0 L (d1,....dt)s L
(=bi1s. .., =br)o
Since the entries on the left-hand side are all in & N A%, the entries on the right-hand
side must be in & (they are represented by the first form, and 2 is closed under the oper-

ations presented in properties (P2) and (P3)). In particular —b, € 9, which contradicts
that & is proper. [ ]
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Signature maps from positive cones on algebras with involution 11
3 Signature maps from positive cones

Consider a positive cone & on (A, o) over P € X. In this section we will define the
signature map sign’;, W(A, o) — Zdirectly out of & via the concept of prime m-ideals,
that was introduced in [2], and that we recall now.

Definition 3.1 ([2, Definition 5.1]) We say that a pair (I, N) is an m-ideal of W (A, o) if:

(1) Iisanideal of W(F) and N is a W(F)-submodule of W (A, 0);
(2 I-W(A,0) C N.

In addition we say that the m-ideal (I, N) is prime if I is a proper prime ideal of W(F),

N # W(A, o) and, for every g € W(F) and every h € W(A, o), q - h € N implies that
gelorheN.

We recall [2, Proposition 6.5]:

Proposition3.2  Let (I, N) bea prime m-ideal of W (A, o) suchthat2 ¢ Iand W (A, o) /N
is torsion-free. Then there exists P € X such that (I, N) = (ker signp, ker sign’;)).

We will define a prime m-ideal (/g, Ng») such that 2 ¢ g and the quotient
W(A, 0)/Ng is torsion-free directly from 2, thus recovering the signature map sign’;,
out of the positive cone 2.

Therefore, and since we will ultimately have Ng = ker sign’;,, we need to determine
the nonsingular hermitian forms over (A, o) that are good candidates for having zero
signature at P, and use their Witt classes as elements of Ng.

Definition 3.3 For a hermitian form & over (A, o) we define the following property:

There exists a nonsingular quadratic form gj, over F

such that
® signp gp # 0and (3.1)
egp®h={ay,...,ar)o L {=by,...,—b;)s for some
reNanday,...,ar,by,...,b, € PNA*.

Lemma 3.4  Property (3.1) is preserved under Witt equivalence (of nonsingular forms).

Proof Let & be a nonsingular hermitian form over (A, o) that satisfies Property (3.1).
Let &’ be a nonsingular hermitian form over (A, o) such that

hlH=~KW LH, (3.2)

where H and H' are hyperbolic forms over (A, o). Leta € 9N A*. By Proposition 2.16
there exist nonsingular quadratic forms q’, q1, g, over F that all have nonzero signature
at P and such that ¢’ ® ', 1 ® H and g, ® H' are diagonal hermitian forms of the form
n®{a)s L v®(—a)s, for some diagonal quadratic forms 7 and v with coefficients in
P*.Let y := g ® ¢’ ® g1 ® q». It then follows from (3.2) that

x®hLyoH=y®h L y®H .
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12 V. Astier and T. Unger

Observe that by taking signatures at P, the form y ® H has as many entries in & N A*
asin =% N A* since it is still a hyperbolic form and thus has signature zero. The same
argument applies to y ® H’. We now consider

X®h=(qn®q ®q1®q)®h=~q" ®q1®q,® (g, ®h).

Since the form gy ® h has as many entries in & N A* asin —% N A* by definition of
g (cf. Definition 3.3), the same holds for y ® h. It then follows from Lemma 2.17 that
the form y ® i’ has as many entries in & N A* asin —% N A*. Since signp y # 0, we
conclude that /2’ satisfies Property (3.1) with gp» = y. ]

Definition 3.5 Denoting Witt classes with square brackets, we define
Ng = {[h] € W(A, o) | Property (3.1) holds for i}
and
Iy = {lq] € W(F) | signp g =0},
the ideal of W(F) corresponding to the ordering P (which is clearly generated by the

classes in W(F) of all elements of the form (1, —u) for u € P).

Recall again that by [4, Lemma 3.6] there exists an invertible element a in . It follows
that the form (a, —a) satisfies Property (3.1), and in particular that Ng # @.

Proposition 3.6 The pair (g, Ng) is an m-ideal of W(A, o), and No # W (A, o).

Proof We have to check the following:

(1) N9 + Ng € Ng;

(2) W(F)-Ngp C Ng;
Q) Ip-W(A,0) C Ny;
4 No £ W(A, o).

We do it in order. For the verification of (1) and (2) we fix two hermitian forms ¢ and
W over (A, o) that satisfy Property 3.1, so that [¢], [/] € Ng. Therefore, there are
quadratic forms g, gy over F such that

QQD ®90 = <al’~--’ar>(r L <_bla'~-7_br>o—
and

qy ®l// ~ <C1,...,CS>O— 1 <—d1,.. .,—ds>0—

for some ai,...,a,,by,...,by,c1,...,c5,d1,...,ds € P N A%, and where
signp g, # 0 and signp gy # 0.

(1) We show that [¢] + [¢¥] = [¢ L ¥] € Ng by showing that ¢ L i satisfies
Property (3.1). We have

(CIQD ®qu) ® (90 L lﬁ) ~qy ® (<ala‘--,ar>0' L <_b1,--',_br>0') L
Ge® ({c1,. .5 L (=di,...,=ds)s). (3.3)
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Writing g, = g+ L g_and gy = g}, L g’ with gy, g} positive definiteat Pand g_, "
negative definite at P, we have that the number of entries in 2 N A* on the right-hand
side of (3.3) is

(dimg})r + (dimg” )r + (dim g4)s + (dimg_)s = (dim g, )r + (dimq,)s,
and that the number of entries in —% N A on the right-hand side of (3.3) is

(dimg”)r + (dimg})r + (dimg_)s + (dimg4)s = (dim gy )r + (dimg)s.
Both are equal, so ¢ L i satisfies Property (3.1).

(2) Since W (F) is additively generated by classes of one-dimensional forms, it suffices
to check that [(u) ® ¢] € Ng for every u € F*, which follows from the fact that the
form (u) ®  clearly satisfies Property (3.1).

(3) Let ¢ be a nonsingular hermitian form over (A, o). Since I is additively gener-
ated by the classes of the forms (1, —u) for u € P*, it suffices to check that {1, —u) ® ¢
satisfies Property (3.1) for every u € P*. By Proposition 2.16 there is a nonsingular
quadratic form g, over F such that signp g, # 0 and

o ®@ ¢ = (al,...,ar)(,- 1 <—b1,...,—bs>a-
forsomeay,...,a,,—by,...,—bs € P N A*. Then
qo ® (1, —u) ®<P) ={a,....ar)o L (uby,...,ubs)s L
(~uay,...,~uar)s L (=bi,...,~bys)qs,
which shows that g satisfies Property (3.1).

(4)Leta € N A*. We show that [{a),] & No.Assume that it is not the case. Then
there is a nonsingular hermitian form & over (A, o) such that 4 satisfies Property (3.1)
and [Ah] = [{(a)s]. It follows from Lemma 3.4 that {a) - also satisfies Property (3.1), and
thus that

9(a), ® (@)o =(ai,...,ar)g L{~b1,...,=br)o, (3.4
withai,...,a,, by,...,b, € P N AX. We write

Q<a),7 = <M17"~9MS> L <_V],...,_V[>

withuy, ..., us,vi,..., v, € P*.Since signp q(q), # 0 we have s # t. Equation (3.4)
then becomes
(wia, ... usa)e L (-via,...,—via)o ={ai,...,ar)s L {(=b1,...,—b)¢.

By Lemma 2.17, since the right-hand side has the same number of elements in 9 as in
—9%, we must have s = ¢, contradiction. ]

Proposition 3.7  The quotient W(A, o)/ N is torsion-free and (I, No) is a prime m-
ideal.
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Proof Let{[h] = [€ X h] € Ng for some ¢ € N, where & is a nonsingular hermitian
form over (A, o). By Lemma 3.4, £ X h satisfies Property (3.1). Then

Gexh @ (EX h) ~{ay,...,a;)o L {(=b1,...,=b;)
forsomeay,...,dr, b1,...,b, € P N A%, and so, clearly
(X qexn) @ h={ay,...,ar)s L {~b1,...,—b)¢,

proving that & satisfies Property (3.1) and thus [A] € Ng.

We now prove the second statement: Assume that [gh] € Ng for some [g] € W(F)
and [h] € W(A, o). Since I is the kernel of signp : W(F) — Z, there is k € Z such
that [¢g] = k mod Ig. Thus (and using that I - W(A, o) C Ng)we obtain k[h] € Ng.
It follows that k = 0 (and thus [g] € I»), or that [h] € Ng by the first part. |

Theorem 3.8 We have (I, No») = (ker signp, ker sign’;,) and P ¢ Nil[A, o].

Proof By definition, /g = kersignp 2 2. By [2, Proposition 6.5] we obtain that Ng» =
ker sign’;). Therefore, P ¢ Nil[A, o] since N # W(A, o) by Proposition 3.6 and the
equivalence in (2.8). ]

Corollary 3.9 Let P be a positive cone on (A, o) over P € Xp. Then, for every a,b €
P NA% sign’f,(a)a- = signl;,(b)a-.

Proof The hermitian form (a,—-b) trivially satisfies Property (3.1). Therefore
[{a,-b)s] € Np = ker sign’;,, so that sign’;, (a)y = sign’;, (D). [

Remark 3.10 'We will actually show in Proposition 5.6 that signg (a)g = £np(A, o)
foreverya € 2 N A*.

4 Description of positive cones and the topology of X4 )

We use the previous results to describe positive cones in terms of sign‘;, and to establish
some properties of the (Harrison) topology 7, on the space of positive cones X4 ) of
(A, o). Recall from [4, Section 9] that 7 is the topology generated by the sets

Hy(ay,...,ar) ={P € X0 | ar,...,ax € P},

where ay,...,ar € Sym(A, o).
Let (D, ) be an F-division algebra with involution, and let 77 be a reference form
for (D, ).

Proposition 4.1 Let P € Xp \ Nil[D, #]. Then ﬂg (D, ) is a positive cone on (D, 3)
over P.

Proof By [4, Example 3.13] it suffices to show that .4 g (D, ) is maximal. Let 9 be
a positive cone such that .%g (D,9) C P.By [4, Lemma 3.16], & is over P, and by
Corollary 3.9, & = %g (D, 9). [ ]
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Lemma 4.2  Let P be a prepositive cone on (D, 9) over P € Xp. Assume that signg (b)y >
—mp(D, ) for every b € P. Let a € Sym(D,?) N D™ be such that signg(a)g =
mp(D,®). Then:

(1) P[a] is a prepositive cone on (D, ) over P.
(2) Forevery x € Pal, sign?,(x)g > —-mp(D, ).

Proof (1) Properties (P1) to (P4) are straightforward to check for P[a]. We show that
property (P5) holds, i.e., that P[a] is proper. Assume 9 [a] is not proper, and let b €
Plal N =P[a], b # 0. Then there exist p1, p» € P, k,r € NU {0}, u;,v; € Pand
X;,yj € D such that

r

k
b=p+ Z ui(x;)ax; = —ps — Z vid(yjay; .

i=1 Jj=1
——

@ B
Observe that at least one of @ or 8 is nonzero, since & is proper. Furthermore, @+ # 0.
(Indeed, if @ + 8 = 0, then @ = —f # 0, contradicting that ﬂg(D, 1}) is proper since
ac .%;,7 (D, 9).) It follows that

k r

p1+p2=-— Z u; ¥ (x;)ax; — Z vid(yjlay; = —a - .

i=1 j=1

The right-hand side is a nonzero sum of elements that are in —.Z g (D, ) (since a €
%},’ (D, 1)), and thus belongs to —.%;,7 (D, ). The left-hand side, being in 2, does not
belong to —/%;7 (D, ) by hypothesis, contradiction.

k

(2) Letx = p+Z u;9(x;)ax; € Plal. Observe that @ € /%;Z(D,ﬁ). If @ = 0, then
i=1
—————
a

x = pand signz (x)g > —mp (D, ) by hypothesis. If @ # 0, assume that signg (xX)g =
—mp(D,¥).Wehave x—a = p. The left-hand side is a nonzero element of —.ﬂg (D, )
(the sum of two nonzero elements of a prepositive cone is nonzero by (P5)), while the
right-hand side is not (by hypothesis), contradiction. ]

Lemma 4.2 leads to a proof of the following theorem, which was stated in [4] and
whose original proof relied on the incorrect [4, Lemma 5.5].

Theorem 4.3 ([4, Proposition 7.1])) Let &P be a prepositive cone on (D, ) over P € Xp.
Then P ¢ Nil[D, 9] and either P C ﬂg(D, ?), or P C —ﬂg(D, ?).

In particular .%;,7 (D, ) and —,/%1737 (D, 9) are the only positive cones on (D, ) over P,
ie.,

Xp,9y) ={-M3(D,9), M3 (D, | P e Xp\Nil[D,I}.

Proof Since & is contained in a positive cone over P, we have P ¢ Nil[D,J] by
Theorem 3.8. We now consider two cases.
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Case I: There is ¢ € 9 such that signz (¢y9 = —mp(D, ). Then by Lemma 3.9,
P C—Mi(D,D).

Case 2: For every ¢ € P, signZ(c)ﬂ > —mp(D,¥). Then, using Lemma 4.2, we
can add all elements of .//Z ;,7 (D, ) to P and we obtain in this way a prepositive cone @
containing both 9 and ﬂg (D, ®). Since /%17,7 (D, ) is a maximal prepositive cone (cf.
Proposition 4.1) we obtain @ = %;Z(D, ) and thus & C .%g(D, ?). ]

Recall from [4, (2.1)] (with & = 1) that there is a hermitian Morita equivalence

g: Herm(M,(D),9) — Herm(D, )

1

and that its inverse g~' sends any diagonal form (ai,...,ar)g to the form

(diag(ay,...,ar))o:.
If P is a prepositive cone on (D, ) over P € Xp, we define

PSD/(P) = {B € Sym(M,(D),9") | VX € D' 9(X)'BX € P},
cf. [4, Section 4.1].

Lemma 4.4 ([4, Lemma 7.2]) We have

Gp (s (Me(D),9")) = PSD (M (D, D).

Proof LetB € PSD{(/%;Z (D,)). Thenby [4, Lemma 4.5] there is G € GLy(D) such
that #(G)' BG = diag(ay,...,ar) withay,...,ap € /%g(D, ), and we may assume
that

#(G)'BG = diag(ay,...,a,,0,...,0)
withay,...,a, € M5 (D, )\ {0}.
Since a;l; € .%f;_l(") (M¢(D),¥"), it is now easy to represent #(G)’ BG, and thus
B, as an element of €p (.ﬂ;’;_l () (M¢(D),¥")), proving that

PSD¢ (M](D.9)) € Gp(MLs ™ (Me(D),9")).

The equality follows since PSD¢ (.. (D, )) is a positive cone by Theorem 4.3 and

[4, Proposition 4.7], and %p(/%fjl (m) (M¢(D),¥")) is a prepositive cone by Proposi-
tion 2.14. |

Assume now that (D, ) is the F-division algebra with involution that is Morita
equivalent to (A, o). Observe that if (A, o) has at least one positive cone, we may
assume that the involutions © and o~ are of the same type, cf. [4, Assumption on p. 8], and
it follows from [12, Chapter I, Theorem 9.3.5] that there is a hermitian Morita equiva-
lence m between the categories of hermitian forms $Herm (A, o) and Herm (D, ). We
let the reference form 1 be equal to m(u).

Remark 45 We note that [4, Lemma 7.4] is now valid with its original proof, after
replacing the reference to [4, Lemma 7.2] by a reference to Lemma 4.4, since they both
prove the same statement.
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Theorem 4.6 ([4, Theorem 7.5]) Let P be a prepositive cone on (A, o) over P € Xp. Then
either

P CCp(ML(A, ), or P C ~Cp(Mb(A,0)).
In particular
X(a,0) = {=Bp(Mp(A, 7)), Cp(Mp(A,0)) | P Xp\Nil[A, ]},
and for each P € X(a, o) there exists & € {1, 1} such that PN A* = &%ﬁ (A,0)\{0}.

Proof The original proof is still valid, but the references in it to the results in [4] stated
after [4, Section 5] need to be replaced by the same results obtained in the current paper,
as follows:

Original proof in [4]: Corresponding statement in this paper:

Proposition 6.6 Theorem 3.8
Proposition 7.1 Theorem 4.3
Lemma 7.2 Lemma 4.4
Proposition 7.1 Theorem 4.3
Lemma 7.4 cf. Remark 4.5

Corollary 4.7 Let P € Xr. Then
Gp(ME(A, 0)) = U{D(A’o.)(al, a)e | k€N, ay,.. . ax € ME(A, o))

In particular, if P is a positive cone on (A, o) over P € X such that PNA* = /%g (A, o)\
{0}, then

P = JIDoyar, .. a)e | kEN, ar,... a € Mu(A, )}

Proof The first statement is clear by definition of €p and since A ﬁ (A, o) is closed
under multiplication by elements of P \ {0}. The second statement follows immediately
from Theorem 4.6. [ ]

Proposition 4.8 ([4, Proposition 9.11(3)])  The topology T4 is compact (by which me mean
quasicompact).

Proof A positive cone P isasubset of Sym(A, o), so can be identified with a map from
Sym(A, o) to {0, 1} (with P (a) = 1iff a € P). Thus we can view X4, ) as a subset
of Z := {0,1}%™(A47) and the topology 7, as the topology induced by the product
topology T on Z of the discrete topology on {0, 1}. Since T is compact, it suffices to
show that X4, ) is a closed subset of Z. We slightly reformulate the prepositive cone
properties (P1), (P4) and (P5) in order to make it easier to check them:

(P1) 0 .
(P4) Yu € Fu € PrV —u € Pr.(This reformulation is equivalent to the original (P4)
since P is always a preordering, so we only need to check that it is total.)
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(P5) Ya € Sym(A,0) \ {0} =(a € P A —a € P).

We now show that the subset S; of Z of subsets satisfying property (Pi) is closed, for
i=1,...,5. The result follows since X(4, &) =S1 N --- N Ss.

S1={2eZ|2(0) =1},

which is closed in T'.

S, ={PeZ|Va,beSym(A,0)a,be P =a+becP}
={P e Z|Va,b e Sym(a,0)—(a,be P)Va+becP}
={PeZ|Va,beSym(a,0c)a¢ PVb¢PVa+becIP}

= ﬂ (PeZ|Pa)=0VvR(b)=0VP(a+b)=1},
a,beSym(A, o)

which is an intersection of closed sets in 7', and therefore closed.

S;={P eZ|VaecSym(A,c)Vx € Aa e P = o(x)ax € P}
={PecZ|VaecSym(A,c)Vxc Aa¢ PV o(x)ax € P}

= ﬂ (P eZ|Pa)=0VP(c(x)ax) =1},
acSym(A,0), xeA

which is an intersection of closed sets in T, and therefore closed.

S4={P€eZ|VueFuePrV-ucPr}
={PeZ|VueFNaecPuac PV NNacP —uacP}

=ﬂ{9’eZ|(\/a€@ua€@)v(\/a€9§—uaeg“’)}

ucF
=ﬂ{@€Z|Va€@ua€@}U{9’€ZIVaeg—uaeg“‘}
ueF
=ﬂ({@ez|VaeSym(A,0')a¢<@Vua€93}U
ueF

{@€Z|Va€Sym(A,0')a¢95V—ua69“‘})

) {(?ez|P@)=0vPua)= 1})u

ueF aeSym(A,o0)

() (Pez|P@=0VP(-ua)= 1}),
aeSym(A,o)

which is a closed setin 7.

Ss;={P eZ|VaeSym(A,o)\{0}~(a € PA-acP}
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{PeZ|VaeSym(A,o)\{0}a¢ PV —a¢ P}

(PeZ|Pa)=0V P(~-a) =0},
acSym(A,0)\{0}

which is closed in 7. [ |

Proposition 4.9 ([4, Proposition 9.7(2)]))  The map
P/ X(A,o—) — XF, P> gjp

is continuous, where X is equipped with the usual Harrison topology.

Proof The proof is the same as the proof of [4, Proposition 9.7(2)], except that we use
an infinite union instead of a finite one in the final part: Letu € F \ {0}. We show that
n~'(H(u)) is open. By definition,

ﬂ_l(H(u)) ={P € X0 |uePr}.

Observe that if ¢ € P \ {0}, thenu € P if and only if uc € & (indeed, u € Pr or
u € —9Pr, and only one of them occurs by (P5); the first case corresponds to uc € P).
Therefore, ? € 7~ (H(u)) if and only if there is ¢ € Sym(A, o) \ {0} such that c € &P
and uc € . Thus

Al Hw)= ) (Ho(o) N He(ue)),
ceSym(A,o)\{0}

which is open in 7. [ ]
Corollary 410  The map 7 is closed.

Proof Since X4, is compact, Xr is Hausdorff, and 7 is continuous, the map 7 is
necessarily closed. [ ]

Proposition 4.11 ([4, Proposition 9.7(1)]))  The map  is open.

Proof We show that 7(H(ay,...,ax)) is open for all k € Nand ay,...,ar €
Sym(A, o). Letting Xr := X \ Nil[A, o], we first observe that

Xp\n(Hy(ay,...,ar)) = Nil[A, 0] U (Xp \ 7(Ho(ar, . . ., ax))) 4.1)
sinceImm C XF, and we show
Xe \n(Ho(ar.....a0) = 7(Xao) \ (Ho(ar.....az)
UHs(-ai,...,—ax))). (4.2)

“C™LetP € Xp\n(Hg(ay, ...,ax))andlet P beapositive cone over P, so that P =
7(P) = n(—P). We want to show that P ¢ H,(ay,...,ar) U Hy(—ay,...,—ag).
If ? € Hy(ai,...,ar), then P € n(Hy(ai,...,ar)), contradiction. If & €
Hy(-ay,...,—ag), then P = n(-P) € n(Hy(ay,...,ax)), contradiction again.
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D" Let P € Xa,0) \ (Ho(ai,...,ar) UHy(=ay,...,—ax)) be over P € X,
so that 7(P) = P.If P € n(Hy(ay,...,ax)), then there is a positive cone @ over
P such that @ € H,(ay,...,ax). In particular @ = P or @ = —P by Theorem 4.6
since @, & and —P are all over P. Then P € H,(ay,...,ay) in the first case, and
P € Hy(-ay,...,—ay) in the second case, which are both contradictions.

The right-hand side of (4.2) is 7 of a closed set, so is closed by Corollary 4.10. There-
fore the left-hand side is closed, which shows that the set 71(H (ay, . . . ,ax)) is open in
XF by (4.1) and since Nil[ A, o] is clopen by [1, Corollary 6.5]. [ ]

5 Maximum signatures and extension of positive cones
Let P € Xr \ Nil[A, o]. Recall from Section 2.2 that
(A®F Fp,o®id) = (MnP(Dp),Int(q)p)Oﬁpt), (5.1)

where Dp € {Fp, Fp(V—=1), (=1,=1)f, }, ®p is the canonical involution on D p, and
®p € Sym, (M, (Dp),9p") N M,, (D p)*.By Proposition 2.14 there exists a positive
cone on (A, o) over P. Therefore we may assume that & = 1 by [4, Corollary 3.8].

We denote the integer np that occurs in (5.1) by np (A, o) if we want to emphasize
the dependence on (A, o).

Proposition 5.1  Assume that F is dense in Fp (for the topology induced by the ordering P).
Thenmp(A,0) =np(A, o).

Proof Observe that by the definition of signatures, mp(A,0) < np(A, o), cf.
[3, Proposition 4.4(iii)]. For ease of notation we assume that (A Q¢ Fp,0 ® id) =
(an (Dp), Int(®p) o ﬂpt). Let

PD,,(Dp,9p) := {B € Sym(M,,.(Dp),?p") | #p(X)'BX > 0in Fp,
for every X € (Dp)"? \ {0}}.

Then ®p - PD,,,(Dp,Jp) is an open subset of Sym(A ®r Fp,o ® id) by [5,
Lemma 2.21]. Since F is dense in Fp, A ® 1F, is dense in A ® Fp, and thereisa € A
such that a ® 1pp € bp - PD,, (Dp,9p).

Let sp denote the hermitian Morita equivalence

Herm(M,, (Dp),Int(®p) o #') — Herm(M,,(Dp),9")

given by the scaling map h — d>;,1h. Denoting the unique ordering on Fp by P, we
then have

signfy (a) o = sign’l‘;®1(a ® 1rp)oeid = signj;”(”®l)<¢>;l ca® 1)y, =+np(A,0),

where the second equality follows from [2, Theorem 4.2], the final equality holds since
we are computing the signature of a positive definite np X np matrix, and where the +
is due to the reference form sp (¢ ® 1), which may induce a sign change in the result.
Replacing a by —a if necessary, the conclusion follows. |
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Proposition 5.2 Let F be a finitely generated extension of Q. Then the set of archimedean
orderings on F is dense in XF.

Proof Since F is finitely generated over Q, we can write F = Q(S) for some finite set
S. By [11, Chapter IV, Theorem 8.6], F' has a transcendence basis { X7, ..., X,,} over Q
which is included in S. Thus, by the primitive element theorem, F = Q(X1, ..., X,,) (@)
with a algebraic over Q(X1, ..., X,).

Let mx(X) be the minimal polynomial of @ over Q(X), where X = (X1,..., Xp,).
Let P € XF and let U be a basic open set containing P. The set U is of the form

{0eXr| g1(X,a) >00,...,8-(X,a) >0 0},

where the rational functions g;,...,g, can be chosen to be polynomials in
Q[Xls IR ] Xn’ a]'

Claim Thereareyy,..., Vs, 8 € Rsuch that:

(1) {y1,...,yn}is algebraically independent over Q;
) gi(yi,...,yn.B) > 0for j =1,...,r (the ordering is the one from R);
(3) Bisarootof my(X), where y = (y1,...,¥n).

We will prove the Claim in the course of the next two lemmas, but we use it now.
The map A : F = Q(Xy,...,Xy,@) — R defined by A(X;) = y; and () = B
is a morphism of fields, and Q := A7'(Rso) is an ordering on F such that Q € U.
Writing F’ := ImA = Q(yy, ..., Ym,B), the map A gives an isomorphism of ordered
fields (F, Q) = (F’, F' N Ryq), which is an ordered subfield of (R, Rs¢) and therefore
archimedean. |

Lemma 5.3  With notation as in the proof of Proposition 5.2, let

S:={x:=(x1,...,x,) € R" | mz(X) has a root & such that
gi(x,a) >0fori=1,...,r}.

Then S contains a non-empty open subset of R™.
Proof Fore € {1,2}",letg® :=g{"---g;" and

Ne(x) = Z sgn g°(x,¢),

ceR: mg(c)=0

where sgn denotes the sign function. By [19, Proposition 1.3.36] we have

[{c € R [ms(c) =0, g1(%,¢) > 0,..., g, (¥,¢) >0} =27 Z N (%),
ee{1,2}"

for all x € R", and thus,

S = {xeR“) S Ne(@) > 2’}.

ee(1,2}"
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Using this description of S, we show that S contains an open subset. Listing all the possi-
ble values of N, (x), for e € {1,2}", whose sum gives a result greater than or equal to 2,
we see that § can be expressed as a finite union of finite intersections of sets of the form

Se,e ={x € R" | Ne(x) =},

for some e € {1,2}" and ¢ € N U {0}. More precisely, we write

S = U ﬂ Se,[s

i€l (e,l)€E;

where [ and each E; are finite index sets. We will show that each set S, ¢ N Z is an open
subset of R” (fori € I and (e,{) € E;), where Z is an open set that will be defined
below, thus proving that S N Z is open. We will then show that S N Z is non-empty.

We first show that S, , N Z is open (this will help us decide what Z should be). For
ieland (e,f) € Ejlet (feo,..., fer,) € Q(x1,...,x,)[X] be the Sturm sequence
of m and g¢, and

* let pe = (Pe.ts-- - Pe.t,) be the sequence of coefficients of the highest degree

terms Of (fe,l (X)’ R fe,te (X))!
* let pe := (Pe,s---»Peut,) be the sequence of coefficients of the highest degree

terms of (fe,1(=X), ..., fer, (=X)).

Let v(mx, g°) be the number of sign changes in the sequence p, and v(my, g¢) the
number of sign changes in the sequence p.. By [8, Corollary 1.2.12], N, (x) is equal to
v(mg, g¢) —v(ms, g°), and thus

Se.c = {x € R" | 9(ms., g%) —v(ms. g%) =}

Listing all the possible values of v(my, g¢) and v(mx, g¢) whose difference gives ¢, we
see that S, ¢ is a finite union of sets of the form

T, :={x e R" | v(mx, g°%) = k1 Av(mz, g°) =k},
with k1, k, € NU {0}. We define
Z:={xeR"|all p. jandall p, ;are # 0, foralli € I and (e,?) € E;}.

The idea behind the introduction of Z is that, if ¥ € Z, then the various sequences p,
and p. never contain a zero, which makes it easier to describe their sign changes.

The set Z is clearly open. We show that 77 N Z is open, and for this it suffices to show
that if

T, ={x e R" | v(mg, g% =k}

with k € N U {0}, then 7> N Z is open (since the other condition, on ¥, can be checked
in the same way).

Since, for ¥ € Z, the coefficients of p. are all non-zero, we can express that £ is in
T,NZ by listing all the configurations p, ; < 0/ p.; > 0 that enumerate all the different
ways in which & sign changes can be obtained in the sequence (pe.1, . . . , Pe., ). But this
clearly defines an open subset of R".
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We now check that S N Z is non-empty using some basic model theory. Let
¢(w1, .. .,wy) be the following first-order formula in the language of rings:

.
Jamg(a) =0 A /\gi(wl,...,wn,a) > 0.

i=1

By choice of P € XF in the proof of Proposition 5.2, we have

(F’P) '=¢(X1’--~9Xn)’

Since {Xi, ..., X,,} is a transcendence basis of F over Q, if

{rj(xls ce ,Xn)}jeJ

is the finite list of all polynomials that appear in the definition of the set Z above (the
polynomials p, ; and p,_;), we have

(F,P) E o(X1,...,Xn) A A ri(Xi,...,X,) #0.
jeJ

Since the formula ¢ is existential, it follows that

(Fp, P) E@(X1,.., X) A N\ 1 (X1, Xa) # 0.
jeJ

In particular,

(FP,F’) Edx,...,xp0(x1,...,x0) A ri(x1,...,x,) #0,
J
jeJ

and thus, by Tarski’s transfer principle (cf. [16, Corollary 11.5.4]),

R, Rx0) E3xy, ..., xn (X1, ..., xp) A /\ ri(xe,...,x,) # 0.
jeJ

The open set § N Z is thus non-empty. u

Lemma 5.4 The set S defined in Lemma 5.3 contains a tuple (x1, ..., Xy) of elements that
is algebraically independent over Q. In particular, the Claim in the proof of Proposition 5.2 is
verified.

Proof By Lemma 5.3, there exist non-empty open intervals Iy, .. ., I, of R such that
I X---x1I, CS.Letx; € I be transcendental over Q. Assume that we have obtained
x1 €Iy, ...,x; € Iy with (xq, ..., xy) algebraically independent over Q, for some k <
n. Since I+ is uncountable, thereis xg41 € Iy suchthat (xq, ..., x4 ) is algebraically
independent over Q, and we conclude by induction. |

Let L be the language of rings L, together with {c, F, P, &}, where o is anew unary
function symbol and F, P, & are new unary relation symbols.

If & is a prepositive cone on (A, o) over P € Xp, we denote by U the L-structure
consisting of the algebra A with the obvious interpretation of the symbols of L: o is
interpreted by o, F by F, P by P, and & by 2.
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Lemma 5.5 Let P € Xp and let S be a positive cone on (A, o) over P. Assume that P
belongs to the closure of the set of archimedean orderings of F. Then there is an elementary
extension N of F (in the language L,) and an ordering Q on N extending P such that

(1) (N, Q) is dense in its real closure;
(2) There is a positive cone @ on (A @ N, 0 @ id) over Q such that » ® 1 C Q.

Proof Let @ be the collection of formulas (without parameters) in the language of
ordered fields expressing that an ordered field is dense in its real closure (cf. [14,
Remark 4.4] and the references mentioned there), with quantifiers relativized to F (the
formulas will be interpreted in an L-structure such as U, in which case we want them
to be true if and only if they are true in the interpretation of F).

Let A(F) be the complete theory (with parameters) of F' in the language L, (i.e., the
set of all first-order L,-formulas with parameters in F that are true in F'), and where
the quantifiers are relativized to F.

Fix an F-basis {ey, ..., e, } of A. We define the structure constants f;jx € F of A
with respect to this basis by:

m
eiej = Zfijkeka forl <i,j<m,
k=1
and the constants f;x defining o by
m
o(e;) = Zf(,-ikek, forl <i<m.
k=1
We consider the set of L-formulas:
Q :=A(F) U ® U {P ordering on F'} U {£ is a prepositive cone over P}

m
U {{e1,...,en} isabasis over F} U {eiej = Zfijkek)l <GLj< m}

r=1
m
U {E(ei) = Zfo-ikek ‘ 1<i< m}
k=1
U{ueP|luePtU{aeP|ac P}
Let S be a finite subset of Q. Thus, S is included in

S :=A(F) U ® U {P ordering on F} U {Z is a prepositive cone over P}

m
U{{e1,...,en} isabasisover F} U {eiej =Zf,-jkek|l <iJ <m}
r=1

m
U{E(é’i) =Zfo-ik€k|1 <i<m}
k=1
U{uy€eP,...,ur e Ptufa; € &,...,ar € P},

for some uy,...,ux € Panday,...,ap € P.
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Consider the open set H(uy,...,u;) of X and the open set Hy(ay,...,ar) of
X(a,0). Clearly, P € H(uy,...,ux) and & € Hy(ai,...,ac). Recall that the map
7 : X(a,o) = X, n(Q) = QF is open by Proposition 4.11. Therefore H(uy, . .., uz) N
n(Hg(ay,...,ar))isan opensubset of Xg containing P, and thus contains an ordering
P’ such that (F, P’) is archimedean by hypothesis. Since P’ € n(Hy(ay,...,ar)),
there is a positive cone &’ on (A, o) over P’ such thatay,...,ar € P'.

In particular, the L-structure (A, o, F, P, 9’) is a model of §’. (Recall that an
archimedean ordered field is dense in its real closure. This follows directly from [17,
Theorem 1.1.5].) Therefore every finite subset of Q has a model, so that Q has a model
B =(B,7,N,Q,S) by the compactness theorem.

By construction, N is an elementary extension of F, P € Q, P C &, and (N, Q) is
dense in its real closure.

To prove statement (2), we first check that (B, 7) = (AQF N, 0 ®idy): the structure
constants of B with respect to {ey, ..., e,,} are by construction the same as those of A,
and therefore as those of A ®  N. Thus, since both B and A ®f N are algebras over N
of the same dimension, they are isomorphic, and the isomorphism is induced by e; +—
e; ® 1 for 1 <i < m. Similarly, the N-linear maps 7 and o ® idy have the same matrix
with respectto {ey,...,en}and {e1®1,..., e, ® 1}, respectively, so that the algebras
with involution (B, 7) and (A ®r N, o ® idy) are isomorphic via

E:B—>AQ®rN,ei—e;®1.

The set £(&) is a prepositive cone on (A ®F N, 0 ® idy) over Q, so is included in
a positive cone @ on (A ®¢ N, o ® idy) over Q. We have P C &, so that £(P) C @,
ie, Q1 CAQ. ]

Proposition 5.6 ([4, Proposition 6.7])  Let P be a positive cone on (A, o) over P € Xp.
There is € € {—1, 1} such that for every a € P N A%, sign’é(a)(r = enp(A,0). In
particular, mp (A, o) = np(A, o) forevery P € Xp \ Nil[A, o].

Proof By Theorem 4.6 thereis & € {—1, 1} such that sign’;, (a)y = emp(A, o) for
everya € P N AX. Leta € P N A%, cf [4, Lemma 3.6]. Since mp(A, ) < np(A, o)
(cf. [3, Proposition 4.4(iii)]) and sign’;,(—a)g = - sign’;, (a), we prove the result by
showing that sign‘;) (a)g = xnp(A, o).

Fix a basis B8 = {e;};c; of A over F, and let Fy be the field obtained by adding
the following elements to Q, all determined with respect to the basis B: the structure
constants of A, the elements of the matrix of o, and the coordinates of a. Let Ag be
the Fp-algebra determined by these structure constants for a given basis By = {e]};cs
(i.e., we build the free Fy-algebra generated by the elements e} and quotient out by the
relations determined by the structure constants), let 0y be the Fy-linear map on Ag with
the same matrix as 0, and let ag € Ag be the element with the same coordinates as a (all
with respect to Bp). Let & : Ag ®f, F — A, e} ® 1 > ¢;. Since Ay ®F, I and A are
F-algebras with the same structure constants with respect to {e; ® 1};c7 and {e; };cs,
respectively, and the linear maps 0y ® 1 and o have the same matrices with respect
to these same bases, the map ¢ is an isomorphism of F-algebras with involution from
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(Ao®F, F, 0o®id) to (A, 0),and £(ap®1) = a. Therefore, we can assume for simplicity
that & is the identity map, so that (Ao ®F, F, oo ®id) = (A,0),a0®1 = a,and Ay C A.

Let Py := FoNPand Py := AgNP. Note thatay € FPy. By construction, Fy is finitely
generated over Q, and (F, P) is an ordered extension of (Fp, Pg). By Theorem 2.9 we
have, for any reference form pg for (Ao, 09):

. . ®F . ®F .
SIgn’;,‘; (a0) oy = 51gn/;,° (Ao ® 1) rpe1 = 51gn¢,° (a)y = % mgn?, (@),

where the final equality holds since a change of reference forms at most changes the sign
of the signature, cf. [2, Proposition 3.3(iii)]. In particular it suffices to prove the result for
(Ao, 09) and Py, Py, ap. Therefore, we simply use the original notation and assume that
F is finitely generated over Q.

It follows by Proposition 5.2 that P is in the closure of the set of archimedean order-
ings on F. Let N, Q and @ be as in Lemma 5.5. By Proposition 5.1, and using that
invertible elements in a given positive cone have signature equal to +mp(A, o) by
Theorem 4.6, we know that for every b € @ N (A ®f N)*,

sign’é@w(b)a@id = 4ng(A®p N,o ®id) = +np(A, o),

where the final equality follows from the fact that (N, Q) is an ordered extension of
(F, P) and Lemma 5.7 below. Sincea® 1 € (Z® 1) N (A®r N)* C @GN (AQF N)*,
it follows that

. . N
signls (@) = signls™ (@ ® Dogia = £np(A, o).

Lemma 5.7 Let P € Xp and let (L, Q) be an ordered field extension of (F, P). Then
np(A,0) =ng(A®r L, ®id).

Proof Recall that np(A, o) is defined via the isomorphism A ® Fp = M, (DF,),
with notation as in Sections 2.1 and 2.2. Let (L, Q) be areal closure of (L, Q). Observe
that we may assume that Fp C Lg, and thus that Dp, ®F, Lo = DLQ, because

Dp, € {Fp,Fp(V-1),(-1,-1)p, }. Therefore,
A®F Lo =A®F Fp®F, Lo = M,,.(DF,) ®Fp Lg = an(DLQ)~

Hence, nQ(A ®F Lp,0 ®id) = np = np(A, o). The result follows since np (A ®F
Lo®id) = nQ(A ®F Lo, o ® id) by definition. [ |

Theorem 5.8 ([4, Proposition 5.8])) Let P € XF, let (L, Q) be an ordered field extension of
(F, P) and let & be a prepositive cone on (A, o) over P. Then P @1 = {a®1y | a € P}
is contained in a prepositive cone on (A @ L, o ® id) over Q.

Proof Up to replacing & by a positive cone that contains it, we may assume that &
is a positive cone. By Theorem 4.6 we have P € Xp \ Nil[A, 0], and so thereis a €
Sym(A, o) such that sign‘;, (a)s # 0, cf. Remark 2.4. Therefore, by Theorem 2.9,

signy’ (@ ® Dogia = signy(a)e # 0,
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and Q ¢ Nil[A ® L, o ® id]. In particular there are positive cones on (A ® L, o ® id)
and they are described by Theorem 4.6. By Corollary 4.7,

P = U{D(A,a)ml, a)e |k EN, ay,... ap € ME(A, 0)).
Therefore (using (a) and (b) below),

@@ 1L g U{D(A@L’O-®id)<al ® 1,---7ak ® 1>0’ | k EN’
ai,...,ag € ./%g(A,U')}

N

P sL.osiabrs ..., bi)o |k €N,
bi,....bx € MEZ(A® Lo ®id)}

UL .
%Q(ﬂQ (AQ L,0 ®id)),
which is a positive cone over Q by Theorem 4.6, and where:

(a) The second inclusion uses the fact thata € ﬂg (A, o) impliesa®1 € %SQ’L (A®
L, o ® id) which follows from the fact that mp(A, o) = np(A,0) = ng(A ®F
L,o®id) =mg(A ®F L, o ®id) by Proposition 5.6 and Lemma 5.7.

(b) The final equality follows from Corollary 4.7.
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