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A Locally Compact Non Divisible Abelian
Group Whose Character Group Is Torsion
Free and Divisible

Daniel V. Tausk

Abstract. It was claimed by Halmos in 1944 that if G is a Hausdorff locally compact topological abelian
group and if the character group of G is torsion free, then G is divisible. We prove that such a claim
is false by presenting a family of counterexamples. While other counterexamples are known, we also
present a family of stronger counterexamples, showing that even if one assumes that the character
group of G is both torsion free and divisible, it does not follow that G is divisible.

1 Introduction

Let G be an abelian grou. Given an integer n, we consider the subgroups of G
defined by
nG={nx:x€ G}, G[n]={xeG:nx=0}

If G is an abelian topological group, then its character group G is the abelian group
of all continuous homomorphisms £: G — S, where S! is the (multiplicative) circle
group of unitary complex numbers; the group G is endowed with the compact-open
topology. The celebrated Pontryagin duality theorem (see, for instance, [7]]) states that
if G is a Hausdorff locally compact abelian topological group, then its character group
G is a Hausdorff locally compact abelian topological group as well and the character
group of G is G itself; more precisely, the map that associates each x € G with the
evaluation map G > §— Ex) € S! is a homeomorphic isomorphism between G
and the character group of G.

If H is a subgroup of G, then the annihilator of H is the subgroup ann(H) of
G consisting of all characters £&: G — S that are trivial over H. Clearly, given an
integer n,

ann(nG) = @[n].

In particular, if G is divisible, i.e., if n=G = G for every nonzero integer #, then its
character group G is torsion free, i.e,, G[n] is trivial for every nonzero integer n. It
was claimed by Halmos [5] that the converse is true if G is Hausdorff locally compact.
The argument presented in [5] has a gap: if G is torsion free, then ann(nG) is trivial
for every nonzero integer #, but that, in principle, implies only that nG is densd in
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! Except for the circle group S', abelian groups will be written additively.
2 If ann(nG) is trivial, then nG is indeed dense in G. Otherwise, Pontryagin duality would give us a
nontrivial character on the (nontrivial) quotient of G by the closure of nG and such nontrivial character
would correspond to a nontrivial element of ann(nG).
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G, not that nG = G. It should be observed, however, that the claim made by Halmos
is true if G is either compact or discrete, and that the proof of his main result is not
affected by the incorrect claim.

In Section [3} we will present a family of examples of Hausdorff locally compact
abelian topological groups G such that nG is dense in G for every nonzero integer n,
but such that nG # G for some nonzero integer n. In particular, any such group G
is an example of a Hausdorff locally compact abelian topological group that is not
divisible, but whose character group is torsion free. While other examples of that
phenomenon are known (see [[I, 4.16]), in Section ] we will also present a family
of examples of Hausdorff locally compact abelian topological groups G that are both
divisible and torsion free, but such that Gis A(torsion free but) not divisible. In par-
ticular, by Pontryagin duality, it follows that G is a Hausdorff locally compact abelian
topological group whose character group (which is isomorphic to G) is both divisible
and torsion free, but still G is not divisible.

2 Extending the Topology of a Subgroup

Let us start by presenting a general construction of a topology on an abelian group
from a topology on a given subgroup (the construction is well known; see, for in-
stance, [2H4]]). Let G be an abelian group and H be a subgroup of G. Assume that
H is endowed with a topology that makes it into a topological group. We claim that
there exists a unique topology on G such that

(i) Gisa topological group;

(if) the given topology of H is inherited from G;

(iii) H is openin G.

Such a topology is constructed as follows. Given g € G, the coset ¢ + H of H can be
endowed with a topology by requiring that the translation map

Li:H>x—g+x€g+H

be a homeomorphism. The fact that the translation maps of H are homeomorphisms
of H implies that the topology defined on the coset g + H does not depend on the
representative g of the coset. We topologize G by making it the topological sum of the
cosets ¢+ H, g € G. That is, we say that U isopenin Gif UN(¢g+H) isopenin g+ H
for every ¢ € G. One readily checks that such a topology is the only topology on G
satisfying (i), (ii), and (iii). Notice that since the cosets of H are all homeomorphic to
H and open in G, it follows that if H is Hausdorff, then so is G. Moreover, since every
compact neighborhood of the neutral element in H is also a compact neighborhood
of the neutral element in G, it follows that G is locally compact if H is locally compact.

3 The First Family of Counterexamples

Let A be a Hausdorff compact abelian topological group that is not divisible, and let
B be a divisible abelian group such that A is a subgroup of B (for instance, let B = S!
and A be a nontrivial finite subgroup of S' endowed with the discrete topology).
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Let BY denote the group of all sequences (x¢)ke., of elements of B and let G denote
the subgroup of B* consisting of those sequences (x¢)ie,, such that x; is in A for k
sufficiently large. Let H = A“ denote the subgroup of G consisting of sequences in A.
We endow H with the product topology and G with the unique topology satisfying
(1), (i), and (iii) of Section2l Then H is a Hausdorff compact topological group and
thus G is a Hausdorff locally compact topological group. If n is a nonzero integer,
then the subgroup nG of G consists of those sequences (xx)ke. such that x is in nA
for k sufficiently large. If ny is a nonzero integer such that npA # A, then nyG # G
and therefore G is not divisible. We will show that if # is a nonzero integer, then nG
is dense in G and from this it will follow from the discussion in the introduction that
the character group G is torsion free. Let J denote the subgroup of G consisting of
sequences (Xx)rcw in B that are trivial for k sufficiently large. Since ] is obviously
contained in nG for any nonzero integer #, it suffices to prove that J is dense in
G in order to establish that nG is dense in G for every nonzero integer n. Clearly,
G = H + ], so that ] intersects every coset of H. Now let us prove that ] is dense in G
by proving that J N (x + H) is dense in x + H for every coset x + H of H in G. Since
the coset x + H intersects ], we can assume that x € J. Thus, the translation map
L,: H — x + H is a homeomorphism that carries J N H to J N (x + H). From the
definition of the product topology, it is obvious that JN H is dense in H and therefore
J N (x + H) is dense in x + H. This concludes the proof that the subgroup J is dense
in G.

4 The Family of Stronger Counterexamples

We will now present an example of a Hausdorff locally compact abelian topological
group G that is both divisible and torsion free, but such that its character group G is
not divisible. We need some preliminary lemmas.

Lemma 1 Let G be an abelian divisible topological group. If there exists an open
subgroup H of G, a nonzero integer n, and a discontinuous homomorphism ¢: H — S
that is trivial over nH, then the character group G is not divisible.

Proof Since S! is divisible, ¢ extends to a (obviously discontinuous) homomor-
phism ¢’: G — S!. Consider the homomorphism ¢: G — S' defined by £(x) =
¢'(nx), for all x € G. Then £ is trAiVial over H and, since H is open, ¢ is continuous.
Assuming by contradiction that G is divisible, we can find a continuous homomor-
phism a: G — S' such that a(x)" = a(nx) = £(x) for all x € G. Then « and ¢’
are equal over nG and since G is divisible, we obtain that & = ¢’, contradicting the
continuity of a. ]

Lemma 2 Let K be an abelian group endowed with a topologyﬁ. If K admits a proper
dense subgroup D, then there exists a discontinuous homomorphism from K to S'.

Proof Since K/D is a nontrivial abelian group, there exists a nontrivial homomor-
phism ¢: K/D — S' (start with a nontrivial S!'-valued homomorphism defined over

31t is not necessary that K be a topological group, i.e., the continuity of the operations of K is not used
in the proof.
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a nontrivial cyclic subgroup of K/D and then extend it to all of K/D using the fact
that S' is divisible). The composition of ¢ with the quotient map K — K/Dis a
nontrivial homomorphism that is trivial over D, and therefore it must be discontin-
uous. |

Corollary 3 Let G be an abelian divisible topological group. If there exists an open
subgroup H of G and a nonzero integer n such that H/nH (endowed with the quotient
topology) has a proper dense subgroup, then the character group G is not divisible.

Proof By Lemma [} there exists a discontinuous S'-valued homomorphism over
H/nH; its composition with the quotient map H — H/nH is a discontinuous
S'-valued homomorphism over H that is trivial over nH. The conclusion follows
from Lemmal[il [ ]

The construction of our family of stronger counterexamples goes as follows. Let
A be a Hausdorff compact abelian non divisible topological group and let B be a tor-
sion free divisible abelian group such that A is a subgroup of B. A concrete example of
groups A, B satisfying the required conditions will be supplied at the end of the sec-
tion. Let H = A denote the group of all sequences in A endowed with the product
topology, and let G = B“ be the group of all sequences in B, endowed with the unique
topology satisfying (i), (ii), and (iii) of Section[2] The group H is Hausdorff compact
and thus G is Hausdorff locally compact; moreover, like B, the group G is both di-
visible and torsion free. We use Corollary[3|to establish that the character group Gis
not divisible. Let # be a nonzero integer such that nA # A. We claim that if H/nH
is endowed with the quotient topology, then it has a proper dense subgroup. First,
we check that the quotient topology of H/nH coincides with the product topology
of (A/nA)¥, each factor A/nA being endowed with the quotient topology. Namely,
if A/nA is endowed with the quotient topology, then the quotient map A — A/nA
is continuous, open, and surjective; therefore, if H/nH = (A/nA)* is endowed with
the product topology, then the quotient map H — H/nH is also continuous, open,
and surjective and therefore it is a topological quotient map. This observation proves
that the product topology of (A/nA)* coincides with the quotient topology of H/nH.
Now it follows directly from the definition of the product topology that the subgroup
of H/nH = (A/nA)¥ consisting of sequences (xi)re. that are trivial for k sufficiently
large is a (proper) dense subgroup. This concludes the proof that G is not divisible.

Finally, let us present a concrete example of groups A, B satisfying the required
conditions. Let A be the group of p-adic integers (where p is some fixed prime num-
ber) and B be the p-adic field. We have pA # A, so that A is not divisible; moreover,
B is a field of characteristic zero, so that it is both torsion free and divisible as an
abelian group. The fact that A can be made into a Hausdorff compact topological
group follows from the observation that A is (isomorphic to) the character group of
the discrete p-quasicyclic group Z(p*°) of elements of S' whose order is a power of
p (see, for instance, [6} Proposition 3.1]) and that the character group of a discrete
topological group is compact.
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