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AN OPERATOR VALUED FUNCTION SPACE INTEGRAL
APPLIED TO MULTIPLE INTEGRALS
OF FUNCTIONS OF CLASS L,

R. H. CAMERON AND D. A. STORVICK!

§0 Introduction: In a recent paper [2], an operator valued function
space integral was defined by the authors as follows.

DEFINITION: Let Cla,b] be the set of real continuous functions
defined on [a, b] and C,[a, b] the subset of Cla,b] whose elements vanish
at a. Let F be a real or complex functional defined on Cla,bd], let
be a measurable function on (—oo, o0), let € be a real variable and 2 a
positive parameter. Let I,(F)y be the function whose value at ¢ is

0.1 TFWI(E) = f HF(Z"“% + OV 2(b) + §Hdx

Cola

and let I,(F) be the linear operator that takes + into I,(F)\.

Here the integral is understood to be Wiener’s integral over the
function space Cyla,b]l. In [2] and also in [3] and [4], the function +
was taken to be of class %, and the classes of functionals were such
that I,(F) was a bounded operator taking %, into itself. In [5] y was
taken to be in %, and functionals that made I(F) a bounded operator
from %, into %. were studied.

In the present paper we shall continue to study the operator valued
function space integral defined in [5] for new classes of integrals. In
part I we shall study integrals of functionals of the form

0.2) F(a) = fU” f :0(8, t, 2(s), x(t))dsdt]

for f an entire function. In part II we shall study integrals of func-
tionals of the form
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©0.3) F() = f(fiﬁ(s, 2()ds, [ ot x(t))dt)

for f an entire function of two complex variables. In part III we shall
apply the results of part II to obtain the solution of a pair of simultane-
ous integral equations in terms of our integrals in function space and
vice versa.

An operator I:*(F) was defined in [2] as the analytic continuation
of I,(F) to ReA> 0 when such an extension exists, and it was proved
to exist for certain classes of functionals. In particular, it was shown
that I:*(F) exists as an analytic vector valued function of 2 on Rei1 > 0
for functionals of the form

0.4) F(z) = exp {ﬁo(s, x(s))ds}

where 6(t,u) is continuous almost everywhere on R = [a, b] X (— o0, c0)
and Red(t,u) < B on R and 6(t,u) is bounded on every compact subset
of R. This result was obtained by defining an operator I$%(F) as a
weak limit of a certain sequence of operators and then showing that
I(F) = I,(F) for real positive 2 and I$*%(F) is analytic on Re 1> 0. Thus
Iss was shown to satisfy the definition of I2*(F) so I(F') = I¥%F) on
Re 1> 0. Moreover it was shown that for Re 2 > 0 and v € &,, ||[I2*(F)V¥ |,
< exp [B(b — a)]-||¥|,. In [5] and in the present paper, I:*(F') is defined
as an analytic extension of I,(F) to Re2 > 0 or to {Rea > 0} N {|2] < 4},
and for each fixed 2, I®*(F) takes %, into #.. An existence theorem is
given for I®*(F) for functionals of the form (0.2) where 6(s,t,u,v) is
measurable in all its variables, d(s,t,-, )e %, and |6(s,¢t, -, )|, < B.
For functionals of the form (0.3), # and ¢ are both required to be
measurable and of class %,. In both cases I**(F) is shown to be a
bounded operator from %, to #.. The proof is not given in terms of
the analogue of I*(F") as defined in [2], [3], [4], but follows the technique
of [5] where it was shown that I$9(F) might fail to exist.

By a limiting procedure, I**(F) is extended in [2] and in the present
paper to the imaginary axis Re1=0 or to {Rea= 0} N {{2] < 4}, and
the resulting operator is called J2*(F), where ¢ corresponds to —ii. An
existence theorem for this operator was given in [5] for all ¢ # 0 and
in the present paper a similar extension to the imaginary axis is given.
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In [2] the authors present motivation and relationship to the early work
of Babbitt, Nelson, and others.

I Analytic functions of double integrals

§1 Preliminary Lemmas: In order to deal with functionals of the
form (0.1) where f(2) = > 7.,0,2" is an entire function, it is convenient
to start with the case f(2) = 2. Let us consider the functional

1.1 Fo (@) = Ub j:a(s, t, x(s),x(t))dsdt]n

where 6(s, t, 4, v) is measurable in all its variables and 6(s,t, -, ) e Z,(R?
and ||6(s,t, -, )|, < B. We shall later show the existence of I,(F,) for

all positive 2, but in order to motivate the rather complicated expres-
sions appearing in Lemma 1, we first evaluate I,(F',) formally.

NoTATION: throughout the paper, 1% = p.
From the definition of I,(¥) given in the introduction we have

LD = f {f [0, t, 00(5) + & paty + Sdsdt]”

p(b) + &)dw = j . ﬂj S I OREEN

a j=1

+ &, px(t;) + Ods,- - -ds,dt,- - - dt,W(ox(d) + Edx

=[]0t eats) + & pntt) + )
Arlpx(b) + &dxds,- - -ds,dt,- - -dt, ,

where (s, t, -, -) ¢ Z,(R*) and ||6(s,t, -, )|, < B and V€ £, (—o0,0). We
now let »,...,7,, be the set of numbers s,:--,s,, t,:-+,t, in some
rearrangement, and let P be the set of all permutations of {1, ---,2n}.

If we set s;=r,, and t; = r,, and evaluate the Wiener integrals we

obtain
LF)P)(E) = Z or [@ry* i (ry — a)(ry — 1)+ - (Pyn — Tyny)
(b — 72”)]—]/Zj J. f j @n+) B ]]_[10(7'"&1’7'7‘!’ Oy, + &, oUy; + &

'V"(‘ou2n+l + 'S) exp { 1/2 Z (*u]‘:—u]—L)—} dul' : 'duzndu2n+1d7’1' ¢ 'dTZn »

=1 Ty — T

where 7, =@, 7,,, =0, and %, = 0. If we make the transformation
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v; = pu; + & = 17u; + & we obtain
e _ b mn. . e L 2n+1)/2 . L _ _1
13 LEWEO =3, j f J ( 27[) [, — @)+ -+ (b — 73]

.J‘—-wu_"?z)‘]‘ [ Jl:[l 0(7‘710_1’ /I"kj, ’Umj, ’l)kj):l '\P'(vZn+1)

-0

.exp {_1/22%],&(1’1“_7’1'—_1)1}401. B SN, /OO
=1 o(ry — 1)

In the following lemma we shall establish the existence, continuity and
analyticity of the sum appearing in equation (1.3) and thus justify the
preceding manipulations.

LEMMA 1: Let 6(s, t, u, v) be measurable in the region R ={(s, t,u,v)|a
<8<b,a<t<Lh, —c0o<u< o0, —o0<v< oo}, let 0s,t,-,-) be of

class LR and |6Gs,t, -, )|, < B, i.e. r r \6(s, t, u, v)|dudv < B, for

almost every s,tela,bl, and let € L, (—o0, ), ||, < M. Let ReA >0

_ . 1 °° — !
and K, = K&, 1) = ﬁj " y@)exp {z—a)_—@}dvl,

b (ren ro .
A.4) K, =KD = 5 f j f [(r, — a)r, — 77)- - -
(Mmy,+symnp,k1,42,kn) EPJ ad a a

(b — TZn)]—l/zj‘_w(z.nﬂ)f_w[ ]11 ﬁ(Tmf, Tys Vmys vkj):l Y( Vs 1)

-exp {_1/22%1M} Av,- Ay dry- - - diryy
=1 (r; — r;_y)

‘where P represents the set of all permutations of 1,-..,2n, and v, = &
and o =1, < r < oo <Py =0b; for n=12,.... Then for n=0,1,
2,.--, K,(&2) exists and is continuous for all real & and Red > 0; and

for each real &, K(&,2) is analytic in 2 for Re2> 0. For Rei> 0 and
n = 0,1,2, )

(1.5) K| < M, = 2"2"(b — a)®92(n)MB" .

Proof of Lemma 1: The integral for the multiple integral defining
K, is measurable so that we need only establish the integrability of the
absolute value of the integrand to prove the existence of K,. This will
be established in the inequalities below. Since Re 1 > 0, the function
{K.(&, 2] satisfies
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K5, = };, f:f:n . -J:z[(ﬁ — @)y, — 1) (b — 1)

J’“ <2n+1)J'°°

é Z B"‘Mjbj‘rm' ' .sz[(lrl - (L)~ ’ '(b - 7'2n)]_1/2d7'1' ‘ 'd/rzn
P ad a a

n
H1 0(7'mp Tkj> Vmys 'Ukj)‘/’(vznu) | dvye s AUy A7y < Ay
]:

— @n)! Ban ' j L f "l — @)+ (b — )y - - diy

If we set u;=@; —7r;_)/(b—a), so r;=a+ WU+ -+ + u)b — a),
[Ka(§, D] = @n)! B"M(b — a)®*~V",

2n) -
I S J(ul : 'uzn)_m(l — U — Uy — o — uzn) l/2du1' * 'du'm ’
4

where 4 = {(Uy, + -+, Up) |y + Uy + « -+ + Uy, = 1}
Evaluating this integral as Dirichlet’s Integral (see [9; p. 258]) we obtain

1Ko(&, D] < @n) ! BAM(b — a)@n—w%f))“ ﬁa — )iy

= @) B"M(b — ayen-on LL/DT LA /DIw
) T(@n+ 1/2)

(%) @n+1)/2

r@n+1/2°

= (2n)! B*"M (b — )02

Legendre’s duplication formula for the I' function, 2%-'I'(2)['(z + 1/2) =
v ©I'(22) (see [9; p. 240]) becomes when z = (2n + 1)/2, 2**I'((2n + 1)/2)
I'm+1)=+7zI'Cn+1)=+7(@2n)! and so

@n! 2l
r@en+1/2 vz

Thus |K,(& )| £ (b — @)@ D2B*Mz"2*n! = M,,.

Because K,(&,2) is expressed as a multiple integral with 1 appearing in
the integral only in an exponential we may conclude that K,(§,2) is
continuous for all real & and Re 2 > 0 and that for each real & K,(§,2)
is analytic in 2 for Re 1 > 0.

Corollary to Lemma 1: Let F,(x) = UT a(s, t, 2(s), x(t))dsdt]n; then

LEF W) exists for real 2> 0 and IEF Q) = K& DQA/20)"
This corollary suggests the following definitions (see also [8] for a
discussion of analytic vector valued functions).

https://doi.org/10.1017/5S0027763000015749 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015749

96 R. H. CAMERON AND D. A. STORVICK

DEFINITION: Let A(-;2) be of class &£ (—o0,0) for each 2 in a
domain 2 of the complex A-plane. We shall say that A(-; 2) is a weakly
analytic vector valued function of A throughout £ if r A&, Dp(&)dE is
analytic for 1€ £ for each ¢pe #,(— o0, ). h

DEFINITION: Let £ be a simply connected domain of the complex
A-plane whose intersection with the positive real axis is a single non-
empty open interval («,p). Let F be a functional such that I,(F) exists
for 2e(a,p). For each ¢ e ¥, (—c0,0) let a function A(4; ) exist as a
weakly analytic vector valued function of 2 for 2¢ 2, AQA; V) € £..(— o0, 0)
and let AQA; ¢) = L(F)y for 2¢€ (a, p) and ¢ € #,(—o0, 0). Thus we define

I(F)y = AQ; )

for 2¢ 2 and ¥ e Z,(—c0,0). Let I*® be the operator that takes 4 into
I(F)Y for e £,(— o0, c0).

We note that if it exists, I**(F) is uniquely defined and is a linear
operator that takes .#,(—co, o) into Z.(— oo, o).

LEMMA 2: Let 0,V satisfy the conditions of Lemma 1 and let
K, (&,2) be defined as in Lemma 1. Let
(1.6) f@) = io G2

be an entire function of growth* (1,7) where t < co. Then

Case I: growth (1,0). In this case
.m 5 4K D (L)
n=0 271'

converges for all real & and all 4, Red = 0. Moreover for each i, > 0,
1.7 converges uniformly for all real & and [A| < A, Red > 0. Thus for
each real & (1.7) represents an analytic function in Re a2 > 0 which is
continuous for Rea > 0.

Case II: order one, type 7, 0 <t < co. In this case (1.7) converges
for all real & and all 2, ReA >0, [2] < 4 = (2(b — a)Br)™ and converges
uniformly for all real & and all 2, ReA >0, [2| < ;< 4. Thus for each

* An entire function is said to be of growth (¢, ¢') iff it is of order not exceeding
¢ and if its order is ¢/, its type does not exceed 7/, (see [1; p. 8]).
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&, (1.7) represents an analytic function in |2] < A, Red >0 which is
continuous in 2] < 4, Rea > 0.

Proof of Lemma 2: We begin with the proof of Case I. Let x be
the order of f(z); then

. logn
1.8) = lim sup — 08" _
A7 Tog aa)

(where the quotient on the right is taken as 0 if a, =0). If <1, we
have for n sufficiently large that

nlogn

— " <1,
log (1ja,) 1"

and so |a,[* < n™".
Thus for n sufficiently large, by Stirling’s formula we see that

nlla,| < nln-"k

< 6—"1/277:% el/12ngy —n((1=Fo) /o)

Hence by (1.5), for n sufficiently large

anKn(.f, ) (%)"’ < b — a)(zn_l)/zB"MznIZI"G_n\/ZTL'n @M1y ~n((1-Fo) /o)
T

Because of the last factor, we see that (1.7) converges for all real &,
and all 3, Re1=0. Clearly (1.7) converges uniformly for all real &
and |1] < 4, Re1> 0 and so for each real &, (1.7) represents an analytic
function in Re 2 > 0 which is continuous for Re 1 > 0.

In order to establish Case I when =1 and = 0, we observe that
lim sup n|a,[V" = 0. (see [1, p. 11]), and hence > 7 ,n"a,z" is an entire
fu;lczion. By Stirling’s formula it follows that > 7  n!a,2" is an entire
function.

Now

1.9)

4 K&, D) (- | < M(b — a)er->Brgn2p  [q, | \il
2r 2
=MD — a) *n!|a,|Z"

where Z = 2(b — a)B|4|. Therefore (1.7) converges for all real & and all
2, Re A > 0 and the convergence is uniform on compact subsets and Case
I is established.
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We proceed to the proof of Case II, where =1, and 0 <7 < co,
and observe that

lim sup nja, " = er.

n—o

By Stirling’s formula, with 0 <4, <1,

(1.10) lim

n—oo

(n ! )l/n — lm (2=n)*" exp (6, /12n?) - _-l

n n—>o0 e €

Thus

. 1
limsup|n!a,[/" = —er =17,
e

n-co

and thus > 7. ,n!a,2" is an analytic function in the disk |z]<<z~'. By
(1.9), (1.7) converges for all real £ and all 2, Re A > 0 such that 2(b — a)B|2]
< 7Y i.e. for 1] < 2, = (2(b — @)Bz)~'. Moreover the convergence of (1.7)
is uniform for all real £ and all 4, Re2 >0, 1] = 4 < 4, Hence Lemma
2 is proved.

§2 [Existence Theorems for I,(F) and I**(F): We begin by establishing
the existence of I**(F) for real 2 > 0.

LEMMA 3: Let 6, +, and K, (§,2) be as in Lemma 1. Let
(2.0) F2) = g}oanz"
be an entire function of growth (1,0) and let
@.1) F@) = fUZﬁﬁ(s, t, 2(s), x(t))dsdt] and 1> 0.

Then (I(F)y)(&) exists for all real & and

(2.2) LEW)(E) = L[ b]F(er + V@ x(b) + &dx
) ek (o)
= |- nily ,2 e .
(27r nz;o 2 2r
Proof of Lemma 83: Case I: Let 6, 4, a,a, --- be real and non-
negative. Then the calculations leading to (1.3) are justified and we
have
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2.8) j . {[ [0, t, pxto) + &, outt) + Sdsdt| Y(er(d) + Hda

. ( 2 (2n+1)/2K (5 2)
- ‘2_“) n\s?s ’

T

where as before p = 171~
Hence, ’

2.4 I= L[ Flow + v (or®) + 9dz

l

[ L Sa (' 005, t, p(s) + & o2t + Odsat] v(oa) + de

= 2 @n+1)/2
= o (t) KD = oo
=0 2r
By lemma 2, Case I
@2.5) > 4, K8, D (i> ’
n=0 271'

converges for all real ¢ and all 2, ReA > 0. Thus we may conclude
that the last member of (2.4) is finite for all real & and 1 > 0.

Case II (The general case): Let 6,040, --- be complex valued.
Note that |6],|v ]|, |a), - -+ satisfy the special hypotheses of Case I.
Each of the integrals and sums that would occur in the proof of Case
I applied to these positive quantities would be finite and hence the proof
given in Case I may be applied to complex 6,+,a,,a, --- because all
the steps would be justified by the domination which would be provided
by Case I applied to |8], |V, |@ols|@4]s - -+

THEOREM 1: Let 6(s,t,u,v) be measurable in the region R = [a,b]?
X R?, Let 6(s,t,-,-) be of class LR and |6(s,t, -, )|, < B, and let
11"631(—00900), ”V’HléM Let

(2.6) 7@ = 3 0
be an entire function of growth (1,0), and let

@.7) Flo) = f[ f "f’ o, t, @(s), x(t))dsdt] .

Then I»(F) exists and is a bounded operator taking £, into £. and
I2(F)y is weakly analytic as a vector valued function of 2 for Rei > 0.
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Moreover for each 2, Rea >0, the function (I*(F)¥)(E) has the repre-
sentation

@.8) IrE9E = N 50k d (L)'

for all real &; and for each fixed real &, (I*(F)y)(&) is analytic in A for
Re2> 0.

Proof: By Lemma 2, we see that (2.5) converges for all real & and
Re 2> 0 and converges uniformly for all real & Rea >0, |2|< 4 for
each finite 2,. Set

@.9) Ko = N Sk, n ()"
2r n=0 2r
Thus by Lemma 1, k(&,2) is analytic for Re2 > 0 and

@10) 16, D1 = L 3% a 131,

L’”

2r

where M, is defined in (1.5). Let g€ #(—o0,c0). We consider
@11) [ e, npterae

and a sequence 2,2, 4;, --- — 4. By Lebesgue’s convergence Theorem,
we see that | k&, Dp(&)dé is continuous in 2 for Re1> 0. By the

Fubini Theorem and Morera’s Theorem we see that (2.11) is analytic in
A for Re2> 0. By Lemma 3, for 2 real and positive,

(2.12) k&, D = LE)W)E) .

Hence by the definition, I:*(F)v exists for v e.%2, and Rel >0 and
IE(F)Y)(&) = k(&,2) and Theorem 1 is proved.

LEMMA 4: Let 6, +, and K,(& 2) be as in Lemma 1. Let
(2.13) @) = 3 aner
n=0
be an entire function of order ome, type z, 0 < r < oo, and let

@.14) F(o) = f[ j :f:a(s, t, (s), x(t))dsdt] .
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Then for all real & and real 2 satisfying 0 < 4, = [2(b — a)Bz]™!, (L(F))(&)
exists and

(2.15) LFW)E) = J b]F @ + OP@x(b) + Hdw

Cola,

(2>1/2§-o: K(§ Z)(z)n
= \5 A8 (S, b
2r 7=0 2r

Proof of Lemma 4: As in the proof of Lemma 3, if 6,v,ay a,,- -
are real and non-negative,

2.16) L@ = (ZL”) S 0K (—2%) < too.

Since f(z) = > 5., a,2" is of order one, type z, 0 <z < oo, we know
by Lemma 2, Case II, that the series in (2.15) converges for all real &,
and all 2, Rea1 >0 such that |2] < 4, = [2(b — a)Bz]™' and Lemma 4 is
established in case 6, ¢ and the a,’s are all real and non-negative.

The proof for complex 4, v and a,’s follows exactly as the proof
in Case II, Lemma 3.

THEOREM 2: Let 6(s,t,u,v) be measurable in the region R = [a,b]?
X R?, let 0(s,t,-,-) be of class Z,(R*) and |6(s,t,-, )|, < B, and let
YveL(—o0,00), ||, < M. Let

2.17) F@) = > aner
n=0
be an entire function of order one, type v, 0 < 7 < oo, and let

2.18) F(o) = f[ﬁ" os, t, ©(s), x(t))dsdt] .

Then I3(F) exists and is a bounded operator taking %, into £, and
I (F)y is weakly analytic as a vector valued function of A for 1€ =
{2]Re 2> 0, |2] < 2}, where 2, = [2(b — a)Bz]™'. Moreover for each A€ £,
the function (I*(F)y)(&) has the representation

@.19) UpEn© = ()" S ek d( L)

for all real &, and for each fixed real &, (I(F))(€) is analytic in A for
1€ Q.
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Proof of Theorem 2: From Lemma 2, we observe that the series
in (2.15) converges for all real & and 1¢ 2. The argument in the proof
of Theorem 1 may now be repeated to establish the weak analyticity
and pointwise analyticity of the sum (2.19).

The exponential function provides an interesting special case which
we mention in the following corollary.

COROLLARY TO THEOREM 2: Let 6, 4 satisfy the hypothesis of
Theorem 2, and let

F(2) = exp [ f ' f "0Gs, t, 2(s), x(t))dsdt] .
Then IP(F)\ exists and is weakly analytic as a vector valued function
for Rea >0, |2] < [2(b — a)B]™.

§3 Existence Theorem for J,(F): We begin with the definition of
J(F).

DEFINITION: Let ¢ be a real number and F be a functional such
that I2*(F") exists for every 4 ¢ #,(—oo, c0). If Q(-) is of class Z..(— 0, o)
and if ¢ is a given element of .#, such that

lim | [IREWE) — QEIp©)dE = 0

A= —iqd —o
Re2>0

for every ¢ e #,(—o0,c0), then we define

JFW =Q.

If J,(F)y exists for every ¢ &,, we denote by J,(F) the operator that
takes 4 into J,(F)y and we note that J,(F) is a linear operator and is
uniquely defined by the equation above.

THEOREM 3: Let 0(s,t,u,v) be measurable in the region R = [a,b]
X R?, let 6(s,t,-,-) be of class Z(R?) and |6(s,t,-, )|, < B, and let
veZ(R), v, <M. Let
7=0

be an entire function of growth (1,7) where r < oo, and let

3.1 Fo) = fU" f " o, t, 2(s), x(t))dsdt]
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Then:

Case I: growth (1,0). In this case J (F) exists and is of class
Z. for each e, and each real q, q = 0. Moreover J,(F)V has the
representation

3.2) o (FW)E) = (E%) "3 KA, i) (zim)

for each real & and each real q, q + 0.

Case II: order one, type 7, 0 <z < co. In this case J,(F)¥ exists
and is of class Z. for each Ve, and each real q, 0 <|q| < 2 =
[2(b — @)Bz]™', and (J,(F)V)(E) has the representation (3.2).

Proof of Theorem 3: For each real ¢ (appropriate to either Case
I or Case II), by Lemma 2, the series in (1.7) converges uniformly to
a continuous function for 2e N, = {1]|2 + iq] <45, Re 2> 0} for some
sufficiently small ¢ and each real £&. Let pe &, (—co0, ) and consider

r [<L> TLEGD (52,;)” - ( —iq)”/z STKL(, —iQ)( _iq>n]go($)d{-‘ .

—w |\ 21 =0 2r n=0 2r

Since the sums in the integrand converge to a continuous function, the
integrand approaches zero as 2 — —igq, Re 2 > 0 for each & for which ¢(&)
is finite. Since the first factor is uniformly bounded for real & and
A€ N,, by Lebesgue’s convergence Theorem the integral has the limit
zero as 12— —iq, Re2> 0. Thus by (8.2), J,(F) exists for each ¢ %,
and has the representation (3.2), and Theorem 3 is proved.

We remark that if f(z),= expz, from Case II of Theorem 3, J,(F)v
exists and is of class %, for each €%, and each real ¢, 0 <|q|<
[2(b — a)B]™.

Remoark: Under the hypotheses of Theorem 3, lim (I3*(F)y)(&) =

A-—1q

(J,(F)) (&) uniformly in & and ¢ for all real § and |q] < ¢, < 2, Where
we take 4, = o in Case I.

II Analytic functions of two single integrals

§4 Preliminary Lemmas: We shall now consider functionals of the
form

(4.0) Fo) = f (IZa(s, w(s))ds, f:¢(t, x(t))dt)
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where f is an entire function of two complex variables, 6(s,w) and ¢(s,w)
are measurable in the strip [a, b] X (—o0, 00), (s, -) € L (— 0, 0), ¢(s, )
€ Z(—o0,0) for sela,bl, [|6(s, )|, < By, ll¢(s, )l < By, € Z,(—c0, 00)

and
4.1) F@w) = 3 Q™" .
m,n=0
As in the previous sections we begin by considering the special case
given by
4.2) Sna(Z, w) = 2"w"

and obtain formally that
43) Fon@® = fun (Ib 6(s, 2(s))ds, f’;;o(t, x(t))dt)
- Uie(s, x(s))ds]mU:go(t, x(t))dt] "
- J ” ), I :9(31, 2(8) - - -0(5,,, 2(5,))ds, - - -ds,,
[0 ot 0t - gtt, att )t -dt,

= Ib ("-H.”-L)J\b 0(31, x(Sl)) e 0(87’” .’,U(Sm))
. go(tl, x(tl)) P SD(tﬂ’ x(tn))dsl o dsmdt1 “ee dtn .

We now apply the definition to obtain

4.9 Fn @) = _[C Fo (o2 + O (o2(b) + §dx

ofa,b]

_ I Ib (@T?)J‘bﬁ(sl,px(sl) + &).. .0(3m,px(8m) + 8
Cola,b) a a

-ds,- - -ds,dt,- - -dt,dx

Tm+n

(.7'1,~~-,j1§1---kn)ePJa a - ..[a.[oo[a,bje(fjl’px(fjl) + E). o
'0(ij, Px(fjm) + 5)50(71:1, x(fkl) +8)-- '@(Tkn, Px(fzcn) + 8

1P(Pw(b) + &)dxdz, - - ’dfm+n ’

where P is the set of all permutations of {1,.--,m + %}, {t, ***, Tnin}
is the set {s;, -+, 8,,%, --,%} in some order, s =r7t;, -, Sn =17,

tlszu ’tn = Tip
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We now evaluate the Wiener integral to obtain

LF 0O = 3 | f S j (@™ — @)+ (b — )]

[T bty + 900 s+ Dl o, + -

'@(Tkny ouy, + E)‘I/‘(Pum+n+1 + 8 exp ‘iJan:Jrl(u—pj’p——i}

=1 2(t, — Tp_y)

cduye s AUy Ty AT

where %, =0, tg = @, Tpiny; = 0. We now set v, = &, v, = pu, + &, for
p=20,.---,m+ n+ 1 to obtain

LF W@ = 5 j j . H amrnt _ ]m

a (2n)m+n+1(71 - 2'0)' : '(7m+n+1 -

(4.5) ‘J‘A (mf?fl)j 0(‘[]'1’ vjl) o '0(ij’ vjm)§9(7k1’ ,Uh) e (p(z.kn’ ,Ukn)

m+n+1 _ 2
"p'(vmwzﬂ) exp {—Z MQ_

=1 2, — T,y

}dvl’ ¢ 'd’vm+n+1dtl’ ° ‘dtm+n .

We now estimate

[ IDIGIED S j j » H amen _ ]1/2

(2ﬂ)m+n+l(71 - TO)' : '(Tm+n+1 -

B?”B?||W\|1dfl : 'd7m+n

i ('n/L ' ,2 (m+n+1)/2 D b Mmtn
- —I—T’L) —2’; BleH*P“laa

(4.6)
dTl e d7m+n

.J“ \/(71 - To)' . '(Tm+n+1 - Tm+n)

(m+n+1)/2
— (%J_) BInB;L“,\PHIE(m+n)/2['<m ‘I‘ ;’L 'l" 2 )2m+n(b . a)(m+n—1)/2
T

where we have evaluated the m + n fold integral as Dirichlet’s integral
(see [9, p. 258]) and simplified the resulting expression. We now state
a lemma analogous to our Lemma 1 for this case.

LEMMA 5: Let 6(s,u) and ¢(s,u) be measurable in the strip [a,b]
X (—o0,0), let 6(s,-) and ¢(s, ) be of class £, (—oo,0) for sela,b]
and ||6(s, )|, < B, and |¢(s, )|, £ B, for almost every scla,bl, and let

Yy e l(—o0,00), ||, < M. Let2bea complex number, Rea > 0 and let
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—o0

(4.7) Ko,() = 0,0(5, /2) = (b — a,)"1/2 ® 1[/'(1)) exp {—2(—;_2_1)—201)} dv ’

Tm+n

b
Koy = Kna@ D= 5 [0
(J1yeeyim k1,22, kn) EPJ ad @
7o -1/2
I I:(fl — ) '(Tm+n+1 - Tm+n)]
a

J (m:*.n:”)J‘ 0(le’ vjl) .. .0(ij’ /Ujm)ga(fkl) /Ukl) e So(fkn’ /Ukn)

m+n+1 2(,’)1] . ?)p—l)z

(Vg s ns1) €XP {—Z

=1 2, —T,_1)

}dvl- e dvyndey e s

for myn =0,1,2, ..., where P represents the set of all permutations of
,--eom4+n,v,=¢8 and a,=7,<7,< -+« < Tpyn1=0. Then for all
m,n, K, .(& 2) exists and is continuous for all real & and-Rel1 > 0; and

for each real &, K, .(&,2) is analytic in 2 for Re2 >0. For Rel >0
and all m,n

(4.8)  |E, (D] < 2ningmimn(y _ gymen-vap (.”l‘i;Lﬂ> MBrB: .

The proof of Lemma 5 parallels that of Lemma 1 and we shall
omit it.

COROLLARY TO LEMMA 5: Let F, () be defined as in (4.3) then
U(F, I)E) exists for real 2 > 0 and

LEF o DWE) = K&, D) (—22;

) (m+n+1)/2

Our next lemma will depend on the order and type of the entire
function of several complex variables. For the convenience of the reader
we apply the definitions as given by A. A. Gol’dberg [7; p. 338] to the
case of an entire function of two complex variables where the domain
D as used in his definition is taken to be the bicylinder:

4.9) D = D(R,R) = {#,w||z] < R, < o0, |w| < R, < oo}.
Thus if

f(zy w) = Zoa’m,nzmwn ’

my,n=

and
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Dy = Dg(R,, R,) = {(2,w)|(z/R,w/R) € D}

and
M,R) = sup | f(z, w)]|,

the order p and the type z are defined thus

(4.10) 4= pp = lim sup 108 1og M,(F)
Boo log R
.11 ¢ = tp = lim sup 128 MAB)
R-oo R*

A theorem of Gol’dberg enables us to express the order and type in
terms of the coefficients, indeed

(m + n) log (m + 1)

4.12) ¢ = lim sup i
mnoeo —log |ay,x]
(4.13) (eurp)* = lim sup {(m + n)V*[a,,,|RFR;]/™ ™} .

m+n—o

LEMMA 6: Let 6,9, satisfy the conditions of Lemma 5 and let
K, .(&, 1) be defined as in Lemma 5. Let

4.14) fz,w) = i O, 2™ W™
m,n=0
be an entire function of growth* (2,7) where t =, < co, and = and D
are as defined in (4.11) and (4.9). Then
Case 1: growth (2,0) In this case

(4.15) 5 Ko (80 D) (;7

m,n=

)(m+n+Dﬂ

converges for all real &€ and all 2, Re2 > 0. Moreover for each 2, > 0,
(4.15) converges wuniformly for all real & and || < 4, Re2 > 0. Thus
for each real &, (4.15) represents an analytic function in Re 2 > 0 which
18 continuous for Rei1 > 0.

Case II: order two, type t = tpm, ry, 0 <7< oco; R,R, any two

* An entire function is said to be of growth (¢, ) iff it is of order not exceeding
#, and if its order is ¢/, its type does not exceed 7. The type 7 = tp(r,, R is not spe-
cified in Case I since if tp(&;,z,) = 0 for a particular pair of positive numbers (Ri, R,),
zp = 0 for all pairs (Ri, R,).
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positive numbers. In this case (4.15) converges for all real & and all
4, Rea=0, |21 < 2

(4.16) 2 = 2(()—_1_0/)_7[min (gi’ g:)]z.

The convergence of (4.15) is uniform for all real & and all 3, Rei =0,
2] £ 2 < 4. Thus for each &, (4.15) represents an analytic function in
[2] < 2, Rea > 0 which is continuous in |2] < 2,, Rea1 > 0.

Proof of Lemma 6: We begin with the proof of Case I. Let g
be the order of f(z,w); then by Gol’dberg’s Theorem, [7; p. 339],

4.17 4 = lim sup (m + n) log (m + n)
. (mm)=eo —log lam,nl

(where the quotient on the right is taken as zero if @, , = 0).
If <2, we have for m + n sufficiently large that

(m 4+ n) log (m + n) << 2
—IOglam,nl

and so
Qo < (M + @)=

Thus for (m + n) sufficiently large by Stirling’s formula we see that

p(m_JF;ﬁJr_z)[am,“ < p(l’f%@ﬁ) (m + m)-mrmr

(m+n)/2y
< g-(mtm)/2) ( m + ") o VTOm F m) e/omin (g 4 )= (s /ey
— e—((m+n)/2)2—((m+'n)/2)(n.(m + n))llzel/ﬁ(m+n)(m _|_ ,n)(m+n)(1/2—l/ﬂo) .

Hence, by (4.8), for (m 4 m) sufficiently large

) (m+n+1)/2

iK€ 2) (;7

é 2m+n7r(m+n)/2(b —_ a/)(m+n-—1)/2MB;nB;ze—((m+n)/2)2—((m+n)/2)

r(m 4 n)2e Cmem (g 4 p)mem a/2-1/t0) (L) (m+n+1)/2
2r

Because of the factor (m + n)®*-VFom+m gince (1/2 — 1/p,) < 0, we see

that (4.15) converges for all real ¢ and all 4, Rei>=0. Clearly (4.15)
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converges uniformly for all real ¢ and (2] < 2, < o, Rei=0 and so
for each real &, (4.15) represents an analytic function in Re 2 > 0 which
is continuous for Re 1 = 0.

In order to establish Case I when ¢ = 2 and r = 0, we observe that
by Gol’dberg’s Theorem
(4.18) lim sup (m + w)Y*[|a, .| RFRyY™ ™ =0,

m+n—oo

Now by Stirling’s formula,

(4.19) ’am,,,Km,n(é, 2 (;_ﬂ

) (m+n+1)/2

m+n+ 2

< 2(m+n)n.(m+n)/2(b — a)(m+n—-l)/2['<
= 2

)MB;"B;'Iam,nl

(m+n+1)/2

S 2(m+n)7r(m+n)/2(b _ a)(m-x—n—l)/zMB;nB;),lam nl

(£

(m+n+1)/2

IL o (m+n)/2) ( m+n _> (mM)/zx/mel/e(mm)
2r 2
Thus

1/(m+n)

pi
mnKmn ,2 (_
|G Ko (&5 D) 2

) (m+n+1)/2

é 21/27r1/2(b . a)l/Z(b — a)—l/(2(m+n))M1/(m+n) (Bl )'m,/(m+n)

R,

B n/(m+mn)

. ( 2 e—l/Z[ﬂ(m + n)]l/(Z(m+n))el/(ﬂ(m+n)2)
R,

1/2+1/(2(m+mn))
0+ 00ty | RERFT

2r

and by (4.18), (4.15) converges for all real & and all 4, Re1> 0. The
convergence is uniform for all real & and 2] < 2, < o, Re21 >0 and so
for each real &, (4.15) represents an analytic function in Re 2 > 0 which
is continuous for Re 1 = 0.

We proceed to the proof of Case II, where =2 and 0 <z < oo,
and observe that
(4.20) lim sup (m + n)l|a,, .| RFRY ™™ = 2er

m+n—o

where R, and R, are the radii in the bicylinder D(R,, R,) used to define
the type .
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In order to establish the convergence of the series (4.15), we shall
take the ((m + n)/2) root of the general term and apply (4.8) and
Stirling’s Theorem to obtain for Rei > 0

2/(m+mn)

@.21) |am,nKm,n(s, 2 (zin

) (m+n+1)/2

o 2] e
< 22(b — aye- 1AL [(b — @) 'n(m + n)Mze“‘w’””))——]
2r 2r
Bl ) @m)/(m+n) ( 32 ) @/ » . N
P 2 n)/(m+ m n a’m " RmRn /(m+n)
(Rl A (1 + W]t | RIRE]

< (b — a/)llle[(b — a) 'z(m + n)Mzel/<3(m+n))|2A]1/(m+n)
T
m 4+ n

[lay..|RPR2T/™™ | where Q:max(Bl BZ).

R,’ R,
Let the limit superior,

1/(m+n)

. 2 (m+n+1)/2
lim sup |@p,n K, o(&, 2) (*)
2r

m+n—o

It follows from (4.21) and (4.20) that if Re2 > 0 and 2] < 4, then L <1
and hence the series (4.15) converges absolutely. The remaining state-
ments in the conclusion of Case II follow in the usual way.

By choosing the shape of the region D(R,, R, so as to maximize 2,
the formula for 2, will be simplified.

LEMMA 7: Let 6, ¢, B, By, ¥ and f(z,w) satisfy the conditions of
Lemmas 5 and 6. Let r and D be defined as (4.9) and (4.11), and let
A = (R, R,) be defined as in (4.16). Then for fivred B,, B,,

4.22) max A(R,, R, = (B, B, .
R1,R2>0
Thus
(4.23) max (R, R,)) = [2(b — &)tpp, 5,y] 7" -
Ri,R2>0

Proof of Lemma 7: We observe from (4.20) that ¢ is a monotoni-
cally increasing function of R, for fixed R, and vice versa. We further
observe that r is positive homogeneous of degree 2 in (R,,R,). Hence
by the definition (4.16), 1, is homogeneous of degree zero in (R,, R,).
Thus if R,/B, = R,/B,, (R, R) = 1(B,,B)). If R,/B, < R,/B,, take R} =

https://doi.org/10.1017/50027763000015749 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015749

OPERATOR VALUED FUNCTION 111

(B,/B)R,, then R; <R, and R,/B, = R;/B,. Since r is monotone in-
creasing in R,, it follows that A(R,, R,) < A4(R,, R)) = A(B,, B,). Also if
R,/B, > R,/B,, we have 1(R,, B, < 2(B,, B,) by the same argument and
we have proved (4.22); and (4.23) follows from (4.16) and (4.22).

§5 Ecxistence Theorems for I,(F) and I2*(F):

LEMMA 8: Let 6,0, and K, ,(§,2) be as in Lemma 5. Let

(5.0) Few) = 3ty 2" w"

m,n=0

be an entire function of growth (2,0) and let
G.1) F@) = 7| [ os, wnas, [ act, attnat]
and let 2 be real and positive. Then (L(F)WW)(E) exists for all real &, and

(5.2) LFW(E) = f ]F @ 4 YA (b)

Cola,b

o 2 (m+n+1),
= Z a/m,nKm,n(gy /2) (*)
2r

m,n=0

Proof of Lemma 8: Case 1: Let 4,¢,,0a,,, be real and non-nega-
tive and let f, (2, w) and F, ,(x) be defined as in (4.2) and (4.3). Then
the calculations at the beginning of section 4 are justified, and by (4.5)
and (4.7) we have

) (m+n+1)/2

[ Faae 4 09GPa) + 9dz = Knal, (2
Cola,b] 27
Hence, setting p = 17?, we have by Lemma 6 and the Fubini theorems

1= EWE = j Fo o + Ow(ox(b) + £)da

ola,d]

- I 2 P+ o0 + Oz

= am,nj“ Fulo® + e (®) + Hda

m,n=0
2 (m+n+1)/2
- Z am,nKm,n(s, 2) (4) < +o0.
m,n=0 271'

Thus Case I is established.
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Case II (The general case): The proof is exactly the same as the
proof of the general case of Lemma 3.

THEOREM 4: Let 6(s,u) and ¢(s,u) be measurable in the strip [a, D]
X (—o0,0), let 6(s,-) and ¢S, ) be of class ¥ (—o0,0) for sela,bd]
and ||6(s, )|, < B, and ||¢(s, )|, < B, for almost every sela,bl and let

"1!" € gl(_oor 00)7 H‘!’Hl é M. Let
(5.3) F@w) = 3 Qe

be an entire function of growth (2,0) and let

(5.4) F(2) = fU:&‘(s, (s))ds, ﬁga(t, x(t))dt] .

Then I™(F) exists and is a bounded operator taking £, into Z.; and
I(F)y is weakly analytic as a vector valued function of 2 for Rei > 0.
Moreover for each 2, Rei > 0, the function (I(F)WW)(E) has the repre-
sentation

oo 2 (m+n+1)/2
(5.5) UEEME) = 3 dpuKnalé, D) (EE)

myn=

for all real & and for each fixed real & I(F)¥)(E) is analytic in A for
Re 21> 0.

COROLLARY 1 TO THEOREM 4: Let 6,¢,B,,B,,v,M and f(z,w) and
F(x) satisfy the hypothesis of Theorem 4. Let

J*@w) = 2, [Gna|2mw" .

m,n=

Let v/ be any positive number and let N(z') be an integer greater than
one such that when m + n > N(7’),

(M + W|@p | BPBY ™ < 27"

Then whenever |2] < [27(b — a)]7Y, it follows that for all real &,

|T=EFWE))|
2\ — -
éM(__Zn:(b—a)) TGN + DB 20 = D[A], B 20 = )[A])
212 \"*y o33
—|—Me(b_ ) [1— V&= a2
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We note that the existence of N(z’) in the hypotheses follows from
(4.18).

Proof of Corollary 1: By (5.2),

I = [AsEWE| < 3

m,n=0

Z (m+n+1)/2
(3)  omoKal-

Now from (4.8) we have

2 (m+n+1)/2
(3e) " Oneke

m+n=N(s’)

(m+n+1)/2
‘ am N I 2m+ nn.(m+ n)/2

A

2r
(b — aymsnvep (MR E 2 ypepy
< F(M + 1>M(_L“_>m
2 27(b — a)
-f*BW 2(b — a)|], B,V 200 — a)|2]).
Also by (4.19) and the hypotheses of the corollary,

( 2 >(m+n+1)/2
m+nSN(E) \

<

m+n=N(z")

a’m,n m,n

é Z 2m+n”(m+n)/2(b . a/)(m+n—1)/2MBInB2n|am,n, (lzz_n,.

) (m+n+1)/2
m+n>N(c")

o
.e—<m+n>/2( m+n )(mm Va(m + n) e om+m

2

Z %(b — @)D/ g D=3y . )3
m+n T

[im + n)(m+n)/2B{nB;lam,n‘] < i %(b — @)(mFn=D/2| g |(mtn+D)/2
m+n=0
,e-(m+n)/2(m + n)1/2(2e‘[/)(m+n)/2

__lgl__ s L NK2] B2 DA\ RS2
s Me(z(b — a)) ;ok(k + DO — a)*”[2["(2)

[4] RE TN e e v TR
<2Me(2(b_a)) 1 — V26 — a)[A]]

when 2(b — a)7’|2) < 1, and the Corollary is proved.

The proof of Theorem 4 is omitted because it is parallel to the proof
of Theorem 1 with the Lemmas 5 and 8 taking the place of Lemmas 1
and 3.
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We next consider the case of order two, type 7, 0 < z < .

LEMMA 9: Let 6,¢,v,B,, B, and K, ,(§,2) be as in Lemma 5. Let

(5.6) f@ = 3 2"
m,n=0
be an entire function of order two, type z, 0 <z < oo, where t = tpp, 5,
and let
.7 F(z) = fU" o(s, 2(s))ds, Ib¢(t, x(t))dt] .

Then for all real & and real 2 satisfying 0 < 2 < 4, = [2(b — a)z]7,
(5.8) (LF)W)(E) = L[ b]F’(X‘l/zx + @ x(d) + Hdx

= 3 K&, D (L
m,n=0 27[

) (m+n+1)/2

The proof is similar to that of Lemma 8. The region of con-
vergence of the series is as above where the value of 2, is given by
equation (4.16).

THEOREM &5: Let 6,¢,v,B,, B, be as in Theorem 4. Let

(59) f(z? w) = Z”: am,nzmwn
m,n=0
be an entire function of order two, type 7, 0 < ¢z < oo, where t = v, py,
ond let
(5.10) Fz) = be o(s, 2(s))ds, f ot x(t))dt] .

Then I*(F) exists and is a bounded operator taking £, into &. and
In(Fyr is weakly analytic as a vector-valued function of 2 for 1e¢0 =
{2A|Re 2> 0, |2] < A} where 2, = [2(b — a)c]"'. Moreover for each 2e R,
the function (I2(F)v)(&) has the representation

P (m+n+1)/2
(.11) APEWIE = 3] b Kol Do
m,n= T
for all real &, and for each fixed real & (IZ(F))(E) is analytic A for
Ae Q.
The proof of Theorem 5 which parallels the proof of Theorem 2 is
omitted.
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The exponential function f(z,w) = exp (2w) provides an interesting
special case. Direct computation shows that the order of f is two and
its type 7 = tp@y, zy = RiR,.

COROLLARY 1 TO THEOREM 5: Let 6,¢,v,B,,B, be as in Theorem
b b
5 and let F(x) = exp U acs, x(s))dsj o(t, x(t))dt]. Then I™F)y exists

and is weakly analytic as a wvector valued function for Rei >0, |1 <
[2(0 — a)B,B,]™".

COROLLARY 2 TO THEOREM 5: Under the hypotheses of Theorem 5,
the estimate obtained in the Corollary to Theorem 4 still holds provided
that z/ > .

§ 6 Existence Theorem for J,(F): We now proceed to the limiting
case where 2 is purely imaginary.

THEOREM 6: Let 6(s,w) and ¢(s,u) be measurable in the strip [a, bl
X (—oo,00), let 6(s,-) and ¢(s,-) be of class #(—oo,c0) for sela,bl
and ||6Gs, )|, = B, and ||¢(s, )|, = B, for almost every secla,b] and let
YeL(—00,00), ||, <M. Let

(6.0) f@w) = 3 a, 2mw"

m,n=0

be an entire function of growth (2,7) where t = tpp, 5, < oo, and let

®6.1) F(z) = f[ f b o(s, 2(s))ds, f :¢(t, x(t))dt] .

Then:

Case 1I: growth (2,0). In this case J,(F)y exists and is of class
Z. for each e, and each real q, q 0. Moreover J (F)y has the
representation

6.2) TEWE = 3] oK (&, —i0) (L

) (m+n+1)/2
myn= 2n1

for each real & and each real q, q +# 0.

Case II: order two, type 7, 0 <t < oo. In this case J (F)y exists
and is of class &£, for each V€ £, and each q, 0 < |q| < 2, = [2(b — @)z]7},
and (J,(F)y)(&) has the representation (6.2).

The proof of Theorem 6 parallels the proof of Theorem 3 and will
be omitted.
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Remark: TUnder the hypotheses of Theorem 6
lim (I3 (F))(E) = (J,(F))(E)

A-—1iq

uniformly in ¢ and ¢ for all real ¢ and [g| < ¢, < 4, where we take
A, = oo in Case I.

III An application to integral equations

§7 Integral equations Re 1 > 0: We shall now apply our results on
operator valued function space integrals to obtain the solution of a pair
of simultaneous integral equations. In doing this we shall need to vary
the interval over which the functions in our function spaces are defined
and continuous. Therefore when it is necessary to specify the interval
we shall do so as follows:

(Ix,[a,b](F)‘[f)(E) = (L@ .

At times it will be convenient to have an element x(-) e C,[la,b] defined
for all real values of the independent variable. We shall extend the
definition of z(t) by requiring the function to be constant on (—oo,a]
and [b, +c0). Thus z¢cCyla,d] implies that x(f) is continuous for all
real ¢t and x(t) = 0 for te(—oo,a] and xz(t) = z(b) for tc[b, +o0). The
following property of Wiener integrals (see E. Cuthill [6]) will be used
in the proof of Theorem 7:

I Fx)de = I Fly + 2)d(y X 2)
Cola,b] Cola,clXCole,b]

where the existence of either side implies the existence of the other and
their equality.

THEOREM 7: Let 0, ¢, and 4 be as itn Theorem 6 and let

(7.0) E = E(t,2) = exp {S" a(s, x(s))ds}
and let
@.1) F = F(t,2) = B, x)f’ o(s, 2(s)ds .

Let Read > 0 and let
(1.2 G(t, &, 2 = (I3, ,(E)W)(E)
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and
(7.3) H(t’ E, '2) = (I%,n[t,b](F)ll’)(S) .

Then G and H satisfy the following pair of simultaneous integral equa-
tions on [a,b) X (—oo,0):

G, &0 = [ﬁ]m Tw«p(v) exp (%((bv'—_t—i)z) dv
+ [227]/]”(3 — [ (s, 2)G(s, 2,2

-exp [M] dvds

2(s — t)
(7.4) H(t, &2 = ( EZE )1/2J‘j(s _pn i’wG(s,?},Z)go(s,v)

cexp [ TAW = &F

exp[ s — 1) ]dvds

2 1/2 fb _ i -

+ (27L'> 5(8 t) _Wﬁ(s, W)H(s, v, /2)
cexp | A0 = &F

exp[ 2%s — D) ]dvds.

Proof of Theorem T7: We shall begin by observing that for i real
and positive,

(7.5) G, &, = (LEW)(E) = L b]E’(t, px + EP(pa(b) + Edx

o[t

and

(7.6) H(, &0 = LF)W)E) = I b]F(t,px + OV (px(d) + Hdx

Colt
where 172 = p.

The Wiener integrals above exist by Lemma 8 where we have taken
f(z,w) = e or we* which are of appropriate growth. We next establish
the second of the integral equations (7.4) for A real and positive. Dif-
ferentiating (7.0) and (7.1), we have for almost all ¢

Fi(t,2) = —o(t, 2(O)EE, ) — 0, 2(D)E(E, x)jbga(s, x(s))ds .

By the fundamental theorem of the integral calculus for Lebesgue inte-
grals, we have for ¢ <7 < b,
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n@m:I%mﬁmEm@ﬁ+J72@x®mwmﬂmEmmﬂ.

If we replace x by px + & and multiply by (ox(b) + & where p > 0 and
& is real, after taking the Wiener integral over C,[r,b], we obtain

waum+aww@+am

D = [ [ ot 020 + OB, 02 + Odtior®) + D

+ SC[ ) jb ﬁgo(s, px(s) + &)dso(t, px(t) + &E(, px + s)dt]
“A(ox(d) + Hdx .

The Wiener integrals on the right exist because (7.7) would hold if
o, 0, and { were replaced by their absolute values since the left hand
side would still exist by Lemma 8. The new right hand side would
then dominate the old. The domination just mentioned permits us to
use the Fubini theorem on the right hand side.

We obtain from (7.6) and (7.7) that

(1.8) H(z,&, ) = ”[ ot 0a(t) + OB, pz + Y (ead) + Hdadt

A(px(d) 4 E)dxdt,

where both integrals on the right hand side exist as finite numbers.
Hence, we have by the Cuthill Theorem,

H( 6,0 = H[ el pU(®) + 2(t) + DFou(D) + (D) + O
-exp {jfa(s, oU(s) + pa(s) + s)ds} d(y X 2)dt

+ '[bjc[ - b]_{bﬁo(s" oY(s) + pr(s) + &)ds’6(t, py(t) + pz(t) + &)

t

A (oy(b) + p2(b) + &) exp {jfa(s, oy(®) + p2(s) + Ods|dly x Dt
where
(7.9 for selr,t], 2(s) = 0, and for se[t, bl, y(s) = y(t).

By the Fubini Theorem and definitions (7.9) we have
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H(s, 8,0 = j ”L[ . [ o oD + Deu(®) + 2(D) + §

-exp { j "0Gs, py(® + p2(s) + g)ds} dedydt
(7.10) !

o 0 4 t 7 d 4

b
Vou®) + p20) + & exp {[ 065, p0(8) + p2(5) + &)ds} dedydt
In equation (7.5), we replace {-‘ by py(®) + & and thus obtain using (7.0)

G, oy®) + &1 = j exp {rﬁ(s,py(t) + p2(8) + &)ds}
Col#,5] ¢
-Ar(py(t) + pz(d) + &)dz .
Similarly from (7.6) and (7.1) we have

Ht, py(®) + £,7) = j exp Ubﬁ(&py(t) + ox(s) + s)ds}
Colt,0] t
: j jgo(s',py(t) + oa(s)) + s (oy(®) + p2(b) + E)dz.
Substituting in (7.10) we obtain
He, o) = [[ ot ou®) + 06, pu(®) + & Dilyit

+ J‘DL [c, 0(t’ ey(®) + HH(E, py(®) + &, Adydt

- I mj o(t, ou + G, pu + &, 2) exp {m} dudt
J mj 0(t, pu + OH(E, pu + &, 2) exp {(——T)} dudt
_ (217) ” b(t o) lﬂj o(t, V)G(t, v, 2) exp {:2*_((;’_:?‘;5)_} dvdt

2\ Y —Av — &)}
+ (§> - /f_wa(t,v)ﬂ(t,v,z) exp {m} dvdt .
Thus we have obtained the second of the integral equations (7.4) for 2
real and positive. The first of the integral equations (7.4) is obtained
in a similar manner. We now use analytic extension to show that
(7.4) holds for Re2 > 0. By Theorem 4 for each fixed (¢,¢) in [a, b] X
(—o0, ) G(t, &, 4) and H(t, &, A) are analytic in 2 for Re 1> 0 so that the
left hand members are analytic. To show that the right hand members
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are analytic we note that for {Re2> 0} N {{2] < 2}, the inner integrands
are dominated by |v|, |6G|, |¢G|, |§H| which are of class %, in v for
every s on [a,b). Thus the inner integrals are analytic functions of 2
for Re1> 0 and each sela,b). Moreover the integrand of the outer
integrals are of class .#, on [t, b] since the inner integrals are dominated
by the corresponding %, norms which are bounded in s because of the
estimates given in the Corollary to Theorem 4. Thus the double inte-
grals and in fact the right hand sides are analytic. Thus the analytic
extension argument is complete and the integral equations (7.4) hold for
Rei> 0.

§8 Imtegral equations Re 1 = 0: Finally we take limits as 1 — —iq
in (7.4) to obtain the following theorem.

THEOREM 8: Let 0, ¢, and + be as in Theorem 6 and let E and
F be given as in (7.0) and (7.1). Let q be any real number, ¢ + 0 and

let
(8.1 L(,8,9 = (Jq,[z,b](E)\I’)(S)
(8-2) %(t) 5; Q) = (Jq,[t‘b](F)‘I/')(s)

Then & and # satisfy the following pair of simultaneous integral equa-
tions on [a,b) X (—oo,0):

P&, q) = [mﬁi‘tf]mﬁ‘””) exp [%H} o

+ (%ﬂ) mjj(s — t)‘”zjle(s, )F(8, v, Q) exXp [%g—:—gz—] dvds

H(t,§,q) = [%]mf:(s - t)‘”zjlso(s, v)L(8,v, Q)

. tqg(v — §)°
exp [—_2(3 —5 ]dvds

+ [Zim] “/zjj(s _ ) j C 06, 0) (5,0, 0)

) iq(v — &)
exp [——————2(8 _— ]dvds .

(8.3

Proof of Theorem 8: Let q be any real number, ¢ = 0. By hy-
pothesis, (7.4) holds for Re2> 0. By the remark after Theoreom 6,
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G—% and H— # as 1— —iq, Re2 > 0. Again by the Remark after
Theorem 6, and the fact that ¢ and ¢ are of Class %, the inner inte-
grals of (7.4) approach the corresponding inner integrals of (8.3). More-
over the inner integrals in (7.4) are bounded in s by the estimates given
in the Corollary to Theorem 4. Thus by Lebesgue’s convergence Theorems
the result follows.

Remark: It can be shown that the solutions of the integral equa-
tions (7.4) and (8.3) are unique* by the standard technique of successive
substitution. Theorems 7 and 8 have been obtained and expressed with
the purpose of obtaining solutions of integral equations in terms of
integrals in function space. We point out in Theorem 9 that the op-
posite point of view can be taken and integrals in function space can
be evaluated in terms of solutions of integral equations.

THEOREM 9: Let 6, ¢, and i be given as in Theorem 6 and let q
be any real number, q += 0 and let

A(®) = exp {ﬁa(s, x(s))ds}

B) = A(x)j" o(s, @(s))ds .

Then J, 0 (A and J, . (B exist and are elements of £.(—co,c0).
Moreover they are given by (J, 4,1 (A& = L(a,§,9) and (J, o ,1(BIV)(E)
= #(a,&,q), where L&, q) and H(t,&,q) are the (unique)* solutions of
8.3) for a <t <b, —co < &< oo0.

Clearly this is a restatement of Theorem 8.
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