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AN OPERATOR VALUED FUNCTION SPACE INTEGRAL

APPLIED TO MULTIPLE INTEGRALS

OF FUNCTIONS OF CLASS Lx

R. H. CAMERON AND D. A. STORVICK1

§0 Introduction: In a recent paper [2], an operator valued function
space integral was defined by the authors as follows.

DEFINITION : Let C[a, b] be the set of real continuous functions
defined on [a, b] and C0[a, b] the subset of C[α, b] whose elements vanish
at α. Let F be a real or complex functional defined on C[α, 6], let ψ
be a measurable function on (—00,00), let ξ be a real variable and λ a
positive parameter. Let Iλ(F)ψ be the function whose value at ξ is

(0.1) dλ(F)Ψ)(ξ) = ί F(λ~1/2x + ξ)ψ(λ~1/2x(b) + ξ)dx
J(7oCα,δ]

and let Iλ(F) be the linear operator that takes ψ into Iλ(F)ψ.
Here the integral is understood to be Wiener's integral over the

function space C0[α, 6]. In [2] and also in [3] and [4], the function ψ
was taken to be of class «Sf2 and the classes of functionals were such
that Iλ(F) was a bounded operator taking Jδf2 into itself. In [5] ψ was
taken to be in J2PX and functionals that made Iλ(F) a bounded operator
from ££x into «£?«, were studied.

In the present paper we shall continue to study the operator valued
function space integral defined in [5] for new classes of integrals. In
part I we shall study integrals of functionals of the form

(0.2) F(x) = /IT ΓW, «, x(s), x(t))dsdt\

for / an entire function. In part II we shall study integrals of func-
tionals of the form

Received December 6, 1972.
1 Research sponsored by N.S.F. Grant—GP 28732.

91

https://doi.org/10.1017/S0027763000015749 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015749


92 R. H . CAMERON AND D. A. STORVICK

(0.3) F(x) = /(Γθ(8, x(s))ds, Γφ(tf x(t))di

for / an entire function of two complex variables. In part III we shall
apply the results of part II to obtain the solution of a pair of simultane-
ous integral equations in terms of our integrals in function space and
vice versa.

An operator If"(F) was defined in [2] as the analytic continuation
of IX(F) to Re λ > 0 when such an extension exists, and it was proved
to exist for certain classes of functionals. In particular, it was shown
that iTiF) exists as an analytic vector valued function of λ on Re λ > 0
for functionals of the form

(0.4) F(x) = exp jfVs, xis))ds

where θit,u) is continuous almost everywhere on R = [a, b] x (—00,00)
and Re θit, u) <. B on R and 0(ί, u) is bounded on every compact subset
of R. This result was obtained by defining an operator /fq(F) as a
weak limit of a certain sequence of operators and then showing that
7f q(F) = IxiF) for real positive λ and 7fq(F) is analytic on Re λ > 0. Thus
Ifq was shown to satisfy the definition of 7*n(F) so IfiF) = 7fq(F) on
Re λ > 0. Moreover it was shown that for Re λ > 0 and ψ e &2, \\I?iF)ty\\z

^ exp [B(b — α)] ||ψ||2. In [5] and in the present paper, 7}n(F) is defined
as an analytic extension of IλiF) to R e i > 0 or to {ReΛ > 0} Π {\λ\ < λo},
and for each fixed λ, I^iF) takes Jίfj into Jδf̂ . An existence theorem is
given for I^iF) for functionals of the form (0.2) where θis,t,u,v) is
measurable in all its variables, θis, t, , •) e S£λ and \\θis, t, , )||i ^ B.
For functionals of the form (0.3), θ and φ are both required to be
measurable and of class «Sf\. In both cases I\\F) is shown to be a
bounded operator from S£λ to «£?«,. The proof is not given in terms of
the analogue of 7fq(F) as defined in [2], [3], [4], but follows the technique
of [5] where it was shown that If*iF) might fail to exist.

By a limiting procedure, If'iF) is extended in [2] and in the present
paper to the imaginary axis ReΛ = 0 or to {Re/I = 0} Π {\λ\ < λ0}, and
the resulting operator is called JlniF), where q corresponds to —iλ. An
existence theorem for this operator was given in [5] for all q Φ 0 and
in the present paper a similar extension to the imaginary axis is given.
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In [2] the authors present motivation and relationship to the early work
of Babbitt, Nelson, and others.

I Analytic functions of double integrals

§1 Preliminary Lemmas: In order to deal with functionals of the
form (0.1) where f(z) — Σ ^ = o α ^ n is an entire function, it is convenient
to start with the case f(z) = zn. Let us consider the functional

(1.1) Fn(x) = [£JVs, t, x(s),

where θ(s,t,u,v) is measurable in all its variables and θ(s,t, , 'Jeif/i?2)
and \\θ(s,t, , )||i ^ B. We shall later show the existence of Iλ(Fn) for
all positive λ, but in order to motivate the rather complicated expres-
sions appearing in Lemma 1, we first evaluate Iλ(Fn) formally.

NOTATION : throughout the paper, λ~1/2 = p.
From the definition of Iλ(F) given in the introduction we have

Iλ(Fn)ψ)(ξ) = f ( f fVβ, t, px(s) + ξ, px(t) + ξ)dsdt\n

-ψ(px(b) + ξ)dx = ί Γ — Γ Π θtej, tj,px(sj)
J C0[a,b]J a J a j = l

+ ξ,px(tj) + ξ)dsr -dsndtr dtnψ(px(b) + ξ)dx

= Γ (1 n) Γ f I π ft* J> tj> pχ(^ + f >
-ψ(px(b) + ξ)dxds1- -dSndt^ dtn ,

where θ(s, t, , •) e ^(Z?2) and ||^(s, t, , )||i ^ £ and ψ e ^ ( - o o , oo). We
now let r1? , r2n be the set of numbers slf , sn, tj, , tn in some
rearrangement, and let P be the set of all permutations of {1, , 2n\.
If we set Sj = rTOy and ί̂  = rkj and evaluate the Wiener integrals we
obtain

(Iλ(Fn)ψ)(ξ) - £ [(2τr)2w+1(r1 - α)(r2 - n ) . . . (r2TO - r 2 n . x )
(rm i, ,rm 7 l,r f c l,...,r^)GP

'(δ - r2n)]M . . . (2.B.+;} Π θ{rmj, rtJ,Pumj + f , p u t ί + ξ)

J aj a JαJ-oo J - oo j = ι

_ _ 1 / 2 2 - ^ ^±ziL^\dur - *dM2ndu2n+1drr . dr2TO ,

where r0 = α, r2w+1 = 6, and u0 = 0. If we make the transformation
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9 4 R. H. CAMERON AND D. A. STORVICK

Dj = pUj + ξ = ̂ " v % + ξ we obtain

p \ ^ 2

[ ( r i _ α ) t ) .(6-rϊn)]"^

Γ°° (2τi + l) f°° Γ n

-i/2Σ y ^ ~ ^

In the following lemma we shall establish the existence, continuity and

.analyticity of the sum appearing in equation (1.3) and thus justify the

preceding manipulations.

LEMMA 1: Let θ(s, t, u, v) be measurable in the region R = {(s, t,u,v)\a

<s<b, a<t<b, —oo<u<oo, — o o < ^ < oo}, let θ(s,t, , •) be of

class Sf^R2) and \\θ(s,t, , OIL ̂  B, i.e. \ \ \θ(s,t,u,v)\dudv < B, for

almost every s,te [a, δ], and let ψ e ̂ ί —oo, oo), \\f\l < M. Let Re λ > 0

and Ko = K0(ξ,X) = , 1 Γ ψ(vj exp \ ~λvl \dv19V 6 — a J -oo I 2 ( 6 — α) J

Σ Γ Γ
-,m«,ii,'",fcji)6Pj aj a

o J-ooLy=i•exp {-

where P represents the set of all permutations of 1, , 2n, and v0 = ξ

and a = r0 < r1 < < r2n+1 = b for n = 1,2, . Tftew /or n = 0,1,

2, , ULΛ(f, X) exists and is continuous for all real ξ and Re λ > 0 and

for each real ξ, K(ξ, X) is analytic in λ for Re λ > 0. For Re λ > 0

a.5) |KW| ^ Mn Ξ 22wτrw(& - aY2n-1)/2(n\)MBn .

Proof of Lemma 1: The integral for the multiple integral defining

Kn is measurable so that we need only establish the integrability of the

absolute value of the integrand to prove the existence of Kn. This will

loe established in the inequalities below. Since Re λ > 0, the function

iKn(ξ,X)\ satisfies
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\Kn(ξ,λ)\ ^ Σ Γ Γ" * Π [ ( r ' - α)(r2 - r d
P J aj a J a

J_ <2 π + f\ r • dv2n+1drr dr2n

S ΣBnMΫ Γ2n Γ[(n _ α) -(6 - O i - ^ n dτ2n
P J aj a J

= (2w)! £ " M Γ Γ " • • • Γίir, - α) (b - r2 J ] - 1 /

J α J a J a

If we set Uj = (r, — Tj^/ib — α), so r^ = α + (^ +

^ du2n ,

where J = {(u19 ,^ 2Jl^i + 2̂ + + ^2n ^ 1}.
Evaluating this integral as Dirichlet's Integral (see [9; p. 258]) we obtain

\Kn(ξ,X)\ ^ a Y ϊ \ l
Γ(ri) J 0

= (2n)! β»M(δ - a)*~™Γa/W Γ(l/2)Γ(n)
Γ() Γ((2 + l)/

= (2n)! SWM(6 - α) ( 2 w

Γ((2n

Legendre's duplication formula for the Γ function, 222"T(2;)Γ(^ + 1/2) =

(see [9; p. 240]) becomes when s = (2n + l)/2, 22nΓ((2n + l)/2)

! and so

Thus |Xn(f,i) | ^ (6 - ay2n~v/2BnMπn22nnl = Mn.

Because #„(£, ϋ) is expressed as a multiple integral with ^ appearing in

the integral only in an exponential we may conclude that Kn(ξ,X) is

continuous for all real ξ and Re λ > 0 and that for each real ξ, Kn(ξ, X)

is analytic in λ for Re λ > 0.

Γ Γb ft) ~]n

Corollary to Lemma 1: Let Fn(x) .= 0(s, ί, #(s), x(ί))c?sdί then

(7a(Fn)ψ)(f) e^isίs /or reαί ί > 0 and (/,(FJψ)(f) = Xn(f,Λ)«/2τr)n.

This corollary suggests the following definitions (see also [8] for a

discussion of analytic vector valued functions).
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96 R. H . CAMERON AND D. A. STORVICK

DEFINITION: Let A( X) be of class «#„,(—00,00) for each 2 in a

domain Ω of the complex Λ-plane. We shall say that A( λ) is a weakly

analytic vector valued function of λ throughout Ω if A(ξ,λ)φ(ξ)dξ is
j —00

analytic for 2eΩ for each φe J^C— 00, 00).

DEFINITION: Let Ω be a simply connected domain of the complex

Λ-plane whose intersection with the positive real axis is a single non-

empty open interval (a, β). Let F be a functional such that Iλ(F) exists

for λe(a,β). For each ψe-S^ί —00, 00) let a function AU ψ) exist as a

weakly analytic vector valued function of λ for Λ e β, AW ψ) e ^ ( — 0 0 , 00)

and let Atf Ψ) = 7/F)ψ for λ e (α, j8) and ψ e jδPx(— 00, 00). Thus we define

for Λeβ and ψej£?i(—00,00). Let 7jn be the operator that takes ψ into

IT(F)Ψ for ψeJδfiί—00,00).

We note that if it exists, Jf^F) is uniquely defined and is a linear

operator that takes £PX(— 00,00) into ^f^ί—00, 00).

LEMMA 2: Lei θ,ψ satisfy the conditions of Lemma 1 and let

Kn(ξ9λ) be defined as in Lemma 1. Let

(1.6) /(«) = Σ α»«n

6e an entire function of growth* (l,τ) where τ < 00.

Case / : growth (1,0). Jw ίfeis case

converges for all real ξ and all λ, Re λ ^ 0. Moreover for each λ0 > 0,

(1.7) converges uniformly for all real ξ and \λ\ ^ λ0, Reλ > 0. Thus for

each real f, (1.7) represents an analytic function in ReΛ > 0 which is

continuous for Re λ > 0.

Case 77: order one, type τ, 0 < τ < oo. 7n ίMs case (1.7) converges

for all real ξ and all λ, ReΛ > 0, |^| < Λ = (2(& — a)βr)"x and converges

uniformly for all real ξ and all λ> ReΛ > 0, \λ\ < λ'o < λQ. Thus for each

* An entire function is said to be of growth (μ', τr) iff it is of order not exceeding
μ' and if its order is μ', its type does not exceed τr, (see [1; p. 8]).
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ξ9 (1.7) represents an analytic function in \λ\ < λ0, ReΛ>0 which is
continuous in \λ\ < λ0, Reλ > 0.

Proof of Lemma 2: We begin with the proof of Case I. Let μ be
the order of f(z) then

(1.8) = lim sup n l o g n

log(l/|αn|.

(where the quotient on the right is taken as 0 if an = 0). If μ < 1, we
have for n sufficiently large that

nlogn
log(|l/αn[

< ft < 1,

and so \an\
μ° < n~n.

Thus for n sufficiently large, by Stirling's formula we see that

n\\an\ ^ nln-n/μ°

Hence by (1.5), for n sufficiently large

anKn(ς,X)(-±- <z(b- ay2n-1)/2BnM2n\λ\ne-nV2πn e1/12nn-n{

Because of the last factor, we see that (1.7) converges for all real f,
and all λ, Re λ ^ 0. Clearly (1.7) converges uniformly for all real ξ
and \λ\ < λ0, Reλ > 0 and so for each real ξ, (1.7) represents an analytic
function in Re λ > 0 which is continuous for Re λ > 0.

In order to establish Case I when μ = 1 and τ = 0, we observe that
limsup w|αj1/ri = 0. (see [1, p. 11]), and hence J]~=on

nanz
n is an entire

7l-»oo

function. By Stirling's formula it follows that Σζ=on\ anz
n is an entire

function.
Now

(1.9) ^ M(b - ay2n~1)/2Bnπn22nnl \an\

= M(b -a)-1/2n\\an\Zn

2π

where Z = 2(6 — a)B\λ\. Therefore (1.7) converges for all real ξ and all
λ, Re λ > 0 and the convergence is uniform on compact subsets and Case
I is established.
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98 R. H. CAMERON AND D. A. STORVICK

We proceed to the proof of Case II, where μ = 1, and 0 < τ < oo,

and observe that

limsup w|αn |1 M = eτ .

By Stirling's formula, with 0 < δn < 1,

(1.10) lim ( » 1 ) V " = lim ( 2 * ^ exp (3π/

Thus

lim sup \n\ anf
/n = —er = τ ,

and thus 2 ϊ = o ^ ! M n is a n analytic function in the disk \z\< τ~\ By

(1.9), (1.7) converges for all real ξ and all λ, Re^ > 0 such that 2(6 - α)βμ |

< r"1, i.e. for 1̂1 < Λ = (2(6 — a)Bτ)~\ Moreover the convergence of (1.7)

is uniform for all real ξ and all λ, Re λ > 0, \λ\ ^ ^ < Λ Hence Lemma

2 is proved.

§ 2 Existence Theorems for Iλ(F) and /}n(F): We begin by establishing

the existence of IT(F) for real λ > 0.

LEMMA 3: Let θ, ψ, and Kn(ξ,λ) be as in Lemma 1. Lei

(2.0) f(z) = Σ αB«»

δe α^ βnίire function of growth (1,0) ami ίeί

(2.1) F(») = /ΓΓ f «(s, t, x(έ), x(t))dsdt] and λ > 0 .

(Iλ(F)ψ)(ξ) exists for all real ξ, and

(2.2) (h(F)ψ)(ξ) = ί ί\
Jί70[α,δ]

( •) \ 1/2 o»

-A. Σα.(f,i)
2π I n=o \ 2π

Proof of Lemma 3 : Case I : Let θ, ψ, α0, a19 be real and non-

negative. Then the calculations leading to (1.3) are justified and we

have
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(2.3) ί iff*θ(s, t, px(s) + ξ, px{t) + ξ)dsdt\"ψipxψ) + ξ)dx
Jco[α,δ] [J aJ a J

(2n +

where as before p = λ~1/2.
Hence,

(2.4) / = f F(px + ξ)ψ(px(b) + ξ)dx
JCoCα,&]

= f Σ α»|Γ [*θ(s, t, px(s) + f,
JC0[α,δ] w = 0 IJ αj a

f #„(£,*) ^ +00.

By lemma 2, Case I

(2.5)

converges for all real ξ and all λ, Re λ > 0. Thus we may conclude
that the last member of (2.4) is finite for all real ξ and λ > 0.

Case II (The general case): Let θ, ψ, α0, a19 be complex valued.
Note that 1̂ 1,1̂ 1,1̂ 1,1̂ 1, satisfy the special hypotheses of Case I.
Each of the integrals and sums that would occur in the proof of Case
I applied to these positive quantities would be finite and hence the proof
given in Case I may be applied to complex θ, ψ, α0, <xx, because all
the steps would be justified by the domination which would be provided
by Case I applied to |0|,|iH,|aoU

ail» * * '•

THEOREM 1: Let θ(s,t,u,v) be measurable in the region R = [α, 6]2

X R\ Let θ(s,t, y>) be of class ^>

1(R2) and ||0(s, ί, , )||i ^ B, and let
ψ e ^ - 0 0 , 0 0 ) , HΨlli^M. Let

(2.6) /ω = ΣX*n

be an entire function of growth (1,0), and let

(2.7) F{x) = f\[b f θ(β, t, a?(s), x(t))dsdt\ .

Γfeβ^ iTiF) exists and is a bounded operator taking ££x into &'^ and
is weakly analytic as a vector valued function of λ for Re λ > (L
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100 R. H. CAMERON AND D. A. STORVICK

Moreover for each λ, Re λ > 0, the function (Itn(F)ψ)(ξ) has the repre-

sentation

(2.8) ( /?W)(£) = V Ί Γ - Σ <>>nKn(ξ> X) U - ) "
2ττ ™=o \ 2π I

for all real ξ and for each fixed real ξ, (/^n(F)ψ)(f) is analytic in λ for

Re λ > 0.

Proof: By Lemma 2, we see that (2.5) converges for all real ξ and

ReΛ > 0 and converges uniformly for all real ?, Re λ > 0, \λ\ < λ0 for

each finite λ0. Set

2ττ w=o

Thus by Lemma 1, k(ξ,X) is analytic for ReΛ > 0 and

where Mn is defined in (1.5). Let <pe SPλ{—oo, oo). We consider

(2.11) Γ k(ξ,λ)φ(ξ)dξ
J — oo

and a sequence Λ1? ^2, ̂ 3, —> λ. By Lebesgue's convergence Theorem,
Λoo

we see that k(ξ, X)φ(ξ)dξ is continuous in λ for Re Λ > 0. By the

Fubini Theorem and Morera's Theorem we see that (2.11) is analytic in

2 for Re λ > 0. By Lemma 3, for λ real and positive,

(2.12) k(ξ,X) = (Iλ(F)ψ)(ξ).

Hence by the definition, /^(FJψ exists for ψ e ^ and Re λ > 0 and

= k(ξ, λ) and Theorem 1 is proved.

LEMMA 4: Let θ, ψ, and Kn(ξ,X) be as in Lemma 1. Let

δe cm e^ίire function of order one, type τ, 0 < τ < oo, and

(2.14) F(a) = /ΓΓ Γ^(s, ί, »(s),

https://doi.org/10.1017/S0027763000015749 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015749


OPERATOR VALUED FUNCTION 101

Then for all real ξ and real λ satisfying 0 < λ0 = [2(b — a)Bτ]~\ (Iλ(F)ψ)(ξ)

exists and

(2.15) ( « * » ( £ ) - ί F(λ~1/2x + ξ)ψ(λ-1/2x(b) + ξ)dx
Jco[α,δ]

\ 1/2 oo

. Σα,(f,
2ττ / w=o

Proof of Lemma 4: As in the proof of Lemma 3, if θ, ψ,α0, al9

are real and non-negative,

(Z.lb; UA/'J|)(f) = H r - ZJ ̂ -^wvf> ΛJ —— ^ + 0 0 .
\ 2ττ / ^=0 \ 2π I

Since /(«) = Σ ^ o

α n ^ n is of order one, type τ, 0 < τ < 00, we know

by Lemma 2, Case II, that the series in (2.15) converges for all real ξ,

and all λ, ReΛ > 0 such that \λ\ < λQ = [2(5 — a)Bτ]~1 and Lemma 4 is

established in case θ, ψ and the an's are all real and non-negative.

The proof for complex θ, ψ and αw's follows exactly as the proof

in Case II, Lemma 3.

THEOREM 2: Let θ{s,t,u,v) be measurable in the region R = [a, b]2

X R2, let θ(s,t,',-) be of class S£λ(R2) and ||0(s, t, , OIL ̂  B,

ψ e J£?i(— 00, 00), Hψllx ^ M. Let

(2.17) /(2) = Σ α ^ "
71=0

&e an entire function of order one, type τ, 0 < τ < 00, and Zeί

(2.18) F{x) = /Γf f ^(s, ί, a(s), x(ί))dsdίl .
LJ a J a J

T/̂ e7t Itn(F) exists and is a bounded operator taking £?

1 into J ^ and

/^n(F)ψ is weakly analytic as a vector valued function of λ for λ e Ω =

{λ\ Re λ > 0, \λ\ < λ0}, where λ0 = [2(6 — a)Bτ]~1. Moreover for each λ e Ω,

the function HfίiF)ψ)iξ) has the representation

/ •> \ 1/2 00 / 3 \ W

(2.19) (/jπ(F)ψ)(f)=U_ Σa.(f,iD-f

for all real ξ, and for each fixed real ξ, mniF)ψ)iξ) is analytic in λ for

λeΩ.
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102 R. H. CAMERON AND D. A. STORVICK

Proof of Theorem 2: From Lemma 2, we observe that the series

in (2.15) converges for all real ξ and λeΩ. The argument in the proof

of Theorem 1 may now be repeated to establish the weak analyticity

and pointwise analyticity of the sum (2.19).

The exponential function provides an interesting special case which

we mention in the following corollary.

COROLLARY TO THEOREM 2: Let θ, ψ satisfy the hypothesis of

Theorem 2, and let

Γ pb pb -]

F(x) = exp θ(s, ί, x(s), x(t))dsdt\ .
LJ a J a J

Then 7*n(F)ψ exists and is weakly analytic as a vector valued function

for Έίeλ > 0, \λ\ < [2(5 - a)BY\

§ 3 Existence Theorem for Jq(F): We begin with the definition of

W).
DEFINITION: Let q be a real number and F be a functional such

that IT(F) exists for every ψ e ifx(—co, oo). If Q( ) is of class &S—°°, °°)

and if ψ is a given element of .SfΊ such that

lim Π [(/ΓW)(f) - Q(ξ)]φ(ξ)dξ = 0
λ^-ίqj -oo

for every φe ^?

1(—oo, oo), then we define

Jq(F)ψ = Q .

If Jq(F)ψ exists for every ψ e ££λy we denote by Jq(F) the operator that

takes ψ into Jq(F)ψ and we note that Jq(F) is a linear operator and is

uniquely defined by the equation above.

THEOREM 3: Let θ(s,t,u,v) be measurable in the region R = [α, b]2

X R\ let θ(s,t, . , . ) be of class J^Cff2) and \\θ(s, t, , )||i ^ ^

^ M . Lei

(3.0) f(z) = Σ α»2"
71=0

6e an entire function of growth (l,r) where τ < oo, and

(3.1) F(a) = / I ί(s, ί,
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Then:

Case I : growth (1,0). In this case Jq(F)ψ exists and is of class

<£«> for each ψ e «Sfx and each real q, q ψ 0. Moreover Jq(F)ψ has the

representation

( π \ +1/2

for each real ξ and each real q, q Φ 0.

Case I I : order one, ίτ/p^ τ, 0 < r < oo. /% this case Jq(F)ψ exists

and is of class 3?^ for each ψe^?

1 and each real q, 0 < \q\ < λQ =

[2(5 — a)Bτ]~\ and (Jq(F)ψ)(ξ) has the representation (3.2).

Proof of Theorem 3: For each real q (appropriate to either Case

I or Case II), by Lemma 2, the series in (1.7) converges uniformly to

a continuous function for λ e Nλ = {λ\ \λ + iq\ < δ, Re λ > 0} for some

sufficiently small δ and each real ξ. Let <pe £Ί(— oo, oo) and consider

Since the sums in the integrand converge to a continuous function, the

integrand approaches zero as λ —> — iq, Re λ > 0 for each ξ for which <p(ξ)

is finite. Since the first factor is uniformly bounded for real ξ and

λe Nq, by Lebesgue's convergence Theorem the integral has the limit

zero as λ —• — iq, ReΛ > 0. Thus by (3.2), Jq(F) exists for each ψ e Jδfx
and has the representation (3.2), and Theorem 3 is proved.

We remark that if f(z),= exp z, from Case II of Theorem 3, Jq(F)ψ

exists and is of class J ^ for each ψeJZΊ and each real q, 0 < \q\ <

[2(6 -

Remark: Under the hypotheses of Theorem 3, lim (/fn(F)ψ)(f) =
λ-* -iq

(Jq(F)ψ)(ξ) uniformly in ξ and q for all real ξ and |<?| < q0 < λ0, where

we take λ0 = oo in Case I.

II Analytic functions of two single integrals

§ 4 Preliminary Lemmas: We shall now consider functionals of the

form

(4.0) F(x) = f (Jδ 0(8, x(s))ds, Jδ φ(t, x(t))di

https://doi.org/10.1017/S0027763000015749 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015749


104 R. H. CAMERON AND D. A. STORVICK

where / is an entire function of two complex variables, θ(s,u) and φ(s,u)

are measurable in the strip [α, b] x ( — 00, 00), θ(s, •) e J2\( —00, 00), φ(s, •)

6 ^ - 0 0 , 0 0 ) for se[a,b], \\θ(s, )||i < B19 \\φ(s, 0||i < B2, ψ e J ^ - o o , 00)

and

(4.1) /(«,w) = Σ αm > n2mwn.
m,w = 0

As in the previous sections we begin by considering the special case

given by

(4.2) /m.»(*,W) = ZmWn

and obtain formally that

(4.3) Fm,n(x) = fm>n (JVs, x(8))d8, JV(ί, x(f))dtj

= I — I θ(slf x(sj)' θ(sm, xis^ds^ >dsm
J a J a

Γb ,n) Λδ

\ φ(t19 X(ti)) φ(tn, Xίt^dt, -"dtn
J a J a

α J a

tx- - dtn.

We now apply the definition to obtain

(4.4) (//Fm, n)ψ)(f) = f FTO.n(paί + f)ψ(pa?(6) + f)d«
JC0[α,δ]

J Cola,b]J a Ja

-φit^pxit,) + £). .φ(tn,px(tn) + ξ)ψ(px(b) + ξ)

•ds^ dsmdtλ d£ndx

• •• ^
α J α j C0[α,δ]

y m) + f)9(r Λ l , a;(rΛl) + f) .9(τ Λ n , /oa;(τΛn) + f)

ξ)dxdτ1- - -dτm+n ,

w h e r e P i s t h e se t of all p e r m u t a t i o n s of {1, , m + n}9 {τ19 , r m + n }

is t h e set {s19 - 9sm9t19 , tn} i n s o m e o r d e r , s1 = r y i , , s m = r i m ,
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We now evaluate the Wiener integral to obtain

= Σ Γ Γ + " * * PlVπ)m+n+1(τi - α) .(& - r T O + n ) ] - ^
P J aj a J a

• Γ <m +" 1> Γ <?(*,„,<%, + $)•• θ{τjm,puu + ξ)ψ{τkl,pukl + ξ)-
J - c o J - o o

- Σ -^—^Mr-
3>-i 2 ( r p — τp_1) I

where ^ 0 = 0, τ0 = a, τm+n+1 = &. We now set Ί>0 = ξ, vp = ^ p + ξ, for

p = 0, •• , m + n + l t o obtain

= Σ |X J. [(2, ),,,., faJJ,,,(r_,_Γ, t, )

(4.5) Γ '".*rr"Γ »(fΛ>!.,,)---»(o..>'j.«'...«'.,) ί<'...'>..>

J - c o J - o o

-Σ -^r ^Idvr -dvm+n+ίdτi ' dτm+n .
LP

We now estimate

U
τm + n fΓ2Γ m + n + 1 Ί 1/2

•'• (9 Λ^n + u V-7 Γ
J a L ( 2 τ r ) m + 7 ϊ + 1 ( r 1 — τ 0) ( τ m + n + 1 — τm+n) J

°1 -°2 I

= (m + n)!(4.6) 2π

JαVCr! — τo) -(rm+7l + 1 — rm + n)

where we have evaluated the m + n fold integral as Dirichlet's integral

(see [9, p. 258]) and simplified the resulting expression. We now state

a lemma analogous to our Lemma 1 for this case.

LEMMA 5: Let θ(s,u) and φ(s,u) be measurable in the strip [α, 6]

X (—oo,oo), let θ(s, •) and φ(s, •) be of class ^ ( — 00,00) for s e [α, 5]

and \\θ(s, )||i ^ #1 and \\φ(s, )||i ^ ^ 2 for almost every se [α, 6], cmd ίeί

ψ e J^Ίί— 00, 00), IIΨU! ^ M. Lei ^ 6e α complex number, Reλ > 0 and Ze£
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(4.7) K0Q = Ko 0(f, X) = (6 - α)~1 / 2 ψ(v) exp —— dv ,
J — ( 2 ( 6 - α ) !

Km,n = Km>n(ξ, X) = J]
Ui,~'J/rrι,k1,- ,kn)QPJ aj a

1-1/2
* (*Ί — To)' ' ' (τm+n + 1 — τm+n)

Γ°° (TO + n + l) Γ°° Λ/ \ Λ/ \ / \ / \
• #<>/i> ^ix) * * #(Γim> ^y J ^ χ , vkl) ^(rΛ n, vkn)

J - o o J - o o

!
m + n +

-Σ 2(τp - Γp.x

for m, ̂  = 0,1,2, , where P represents the set of all permutations of

1, , m + n, v0 = ξ and a0 = τ0 < rx < < τ m + w + 1 — 6. Tfoew /or αZZ

m,n, Kmt7l(ξ,X) exists and is continuous for all real ξ andΉeλ > 0; and

for each real ξ, Km>n(ξ, X) is analytic in λ for Re λ > 0. For Re λ > 0

aiZ m, n

(4.8)

The proof of Lemma 5 parallels that of Lemma 1 and we shall

omit it.

COROLLARY TO LEMMA 5: Let Fm>n(x) be defined as in (4.3) then

(Iλ(Fmtn)ψ)(ξ) exists for real λ > 0 and

/ \ (m+ra + D/2

( 7 , ( F T O i n ) ψ ) ( £ ) - K m > n { ξ , ) [ ]

Our next lemma will depend on the order and type of the entire

function of several complex variables. For the convenience of the reader

we apply the definitions as given by A. A. GoΓdberg [7; p. 338] to the

case of an entire function of two complex variables where the domain

D as used in his definition is taken to be the bicylinder:

(4.9) D = D(Rl9R2) = {(z,w)\\z\ < R, < oo, \w\ < R2 < oo}.

Thus if

oo

j \Z) IV) — 2_J am,nz w 9

and
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DR = DR{RUR2) = {(z, w)\(z/R, w/R) e D)

and

the order μ and the type τ are defined thus

(4.10) μ = μD = lim sup loglog
log

(4.11) r E r ^ 1 0 8

A theorem of GoΓdberg enables us to express the order and type in

terms of the coefficients, indeed

(4.12) μ = lim sup (™ + *) log (™ + ")
- l o g | α T O , n |

(4.13) (eμcD)1/μ = lim sup {(m + w) v"[|αm f Λ | ieri2?] 1 / ( 9 l ι + n )}.

LEMMA 6: Lei θ,φ,ψ satisfy the conditions of Lemma 5 and let

Kmt7l(ξ,X) be defined as in Lemma 5. Let

(4.14) f(z,w)= Σ am>nz
mwn

be an entire function of growth* (2, τ) where τ = τD < oo, ami r αncZ Z)

as defined in (4.11) and (4.9). Then

Case I : growth (2,0) /

0 0 / 7 \ (m + n+ l)/2

(4.15) Σ am,mίCm,n($,λ) U i -

converges for all real ξ and all λ, Re λ > 0. Moreover for each Λo > 0,

(4.15) converges uniformly for all real ξ and \λ\ < λQ, R e ^ > 0 . Thus

for each real ξ, (4.15) represents an analytic function in Reλ > 0 which

is continuous for Re λ > 0.

Case I I : order two, type τ = τD(BliRΛ), 0 < τ < 00 R19R2 any two

* An entire function is said to be of growth (//', τ') iff it is of order not exceeding
μ', and if its order is μ', its type does not exceed τ'. The type τ = TD(BI,RU is not spe-
cified in Case I since if TD{BUR2) = 0 for a particular pair of positive numbers (i?i, #2)>
Γ.D = 0 for all pairs (#1, β2)
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positive numbers. In this case (4.15) converges for all real ξ and all

λ, Reλ^ 0, \λ\< λ0

(4.16) λ0 = Γmin (A, JMΓ .
2(b-a)τl \ B1 B211

The convergence of (4.15) is uniform for all real ξ and all λ, ReΛ >̂ 0,

\λ\ ̂  λ'Q < λQ. Thus for each f, (4.15) represents an analytic function in

\λ\ < λ0, Jleλ > 0 which is continuous in \λ\< Λo, ReΛ > 0.

Proof of Lemma 6: We begin with the proof of Case I. Let μ
be the order of f(z,w); then by GoΓdberg's Theorem, [7; p. 339],

(4.17) μ = lim sup ( m + n) l o g ( m + n)

im+n)-+oo _ i o g | α m > ? 2 |

(where the quotient on the right is taken as zero if am>n = 0).
If μ < 2, we have for m + n sufficiently large that

(m + n) log (m + n) , ^ o— \ μo ̂  Δ

-\og\am>n\

and so

1/7 1̂ 0 <^~ (ΎY) I /y)\ — (ΐfl + n)

Thus for (m + n) sufficiently large by Stirling's formula we see that

^ + π V^(m + n) eyQ{m+n)im

Hence, by (4.8), for (m + n) sufficiently large

( χ \ (m + n + l)/2

mβeUm+n)/)2am + n)/)

( •) \ (m + n + l

Because of the factor (m + n ) ( 1 / 2 - 1 / " o ) ( m + w ) , since (1/2 - l/μ0) < 0, we see

that (4.15) converges for all real ξ and all λ, Reλ^ 0. Clearly (4.15)

https://doi.org/10.1017/S0027763000015749 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000015749


OPERATOR VALUED FUNCTION 109

converges uniformly for all real ξ and \λ\ ̂  λ0 < oof R e Λ ^ O and so

for each real f, (4.15) represents an analytic function in Reλ > 0 which

is continuous for Re λ ^ 0.

In order to establish Case I when μ — 2 and τ = 0, we observe that

by GoΓdberg's Theorem

(4.18) lim sup (m + n)1/2[\amfn\RTR^]1/im+n) = 0 .

Now by Stirling's formula,

(4.19)

2π

+ ϊ)/2

(m+n +
V' π(m

Thus

a)1/2(b -
R1

R2

2π

JL.

1/2 + 1/ (2(m +

(m + n)1/2[\amtn\RTR^ 1 / i m + n )

and by (4.18), (4.15) converges for all real ξ and all λ, Reλ> 0. The

convergence is uniform for all real ξ, and \λ\^ λQ < oo, R e ^ > 0 and so

for each real ξ, (4.15) represents an analytic function in ReΛ > 0 which

is continuous for Re λ ^ 0.

We proceed to the proof of Case II, where μ = 2 and 0 < τ < oo,

and observe that

(4.20) lim sup (m + ri)[\am>n\R?R2]2/(m+n) = 2eτ

where Rx and R2 are the radii in the bicylinder D(R19 R2) used to define

the type τ.
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In order to establish the convergence of the series (4.15), we shall

take the ((m + n)/2) root of the general term and apply (4.8) and

Stirling's Theorem to obtain for Re λ > 0

(4.21)
2/(m +

Ml Γ
2π(b - a)e-1^- (6 - a)~ιπ(m

2π L

I j ι - | l/(m + 7i)

2π\
β \ (2m)/(m+n)

[ I ; ι - | l/(m + w)
(6 - a)-ιπ{m + n)M2β1/(3(m+w))-^J-

2ττ J

• m + n "a\RTRnmm+n) , where Q = max ( A , A ) .
e \ K1 K2

Let the limit superior,

lim sup = L.

It follows from (4.21) and (4.20) that if ReΛ > 0 and \λ\ < λ0, then L < 1

and hence the series (4.15) converges absolutely. The remaining state-

ments in the conclusion of Case II follow in the usual way.

By choosing the shape of the region DiR^R^) so as to maximize λ0,

the formula for Λo will be simplified.

LEMMA 7: Let θ9φ9Bl9B29ψ and f(z,w) satisfy the conditions of

Lemmas 5 and 6. Let τ and D be defined as (4.9) and (4.11), and let

20 = λo(R1,R2) be defined as in (4.16). Then for fixed BιyB2,

(4.22) max λQ(Rίf R2) = λo(B19 B2) .

Thus

(4.23) max λo(Rί9 R2) - [2(6 - a)τD{BuB2)Y
ι.

Proof of Lemma 7: We observe from (4.20) that τ is a monotoni-

cally increasing function of Rx for fixed R2 and vice versa. We further

observe that τ is positive homogeneous of degree 2 in (R19R2). Hence

by the definition (4.16), λ0 is homogeneous of degree zero in (Rl9R2).

Thus if RJB, = R2/B29 λoiR^RJ = λo(Bί9B2). If R1/Bι < R2/B29 take R'2 =
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(Bz/B^R^ then Rf

2 < R2 and i?i/Bi = R'2/B2. Since τ is monotone in-

creasing in R2, it follows that λo(RίyR2) < λo(R19R'2) = λo(B19B2). Also if

i?i/2?i > R2/B2, we have λo(RlfR2) ^ λo(Bl9B2) by the same argument and

we have proved (4.22); and (4.23) follows from (4.16) and (4.22).

§ 5 Existence Theorems for Iλ(F) and 7fn(F):

LEMMA 8: Let θ,φ,ψ and Km>n{ξ,λ) be as in Lemma 5. Let

(5.0) f(z,w) = Σ o Λ ι B Λ »

6e αw entire function of growth (2,0) cmd ieί

(5.1)

αncί let λ be real and positive. Then (Iλ(F)ψ)(ξ) exists for all real ξ, and

(5.2) UAF)ψ)(ξ) Ξ ί
J C0[α,δ

Proof of Lemma 8: Case I : Let θ,φ,ψ,amfn be real and non-nega-

tive and let fm,n(z> w) and Fm>n(x) be defined as in (4.2) and (4.3). Then

the calculations at the beginning of section 4 are justified, and by (4.5)

and (4.7) we have

f Fm,n0rm* + ξ)Ψ(λ-1/2x(b) + ξ)dx =
JCoCα,δ]

Hence, setting p = λ~1/2, we have by Lemma 6 and the Fubini theorems

I = (7,(F)ψ)(f) = ί Fm>n(Px + ξ)ψ(px(jb) + ξ)dx

JC0[α,δ]

= ' • I Σ am,nFm,n(pX + ξ)ψ(p%Ψ) + ξ)dx

= Σ <VJ
^0 J ( T \ (m + n + l

Thus Case I is established.
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Case II (The general case): The proof is exactly the same as the

proof of the general case of Lemma 3.

T H E O R E M 4 : Let θ(s, u) and <p(s, u) be measurable in the strip [a, b]

X (—00,00), let θ(s, •) and φ(s, •) be of class ^ ( — 0 0 , 0 0 ) for se[a,b]

and \\θ(s, )||i ^ B1 and \\φ(s, )||i ^ B2 for almost every se[a,b] and let

ψ e ^ ( - 0 0 , 00), \\ψl ^ M. Let

(5.3) f(z,w)= Σ am,nz
mwn

be an entire function of growth (2,0) and let

(5.4) F(x) = /[[Vs, x(s))d8, JV(ί, x(f))dt] .

Then Iln(F) exists and is a bounded operator taking <£x into &„ and

Jϊn(F)ψ is weakly analytic as a vector valued function of λ for Re λ > 0.

Moreover for each λ, Re λ > 0, the function (7^n(F)ψ)(f) has the repre-

sentation

(5.5> (l

for all real ξ, and for each fixed real f, (I&

λ

n(F)ψ)(ξ) is analytic in λ for

Re λ > 0.

COROLLARY 1 TO THEOREM 4: Let θ,φ,B1,B2,ψ,M and f(z,w) and

Fix) satisfy the hypothesis of Theorem 4. Let

f*(z,w)= £ \am,n\znwn.

Let τ' he any positive number and let N(τ') be an integer greater than

one such that when m + n > N(τ'),

(m + n)l\am,n\B?BZY«m+^ < 2eτ' .

Then whenever \X\< [2τ'(b — a)]'1, it follows that for all real ξ,

2πφ — a)
2(b - a)\λ\)

+ Me f - ^ U '''[I - V (6 - α)2r'μ| ]"
V 0 — a /
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We note that the existence of 2V(τ') in the hypotheses follows <from

(4.18).

Proof of Corollary 1: By (5.2),

^ Σ hi
m,n=θ| \ 2π

Now from (4.8) we have

Σ 2π

Σ
λ

2π

n + 2

2 ' /~"\2jr(δ-α)

f*(B1V2(b -a)\λ\, B2V2(

1/2

V2(b - a)\λ\)

Also by (4.19) and the hypotheses of the corollary,

m + n>N{.τ')

2m+nπ( m+n)/2(b -
2π

^ Σ = (
m + n>N{τ') V 2

.[(m + ^ ) ( w +

MeLL
\ 2(6 — α)

Y
2(6 — α) /

l

when 2(6 — a)τ'\λ\ < 1, and the Corollary is proved.

The proof of Theorem 4 is omitted because it is parallel to the proof

of Theorem 1 with the Lemmas 5 and 8 taking the place of Lemmas 1

and 3.
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We next consider the case of order two, type τ, 0 < τ < oo.

LEMMA 9: Let θ,φ,ψ,B1,B2 and Km,n(ξ,λ) be as in Lemma 5. Let

(5.6) f(z) = Σ am,nZmwn

be an entire function of order two, type τ, 0 < τ < oo, where τ = τD(Bl)Bίz)>

and let

(5.7) F(x) =

Then for all real ξ and real λ satisfying 0 < λ < λQ — [2(b — a)r]~\

(5.8) (h(F)Ψ)(Θ = f F(λ~^x + ξ)ψ(λ'1/2x(b) + ξ)dx
JCo[α.,δ]

Σ

The proof is similar to that of Lemma 8. The region of con-

vergence of the series is as above where the value of Λo is given by

equation (4.16).

THEOREM 5: Let θ,φ,φ,B19B2 be as in Theorem 4. Let

(5.9) f(z,w) = Σ am,nZmwn

be an entire function of order two, type τ, 0 < τ < oo, where τ = τD(BuB2),

and let

(5.10) F(x) - /[[Vs, x(8))ds, ^φ(t, x{t))dt\ .

Then If(F) exists and is a bounded operator taking &x into S£\ and

is weakly analytic as a vector-valued function of λ for λ e Ω =

> 0, \λ\ < λ0} where λQ = [2(6 — flύτ]"1. Moreover for each λeΩ>

the function (/Ja(F)ψ)(ξ) has the representation

(5.11) (I

for all real ξ, and for each fixed real ξ, (7^n(F)ψ)(f) is analytic λ for

λeΩ.

The proof of Theorem 5 which parallels the proof of Theorem 2 is

omitted.
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The exponential function f(z, w) = exp (zw) provides an interesting

special case. Direct computation shows that the order of / is two and

its type τ = τD{RuR2) = RXR2.

COROLLARY 1 TO THEOREM 5: Let θ,φ,ψ,B1,B2 be as in Theorem

5 and let F(x) = exp ί θ(s, x(s))ds\ φ(t, x(t))dt . Then IT(F)ψ exists

and is weakly analytic as a vector valued function for Reλ > 0, \λ\<

[2(6 - a)BxB2Y\

COROLLARY 2 TO THEOREM 5: Under the hypotheses of Theorem 5,

the estimate obtained in the Corollary to Theorem 4 still holds provided

that τf > τ.

§ 6 Existence Theorem for Jq(F): We now proceed to the limiting

case where λ is purely imaginary.

THEOREM 6: Let θ(s,u) and φ(s,u) be measurable in the strip [a, b}

X (—00,00), let θ(s, •) and φ(s, •) be of class ^(—00,00) for se[a,b]

and ||0(s, Olli <£ Z?i and \\φ(s, )||i ^ B2 for almost every se[a,b] and let

ψe ^(-00,00), Hψll^M. Let

(6.0) f(z,w) = Σ j

be an entire function of growth (2,τ) where τ = τD{BltB%) < 00, and let

(6.1) F(x) = /[J^(s» Φ))ds, \bφ{t, x{t))dt\ .

Then:

Case I : growth (2,0). In this case Jq(F)ψ exists and is of class

<£\ for each ψ e if 1 and each real q, q ψ 0. Moreover Jq(F)ψ has the

representation

00 I Π \ (m + w + l ) /2

(6.2) (Jq(F)fXξ)= Σ α . A ^ - i ^ X
w,w=o \2πι I

for each real ξ and each real q, q Φ 0.

Case I I : order two, type τ, 0 < τ < 00. In this case Jq{F)^r exists

and is of class ^^ for each ψ e if 1 and each q, 0 < \q\ < λ0 = [2(& — a)τ]~\

and (Jq(F)ψ)(ξ) has the representation (6.2).

The proof of Theorem 6 parallels the proof of Theorem 3 and will

be omitted.
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Remark: Under the hypotheses of Theorem 6

lim (/r(W(f) - (Jq(F)ψ)(ξ)

uniformly in ξ and q for all real ξ and \q\ < qQ < λ0, where we take
20 = oo in Case I.

Ill An application to integral equations

§ 7 Integral equations Re λ > 0: We shall now apply our results on
operator valued function space integrals to obtain the solution of a pair
of simultaneous integral equations. In doing this we shall need to vary
the interval over which the functions in our function spaces are defined
and continuous. Therefore when it is necessary to specify the interval
we shall do so as follows:

At times it will be convenient to have an element x(-) e C0[α, b] defined
for all real values of the independent variable. We shall extend the
definition of x(t) by requiring the function to be constant on (— oo,α]
and [6,+oo). Thus x e C0[α, b] implies that x(t) is continuous for all
real t and x(t) = 0 for te(—oo,a] and x(t) = x(b) for te [b, +oo). The
following property of Wiener integrals (see E. Cuthill [6]) will be used
in the proof of Theorem 7:

ί F(x)dx = [ F(y + z)d{y x z)

where the existence of either side implies the existence of the other and
their equality.

THEOREM 7: Let θ, φ, and ψ be as in Theorem 6 and let

(7.0) E = E(t, x) = exp if * θ(s, x(s))ds\

and let

(7.1) F = Fit, x) = Eit, x) ϊbφ(s, x(s))ds .

Let Re λ > 0 and let

(7.2)
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and

Then G and H satisfy the following pair of simultaneous integral equa-

tions on [α, b) x (—00,00):

(7.4)

-λ(v - ξ.

2(5 - t)

θ(s,v)G(s,v,λ)

dv

2(s - t)

H(t,ξ,λ) = ( ^

+ 2π

1/2

θ(s, v)H(s, v, λ)

Proof of Theorem 7: We shall begin by observing that for λ real

and positive,

(7.5) G(t,ξ,X) -

and

(7.6) H(t,ξ,λ) =

ξ)dx= ί E(t,px
Jί7o[ί,δ]

= ί F(t,px + ξ)ψ(px(b) + ξ)dx
JCo[ί,δ]

where λ~1/2 = p.

The Wiener integrals above exist by Lemma 8 where we have taken

f(z, w) = ez or wez which are of appropriate growth. We next establish

the second of the integral equations (7.4) for λ real and positive. Dif-

ferentiating (7.0) and (7.1), we have for almost all t

Ft(t, x) - -φ(t, x(t))E(t, x) - θ(t, x(t))E(t, , x(s))ds .

By the fundamental theorem of the integral calculus for Lebesgue inte-

grals, we have for a < τ < 6,
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F(τ, x) = [bφ(t, x(f))E(t, x)dt + fδ[V(s, x(s))dsθ(t, x(t))E(fi, x)dt.

If we replace x by px + ξ and multiply by ψ(px(b) + ξ) where p > 0 and
ξ is real, after taking the Wiener integral over C0[τ, 6], we obtain

(7.7)

ί F(τ, px + ξ)ψ(px(b) + ξ)dx
JC0[r,δ]

= ί \[bφ(t,px(t) + ξ)E{t,pX + ξ)dtψ(pxφ) + ξ)dx

(
JC0[r,δ]

-ψ(px(b) + ξ)dx.

ξ)dsθ(t, px(t) + ξ)E(t, px + ξ)dt\

The Wiener integrals on the right exist because (7.7) would hold if
φ, θ, and ψ were replaced by their absolute values since the left hand
side would still exist by Lemma 8. The new right hand side would
then dominate the old. The domination just mentioned permits us to
use the Fubini theorem on the right hand side.

We obtain from (7.6) and (7.7) that

(7.8) £Γ(r,f, λ) = f ί φ(t,px(t) + ξ)E(t,px + ξ)ψ(px(b) + ξ)dxdt
JrJco|>,δ]

+ f ί [bφ(s,px(s) + ξ)dsθ(t,px(t) + ξ)E(t,px + ξ)

-ψ(px(b) + ξ)dxdt,

where both integrals on the right hand side exist as finite numbers.
Hence, we have by the Cuthill Theorem,

#(τ,?, X) = f f φ(t,py(t) + pzit) + ξ)ψ(py(b) + pz(b) + ξ)

• exp if θ(s, py(s) + pz(s) + ξ)dsd{y x z)dt

+ Γί [bφ{s',py{s') + pz{s') + ξ)ds'θ(t,py{t) + pz(t) + ξ)
JrJCo[r,ί]XCO[ί,δ]J t

ΉpvΦ) + pz(b) + ξ) exp I [Vs, py(s) + pz(s) + ξ)ds\d(y x z)dt
[J t J

where

(7.9) for s e [τ, ί], z(s) = 0, and for s e [ί, 6], y(s) = y(t).

By the Fubini Theorem and definitions (7.9) we have
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Ή(τ, ξ, X) = J&J^ ̂  Jc φ(t, pyit) + ξ)ψipyit) + pzib) + ξ)

ί Γ δ 1
•exp ^(s, pyit) + pzis) + ξ)ds\dzdydt

[J t j

^J(S', pyit) + ^(sθ + ξ)ds'θ(t, pyit) + ξ)
Co[τ,t]J C0[t,δ]J t

-ψipyit) + pzib) + ξ) exp θ(s,py(t) + pzis) + ξ)ds\ dzdydt.
\Jt j

In equation (7.5), we replace ξ by ^( ί) + ξ and thus obtain using (7.0)

G(t,py(t) + ξ,λ)=[ exp

Similarly from (7.6) and (7.1) we have

H{t,py{t) + ξ,λ) - f exp |f(?(s,

JV(s/»^(*) + M s ' ) + ξ)ds'ψ(py(t) + pz(b) + ξ)dz .

Substituting in (7.10) we obtain

H(τ, ξ, ί) = f f ^(ί, pyit) + ξ)G(t, pyit) + f, Λdi/dt
JrJCo[r,ί]

+ f ί θ{t,py(t) + ξ)H(t,pyit) + ξ,λ)dydt

J <V2π(t — τ) J -~
, jl) exp. f f ^ ( ί , ^ + f)G(ί ) / 0 « + f, jl) exp I x

V2π(t — τ) J -~ I 2(ί — r)

ί — r ) J -•»
+ f)£T(ί, pM + f, « expJ f 0 ( t , μu + f)£T(ί, pM + f, « exp j

V2τr(ί — r) J -•» I 2(ί — r)

t-τ)-v*Γ φ(t,v)G(t,v,X)exv
J

θ(t,v)H<t,v,X)exp \ ~ ^ ~ f'

Thus we have obtained the second of the integral equations (7.4) for λ
real and positive. The first of the integral equations (7.4) is obtained
in a similar manner. We now use analytic extension to show that
(7.4) holds for Re λ > 0. By Theorem 4 for each fixed (ί, ξ) in [α, 6] X
(—oo, oo) G(t,ξ,X) and H(t,ξ,λ) are analytic in λ for ReΛ > 0 so that the
left hand members are analytic. To show that the right hand members
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are analytic we note that for {Re λ > 0} Π {\λ\< λ0}, the inner integrands

are dominated by |ψ|, \ΘG\, \ψG\9 \ΘH\ which are of class £gx in v for

every s on [α, &). Thus the inner integrals are analytic functions of λ

for R e Λ > 0 and each se[α,6). Moreover the integrand of the outer

integrals are of class £PX on [t, b] since the inner integrals are dominated

by the corresponding ££x norms which are bounded in s because of the

estimates given in the Corollary to Theorem 4. Thus the double inte-

grals and in fact the right hand sides are analytic. Thus the analytic

extension argument is complete and the integral equations (7.4) hold for

Re λ > 0.

§8 Integral equations Re λ = 0: Finally we take limits as λ-* — iq

in (7.4) to obtain the following theorem.

THEOREM 8: Let θ, φ, and ψ be as in Theorem 6 and let E and

F be given as in (7.0) and (7.1). Let q be any real number, q Φ 0 and

let

(8.1) q,ίil

(8.2) #>(ί, ξ, q) = (Jq,ίt,bl(F)ψ)(ξ)

Then £f and Jf satisfy the following pair of simultaneous integral equa-

tions on [a, b) x (—00,00):

(8.3)

e. Φ = [ * JΎ
L 2πi(b — t) J J -

t) J J -» L 2(6 — t)

L 2(s - t)

[ a Ί v 2 Cb

-~\ (s-ty)M

2(8 - t)

[ o Ί+l/2(-6 ( oo

-^T- (s-ί )- I / 2

2πiΛ Jt J-
L 2(8 - t)

Proof of Theorem 8: Let q be any real number, q Φ 0. By hy-

pothesis, (7.4) holds for Re λ > 0. By the remark after Theoreom 6,
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G —> Sf and H -+ 34? as λ —> — ig, Re Λ > 0. Again by the Remark after
Theorem 6, and the fact that θ and φ are of Class JSPX the inner inte-
grals of (7.4) approach the corresponding inner integrals of (8.3). More-
over the inner integrals in (7.4) are bounded in s by the estimates given
in the Corollary to Theorem 4. Thus by Lebesgue's convergence Theorems
the result follows.

Remark: It can be shown that the solutions of the integral equa-
tions (7.4) and (8.3) are unique* by the standard technique of successive
substitution. Theorems 7 and 8 have been obtained and expressed with
the purpose of obtaining solutions of integral equations in terms of
integrals in function space. We point out in Theorem 9 that the op-
posite point of view can be taken and integrals in function space can
be evaluated in terms of solutions of integral equations.

THEOREM 9: Let θ, φ, and ψ be given as in Theorem 6 and let q
be any real number, q Φ 0 and let

ί Γδ

A(x) = exp θ(s, x(s))ds
IJ a

B(x) = A(x)\ φ(s, x(s))ds .
J α

Then /g?[α}δ](A)ψ and Jq^ίa^(B)ψ exist and are elements of J^C—oo, oo).

Moreover they are given by (/e?[α5&](A)ψ)(f) = Sf(a,ξ9q) and yg, [a i5](B)|)(f)

= 3f(a,ξ,q), where £f(t,ξ,q) and J^(t,ξ,q) are the (unique)* solutions of
(8.3) for a < ί < 6, -oo < ξ < oo.

Clearly this is a restatement of Theorem 8.
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