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Abstract
For an n-element subset U of Z2, select x from U according to harmonic measure from infinity, remove x from U
and start a random walk from x. If the walk leaves from y when it first enters the rest of U, add y to it. Iterating this
procedure constitutes the process we call harmonic activation and transport (HAT).

HAT exhibits a phenomenon we refer to as collapse: Informally, the diameter shrinks to its logarithm over a
number of steps which is comparable to this logarithm. Collapse implies the existence of the stationary distribution
of HAT, where configurations are viewed up to translation, and the exponential tightness of diameter at stationarity.
Additionally, collapse produces a renewal structure with which we establish that the center of mass process, properly
rescaled, converges in distribution to two-dimensional Brownian motion.

To characterize the phenomenon of collapse, we address fundamental questions about the extremal behavior of
harmonic measure and escape probabilities. Among n-element subsets of Z2, what is the least positive value of
harmonic measure? What is the probability of escape from the set to a distance of, say, d? Concerning the former,
examples abound for which the harmonic measure is exponentially small in n. We prove that it can be no smaller
than exponential in 𝑛 log 𝑛. Regarding the latter, the escape probability is at most the reciprocal of log 𝑑, up to a
constant factor. We prove it is always at least this much, up to an n-dependent factor.
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1. Introduction

1.1. Harmonic activation and transport

Consider simple random walk (𝑆 𝑗 ) 𝑗≥0 on Z2 and with 𝑆0 = 𝑥, the distribution of which we denote by
P𝑥 . For a finite, nonempty subset 𝐴 ⊂ Z2, the hitting distribution of A from 𝑥 ∈ Z2 is the function
H𝐴(𝑥, ·) : Z2 → [0, 1] defined as H𝐴(𝑥, 𝑦) = P𝑥 (𝑆𝜏𝐴 = 𝑦), where 𝜏𝐴 = inf{ 𝑗 ≥ 1 : 𝑆 𝑗 ∈ 𝐴}
is the return time to A. (We use the notation 𝜏𝐴 instead of the more common 𝜏+𝐴 for brevity.) The
recurrence of random walk on Z2 guarantees that 𝜏𝐴 is almost surely finite, and the existence of the limit
H𝐴(𝑦) = lim |𝑥 |→∞H𝐴(𝑥, 𝑦), called the harmonic measure of A, is well known [Law13]. Informally, the
harmonic measure is the hitting distribution of a random walk ‘from infinity’.

In this paper, we introduce a Markov chain called harmonic activation and transport (HAT), wherein
the elements of a subset of Z2 (respectively styled as ‘particles’ of a ‘configuration’) are iteratively
selected according to harmonic measure and replaced according to the hitting distribution of a random
walk started from the location of the selected element. We say that, with each step, a particle is ‘activated’
and then ‘transported’.

Definition 1.1 (Harmonic activation and transport). Given a finite subset 𝑈0 of Z2 with at least two
elements, HAT is the discrete-time Markov chain (𝑈𝑡 )𝑡≥0 on subsets of Z2, the dynamics of which
consists of the following steps (Figure 1).

Activation. At time t, remove a random element 𝑋𝑡 ∼ H𝑈𝑡 from 𝑈𝑡 , forming 𝑉𝑡 = 𝑈𝑡 \ {𝑋𝑡 }.
Transport. Then, add a random element 𝑌𝑡 ∼ P𝑋𝑡 (𝑆𝜏𝑉𝑡 −1 ∈ · | 𝑉𝑡 ) to 𝑉𝑡 , forming 𝑈𝑡+1 = 𝑉𝑡 ∪ {𝑌𝑡 }.

In other words, (𝑈𝑡 )𝑡≥0 has inhomogeneous transition probabilities given by

P
(
𝑈𝑡+1 = (𝑈𝑡\{𝑥}) ∪ {𝑦}

�� 𝑈𝑡
)
=

⎧⎪⎪⎨⎪⎪⎩
H𝑈𝑡 (𝑥) P𝑥

(
𝑆𝜏𝑈𝑡 \{𝑥}−1 = 𝑦

�� 𝑈𝑡

)
𝑥 ≠ 𝑦,∑

𝑧∈𝑈𝑡
H𝑈𝑡 (𝑧) P𝑧

(
𝑆𝜏𝑈𝑡 \{𝑧}−1 = 𝑧

�� 𝑈𝑡

)
𝑥 = 𝑦.
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Figure 1. The harmonic activation and transport dynamics. (A) A particle (indicated by a solid, red
circle) in the configuration 𝑈𝑡 is activated according to harmonic measure. (B) The activated particle
(following the solid, red path) hits another particle (indicated by a solid, blue circle); it is then fixed
at the site visited during the previous step (indicated by a solid, red circle), giving 𝑈𝑡+1. (C) A particle
of U (indicated by a red circle) is activated and (D) if it tries to move into 𝑈\{𝑥}, the particle will be
placed at x. The notation 𝜕𝑈 refers to the exterior vertex boundary of U.

To guide the presentation of our results, we highlight four features of HAT. Two of these reference the
diameter of a configuration, defined as diam(𝑈) = sup𝑥,𝑦∈𝑈 |𝑥 − 𝑦 |, where | · | is the Euclidean norm.

◦ Conservation of mass. HAT conserves the number of particles in the initial configuration.
◦ Translation invariance. For any configurations 𝑉,𝑊 and element 𝑥 ∈ Z2,

P(𝑈𝑡+1 = 𝑉
�� 𝑈𝑡 = 𝑊) = P(𝑈𝑡+1 = 𝑉 + 𝑥

�� 𝑈𝑡 = 𝑊 + 𝑥).

In words, the HAT dynamics is invariant under translation by elements of Z2. Accordingly, to each
configuration U, we can associate an equivalence class

𝑈 =
{
𝑉 ⊆ Z2 : ∃𝑥 ∈ Z2 : 𝑈 = 𝑉 + 𝑥

}
.

◦ Variable connectivity. The HAT dynamics does not preserve connectivity. Indeed, a configuration
which is initially connected will eventually be disconnected by the HAT dynamics, and the resulting
components may ‘treadmill’ away from one another, adopting configurations of arbitrarily large
diameter.

◦ Asymmetric behavior of diameter. While the diameter of a configuration can increase by at most
1 with each step, it can decrease abruptly. For example, if the configuration is a pair of particles
separated by d, then the diameter will decrease by 𝑑 − 1 in one step.

We will shortly state the existence of the stationary distribution of HAT. By the translation invari-
ance of the HAT dynamics, the stationary distribution will be supported on equivalence classes of
configurations which, for brevity, we will simply refer to as configurations. In fact, the HAT dynamics
cannot reach all such configurations. By an inductive argument, we will prove that the HAT dynamics is
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Figure 2. A configuration that HAT cannot reach.

irreducible on the collection of configurations that have a nonisolated element with positive harmonic
measure. Figure 2 depicts a configuration that HAT cannot reach because every element with positive
harmonic measure has no neighbors in Z2.
Definition 1.2. Denote by Iso(𝑛) the collection of n-element subsets U of Z2 such that every x in U
with H𝑈 (𝑥) > 0 belongs to a singleton connected component. In other words, all exposed elements of
U are isolated: They lack nearest neighbors in U. We will denote the collection of all other n-element
subsets of Z2 by NonIso(𝑛) and the corresponding equivalence class by

N̂onIso(𝑛) =
{
𝑈 : 𝑈 ∈ NonIso(𝑛)

}
.

The variable connectivity of HAT configurations and concomitant opportunity for unchecked diame-
ter growth seem to jeopardize the positive recurrence of the HAT dynamics on N̂onIso(𝑛). Indeed, if the
diameter were to grow unabatedly, the HAT dynamics could not return to a configuration or equivalence
class thereof and would therefore be doomed to transience. However, due to the asymmetric behavior of
diameter under the HAT dynamics and the recurrence of random walk in Z2, this will not be the case.
For an arbitrary initial configuration of 𝑛 ≥ 2 particles, we will prove – up to a factor depending on n –
sharp bounds on the ‘collapse’ time which, informally, is the first time the diameter is at most a certain
function of n.
Definition 1.3. For a positive real number R, we define the level-R collapse time to be T (𝑅) = inf{𝑡 ≥
0 : diam(𝑈𝑡 ) ≤ 𝑅}.

For a real number 𝑟 ≥ 0, we define 𝜃𝑚 = 𝜃𝑚(𝑟) through

𝜃0 = 𝑟 and 𝜃𝑚 = 𝜃𝑚−1 + 𝑒𝜃𝑚−1 for 𝑚 ≥ 1. (1.1)

In particular, 𝜃𝑛 (𝑟) is approximately the nth iterated exponential of r.
Theorem 1. Let U be a finite subset of Z2 with 𝑛 ≥ 2 elements and a diameter of d. There exists a
universal positive constant c such that, if d exceeds 𝜃 = 𝜃4𝑛 (𝑐𝑛), then

P𝑈

(
T (𝜃) ≤ (log 𝑑)1+𝑜𝑛 (1)

)
≥ 1 − 𝑒−𝑛.

For the sake of concreteness, this is true with 𝑛−4 in the place of 𝑜𝑛 (1).
In words, for a given n, it typically takes (log 𝑑)1+𝑜𝑛 (1) steps before the configuration of initial

diameter d reaches a configuration with a diameter of no more than a large function of n. Here, 𝑜𝑛 (1)
denotes a nonnegative function of n that is at most 1 and which tends to zero as n tends to ∞. The d
dependence in Theorem 1 is essentially the best possible, aside from the 𝑜𝑛 (1) term, because two pairs
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of particles separated by a distance of d typically exchange particles over log 𝑑 steps. We elaborate this
point in Section 2.

As a consequence of Theorem 1 and the preceding discussion, it will follow that the HAT dynamics
constitutes an aperiodic, irreducible and positive recurrent Markov chain on N̂onIso(𝑛). In particular,
this means that, from any configuration of N̂onIso(𝑛), the time it takes for the HAT dynamics to return to
that configuration is finite in expectation. Aperiodicity, irreducibility and positive recurrence imply the
existence and uniqueness of the stationary distribution 𝜋𝑛, to which HAT converges from any n-element
configuration. Moreover – again, due to Theorem 1 – the stationary distribution is exponentially tight.

Theorem 2. For every 𝑛 ≥ 2, from any n-element subset of Z2, HAT converges to a unique probability
measure 𝜋𝑛 supported on N̂onIso(𝑛). Moreover, 𝜋𝑛 satisfies the following tightness estimate. There
exists a universal positive constant c such that, for any 𝑟 ≥ 2𝜃4𝑛 (𝑐𝑛),

𝜋𝑛
(
diam(𝑈) ≥ 𝑟

)
≤ exp

(
− 𝑟

(log 𝑟)1+𝑜𝑛 (1)

)
.

In particular, this is true with 6𝑛−4 in the place of 𝑜𝑛 (1).

The r dependence in the tail bound of Theorem 2 is likely suboptimal because its proof makes
critical use of the fact that the diameter of a configuration increases by at most 1 with each step. A
sufficiently high probability, sublinear bound on the growth rate of diameter would improve the rate of
exponential decay. We note that an analogue of Kesten’s sublinear bound on the diameter growth rate
of diffusion-limited aggregation [Kes87] would apply only to growth resulting from the exchange of
particles between well separated ‘clusters’ of particles, not to growth from intracluster transport.

As a further consequence of Theorem 1, we will find that the HAT dynamics exhibits a renewal
structure which underlies the diffusive behavior of the corresponding center of mass process.

Definition 1.4. For a sequence of configurations (𝑈𝑡 )𝑡≥0 with n particles, define the corresponding
center of mass process (ℳ𝑡 )𝑡≥0 by ℳ𝑡 = 𝑛−1 ∑

𝑥∈𝑈𝑡
𝑥.

For the following statement, denote by 𝒞([0, 1]) the continuous functions 𝑓 : [0, 1] → R2 with 𝑓 (0)
equal to the origin 𝑜 ∈ Z2, equipped with the topology induced by the supremum norm sup0≤𝑡≤1 | 𝑓 (𝑡) |.

Theorem 3. If ℳ𝑡 is linearly interpolated, then the law of the process
(
𝑡−1/2ℳ𝑠𝑡 , 𝑠 ∈ [0, 1]

)
, viewed

as a measure on 𝒞([0, 1]), converges weakly as 𝑡 → ∞ to two-dimensional Brownian motion on [0, 1]
with coordinate diffusivity 𝜒2 = 𝜒2(𝑛). Moreover, for a universal positive constant c, 𝜒2 satisfies

𝜃6𝑛 (𝑐𝑛)−1 ≤ 𝜒2 ≤ 𝜃6𝑛 (𝑐𝑛).

The same argument allows us to extend the convergence to [0,∞). The bounds on 𝜒2 are not tight,
and we have not attempted to optimize them; they primarily serve to show that 𝜒2 is positive and finite.

1.2. Extremal behavior of harmonic measure

As we elaborate in Section 2, the timescale of diameter collapse in Theorem 1 arises from novel estimates
of harmonic measure and hitting probabilities, which control the activation and transport dynamics of
HAT. Beyond their relevance to HAT, these results further the characterization of the extremal behavior
of harmonic measure.

Estimates of harmonic measure often apply only to connected sets or depend on the diameter of the set.
The discrete analogues of Beurling’s projection theorem [Kes87] and Makarov’s theorem [Law93] are
notable examples. Furthermore, estimates of hitting probabilities often approximate sets by Euclidean
balls which contain them (for example, the estimates in Chapter 2 of [Law13]). Such approximations
work well for connected sets but not for sets which are ‘sparse’ in the sense that they have large diameters
relative to their cardinality; we elaborate this in Section 2.2. For the purpose of controlling the HAT
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dynamics, which adopts such sparse configurations, existing estimates of harmonic and hitting measures
are inapplicable.

To highlight the difference in the behavior of harmonic measure for general (i.e., potentially sparse)
and connected sets, consider a finite subset A of Z2 with 𝑛 ≥ 2 elements. We ask: What is the greatest
value of H𝐴(𝑥)? If we assume no more about A, then H𝐴(𝑥) can be as large as 1

2 (see Section 2.5 of
[Law13] for an example). However, if A is connected, then the discrete analogue of Beurling’s projection
theorem [Kes87] provides a finite constant c such that

H𝐴(𝑥) ≤ 𝑐𝑛−1/2.

This upper bound is realized (up to a constant factor) when A is a line segment and x is one of its
endpoints.

Our next result provides lower bounds of harmonic measure to complement the preceding upper
bounds, addressing the question: What is the least positive value of H𝐴(𝑥)?

Theorem 4. There exists a universal positive constant c such that, if A is a subset of Z2 with 𝑛 ≥ 1
elements, then either H𝐴(𝑥) = 0 or

H𝐴(𝑥) ≥ 𝑒−𝑐𝑛 log 𝑛. (1.2)

It is much easier to prove that, if A is connected, then equation (1.2) can be replaced by

H𝐴(𝑥) ≥ 𝑒−𝑐𝑛.

This lower bound is optimal in terms of its dependence on n, as we can choose A to be a narrow,
rectangular ‘tunnel’ with a depth of order n and an element just above the ‘bottom’ of the tunnel, in
which case the harmonic measure of this element is exponentially small in n; we will shortly discuss
a related example in greater detail. We expect that the bound in equation (1.2) can be improved to an
exponential decay with a rate of order n instead of 𝑛 log 𝑛.

We believe that the best possible lower bound would be realized by the harmonic measure of the
innermost element of a square spiral (Figure 3). The virtue of the square spiral is that, essentially, with
each additional element, the shortest path to the innermost element lengthens by two steps. This heuristic
suggests that the least positive value of harmonic measure should decay no faster than 4−2𝑛, as 𝑛 → ∞.
Indeed, Example 1.6 suggests an asymptotic decay rate of (2 +

√
3)−2𝑛. We formalize this observation

as a conjecture. To state it, let ℋ𝑛 be the collection of n-element subsets A of Z2 such that H𝐴(𝑜) > 0.

Conjecture 1.5. Asymptotically, the square spiral of Figure 3 realizes the least positive value of har-
monic measure, in the sense that

lim
𝑛→∞

−1
𝑛

log inf
𝐴∈ℋ𝑛

H𝐴(𝑜) = 2 log(2 +
√

3).

Example 1.6. Figure 3 depicts the construction of an increasing sequence of sets (𝐴1, 𝐴2, . . . ) such
that, for all 𝑛 ≥ 1, 𝐴𝑛 is an element of ℋ𝑛 and the shortest path Γ = (Γ1, Γ2, . . . , Γ𝑘 ) from the
exterior boundary of 𝐴𝑛 ∪ 𝜕𝐴𝑛 to Γ𝑘 = 𝑜, which satisfies Γ𝑖 ∉ 𝐴𝑛 for 1 ≤ 𝑖 ≤ 𝑘 − 1, has a length of
𝑘 = 2(1 − 𝑜𝑛 (1))𝑛. Since Γ1 separates the origin from infinity in 𝐴𝑐

𝑛, we have

H𝐴𝑛 (𝑜) = H𝐴𝑛∪{Γ1 } (Γ1) · P Γ1

(
𝑆𝜏𝐴𝑛 = 𝑜

)
. (1.3)

Concerning the first factor of equation (1.3), one can show that there exist positive constants 𝑏, 𝑐 < ∞
such that, for all sufficiently large n,

𝑐𝑛−𝑏 ≤ H𝐴𝑛∪{Γ1 } (Γ1) ≤ 1.
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Figure 3. A square spiral. The shortest path Γ (red) from Γ1 to the origin, which first hits 𝐴𝑛 (black
and gray dots) at the origin, has a length of approximately 2𝑛. Some elements (gray dots) of 𝐴𝑛 could
be used to continue the spiral pattern (indicated by the black dots) but are presently placed to facilitate
a calculation in Example 1.6.

To address the second factor of equation (1.3), we sum over the last time 𝑡 < 𝜏𝐴𝑛 that 𝑆𝑡 visits Γ1:

PΓ1

(
𝑆𝜏𝐴𝑛 = 𝑜

)
=

∞∑
𝑡=0
PΓ1

(
𝑆𝑡 = Γ1, 𝑡 < 𝜏𝐴𝑛 ; {𝑆𝑡+1, . . . , 𝑆𝜏𝐴𝑛 } ⊆ Γ2:𝑘

)
,

where Γ2:𝑘 = {Γ2, . . . , Γ𝑘 }. The Markov property applied to t implies that

PΓ1

(
{𝑆𝑡+1, . . . , 𝑆𝜏𝐴𝑛 } ⊆ Γ2:𝑘

�� 𝑆𝑡 = Γ1, 𝑡 < 𝜏𝐴𝑛

)
= PΓ2

(
𝜏𝑜 < 𝜏Z2\Γ2:𝑘

)
.

Therefore,

PΓ1

(
𝑆𝜏𝐴𝑛 = 𝑜

)
= PΓ2

(
𝜏𝑜 < 𝜏Z2\Γ2:𝑘

) ∞∑
𝑡=0
PΓ1

(
𝑆𝑡 = Γ1, 𝑡 < 𝜏𝐴𝑛

)
. (1.4)

Denote the first hitting time of a set 𝐵 ⊆ Z2 by 𝜎𝐵 = inf{ 𝑗 ≥ 0 : 𝑆 𝑗 ∈ 𝐵}, or 𝜎𝑥 if 𝐵 = {𝑥} for some
𝑥 ∈ Z2. The first factor of equation (1.4) equals PΓ2 (𝜎𝑜 < 𝜎Z2\Γ2:𝑘 ) because Γ2 ∉ {𝑜} ∪ (Z2 \ Γ2:𝑘 ). We
calculate it as 𝑓 (2), where 𝑓 (𝑖) = PΓ𝑖 (𝜎𝑜 < 𝜎Z2\Γ2:𝑘 ) solves the system of difference equations

𝑓 (1) = 0, 𝑓 (𝑘) = 1, and 𝑓 (𝑖) = 1
4
𝑓 (𝑖 + 1) + 1

4
𝑓 (𝑖 − 1), 2 ≤ 𝑖 ≤ 𝑘 − 1.

The solution of this system yields

1
(2 +

√
3)𝑘−1

≤ 𝑓 (2) = 2
√

3
(2 +

√
3)𝑘−1 − (2 −

√
3)𝑘−1

≤ 1
(2 +

√
3)𝑘−2

. (1.5)
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Lastly, note that the second factor of equation (1.4) is the expected number of visits that 𝑆𝑡 makes to
Γ1 before time 𝜏𝐴, which equals the reciprocal of PΓ1 (𝜏Γ1 < 𝜏𝐴𝑛 ). Since Γ1 is adjacent to 𝜏𝐴𝑛 , this
probability is at least 1

4 , hence

1 ≤
∞∑
𝑡=0
PΓ1

(
𝑆𝑡 = Γ1, 𝑡 < 𝜏𝐴𝑛

)
≤ 4.

Combining the preceding bounds, we conclude that, for all sufficiently large n,

𝑐𝑛−𝑏

(2 +
√

3)𝑘−1
≤ H𝐴𝑛 (𝑜) ≤

4
(2 +

√
3)𝑘−2

.

Substituting 𝑘 = 2(1 − 𝑜𝑛 (1))𝑛 and simplifying, we obtain

(2 +
√

3)−2(1+𝑜𝑛 (1))𝑛 ≤ H𝐴𝑛 (𝑜) ≤ (2 +
√

3)−2(1−𝑜𝑛 (1))𝑛,

which implies

lim
𝑛→∞

−1
𝑛

logH𝐴𝑛 (𝑜) = 2 log(2 +
√

3).

We conclude the discussion of our main results by stating an estimate of hitting probabilities of the
form P𝑥

(
𝜏𝜕𝐴𝑑 < 𝜏𝐴

)
, for 𝑥 ∈ 𝐴 and where 𝐴𝑑 is the set of all elements of Z2 within distance d of A; we

will call these escape probabilities from A. Among n-element subsets A of Z2, when d is sufficiently
large relative to the diameter of A, the greatest escape probability to a distance d from A is at most the
reciprocal of log 𝑑, up to a constant factor. We find that, in general, it is at least this much, up to an
n-dependent factor.

Theorem 5. There exists a universal positive constant c such that, if A is a finite subset of Z2 with 𝑛 ≥ 2
elements and if 𝑑 ≥ 2 diam(𝐴), then, for any 𝑥 ∈ 𝐴,

P𝑥 (𝜏𝜕𝐴𝑑 < 𝜏𝐴) ≥
𝑐H𝐴(𝑥)
𝑛 log 𝑑

. (1.6)

In particular,

max
𝑥∈𝐴
P𝑥

(
𝜏𝜕𝐴𝑑 < 𝜏𝐴

)
≥ 𝑐

𝑛2 log 𝑑
. (1.7)

In the context of the HAT dynamics, we will use equation (1.7) to control the transport step, ultimately
producing the log 𝑑 timescale appearing in Theorem 1. In the setting of its application, A and d will,
respectively, represent a subset of a HAT configuration and the separation of A from the rest of the
configuration. Reflecting the potential sparsity of HAT configurations, d may be arbitrarily large relative
to n.

Organization

HAT motivates the development of new estimates of harmonic measure and escape probabilities. We
attend to these estimates in Section 3, after we provide a conceptual overview of the proofs of Theorems
1 and 2 in Section 2. To analyze configurations of large diameter, we will decompose them into well
separated ‘clusters’, using a construction introduced in Section 5 and used throughout Section 6. The
estimates of Section 3 control the activation and transport steps of the dynamics and serve as the critical
inputs to Section 6, in which we analyze the ‘collapse’ of HAT configurations. We then identify the
class of configurations to which the HAT dynamics can return and prove the existence of a stationary
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distribution supported on this class; this is the primary focus of Section 7. The final section, Section
8, uses an exponential tail bound on the diameter of configurations under the stationary distribution –
a result we obtain at the end of Section 7 – to show that the center of mass process, properly rescaled,
converges in distribution to two-dimensional Brownian motion.

Forthcoming notation

We will denote expectation with respect to P𝑈 , the law of HAT from the configuration U, by E𝑈 ; the
indicator of an event E by 1𝐸 or 1(𝐸); the Euclidean disk of radius r about x by 𝐷𝑥 (𝑟) = {𝑦 ∈ Z2 :
|𝑥 − 𝑦 | < 𝑟}, or 𝐷 (𝑟) if 𝑥 = 𝑜; its boundary by 𝐶𝑥 (𝑟) = 𝜕𝐷𝑥 (𝑟), or 𝐶 (𝑟) if 𝑥 = 𝑜; the radius of a finite
set 𝐴 ⊂ Z2 by rad(𝐴) = sup{|𝑥 | : 𝑥 ∈ 𝐴}; the R-fattening of A by 𝐴𝑅 = {𝑥 ∈ Z2 : dist(𝐴, 𝑥) ≤ 𝑅} and
the minimum of two random times 𝜏1 and 𝜏2 by 𝜏1 ∧ 𝜏2.

When we refer to a (universal) constant, we will always mean a positive real number. When we cite
standard results from [Law13] and [Pop21], we will write 𝑂 (𝑔) to denote a function f that uniformly
satisfies | 𝑓 | ≤ 𝑐𝑔 for an implicit constant c. However, in all other instances, f will be nonnegative and we
will simply mean the estimate 𝑓 ≤ 𝑐𝑔 by 𝑂 (𝑔). We will include a subscript to indicate the dependence
of the implicit constant on a parameter, for example, 𝑓 = 𝑂𝑛 (𝑔). We will use Ω(𝑔) and Ω𝑛 (𝑔) for the
reverse estimate. We will use 𝑜𝑛 (1) to denote a nonnegative quantity that is at most 1 and which tends
to 0 as 𝑛 → ∞, for example, 𝑛−1 for 𝑛 ≥ 1.

2. Conceptual overview

2.1. Estimating the collapse time and proving the existence of the stationary distribution

Before providing precise details, we discuss some of the key steps in the proofs of Theorems 1 and 2.
Since the initial configuration U of n particles is arbitrary, it will be advantageous to decompose any
such configuration into clusters such that the separation between any two clusters is at least exponentially
large relative to their diameters. As we will show later, we can always find such a clustering when the
diameter of U is large enough in terms of n. For the purpose of illustration, let us start by assuming that
U consists of just two clusters with separation d and hence the individual diameters of the clusters are
no greater than log 𝑑 (Figure 4).

The first step in our analysis is to show that in time comparable to log 𝑑, the diameter of U will shrink
to log 𝑑. This is the phenomenon we call collapse. Theorem 4 implies that every particle with positive
harmonic measure has harmonic measure of at least 𝑒−𝑐𝑛 log 𝑛. In particular, the particle in each cluster
with the greatest escape probability from that cluster has at least this harmonic measure. Our choice of
clustering will ensure that each cluster has positive harmonic measure. Accordingly, we will treat each
cluster as the entire configuration and Theorem 5 will imply that the greatest escape probability from
each cluster will be at least (log 𝑑)−1, up to a factor depending upon n.

Together, these results will imply that, in 𝑂𝑛 (log 𝑑) steps, with a probability depending only upon n,
all the particles from one of the clusters in Figure 4 will move to the other cluster. Moreover, since the
diameter of a cluster grows at most linearly in time, the final configuration will have diameter which
is no greater than the diameter of the surviving cluster plus 𝑂𝑛 (log 𝑑). Essentially, we will iterate this
estimate – by clustering anew the surviving cluster of Figure 4 – each time obtaining a cluster with a
diameter which is the logarithm of the original diameter, until d becomes smaller than a deterministic
function 𝜃4𝑛, which is approximately the 4𝑛th iterated exponential of 𝑐𝑛, for a constant c.

Let us denote the corresponding stopping time by T (below 𝜃4𝑛). In the setting of the application,
there may be multiple clusters and we collapse them one by one, reasoning as above. If any such collapse
step fails, we abandon the experiment and repeat it. Of course, with each failure, the set we attempt to
collapse may have a diameter which is additively larger by 𝑂𝑛 (log 𝑑). Ultimately, our estimates allow
us to conclude that the attempt to collapse is successful within the first (log 𝑑)1+𝑜𝑛 (1) tries with a high
probability.
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Figure 4. Exponentially separated clusters.

Figure 5. Sparse sets like ones which appear in the proofs of Theorems 4 (left) and 5 (right). The
elements of A are represented by dark green dots. On the left, 𝐴\{𝑜} is a subset of 𝐷 (𝑅)𝑐 . On the right,
A is a subset of 𝐷 (𝑟) and 𝐴𝑅, the R-fattening of A (shaded green), is a subset of 𝐷 (𝑅 + 𝑟). The figure is
not to scale, as 𝑅 ≥ 𝑒𝑛 on the left, while 𝑅 ≥ 𝑒𝑟 on the right.

The preceding discussion roughly implies the following result, uniformly in the initial configuration
U:

P𝑈 (T (below 𝜃4𝑛) ≤ (log 𝑑)1+𝑜𝑛 (1) ) ≥ 1 − 𝑒−𝑛.

At this stage, we prove that, given any configuration 𝑈 and any configuration 𝑉 ∈ N̂onIso(𝑛), if K is
sufficiently large in terms of n and the diameters of 𝑈 and 𝑉 , then

P𝑈 (T (hits 𝑉) ≤ 𝐾5) ≥ 1 − 𝑒−𝐾 ,

where T (hits𝑉) is the first time the configuration is𝑉 . To prove this estimate, we split it into two, simpler
estimates. Specifically, we show that the particles of 𝑈 form a line segment of length n in 𝐾4 steps with
high probability, and we prove by induction on n that any other nonisolated configuration 𝑉 is reachable
from the line segment in 𝐾5 steps, with high probability. In addition to implying irreducibility of the
HAT dynamics on N̂onIso(𝑛), we use this result to obtain a finite upper bound on the expected return
time to any nonisolated configuration (i.e., it proves the positive recurrence of HAT on N̂onIso(𝑛)).
Irreducibility and positive recurrence on N̂onIso(𝑛) imply the existence and uniqueness of the stationary
distribution.

2.2. Improved estimates of hitting probabilities for sparse sets

HAT configurations may include subsets with large diameters relative to the number of elements they
contain, and in this sense they are sparse. Two such cases are depicted in Figure 5. A key component
of the proofs of Theorems 4 and 5 is a method which improves two standard estimates of hitting
probabilities when applied to sparse sets, as summarized by Table 1.
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Table 1. Summary of improvements to standard estimates in sparse settings. The origin is denoted by o
and 𝐴𝑅 denotes the set of all points in Z𝑑 within a distance R of A..

Setting Quantity Standard estimate New estimate

Fig. 5 (left), 𝑅 ≥ 𝑒𝑛 P𝑥 (𝜏𝑜 < 𝜏𝐴∩𝐷 (𝑅)𝑐 ) Ω
(

1
log𝑅

)
Ω

(
1
𝑛

)
Fig. 5 (right), 𝑅 ≥ 𝑒𝑟 P𝑥 (𝜏𝜕𝐴𝑅 < 𝜏𝐴) Ω𝑛

(
1

log𝑅

)
Ω𝑛

(
log 𝑟
log𝑅

)

For the scenario depicted in Figure 5 (left), we estimate the probability that a random walk from
𝑥 ∈ 𝐶 ( 𝑅3 ) hits the origin before any element of 𝐴\{𝑜}. Since 𝐶 (𝑅) separates x from 𝐴\{𝑜}, this
probability is at least P𝑥 (𝜏𝑜 < 𝜏𝐶 (𝑅) ). We can calculate this lower bound by combining the fact that
the potential kernel (defined in Section 3) is harmonic away from the origin with the optional stopping
theorem (e.g., Proposition 1.6.7 of [Law13]):

P𝑥
(
𝜏𝑜 < 𝜏𝐶 (𝑅)

)
=

log 𝑅 − log |𝑥 | +𝑂 (𝑅−1)
log 𝑅 +𝑂 (𝑅−1)

.

This implies P𝑥 (𝜏𝑜 < 𝜏𝐴∩𝐷 (𝑅)𝑐 ) = Ω( 1
log 𝑅 ) since 𝑥 ∈ 𝐶 ( 𝑅3 ).

We can improve the lower bound to Ω( 1
𝑛 ) by using the sparsity of A. We define the random variable

𝑊 =
∑

𝑦∈𝐴\{𝑜} 1
(
𝜏𝑦 < 𝜏𝑜

)
and write

P𝑥
(
𝜏𝑜 < 𝜏𝐴\{𝑜}

)
= P𝑥 (𝑊 = 0) = 1 − E𝑥𝑊

E𝑥 [𝑊
�� 𝑊 > 0]

.

We will show that E𝑥 [𝑊
�� 𝑊 > 0] ≥ E𝑥𝑊 + 𝛿 for some 𝛿 which is uniformly positive in A and n. We

will be able to find such a 𝛿 because random walk from x hits a given element of 𝐴\{𝑜} before o with a
probability of at most 1/2, so conditioning on {𝑊 > 0} effectively increases W by 1/2. Then

P𝑥
(
𝜏𝑜 < 𝜏𝐴\{𝑜}

)
≥ 1 − E𝑥𝑊

E𝑥𝑊 + 𝛿
≥ 1 − 𝑛

𝑛 + 𝛿
= Ω( 1

𝑛 ).

The second inequality follows from the monotonicity of E𝑥𝑊
E𝑥𝑊 +𝛿 in E𝑥𝑊 and the fact that |𝐴| ≤ 𝑛, so

E𝑥𝑊 ≤ 𝑛. This is a better lower bound than Ω( 1
log 𝑅 ) when R is at least 𝑒𝑛.

A variation of this method also improves a standard estimate for the scenario depicted in Figure 5
(right). In this case, we estimate the probability that a random walk from 𝑥 ∈ 𝐶 (2𝑟) hits 𝜕𝐴𝑅 before A,
where A is contained in 𝐷 (𝑟) and 𝐴𝑅 consists of all elements of Z2 within a distance 𝑅 ≥ 𝑒𝑟 of A. We
can bound below this probability by using the fact that

P𝑥
(
𝜏𝜕𝐴𝑅 < 𝜏𝐴

)
≥ P𝑥 (𝜏𝐶 (𝑅+𝑟 ) < 𝜏𝐶 (𝑟 ) ).

A standard calculation with the potential kernel of random walk (e.g., Exercise 1.6.8 of [Law13]) shows
that this lower bound is Ω𝑛 ( 1

log 𝑅 ) since 𝑅 ≥ 𝑒𝑟 and 𝑟 = Ω(𝑛1/2).
We can improve the lower bound to Ω𝑛 ( log 𝑟

log 𝑅 ) by using the sparsity of A. We define 𝑊 ′ =∑
𝑦∈𝐴 1

(
𝜏𝑦 < 𝜏𝜕𝐴𝑅

)
and write

P𝑥
(
𝜏𝜕𝐴𝑅 < 𝜏𝐴

)
= 1 − E𝑥𝑊

′

E𝑥 [𝑊 ′
�� 𝑊 ′ > 0]

≥ 1 − 𝑛𝛼

1 + (𝑛 − 1)𝛽 ,
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where 𝛼 bounds above P𝑥
(
𝜏𝑦 < 𝜏𝜕𝐴𝑅

)
and 𝛽 bounds below P𝑧

(
𝜏𝑦 < 𝜏𝜕𝐴𝑅

)
, uniformly for 𝑥 ∈ 𝐶 (2𝑟)

and distinct 𝑦, 𝑧 ∈ 𝐴. We will show that 𝛼 ≤ 𝛽 and 𝛽 ≤ 1 − log(2𝑟 )
log 𝑅 . The former is plausible because

|𝑥 − 𝑦 | is at least as great as |𝑦 − 𝑧 |; the latter because dist(𝑧, 𝐴) ≥ 𝑅 while |𝑦 − 𝑧 | ≤ 2𝑟 , and because of
equation (3.9). We apply these facts to the preceding display to conclude

P𝑥
(
𝜏𝜕𝐴𝑅 < 𝜏𝐴

)
≥ 𝑛−1(1 − 𝛽) = Ω𝑛 ( log 𝑟

log 𝑅 ).

This is a better lower bound than Ω𝑛 ( 1
log 𝑅 ) because r can be as large as log 𝑅.

In summary, by analyzing certain conditional expectations, we can better estimate hitting probabilities
for sparse sets than we can by applying standard results. This approach may be useful in obtaining other
sparse analogues of hitting probability estimates.

3. Harmonic measure estimates

The purpose of this section is to prove Theorem 4. We will describe the proof strategy in Section 3.1,
before stating several estimates in Section 3.2 that streamline the presentation of the proof in Section 3.3.

Consider a subset A of Z2 with 𝑛 ≥ 2 elements, which satisfies H𝐴(𝑜) > 0 (i.e., 𝐴 ∈ ℋ𝑛). We frame
the proof of equation (1.2) in terms of advancing a random walk from infinity to the origin in three or
four stages, while avoiding all other elements of A. We continue to use the phrase ‘random walk from
infinity’ to refer to the limiting hitting probability of a fixed, finite subset of Z2 by a random walk from
𝑥 ∈ Z2 as |𝑥 | → ∞. We will write P∞ as a shorthand for this limit.

The stages of advancement are defined in terms of a sequence of annuli which partition Z2. Denote
by A(𝑟, 𝑅) = 𝐷 (𝑅)\𝐷 (𝑟) the annulus with inner radius r and outer radius R. We will frequently need
to reference the subset of A which lies within or beyond a disk. We denote 𝐴<𝑟 = 𝐴 ∩ 𝐷 (𝑟) and
𝐴≥𝑟 = 𝐴 ∩ 𝐷 (𝑟)𝑐 . Define radii 𝑅1, 𝑅2, . . . and annuli A1,A2, . . . through 𝑅1 = 105, and 𝑅ℓ = 𝑅ℓ

1 and
Aℓ = A(𝑅ℓ , 𝑅ℓ+1) for ℓ ≥ 1. We fix 𝛿 = 10−2 for use in intermediate scales, like 𝐶 (𝛿𝑅ℓ+1) ⊂ Aℓ .
Additionally, we denote by 𝑛0, 𝑛ℓ , 𝑚ℓ , and 𝑛>𝐽 the number of elements of A in 𝐷 (𝑅1), Aℓ , Aℓ ∪Aℓ+1,
and 𝐷 (𝑅𝐽+1)𝑐 , respectively.

We will split the proof of equation (1.2) into an easy case when 𝑛0 = 𝑛 and a difficult case when
𝑛0 ≠ 𝑛. If 𝑛0 ≠ 𝑛, then 𝐴≥𝑅1 is nonempty and the following indices 𝐼 = 𝐼 (𝐴) and 𝐽 = 𝐽 (𝐴) are well
defined:

𝐼 = min{ℓ ≥ 1 : Aℓ contains an element of 𝐴\{𝑜}}, and
𝐽 = min{ℓ > 𝐼 : Aℓ contains no element of 𝐴\{𝑜}}.

Figure 6 illustrates the definitions of I and J. We explain their roles in the following subsection.

3.1. Strategy for the proof of Theorem 4

This section outlines a proof of equation (1.2) by induction on n. The induction step is easy when 𝑛0 = 𝑛
because it implies that A is contained in 𝐷 (105), hence H𝐴(𝑜) is at least a universal positive constant.
The following strategy concerns the difficult case when 𝑛0 ≠ 𝑛.

Figure 6. The first annulus that intersects A (green dots) is A𝐼 ; the next empty annulus is A𝐽 .
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Figure 7. An example of a choke point (left) and a strategy for avoiding it (right). The hitting distribution
of a random walk conditioned to reach 𝜕𝐷 before A (green dots) may favor the avoidance of 𝐴 ∩ 𝐷𝑐

in a way which localizes the walk (e.g., as indicated by the dark red arc of 𝜕𝐷) prohibitively close to
𝐴∩𝐷. The hitting distribution on 𝐶 (𝑅𝐽 ) will be approximately uniform if the radii grow exponentially.
The random walk can then avoid the choke point by ‘tunneling’ through it (e.g., by passing through the
tan-shaded region).

Stage 1: Advancing to 𝐶 (𝑅𝐽 ). Assume 𝑛0 ≠ 𝑛 and 𝑛 ≥ 3. By the induction hypothesis, there is a
universal constant 𝑐1 such that the harmonic measure at the origin is at least 𝑒−𝑐1𝑘 log 𝑘 , for any set inℋ𝑘 ,
1 ≤ 𝑘 < 𝑛. Let 𝑘 = 𝑛>𝐽 +1. Because a random walk from ∞ which hits the origin before 𝐴≥𝑅𝐽 also hits
𝐶 (𝑅𝐽 ) before A, the induction hypothesis applied to 𝐴≥𝑅𝐽 ∪ {𝑜} ∈ ℋ𝑘 implies that P∞(𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐴)
is no smaller than exponential in 𝑘 log 𝑘 . Note that 𝑘 < 𝑛 because 𝐴<𝑅𝐼+1 has at least two elements by
the definition of I.

The reason we advance the random walk to 𝐶 (𝑅𝐽 ) instead of 𝐶 (𝑅𝐽−1) is that an adversarial choice
of A could produce a ‘choke point’ which likely dooms the walk to be intercepted by 𝐴\{𝑜} in the
second stage of advancement (Figure 7). To avoid a choke point when advancing to the boundary of
a disk D, it suffices for the conditional hitting distribution of 𝜕𝐷 given {𝜏𝜕𝐷 < 𝜏𝐴} to be comparable
to the uniform hitting distribution on 𝜕𝐷. To prove this comparison, the annular region immediately
beyond D and extending to a radius of, say, twice that of D, must be empty of A. This explains the need
for exponentially growing radii and for A𝐽 to be empty of A.

Stage 2: Advancing into A𝐼−1. For notational convenience, assume 𝐼 ≥ 2 so that A𝐼−1 is defined; the
argument is the same when 𝐼 = 1. Each annulus Aℓ , ℓ ∈ {𝐼, . . . , 𝐽 − 1}, contains one or more elements
of A, which the random walk must avoid on its journey to A𝐼−1. Except in an easier subcase, which
we address at the end of this subsection, we advance the walk into A𝐼−1 by building an overlapping
sequence of rectangular and annular tunnels, through and between each annulus, which are empty of A
and through which the walk can enter A𝐼−1 (Figure 8). Specifically, the walk reaches a particular subset
Arc𝐼−1 in A𝐼−1 at the conclusion of the tunneling process. We will define Arc𝐼−1 in Lemma 3.3 as an
arc of a circle in A𝐼−1.

By the pigeonhole principle applied to the angular coordinate, for each ℓ ≥ 𝐼 + 1, there is a sector of
aspect ratio 𝑚ℓ = 𝑛ℓ + 𝑛ℓ−1, from the lower ‘𝛿th’ of Aℓ to that of Aℓ−1, which contains no element of
A (Figure 8). To reach the entrance of the analogous tunnel between Aℓ−1 and Aℓ−2, the random walk
may need to circle the lower 𝛿th of Aℓ−1. We apply the pigeonhole principle to the radial coordinate to
conclude that there is an annular region contained in the lower 𝛿th of Aℓ−1, with an aspect ratio of 𝑛ℓ−1,
which contains no element of A.

The probability that the random walk reaches the annular tunnel before exiting the rectangular tunnel
fromAℓ toAℓ−1 is no smaller than exponential in 𝑚ℓ . Similarly, the random walk reaches the rectangular
tunnel from Aℓ−1 to Aℓ−2 before exiting the annular tunnel in Aℓ−1 with a probability no smaller than
exponential in 𝑛ℓ−1. Overall, we conclude that the random walk reaches Arc𝐼−1 without leaving the
union of tunnels – and therefore without hitting an element of A – with a probability no smaller than
exponential in

∑𝐽−1
ℓ=𝐼 𝑛ℓ .

Stage 3: Advancing to 𝐶 (𝑅1). Figure 5 (left) essentially depicts the setting of the random walk upon
reaching 𝑥 ∈ Arc𝐼−1, except with 𝐶 (𝑅𝐼 ) in the place of 𝐶 (𝑅) and the circle containing Arc𝐼−1 in the
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Figure 8. Tunneling through nonempty annuli. We construct a contiguous series of sectors (tan) and
annuli (blue) which contain no elements of A (green dots) and through which the random walk may
advance from 𝐶 (𝑅𝐽−1) to 𝐶 (𝛿𝑅𝐼−1) (dashed).

place of 𝐶 ( 𝑅3 ) and except for the possibility that 𝐷 (𝑅1) contains other elements of A. Nevertheless,
if the radius of Arc𝐼−1 is at least 𝑒𝑛, then by pretending that 𝐴<𝑅1 = {𝑜}, the method highlighted in
Section 2.2 will show that P𝑥 (𝜏𝐶 (𝑅1) < 𝜏𝐴) = Ω( 1

𝑛 ). A simple calculation will give the same lower
bound (for a potentially smaller constant) in the case when the radius is less than 𝑒𝑛.

Stage 4: Advancing to the origin. Once the random walk reaches 𝐶 (𝑅1), we simply dictate a path for
it to follow. There can be no more than 𝑂 (𝑅2

1) elements of 𝐴<𝑅1 , so there is a path of length 𝑂 (𝑅2
1) to

the origin which avoids all other elements of A, and a corresponding probability of at least a constant
that the random walk follows it.

Conclusion of Stages 1–4. The lower bounds from the four stages imply that there are universal
constants 𝑐1 through 𝑐4 such that

H𝐴(𝑜) ≥ 𝑒−𝑐1𝑘 log 𝑘−𝑐2
∑𝐽−1
ℓ=𝐼 𝑛ℓ−log(𝑐3𝑛)−log 𝑐4 ≥ 𝑒−𝑐1𝑛 log 𝑛.

It is easy to show that the second inequality holds if 𝑐1 ≥ 8 max{1, 𝑐2, log 𝑐3, log 𝑐4}, using the fact that
𝑛 − 𝑘 =

∑𝐽−1
ℓ=𝐼 𝑛ℓ > 1 and log 𝑛 ≥ 1. We are free to adjust 𝑐1 to satisfy this bound because 𝑐2 through

𝑐4 do not depend on the induction hypothesis. This concludes the induction step.
A complication in Stage 2. If 𝑅ℓ is not sufficiently large relative to 𝑚ℓ , then we cannot tunnel the

random walk through Aℓ into Aℓ−1. We formalize this through the failure of the condition

𝛿𝑅ℓ > 𝑅1(𝑚ℓ + 1). (3.1)

The problem is that, if equation (3.1) fails, then there are too many elements of A in Aℓ and Aℓ−1, and
we cannot guarantee that there is a tunnel between the annuli which avoids A.

Accordingly, we will stop Stage 2 tunneling once the random walk reaches a particular subset
Arc𝐾−1 of a circle in A𝐾−1, where A𝐾−1 is the outermost annulus which fails to satisfy equation (3.1).
Specifically, we define K as:

𝐾 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝐼, if equation (3.1)

holds for ℓ ∈ {𝐼, . . . , 𝐽};
min{𝑘 ∈ {𝐼, . . . , 𝐽} : equation (3.1) holds for ℓ ∈ {𝑘, . . . , 𝐽}}, otherwise.

(3.2)
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Informally, when 𝐾 = 𝐼, the pigeonhole principle yields wide enough tunnels for the random walk to
advance all the way to A𝐼−1 in Stage 2. When 𝐾 ≠ 𝐼, the tunnels become too narrow, so we must halt
tunneling before the random walk reaches A𝐼−1. However, this case is even simpler, as the failure of
equation (3.1) for ℓ = 𝐾 −1 implies that there is a path of length 𝑂 (

∑𝐾−1
ℓ=𝐼 𝑛ℓ) from Arc𝐾−1 to the origin

which otherwise avoids A. In this case, instead of proceeding to Stages 3 and 4 as described above,
the third and final stage consists of random walk from Arc𝐾−1 following this path to the origin with a
probability no smaller than exponential in

∑𝐾−1
ℓ=𝐼 𝑛ℓ .

Overall, if 𝐾 ≠ 𝐼, then Stages 2 and 3 contribute a rate of
∑𝐽−1

ℓ=𝐼 𝑛ℓ . This rate is smaller than the one
contributed by Stages 2–4 when 𝐾 = 𝐼, so the preceding conclusion holds.

3.2. Preparation for the proof of Theorem 4

3.2.1. Input to Stage 1
Let 𝐴 ∈ ℋ𝑛. Like in Section 3.1, we assume that 𝑛0 ≠ 𝑛 (i.e., 𝐴≥𝑅1 ≠ ∅) and defer the simpler
complementary case to Section 3.3. Recall that the radii 𝑅𝑖 must grow exponentially so that the
conditional hitting distribution of 𝐶 (𝑅𝐽 ) is comparable to the uniform distribution, thus avoiding
potential choke points (Figure 7). The next two results accomplish this comparison. We state them in
terms of the uniform distribution on 𝐶 (𝑟), which we denote by 𝜇𝑟 .

Lemma 3.1. Let 𝜀 > 0, and denote 𝜂 = 𝜏𝐶 (𝑅) ∧ 𝜏𝐶 (𝜀2𝑅) . There is a constant c such that, if 𝜀 ≤ 1
100 and

𝑅 ≥ 10𝜀−2 and if

min
𝑥∈𝐶 (𝜀𝑅)

P𝑥

(
𝜏𝐶 (𝜀2𝑅) < 𝜏𝐶 (𝑅)

)
>

1
10

, (3.3)

then, uniformly for 𝑥 ∈ 𝐶 (𝜀𝑅) and 𝑦 ∈ 𝐶 (𝜀2𝑅),

P𝑥

(
𝑆𝜂 = 𝑦, 𝜏𝐶 (𝜀2𝑅) < 𝜏𝐶 (𝑅)

)
≥ 𝑐𝜇𝜀2𝑅 (𝑦) P𝑥

(
𝜏𝐶 (𝜀2𝑅) < 𝜏𝐶 (𝑅)

)
.

The proof, which is similar to that of Lemma 2.1 in [DPRZ06], approximates the hitting distribution
of 𝐶 (𝜀2𝑅) by the corresponding harmonic measure, which is comparable to the uniform distribution.
The condition (3.3), and the assumptions on 𝜀 and R, are used to control the error of this approximation.
We defer the proof to Section A.3, along with the proof of the following application of Lemma 3.1.

Lemma 3.2. There is a constant c such that, for every 𝑧 ∈ 𝐶 (𝑅𝐽 ),

P∞
(
𝑆𝜏𝐶 (𝑅𝐽 ) = 𝑧

�� 𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐴
)
≥ 𝑐𝜇𝑅𝐽 (𝑧). (3.4)

Under the conditioning in equation (3.4), the random walk reaches 𝐶 (𝛿𝑅𝐽+1) before hitting A. A
short calculation shows that it typically proceeds to hit 𝐶 (𝑅𝐽 ) before returning to 𝐶 (𝑅𝐽+1) (i.e., it
satisfies equation (3.3) with 𝑅𝐽+1 in the place of R and 𝜀2 = 10−5). The inequality (3.4) then follows
from Lemma 3.1.

3.2.2. Inputs to Stage 2
We continue to assume that 𝑛0 ≠ 𝑛 so that I, J and K are well defined; the 𝑛0 = 𝑛 case is easy and we
address it in Section 3.3. In this subsection, we will prove an estimate of the probability that a random
walk passes through annuli A𝐽−1 to A𝐾 without hitting A. First, in Lemma 3.3, we will identify a
sequence of ‘tunnels’ through the annuli, which are empty of A. Second, in Lemma 3.4 and Lemma 3.5,
we will show that random walk traverses these tunnels through a series of rectangles, with a probability
that is no smaller than exponential in the number of elements in A𝐾 , . . . ,A𝐽−1. We will combine these
estimates in Lemma 3.6.
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Figure 9. The regions identified in Lemma 3.3. The tan sectors and dark blue annuli are subsets of the
overlapping annuli Bℓ and Bℓ−1 that are empty of A.

For each ℓ ∈ I = {𝐾, . . . , 𝐽}, we define the annulus Bℓ = A(𝑅ℓ−1, 𝛿𝑅ℓ+1). The radial and angular
tunnels from Aℓ into and around Aℓ−1 will be subsets of Bℓ . The inner radius of Bℓ is at least 𝑅1 because

ℓ ∈ I =⇒ 𝑅ℓ > 𝛿−1𝑅1(𝑚ℓ + 1) ≥ 107 =⇒ ℓ ≥ 2.

The first implication is due to equations (3.1) and (3.2); the second is due to the fact that 𝑅ℓ = 105ℓ .
The following lemma identifies subsets of Bℓ which are empty of A (Figure 9). Recall that 𝑚ℓ =

𝑛ℓ + 𝑛ℓ−1.

Lemma 3.3. Let ℓ ∈ I. Denote 𝜀ℓ = (𝑚ℓ + 1)−1 and 𝛿′ = 𝛿/10. For every ℓ ∈ I, there is an angle
𝜗ℓ ∈ [0, 2𝜋) and a radius 𝑎ℓ−1 ∈ [10𝑅ℓ−1, 𝛿

′𝑅ℓ) such that the following regions contain no element of
A:

◦ the sector of Bℓ subtending the angular interval [𝜗ℓ , 𝜗ℓ + 2𝜋𝜀ℓ ), hence the ‘middle third’ subsector

Secℓ = [𝑅ℓ , 𝛿
′𝑅ℓ+1) ×

[
𝜗ℓ + 2𝜋

3 𝜀ℓ , 𝜗ℓ + 4𝜋
3 𝜀ℓ

)
; and

◦ the subannulus Annℓ−1 = A(𝑎ℓ−1, 𝑏ℓ−1) of Bℓ , where we define

𝑏ℓ−1 = 𝑎ℓ−1 + Δℓ−1 for Δℓ−1 = 𝛿′𝜀ℓ𝑅ℓ

and, in particular, the circle Circℓ−1 = 𝐶
( 𝑎ℓ−1+𝑏ℓ−1

2
)

and the ‘arc’

Arcℓ−1 = Circℓ−1 ∩
{
𝑥 ∈ Z2 : arg 𝑥 ∈ [𝜗ℓ , 𝜗ℓ + 2𝜋𝜀ℓ )

}
.

We take a moment to explain the parameters and regions. Aside from Bℓ , which overlaps Aℓ

and Aℓ−1, the subscripts of the regions indicate which annulus contains them (e.g., Secℓ ⊂ Aℓ and
Annℓ−1 ⊂ Aℓ−1). The proof uses the pigeonhole principle to identify regions which contain none of the
𝑚ℓ elements of A in Bℓ and Annℓ−1; this motivates our choice of 𝜀ℓ . A key aspect of Secℓ is that it is
separated from 𝜕Bℓ by a distance of at least 𝑅ℓ−1, which will allow us to position one end of a rectangular
tunnel of width 𝑅ℓ−1 in Secℓ without the tunnel exiting Bℓ . We also need the inner radius of Annℓ−1 to

https://doi.org/10.1017/fms.2023.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.81


Forum of Mathematics, Sigma 17

be at least 𝑅ℓ−1 greater than that of Bℓ , hence the lower bound on 𝑎ℓ−1. The other key aspect of Annℓ−1
is its overlap with Secℓ−1. The specific constants (e.g., 2𝜋

3 , 10, and 𝛿′) are otherwise unimportant.

Proof of Lemma 3.3. Fix ℓ ∈ I. For 𝑗 ∈ {0, . . . , 𝑚ℓ }, form the intervals

2𝜋𝜀ℓ [ 𝑗 , 𝑗 + 1) and 10𝑅ℓ−1 + Δℓ−1 [ 𝑗 , 𝑗 + 1).

Bℓ contains at most 𝑚ℓ elements of A, so the pigeonhole principle implies that there are 𝑗1 and 𝑗2 in
this range and such that, if 𝜗ℓ = 𝑗12𝜋𝜀ℓ and if 𝑎ℓ−1 = 10𝑅ℓ−1 + 𝑗2Δℓ−1, then

Bℓ ∩
{
𝑥 ∈ Z2 : arg 𝑥 ∈

[
𝜗ℓ , 𝜗ℓ + 2𝜋𝜀ℓ

)}
∩ 𝐴 = ∅, and A(𝑎ℓ−1, 𝑎ℓ−1 + Δℓ−1) ∩ 𝐴 = ∅.

Because Bℓ ⊇ Secℓ and Annℓ−1 ⊇ Arcℓ−1, for these choices of 𝜗ℓ and 𝑎ℓ−1, we also have Secℓ ∩ 𝐴 = ∅
and Arcℓ−1 ∩ 𝐴 = ∅. �

The next result bounds below the probability that the random walk tunnels ‘down’ from Secℓ to
Arcℓ−1. We state it without proof, as it is a simple consequence of the known fact that a random walk
from the ‘bulk’ of a rectangle exits its far, small side with a probability which is no smaller than
exponential in the aspect ratio of the rectangle (Lemma A.4). In this case, the aspect ratio is 𝑂 (𝑚ℓ).

Lemma 3.4. There is a constant c such that, for any ℓ ∈ I and every 𝑦 ∈ Secℓ ,

P𝑦
(
𝜏Arcℓ−1 < 𝜏𝐴

)
≥ 𝑐𝑚ℓ .

The following lemma bounds below the probability that the random walk tunnels ‘around’ Annℓ−1,
from Arcℓ−1 to Secℓ−1. (This result applies to ℓ ∈ I \ {𝐾} = {𝐾 + 1, . . . , 𝐽} because Lemma 3.3 defines
Secℓ for ℓ ∈ I.) Like Lemma 3.4, we state it without proof because it is a simple consequence of Lemma
A.4. Indeed, random walk from Arcℓ−1 can reach Secℓ−1 without exiting Annℓ−1 by appropriately
exiting each rectangle in a sequence of 𝑂 (𝑚ℓ) rectangles of aspect ratio 𝑂 (1). Applying Lemma A.4
then implies equation (3.5).

Lemma 3.5. There is a constant c such that, for any ℓ ∈ I \ {𝐾} and every 𝑧 ∈ Arcℓ−1,

P𝑧
(
𝜏Secℓ−1 < 𝜏𝐴

)
≥ 𝑐𝑚ℓ . (3.5)

The next result combines Lemma 3.4 and Lemma 3.5 to tunnel from A𝐽 into A𝐾−1. Because the
random walk tunnels from Aℓ to Aℓ−1 with a probability no smaller than exponential in 𝑚ℓ = 𝑛ℓ +𝑛ℓ−1,
the bound in equation (3.6) is no smaller than exponential in

∑𝐽−1
ℓ=𝐾−1 𝑛ℓ (recall that 𝑛𝐽 = 0).

Lemma 3.6. There is a constant c such that

P 𝜇𝑅𝐽

(
𝜏Arc𝐾−1 < 𝜏𝐴

)
≥ 𝑐

∑𝐽−1
ℓ=𝐾−1 𝑛ℓ . (3.6)

Proof. Denote by G the event{
𝜏Arc𝐽−1 < 𝜏Sec𝐽−1 < 𝜏Arc𝐽−2 < 𝜏Sec𝐽−2 < · · · < 𝜏Sec𝐾 < 𝜏Arc𝐾−1 < 𝜏𝐴

}
.

Lemma 3.4 and Lemma 3.5 imply that there is a constant 𝑐1 such that

P𝑧 (𝐺) ≥ 𝑐
∑𝐽−1
ℓ=𝐾−1 𝑛ℓ

1 for 𝑧 ∈ 𝐶 (𝑅𝐽 ) ∩ Sec𝐽 . (3.7)

The intersection of Sec𝐽 and 𝐶 (𝑅𝐽 ) subtends an angle of at least 𝑛−1
𝐽−1, so there is a constant 𝑐2 such that

𝜇𝑅𝐽 (Sec𝐽 ) ≥ 𝑐2𝑛
−1
𝐽−1. (3.8)
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The inequality (3.6) follows from 𝐺 ⊆ {𝜏Arc𝐾−1 < 𝜏𝐴}, and equations (3.7) and (3.8):

P𝜇𝑅𝐽

(
𝜏Arc𝐾−1 < 𝜏𝐴

)
≥ P𝜇𝑅𝐽 (𝐺) ≥ 𝑐2𝑛

−1
𝐽−1 · 𝑐

∑𝐽−1
ℓ=𝐾−1 𝑛ℓ

1 ≥ 𝑐
∑𝐽−1
ℓ=𝐾−1 𝑛ℓ

3 .

For the third inequality, we take 𝑐3 = (𝑐1𝑐2)2. �

3.2.3. Inputs to Stage 3 when 𝐾 = 𝐼

We continue to assume that 𝑛0 ≠ 𝑛, as the alternative case is addressed in Section 3.3. Additionally, we
assume 𝐾 = 𝐼. We briefly recall some important context. When 𝐾 = 𝐼, at the end of Stage 2, the random
walk has reached Circ𝐼−1 ⊆ A𝐼−1, where Circ𝐼−1 is a circle with a radius in [𝑅𝐼−1, 𝛿

′𝑅𝐼 ). (Note that
𝐼 > 1 when 𝐾 = 𝐼 because I must then satisfy equation (3.1), so the radius of Circ𝐼−1 is at least 𝑅1.)
Since A𝐼 is the innermost annulus which contains an element of A, the random walk from Arc𝐼−1 must
simply reach the origin before hitting 𝐴>𝑅𝐼 . In this subsection, we estimate this probability.

We will use the potential kernel associated with random walk on Z2. We denote it by 𝔞. It equals
zero at the origin, is harmonic on Z2\{𝑜} and satisfies����𝔞(𝑥) − 2

𝜋
log |𝑥 | − 𝜅

���� ≤ 𝜆 |𝑥 |−2, (3.9)

where 𝜅 ∈ (1.02, 1.03) is an explicit constant and 𝜆 is less than 0.06882 [KS04]. In some instances, we
will want to apply 𝔞 to an element which belongs to 𝐶 (𝑟). It will be convenient to denote, for 𝑟 > 0,

𝔞′(𝑟) = 2
𝜋

log 𝑟 + 𝜅.

We will need the following standard hitting probability estimate (see, for example, Proposition 1.6.7
of [Law13]), which we state as a lemma because we will use it in other sections as well.

Lemma 3.7. Let 𝑦 ∈ 𝐷𝑥 (𝑟) for 𝑟 ≥ 2(|𝑥 | + 1), and assume 𝑦 ≠ 𝑜. Then

P𝑦
(
𝜏𝑜 < 𝜏𝐶𝑥 (𝑟 )

)
=
𝔞′(𝑟) − 𝔞(𝑦) +𝑂

(
|𝑥 |+1
𝑟

)
𝔞′(𝑟) +𝑂

(
|𝑥 |+1
𝑟

) . (3.10)

The implicit constants in the error terms are less than one.

If 𝑅𝐼 < 𝑒8𝑛, then no further machinery is needed to prove the Stage 3 estimate.

Lemma 3.8. There exists a constant c such that, if 𝑅𝐼 < 𝑒8𝑛, then

P∞
(
𝜏𝐶 (𝑅1) < 𝜏𝐴

�� 𝜏Circ𝐼−1 < 𝜏𝐴
)
≥ 𝑐

𝑛
.

The bound holds because the random walk must exit 𝐷 (𝑅𝐼 ) to hit 𝐴≥𝑅𝐼 . By a standard hitting
estimate, the probability that the random walk hits the origin first is inversely proportional to log 𝑅𝐼

which is 𝑂 (𝑛) when 𝑅𝐼 < 𝑒8𝑛.

Proof of Lemma 3.8. Uniformly for 𝑦 ∈ Circ𝐼−1, we have

P𝑦
(
𝜏𝐶 (𝑅1) < 𝜏𝐴

)
≥ P𝑦

(
𝜏𝑜 < 𝜏𝐶 (𝑅𝐼 )

)
≥

𝔞′(𝑅𝐼 ) − 𝔞′(𝛿𝑅𝐼−1) − 1
𝑅𝐼

− 1
𝛿𝑅𝐼

𝔞′(𝑅𝐼 ) + 1
𝑅𝐼

≥ 1
𝔞′(𝑅𝐼 )

. (3.11)

The first inequality follows from the observation that 𝐶 (𝑅1) and 𝐶 (𝑅𝐼 ) separate y from o and A. The
second inequality is due to Lemma 3.7, where we have replaced 𝔞(𝑦) by 𝔞′(𝛿𝑅𝐼 ) + 1

𝛿𝑅𝐼
using Lemma
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A.2 and the fact that |𝑦 | ≤ 𝛿𝑅𝐼 . The third inequality follows from 𝛿𝑅𝐼 ≥ 103. To conclude, we substitute
𝔞′(𝑅𝐼 ) = 2

𝜋 log 𝑅𝐼 + 𝜅 into equation (3.11) and use the assumption that 𝑅𝐼 < 𝑒8𝑛. �

We will use the rest of this subsection to prove the bound of Lemma 3.8, but under the complementary
assumption 𝑅𝐼 ≥ 𝑒8𝑛. This is one of the two estimates we highlighted in Section 2.2.

Next is a standard result, which enables us to express certain hitting probabilities in terms of the
potential kernel. We include a short proof for completeness.

Lemma 3.9. For any pair of points 𝑥, 𝑦 ∈ Z2, define

𝑀𝑥,𝑦 (𝑧) =
𝔞(𝑥 − 𝑧) − 𝔞(𝑦 − 𝑧)

2𝔞(𝑥 − 𝑦) + 1
2
.

Then 𝑀𝑥,𝑦 (𝑧) = P𝑧 (𝜎𝑦 < 𝜎𝑥).

Proof. Fix 𝑥, 𝑦 ∈ Z2. Theorem 1.4.8 of [Law13] states that for any proper subset B of Z2 (including
infinite B) and bounded function 𝐹 : 𝜕𝐵 → R, the unique bounded function 𝑓 : 𝐵 ∪ 𝜕𝐵 → R which is
harmonic in B and equals F on 𝜕𝐵 is 𝑓 (𝑧) = E𝑧 [𝐹 (𝑆𝜎𝜕𝐵 )]. Setting 𝐵 = Z2\{𝑥, 𝑦} and 𝐹 (𝑧) = 1(𝑧 = 𝑦),
we have 𝑓 (𝑧) = P𝑧 (𝜎𝑦 < 𝜎𝑥). Since 𝑀𝑥,𝑦 is bounded, harmonic on B and agrees with f on 𝜕𝐵, the
uniqueness of f implies 𝑀𝑥,𝑦 (𝑧) = 𝑓 (𝑧). �

The next two results partly implement the first estimate that we discussed in Section 2.2.

Lemma 3.10. For any 𝑧, 𝑧′ ∈ Circ𝐼−1 and 𝑦 ∈ 𝐷 (𝑅𝐼 )𝑐 ,

P𝑧 (𝜏𝑦 < 𝜏𝑜) ≤
1
2

and
��P𝑧 (𝜏𝑦 < 𝜏𝑜) − P𝑧′ (𝜏𝑦 < 𝜏𝑜)

�� ≤ 2
log 𝑅𝐼

. (3.12)

The first inequality in equation (3.12) holds because z is appreciably closer to the origin than it is
to y. The second inequality holds because a Taylor expansion of the numerator of 𝑀𝑜,𝑦 (𝑧) − 𝑀𝑜,𝑦 (𝑧′)
shows that it is 𝑂 (1), while the denominator of 2𝔞(𝑦) is at least log 𝑅𝐼 .

Proof of Lemma 3.10. By Lemma 3.9,

P𝑧 (𝜏𝑦 < 𝜏𝑜) =
1
2
+ 𝔞(𝑧) − 𝔞(𝑦 − 𝑧)

2𝔞(𝑦) .

The first inequality in equation (3.12) then follows from 𝔞(𝑦 − 𝑧) ≥ 𝔞(𝑧), which is due to (1) of Lemma
A.1. This fact applies because |𝑦 − 𝑧 | ≥ 2|𝑧 | ≥ 4. The first of these bounds holds because |𝑧 | ≤ 𝛿𝑅𝐼 + 1
and |𝑦 − 𝑧 | ≥ (1 − 𝛿)𝑅𝐼 − 1 since Circ𝐼−1 ⊆ 𝐷 (𝛿𝑅𝐼 ); the second holds because the radius of Circ𝐼−1 is
at least 𝑅1 since 𝐼 > 1 when 𝐾 = 𝐼.

Using Lemma 3.9, the difference in equation (3.12) can be written as��𝑀𝑜,𝑦 (𝑧) − 𝑀𝑜,𝑦 (𝑧′)
�� ≤ |𝔞(𝑧) − 𝔞(𝑧′) |

2𝔞(𝑦) + |𝔞(𝑦 − 𝑧) − 𝔞(𝑦 − 𝑧′) |
2𝔞(𝑦) . (3.13)

By Lemma A.2, in terms of 𝑟 = rad(Circ𝐼−1), 𝔞(𝑧) and 𝔞(𝑧′) differ from 𝔞′(𝑟) by no more than
𝑟−1. Since 𝑟 ≥ 𝑅1, this implies |𝔞(𝑧) − 𝔞(𝑧′) | ≤ 2𝑅−1

1 . Concerning the denominator, 𝔞(𝑦) is at least
2
𝜋 log |𝑦 | ≥ 2

𝜋 log 𝑅𝐼 by (2) of Lemma A.1 because |𝑦 | is at least 1. We apply (3) of Lemma A.1 with
𝑅 = 𝑅𝐼 and 𝑟 = rad(Circ𝐼−1) ≤ 𝛿𝑅𝐼 to bound the numerator by 4

𝜋 . Substituting these bounds into
equation (3.13) gives��P𝑧 (𝜏𝑦 < 𝜏𝑜) − P𝑧′ (𝜏𝑦 < 𝜏𝑜)

�� ≤ 1
2
𝜋 𝑅1 log 𝑅𝐼

+ 1
log 𝑅𝐼

≤ 2
log 𝑅𝐼

.

�
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Label the k elements in 𝐴≥𝑅1 by 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑘 . Then let 𝑌𝑖 = 1(𝜏𝑥𝑖 < 𝜏𝑜) and 𝑊 =
∑𝑘

𝑖=1 𝑌𝑖 .
In words, W counts the number of elements of 𝐴≥𝑅1 which have been visited before the random walk
returns to the origin.

Lemma 3.11. If 𝑅𝐼 ≥ 𝑒8𝑛, then, for all 𝑧 ∈ Circ𝐼−1,

E𝑧 [𝑊 | 𝑊 > 0] ≥ E𝑧𝑊 + 1
4
. (3.14)

The constant 1
4 in equation (3.14) is unimportant, aside from being positive, independently of n. The

inequality holds because random walk from Circ𝐼−1 hits a given element of 𝐴≥𝑅1 before the origin with
a probability of at most 1

2 . Consequently, given that some such element is hit, the conditional expectation
of W is essentially larger than its unconditional one by a constant.

Proof of Lemma 3.11. Fix 𝑧 ∈ Circ𝐼−1. When {𝑊 > 0} occurs, some labeled element, 𝑥 𝑓 , is hit
first. After 𝜏𝑥 𝑓 , the random walk may proceed to hit other 𝑥𝑖 before returning to Circ𝐼−1 at a time
𝜂 = min

{
𝑡 ≥ 𝜏𝑥 𝑓 : 𝑆𝑡 ∈ Circ𝐼−1

}
. Let V be the collection of labeled elements that the walk visits before

time 𝜂, {𝑖 : 𝜏𝑥𝑖 < 𝜂}. In terms of V and 𝜂, the conditional expectation of W is

E𝑧 [𝑊 | 𝑊 > 0] = E𝑧
[
|V | + E𝑆𝜂

∑
𝑖∉V

𝑌𝑖

��� 𝑊 > 0
]
. (3.15)

Let V be a nonempty subset of the labeled elements, and let 𝑧′ ∈ Circ𝐼−1. We have���E𝑧 ∑
𝑖∉𝑉

𝑌𝑖 − E𝑧′
∑
𝑖∉𝑉

𝑌𝑖

��� ≤ 2𝑛
log 𝑅𝐼

≤ 1
4
.

The first inequality is due to Lemma 3.10 and the fact that there are at most n labeled elements outside
of V. The second inequality follows from the assumption that 𝑅𝐼 ≥ 𝑒8𝑛.

We use this bound to replace 𝑆𝜂 in equation (3.15) with z:

E𝑧 [𝑊
�� 𝑊 > 0] ≥ E𝑧

[
|V | + E𝑧

∑
𝑖∉V

𝑌𝑖

��� 𝑊 > 0
]
− 1

4
. (3.16)

By Lemma 3.10, P𝑧 (𝜏𝑥𝑖 < 𝜏𝑜) ≤ 1
2 . Accordingly, for a nonempty subset V of labeled elements,

E𝑧

∑
𝑖∉𝑉

𝑌𝑖 ≥ E𝑧𝑊 − 1
2
|𝑉 |.

Substituting this into the inner expectation of equation (3.16), we find

E𝑧 [𝑊
�� 𝑊 > 0] ≥ E𝑧

[
|V | + E𝑧𝑊 − 1

2
|V |

��� 𝑊 > 0
]
− 1

4

≥ E𝑧𝑊 + E𝑧
[
1
2
|V |

��� 𝑊 > 0
]
− 1

4
.

Since {𝑊 > 0} = {|V | ≥ 1}, this lower bound is at least E𝑧𝑊 + 1
4 . �

We use the preceding lemma to prove the analogue of Lemma 3.8 when 𝑅𝐼 ≥ 𝑒8𝑛. The proof uses
the method highlighted in Section 2.2 and Figure 5 (left).

Lemma 3.12. There exists a constant c such that, if 𝑅𝐼 ≥ 𝑒8𝑛, then

P∞
(
𝜏𝐶 (𝑅1) < 𝜏𝐴

�� 𝜏Circ𝐼−1 < 𝜏𝐴
)
≥ 𝑐

𝑛
. (3.17)
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Proof. Conditionally on {𝜏Circ𝐼−1 < 𝜏𝐴}, let the random walk hit Circ𝐼−1 at z. Denote the positions of
the 𝑘 ≤ 𝑛 particles in 𝐴≥𝑅1 as 𝑥𝑖 for 1 ≤ 𝑖 ≤ 𝑘 . Let 𝑌𝑖 = 1(𝜏𝑥𝑖 < 𝜏𝑜) and 𝑊 =

∑𝑘
𝑖=1 𝑌𝑖 , just as we did

for Lemma 3.11. The claimed bound (3.17) follows from

P𝑧 (𝜏𝐴 < 𝜏𝐶 (𝑅1) ) ≤ P𝑧 (𝑊 > 0) = E𝑧𝑊

E𝑧 [𝑊 | 𝑊 > 0] ≤ E𝑧𝑊

E𝑧𝑊 + 1/4
≤ 𝑛

𝑛 + 1/4
≤ 1 − 1

5𝑛
.

The first inequality follows from the fact that 𝐶 (𝑅1) separates z from the origin. The second inequality
is due to Lemma 3.11, which applies because 𝑅𝐼 ≥ 𝑒8𝑛. Since the resulting expression increases with
E𝑧𝑊 , we obtain the third inequality by substituting n for E𝑧𝑊 , as E𝑧𝑊 ≤ 𝑛. The fourth inequality
follows from 𝑛 ≥ 1. �

3.2.4. Inputs to Stage 4 when 𝐾 = 𝐼 and Stage 3 when 𝐾 ≠ 𝐼

The results in this subsection address the last stage of advancement in the two subcases of the case
𝑛0 ≠ 𝑛: 𝐾 = 𝐼 and 𝐾 ≠ 𝐼. In the former subcase, the random walk has reached 𝐶 (𝑅1); in the latter
subcase, it has reached Circ𝐾−1. Both subcases will be addressed by corollaries of the following, known
geometric fact, stated in a form convenient for our purposes.

Let Z2∗ be the graph with vertex set Z2 and with an edge between distinct x and y in Z2 when x and
y differ by at most 1 in each coordinate. For 𝐵 ⊆ Z2, we will define the ∗-exterior boundary of B by

𝜕∗ext𝐵 = {𝑥 ∈ Z2 : 𝑥 is adjacent in Z2∗ to some 𝑦 ∈ 𝐵,

and there is a path from ∞ to 𝑥 disjoint from 𝐵}. (3.18)

Lemma 3.13. Let 𝐴 ∈ ℋ𝑛 and 𝑟 > 0. From any 𝑥 ∈ 𝐶 (𝑟)\𝐴, there is a path Γ in (𝐴\{𝑜})𝑐 from Γ1 = 𝑥
to Γ|Γ | = 𝑜 with a length of at most 10 max{𝑟, 𝑛}. Moreover, if 𝐴 ⊆ 𝐷 (𝑟), then Γ lies in 𝐷 (𝑟 + 2).

We choose the constant factor of 10 for convenience; it has no special significance. We use a radius
of 𝑟 + 2 in 𝐷 (𝑟 + 2) to contain the boundary of 𝐷 (𝑟) in Z2∗.

Proof of Lemma 3.13. Let {𝐵ℓ }ℓ be the collection of ∗-connected components of 𝐴\{𝑜}. By Lemma
2.23 of [Kes86] (alternatively, Theorem 4 of [Tim13]), because 𝐵ℓ is finite and ∗-connected, 𝜕∗ext𝐵ℓ is
connected.

Fix 𝑟 > 0 and 𝑥 ∈ 𝐶 (𝑟)\𝐴. Let Γ be the shortest path from x to the origin. If Γ is disjoint from
𝐴\{𝑜}, then we are done, as |Γ| is no greater than 2𝑟 . Otherwise, let ℓ1 be the label of the first ∗-
connected component intersected by Γ. Let i and j be the first and last indices such that Γ intersects
𝜕∗ext𝐵ℓ1 , respectively. Because 𝜕∗ext𝐵ℓ1 is connected, there is a path Λ in 𝜕∗ext𝐵ℓ1 from Γ𝑖 to Γ 𝑗 . We then
edit Γ to form Γ′ as

Γ′ =
(
Γ1, . . . , Γ𝑖−1,Λ1, . . . ,Λ |Λ | , Γ 𝑗+1, . . . , Γ|Γ |

)
.

If Γ′ is disjoint from 𝐴\{𝑜}, then we are done, as Γ′ is contained in the union of Γ and
⋃

ℓ 𝜕
∗
ext𝐵ℓ .

Since
⋃

ℓ 𝐵ℓ has at most n elements,
⋃

ℓ 𝜕
∗
ext𝐵ℓ has at most 8𝑛 elements. Accordingly, the length of Γ′ is

at most 2𝑟 + 8𝑛 ≤ 10 max{𝑟, 𝑛}. Otherwise, if Γ′ intersects another ∗-connected component of 𝐴\{𝑜},
we can simply relabel the preceding argument to continue inductively and obtain the same bound.

Lastly, if 𝐴 ⊆ 𝐷 (𝑟), then
⋃

ℓ 𝜕
∗
ext𝐵ℓ is contained in 𝐷 (𝑟 + 2). Since Γ is also contained in 𝐷 (𝑟 + 2),

this implies that Γ′ is contained in 𝐷 (𝑟 + 2). �

Lemma 3.13 implies two other results. The first addresses Stage 4 when 𝐾 = 𝐼. By the definition of
K (3.2), I must satisfy equation (3.1) when 𝐾 = 𝐼, which implies that 𝐼 > 1, hence 𝐴≥𝑅1 ⊆ 𝐷 (𝑅1 + 2)𝑐 .
The next result follows from this observation and the fact that |𝐴<𝑅1 | = 𝑂 (𝑅2

1).

Lemma 3.14. There is a constant c such that

P∞(𝜏𝑜 ≤ 𝜏𝐴 | 𝜏𝐶 (𝑅1) < 𝜏𝐴) ≥ 𝑐. (3.19)
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Lemma 3.13 also addresses Stage 3 when 𝐾 ≠ 𝐼.

Lemma 3.15. Assume that 𝑛0 = 1 and 𝐾 ≠ 𝐼. There is a constant c such that

P∞(𝜏𝑜 ≤ 𝜏𝐴 | 𝜏Circ𝐾−1 < 𝜏𝐴) ≥ 𝑐
∑𝐾−1
ℓ=𝐼 𝑛ℓ . (3.20)

The bound (3.20) follows from Lemma 3.13 because 𝐾 ≠ 𝐼 implies that the radius r of Circ𝐾−1 is
at most a constant factor times |𝐴<𝑟 |. Lemma 3.13 then implies that there is a path Γ from Circ𝐾−1 to
the origin with a length of 𝑂 (|𝐴<𝑟 |), which remains in 𝐷 (𝑟 + 2) and otherwise avoids the elements of
𝐴<𝑟 . In fact, because Circ𝐾−1 is a subset of Ann𝐾−1, which contains no elements of A, by remaining in
𝐷 (𝑟 + 2), Γ avoids 𝐴≥𝑟 as well. This implies equation (3.20).

3.3. Proof of Theorem 4

The proof is by induction on n. Since equation (1.2) clearly holds for 𝑛 = 1 and 𝑛 = 2, we assume 𝑛 ≥ 3.
Let 𝐴 ∈ ℋ𝑛. There are three cases: 𝑛0 = 𝑛, 𝑛0 ≠ 𝑛 and 𝐾 = 𝐼, and 𝑛0 ≠ 𝑛 and 𝐾 ≠ 𝐼. The first of these
cases is easy: When 𝑛0 = 𝑛, A is contained in 𝐷 (𝑅1), so Lemma 3.14 implies that H𝐴(𝑜) is at least a
universal constant. Accordingly, in what follows, we assume that 𝑛0 ≠ 𝑛 and address the two subcases
𝐾 = 𝐼 and 𝐾 ≠ 𝐼.

First subcase: 𝐾 = 𝐼. If 𝐾 = 𝐼, then we write

H𝐴(𝑜) = P∞(𝜏𝑜 ≤ 𝜏𝐴) ≥ P∞(𝜏𝐶 (𝑅𝐽 ) < 𝜏Circ𝐼−1 < 𝜏𝐶 (𝑅1) < 𝜏𝑜 ≤ 𝜏𝐴).

Because 𝐶 (𝑅𝐽 ), Circ𝐼−1 and 𝐶 (𝑅1), respectively, separate Circ𝐼−1, 𝐶 (𝑅1), and the origin from ∞, we
can express the lower bound as the following product:

H𝐴(𝑜) ≥ P∞(𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐴) × P∞
(
𝜏Circ𝐼−1 < 𝜏𝐴

�� 𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐴
)

× P∞
(
𝜏𝐶 (𝑅1) < 𝜏𝐴

�� 𝜏Circ𝐼−1 < 𝜏𝐴
)
× P∞

(
𝜏𝑜 ≤ 𝜏𝐴

�� 𝜏𝐶 (𝑅1) < 𝜏𝐴
)
. (3.21)

We address the four factors of equation (3.21) in turn. First, by the induction hypothesis, there is a
constant 𝑐1 such that

P∞(𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐴) ≥ 𝑒−𝑐1𝑘 log 𝑘 ,

where 𝑘 = 𝑛>𝐽 + 1. Second, by the strong Markov property applied to 𝜏𝐶 (𝑅𝐽 ) and Lemma 3.2, and then
by Lemma 3.6, there are constants 𝑐2 and 𝑐3 such that

P∞
(
𝜏Circ𝐼−1 < 𝜏𝐴

�� 𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐴
)
≥ 𝑐2P 𝜇𝑅𝐽

(
𝜏Arc𝐼−1 < 𝜏𝐴

)
≥ 𝑒−𝑐3

∑𝐽−1
ℓ=𝐼 𝑛ℓ . (3.22)

Third and fourth, by Lemma 3.8 and Lemma 3.12, and by Lemma 3.14, there are constants 𝑐4 and 𝑐5
such that

P∞
(
𝜏𝐶 (𝑅1) ≤ 𝜏𝐴

�� 𝜏Circ𝐼−1 < 𝜏𝐴
)
≥ (𝑐4𝑛)−1 and P∞

(
𝜏𝑜 ≤ 𝜏𝐴

�� 𝜏𝐶 (𝑅1) ≤ 𝜏𝐴
)
≥ 𝑐5.

Substituting the preceding bounds into equation (3.21) completes the induction step for this subcase:

H𝐴(𝑜) ≥ 𝑒−𝑐1𝑘 log 𝑘−𝑐3
∑𝐽−1
ℓ=𝐼 𝑛ℓ−log(𝑐4𝑛)+log 𝑐5 ≥ 𝑒−𝑐1𝑛 log 𝑛.

The second inequality follows from 𝑛 − 𝑘 =
∑𝐽−1

ℓ=𝐼 𝑛ℓ > 1 and log 𝑛 ≥ 1, and from potentially adjusting
𝑐1 to satisfy 𝑐1 ≥ 8 max{1, 𝑐3, log 𝑐4,− log 𝑐5}. We are free to adjust 𝑐1 in this way since the other
constants do not arise from the use of the induction hypothesis.
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Second subcase: 𝐾 ≠ 𝐼. If 𝐾 ≠ 𝐼, then we write H𝐴(𝑜) ≥ P∞(𝜏𝐶 (𝑅𝐽 ) < 𝜏Circ𝐾−1 < 𝜏𝑜 ≤ 𝜏𝐴).
Because 𝐶 (𝑅𝐽 ) and Circ𝐾−1 separate Circ𝐾−1 and the origin from ∞, we can express the lower bound
as

H𝐴(𝑜) ≥ P∞(𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐴) × P∞
(
𝜏Circ𝐾−1 < 𝜏𝐴

�� 𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐴
)
× P∞

(
𝜏𝑜 ≤ 𝜏𝐴

�� 𝜏Circ𝐾−1 < 𝜏𝐴
)
. (3.23)

As in the first subcase, the first factor is addressed by the induction hypothesis and the lower bound
(3.22) applies to the second factor of equation (3.23) with K in the place of I. Concerning the third
factor, Lemma 3.15 implies that there is a constant 𝑐6 such that

P∞
(
𝜏𝑜 ≤ 𝜏𝐴

�� 𝜏Circ𝐾−1 < 𝜏𝐴
)
≥ 𝑒−𝑐6

∑𝐾−1
ℓ=𝐼 𝑛ℓ .

Substituting the three bounds into equation (3.23) concludes the induction step in this subcase:

H𝐴(𝑜) ≥ 𝑒−𝑐1𝑘 log 𝑘−𝑐3
∑𝐽−1
ℓ=𝐾 𝑛ℓ−𝑐6

∑𝐾−1
ℓ=𝐼 𝑛ℓ ≥ 𝑒−𝑐1𝑛 log 𝑛.

The second inequality follows from potentially adjusting 𝑐1 to satisfy 𝑐1 ≥ 8 max{1, 𝑐3, 𝑐6}. This
completes the induction and establishes equation (1.2). �

4. Escape probability estimates

The purpose of this section is to prove Theorem 5. It suffices to prove the escape probability lower bound
(1.6), as equation(1.7) follows from equation (1.6) by the pigeonhole principle. Let A be an n-element
subset of Z2 with at least two elements. We assume w.l.o.g. that 𝑜 ∈ 𝐴. Denote 𝑏 = diam(𝐴), and
suppose 𝑑 ≥ 2𝑏. We aim to show that there is a constant c such that, if 𝑑 ≥ 2𝑏, then, for every 𝑥 ∈ 𝐴,

P𝑥 (𝜏𝜕𝐴𝑑 < 𝜏𝐴) ≥
𝑐H𝐴(𝑥)
𝑛 log 𝑑

.

In fact, by adjusting c, we can reduce to the case when 𝑑 ≥ 𝑘𝑏 for 𝑘 = 200 and when b is at least a
large universal constant, 𝑏′. We proceed to prove equation (1.6) when 𝑑 ≥ 200𝑏 for sufficiently large b.
Since 𝐶 (𝑘𝑏) separates A from 𝜕𝐴𝑑 , we can write the escape probability as the product of two factors:

P𝑥 (𝜏𝜕𝐴𝑑 < 𝜏𝐴) = P𝑥 (𝜏𝐶 (𝑘𝑏) < 𝜏𝐴) P𝑥
(
𝜏𝜕𝐴𝑑 < 𝜏𝐴

�� 𝜏𝐶 (𝑘𝑏) < 𝜏𝐴
)
. (4.1)

Concerning the first factor of equation (4.1), we have the following lemma.

Lemma 4.1. Let 𝑥 ∈ 𝐴. Then

P𝑥 (𝜏𝐶 (𝑘𝑏) < 𝜏𝐴) ≥
H𝐴(𝑥)

4 log(𝑘𝑏) . (4.2)

The factor of log(𝑘𝑏) arises from evaluating the potential kernel at elements of 𝐶 (𝑘𝑏); the factor of 4
is unimportant. The proof is an application of the optional stopping theorem to the martingale 𝔞(𝑆 𝑗∧𝜏𝑜 ).

Proof of Lemma 4.1. Let 𝑥 ∈ 𝐴. By conditioning on the first step, we have

P𝑥 (𝜏𝐶 (𝑘𝑏) < 𝜏𝐴) =
1
4

∑
𝑦∉𝐴,𝑦∼𝑥

P𝑦 (𝜏𝐶 (𝑘𝑏) < 𝜏𝐴), (4.3)
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where 𝑦 ∼ 𝑥 means |𝑥 − 𝑦 | = 1. We apply the optional stopping theorem to the martingale 𝔞(𝑆 𝑗∧𝜏𝑜 )
with the stopping time 𝜏𝐴 ∧ 𝜏𝐶 (𝑘𝑏) to find

1
4

∑
𝑦∉𝐴,𝑦∼𝑥

P𝑦 (𝜏𝐶 (𝑘𝑏) < 𝜏𝐴) =
1
4

∑
𝑦∉𝐴,𝑦∼𝑥

𝔞(𝑦) − E𝑦𝔞(𝑆𝜏𝐴)
E𝑦

[
𝔞(𝑆𝜏𝐶 (𝑘𝑏) ) − 𝔞(𝑆𝜏𝐴)

�� 𝜏𝐶 (𝑘𝑏) < 𝜏𝐴
] . (4.4)

We need two facts. First, H𝐴(𝑥) can be expressed as 1
4
∑

𝑦∉𝐴,𝑦∼𝑥
(
𝔞(𝑦) − E𝑦𝔞(𝑆𝜏𝐴)

)
[Pop21, Definition

3.15 and Theorem 3.16]. Second, for any 𝑧 ∈ 𝐶 (𝑘𝑏), 𝔞(𝑧) ≤ 4 log(𝑘𝑏) by Lemma A.1. Applying these
facts to equation (4.4) and the result to equation (4.3), we find

P𝑥 (𝜏𝐶 (𝑘𝑏) < 𝜏𝐴) ≥
1

4 log(𝑘𝑏) ·
1
4

∑
𝑦∉𝐴,𝑦∼𝑥

(
𝔞(𝑦) − E𝑦𝔞(𝑆𝜏𝐴)

)
=
H𝐴(𝑥)

4 log(𝑘𝑏) .

�

Concerning the second factor of equation (4.1), given that {𝜏𝐶 (𝑘𝑏) < 𝜏𝐴} occurs, we are essentially
in the setting depicted on the right side of Figure 5, with 𝑥 = 𝑆𝜏𝐶 (𝑘𝑏) , 𝑟 = 𝑏, 𝑘𝑏 in the place of 2𝑟 , and
𝑅 = 𝑑. The argument highlighted in Section 2.2 suggests that the second factor of equation (4.1) is at
least proportional to log 𝑏

𝑛 log 𝑑 . We will prove this lower bound and combine it with equations (4.1) and
(4.2) to obtain equation (1.6) of Theorem 5.

Lemma 4.2. Let 𝑦 ∈ 𝐶 (𝑘𝑏). If 𝑑 ≥ 𝑘𝑏 and if b is sufficiently large, then

P𝑦 (𝜏𝜕𝐴𝑑 < 𝜏𝐴) ≥
log 𝑏

2𝑛 log 𝑑
. (4.5)

Proof. Let 𝑦 ∈ 𝐶 (𝑘𝑏). We will follow the argument of Section 2.2. Label the points of A as 𝑥1, 𝑥2, . . . , 𝑥𝑛,
and define

𝑌𝑖 = 1
(
𝜏𝑥𝑖 < 𝜏𝜕𝐴𝑑

)
and 𝑊 =

𝑛∑
𝑖=1

𝑌𝑖 .

From the definition of W, we see that {𝑊 = 0} = {𝜏𝜕𝐴𝑑 < 𝜏𝐴}. Thus, to obtain the lower bound in
equation (4.5), it suffices to get a complementary upper bound on

P𝑦 (𝑊 > 0) =
E𝑦𝑊

E𝑦 [𝑊 | 𝑊 > 0] . (4.6)

We will find 𝛼 and 𝛽 such that, uniformly for 𝑦 ∈ 𝐶 (𝑘𝑏) and 𝑥𝑖 , 𝑥 𝑗 ∈ 𝐴,

P𝑦
(
𝜏𝑥𝑖 < 𝜏𝜕𝐴𝑑

)
≤ 𝛼 and P𝑥𝑖

(
𝜏𝑥 𝑗 < 𝜏𝜕𝐴𝑑

)
≥ 𝛽. (4.7)

Moreover, 𝛼 and 𝛽 will satisfy

𝛼 ≤ 𝛽 and 1 − 𝛽 ≥ log 𝑏

2 log 𝑑
. (4.8)

The requirement that 𝛼 ≤ 𝛽 prevents us from choosing 𝛽 = 0. Essentially, we will be able to satisfy
equation (4.7) and the first condition of equation (4.8) because |𝑥𝑖 − 𝑥 𝑗 | is smaller than |𝑦 − 𝑥𝑖 |. We will
be able to satisfy the second condition because dist(𝑥𝑖 , 𝜕𝐴𝑑) ≥ 𝑑 while |𝑥𝑖 − 𝑥 𝑗 | ≤ 𝑏, which implies
that P𝑥𝑖 (𝜏𝑥 𝑗 < 𝜏𝜕𝐴𝑑 ) is roughly 1 − log 𝑏

log 𝑑 .
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Figure 10. Escape to 𝜕𝐴𝑑 , for 𝑛 = 3. Each 𝐹𝑖 is a circle centered on 𝑥𝑖 ∈ 𝐴, separating 𝐴𝑑 from infinity.
Lemma 3.7 bounds above the probability that the walk hits 𝑥𝑖 before 𝐹𝑖 , uniformly for 𝑦 ∈ 𝐶 (𝑘𝑏).

If 𝛼, 𝛽 satisfy equation (4.7), then we can bound equation (4.6) as

P𝑦 (𝑊 > 0) ≤ 𝑛𝛼

1 + (𝑛 − 1)𝛽 . (4.9)

Additionally, when 𝛼 and 𝛽 satisfy equations (4.8), (4.9) implies

P𝑦 (𝑊 = 0) ≥ (1 − 𝛽) + 𝑛(𝛽 − 𝛼)
(1 − 𝛽) + 𝑛𝛽

≥ 1 − 𝛽

𝑛
≥ log 𝑏

2𝑛 log 𝑑
,

which gives the claimed bound (4.5).
Identifying 𝛼. We now find the 𝛼 promised in equation (4.7). Denote 𝐹𝑖 = 𝐶𝑥𝑖 (𝑑 + 𝑏) (Figure 10).

Since 𝜕𝐴𝑑 separates y from 𝐹𝑖 , we have

P𝑦
(
𝜏𝑥𝑖 < 𝜏𝜕𝐴𝑑

)
≤ P𝑦

(
𝜏𝑥𝑖 < 𝜏𝐹𝑖

)
= P𝑦−𝑥𝑖

(
𝜏𝑜 < 𝜏𝐶 (𝑑+𝑏)

)
. (4.10)

The hypotheses of Lemma 3.7 are met because 𝑦 − 𝑥𝑖 ≠ 𝑜 and 𝑦 − 𝑥𝑖 ∈ 𝐷 (𝑑 + 𝑏). Hence, equation
(3.10) applies as

P𝑦−𝑥𝑖
(
𝜏𝑜 < 𝜏𝐶 (𝑑+𝑏)

)
=
𝔞′(𝑑 + 𝑏) − 𝔞(𝑦 − 𝑥𝑖) +𝑂

(
|𝑦 − 𝑥𝑖 |−1)

𝔞′(𝑑 + 𝑏) +𝑂
(
|𝑦 − 𝑥𝑖 |−1) . (4.11)

Ignoring the error terms, the expression in equation (4.11) is at most log(𝑑+𝑏)−log(𝑘𝑏)
log(𝑑+𝑏) . A more careful

calculation gives

P𝑦−𝑥𝑖
(
𝜏𝑜 < 𝜏𝐶 (𝑑+𝑏)

)
=

log(𝑑 + 𝑏) − log(𝑘𝑏)
log(𝑑 + 𝑏) + 𝛿1 ≤ (1 + 𝜀) log 𝑑 − log(𝑘𝑏)

log 𝑑
+ 𝛿1 =: 𝛼,

where 𝛿1 = ( 𝜋𝜅
2 +𝑂 (𝑏−1)) (log 𝑑)−1 and 𝜀 = 𝑏

𝑑 log 𝑑 . (Recall that 𝜅 ∈ (1.02, 1.03) is a constant associated
with the potential kernel (3.9).) The inequality results from applying the inequality log(1 + 𝑥) ≤ 𝑥,
which holds for 𝑥 > −1, to the log(𝑑 + 𝑏) term in the numerator, and reducing log(𝑑 + 𝑏) to log 𝑑 in the
denominator. By equation (4.10), 𝛼 satisfies equation (4.7).

Identifying 𝛽. We now find a suitable 𝛽. Since 𝐶𝑥𝑖 (𝑑) separates A from 𝜕𝐴𝑑 , we have

P𝑥𝑖

(
𝜏𝑥 𝑗 < 𝜏𝜕𝐴𝑑

)
≥ P𝑥𝑖

(
𝜏𝑥 𝑗 < 𝜏𝐶𝑥𝑖 (𝑑)

)
= P𝑥𝑖−𝑥 𝑗

(
𝜏𝑜 < 𝜏𝐶 (𝑑)

)
. (4.12)
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The hypotheses of Lemma 3.7 are met because 𝑥𝑖 − 𝑥 𝑗 ≠ 𝑜 and 𝑥𝑖 − 𝑥 𝑗 ∈ 𝐷 (𝑑). Hence, equation (3.10)
applies as

P𝑥𝑖−𝑥 𝑗
(
𝜏𝑜 < 𝜏𝐶 (𝑑)

)
=
𝔞′(𝑑) − 𝔞(𝑥𝑖 − 𝑥 𝑗 ) +𝑂 (|𝑥𝑖 − 𝑥 𝑗 |−1)

𝔞′(𝑑) +𝑂 (|𝑥𝑖 − 𝑥 𝑗 |−1)
. (4.13)

Ignoring the error terms, equation (4.13) is at least log 𝑑−log 𝑏
log 𝑑+𝜅 . A more careful calculation gives

P𝑥𝑖−𝑥 𝑗
(
𝜏𝑜 < 𝜏𝐶 (𝑑)

)
=

log 𝑑 − log 𝑏

log 𝑑
− 𝛿2 =: 𝛽,

where 𝛿2 = ( 𝜋𝜅
2 +𝑂 (𝑏−1)) (log 𝑑)−1. By equation (4.12), 𝛽 satisfies equation (4.7).

Verifying equation (4.8). To verify the first condition of equation (4.8), we calculate

(𝛽 − 𝛼) log 𝑑 = log 𝑘 − 𝑏
𝑑 − 𝜋𝜅 +𝑂 (𝑏−1) ≥ 1 +𝑂 (𝑏−1).

The inequality is due to 𝑘 = 200, 𝑏
𝑑 ≤ 0.5, and 𝜋𝜅 < 3.5. If b is sufficiently large, then 1 + 𝑂 (𝑏−1) is

nonnegative, which verifies equation (4.8).
Concerning the second condition of equation (4.8), if b is sufficiently large, then

1 − 𝛽 =
log 𝑏 + 1

log 𝑑
≥ log 𝑏

2 log 𝑑
.

We have identified 𝛼, 𝛽 which satisfy equations (4.7) and (4.8) for sufficiently large b. By the preceding
discussion, this proves equation (4.5). �

Proof of Theorem 5. By equation (4.1), Lemma 4.1 and Lemma 4.2, we have

P𝑥 (𝜏𝜕𝐴𝑑 < 𝜏𝐴) ≥
H𝐴(𝑥)

4 log(𝑘𝑏) ·
log 𝑏

2𝑛 log 𝑑
≥ H𝐴(𝑥)

16𝑛 log 𝑑
, (4.14)

whenever 𝑥 ∈ 𝐴 and 𝑑 ≥ 𝑘𝑏, for sufficiently large b. The second inequality is due to the fact that
log(𝑘𝑏) ≤ 2 log 𝑏 for sufficiently large b.

By the reductions discussed at the beginning of this section, equation (4.14) implies that there is a
constant c such that equation (1.6) holds for 𝑥 ∈ 𝐴 if A has at least two elements and if 𝑑 ≥ 2 diam(𝐴).
Equation (1.7) follows from equation (1.6) because, by the pigeonhole principle, some element of A has
harmonic measure of at least 𝑛−1. �

5. Clustering sets of relatively large diameter

When a HAT configuration has a large diameter relative to the number of particles, we can decompose
the configuration into clusters of particles, which are well separated in a sense. This is the content of
Lemma 5.2, which will be a key input to the results in Section 6.

Definition 5.1 (Exponential clustering). For a finite 𝐴 ⊂ Z2 with |𝐴| = 𝑛, an exponential clustering of
A with parameter 𝑟 ≥ 0, denoted 𝐴 ↦→𝑟 {𝐴𝑖 , 𝑥𝑖 , 𝜃

(𝑖) }𝑘𝑖=1, is a partition of A into clusters 𝐴1, 𝐴2, . . . , 𝐴𝑘

with 1 ≤ 𝑘 ≤ 𝑛 such that each cluster arises as 𝐴𝑖 = 𝐴 ∩ 𝐷𝑥𝑖 (𝜃 (𝑖) ) for 𝑥𝑖 ∈ Z2, with 𝜃 (𝑖) ≥ 𝑟 , and

dist(𝐴𝑖 , 𝐴 𝑗 ) > exp
(
max

{
𝜃 (𝑖) , 𝜃 ( 𝑗)

})
for 𝑖 ≠ 𝑗 . (5.1)

We will call 𝑥𝑖 the center of cluster i. In some instances, the values of r, 𝑥𝑖 or 𝜃 (𝑖) will be irrelevant and
we will omit them from our notation. For example, 𝐴 ↦→ {𝐴𝑖}𝑘𝑖=1.
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An exponential clustering of A with parameter r always exists because, if 𝐴1 = 𝐴, 𝑥1 ∈ 𝐴, and
𝜃 (1) ≥ max{𝑟, diam(𝐴)}, then 𝐴 ↦→𝑟 {𝐴1, 𝑥1, 𝜃

(1) } is such a clustering. However, to ensure that there
is an exponential clustering of A (with parameter r) with more than one cluster, we require that the
diameter of A exceeds 2𝜃𝑛−1 (𝑟). Recall that we defined 𝜃𝑚 (𝑟) in equation (1.1) through 𝜃0(𝑟) = 𝑟 and
𝜃𝑚 (𝑟) = 𝜃𝑚−1(𝑟) + 𝑒𝜃𝑚−1 (𝑟 ) for 𝑚 ≥ 1.

Lemma 5.2. Let |𝐴| = 𝑛. If diam(𝐴) > 2𝜃𝑛−1 (𝑟), then there exists an exponential clustering of A with
parameter r into 𝑘 > 1 clusters.

To prove the lemma, we will identify disks with radii of at most 𝜃𝑛−1 (𝑟), which cover A. Although
it is not required of an exponential clustering, the disks will be centered at elements of A. These disks
will give rise to at least two clusters since diam(𝐴) exceeds 2𝜃𝑛−1 (𝑟). The disks will be surrounded by
large annuli which are empty of A, which will imply that the clusters are exponentially separated.

Proof of Lemma 5.2. For each 𝑥 ∈ 𝐴 and 𝑚 ≥ 1, consider the annulus A𝑥 (𝜃𝑚) = 𝐷𝑥 (𝜃𝑚)\𝐷𝑥 (𝜃𝑚−1).
For each x, identify the smallest m such that A𝑥 (𝜃𝑚) ∩ 𝐴 is empty and call it 𝑚𝑥 . Note that, since
|𝐴| = 𝑛, 𝑚𝑥 can be no more than n and hence 𝜃𝑚𝑥 ≤ 𝜃𝑛. Call the corresponding annulus A∗

𝑥 , and denote
𝐷∗

𝑥 = 𝐷𝑥 (𝜃𝑚𝑥−1). For convenience, we label the elements of A as 𝑥1, 𝑥2, . . . , 𝑥𝑛.
For 𝑥𝑖 ∈ 𝐴, we collect those disks 𝐷∗

𝑥 𝑗 which contain it as

E (𝑥𝑖) =
{
𝐷∗

𝑥 𝑗 : 𝑥𝑖 ∈ 𝐷∗
𝑥 𝑗 , 1 ≤ 𝑗 ≤ 𝑛

}
.

We observe that E (𝑥𝑖) is always nonempty, as it contains 𝐷∗
𝑥𝑖 . Now, observe that, for any two distinct

𝐷∗
𝑥 𝑗 , 𝐷

∗
𝑥ℓ ∈ E (𝑥𝑖), it must be that

𝐷∗
𝑥 𝑗 ∩ 𝐴 ⊆ 𝐷∗

𝑥ℓ ∩ 𝐴 or 𝐷∗
𝑥ℓ ∩ 𝐴 ⊆ 𝐷∗

𝑥 𝑗 ∩ 𝐴. (5.2)

To see why, assume for the purpose of deriving a contradiction that each disk contains an element of A
which the other does not. Without loss of generality, suppose 𝜃𝑚𝑥 𝑗

≥ 𝜃𝑚𝑥ℓ
and let 𝑦ℓ ∈ (𝐷∗

𝑥ℓ\𝐷
∗
𝑥 𝑗 ) ∩ 𝐴.

Because each disk must contain 𝑥𝑖 , we have |𝑦ℓ − 𝑥𝑖 | ≤ 2𝜃𝑚𝑥ℓ
−1 and |𝑥𝑖 − 𝑥 𝑗 | ≤ 𝜃𝑚𝑥 𝑗−1. The triangle

inequality implies

|𝑦ℓ − 𝑥 𝑗 | ≤ 𝜃𝑚𝑥 𝑗−1 + 2𝜃𝑚𝑥ℓ
−1 ≤ 𝜃𝑚𝑥 𝑗

=⇒ 𝑦ℓ ∈ 𝐷𝑥 𝑗 (𝜃𝑚𝑥 𝑗
) ∩ 𝐴.

By assumption, 𝑦ℓ is not in 𝐷𝑥 𝑗 (𝜃𝑚𝑥 𝑗−1) ∩ 𝐴, so 𝑦ℓ must be an element of A𝑥 𝑗 (𝜃𝑚𝑥 𝑗
) ∩ 𝐴, which

contradicts the construction of 𝑚𝑥 𝑗 .
By equation (5.2), we may totally order the elements of E (𝑥𝑖) by inclusion of intersection with A.

For each 𝑥𝑖 , we select the element of E (𝑥𝑖) which is greatest in this ordering. If we have not already
established it as a cluster, we do so. After we have identified a cluster for each 𝑥𝑖 , we discard those 𝐷∗

𝑥 𝑗
which were not selected for any 𝑥𝑖 . For the remainder of the proof, we only refer to those 𝐷∗

𝑥 𝑗 which
were established as clusters, and we relabel the 𝑥𝑖 so that the clusters can be expressed as the collection{
𝐷∗

𝑥 𝑗

}𝑘

𝑗=1, for some 1 ≤ 𝑘 ≤ 𝑛. We will show that k is strictly greater than one.
The collection of clusters contains all elements of A, and is associated to the collection of annuli{

A∗
𝑥 𝑗

}𝑘

𝑗=1, which contain no elements of A. We observe that, for some distinct 𝑥 𝑗 and 𝑥ℓ , it may be that
A∗

𝑥 𝑗 ∩ 𝐷∗
𝑥ℓ ≠ ∅. However, because the annuli contain no elements of A, it must be that

dist(𝐷∗
𝑥 𝑗 ∩ 𝐴, 𝐷∗

𝑥ℓ ∩ 𝐴) > max
{
𝜃𝑚𝑥 𝑗

− 𝜃𝑚𝑥 𝑗−1
, 𝜃𝑚𝑥ℓ

− 𝜃𝑚𝑥ℓ−1

}
= 𝑒

max
{
𝜃𝑚𝑥𝑗 −1 , 𝜃𝑚𝑥ℓ −1

}
.

As 𝐷∗
𝑥 𝑗 ∩ 𝐴 ⊆ 𝐷∗

𝑥 𝑗 for any 𝑥 𝑗 in question, we conclude the desired separation of clusters by setting
𝐴𝑖 = 𝐷∗

𝑥𝑖 ∩ 𝐴 for each 1 ≤ 𝑖 ≤ 𝑘 . Furthermore, since 𝑚𝑥 𝑗 ≤ 𝑛 for all j, 𝜃𝑚𝑥 𝑗−1 ≤ 𝜃𝑛−1 for all j. Since
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A is contained in the union of the clusters, if diam(𝐴) > 2𝜃𝑛−1, then there must be at least two clusters.
Lastly, as 𝑚𝑥 𝑗 ≥ 1 for all j, 𝜃𝑚𝑥 𝑗−1 ≥ 𝑟 for all j. �

6. Estimates of the time of collapse

We proceed to prove the main collapse result, Theorem 1. As the proof requires several steps, we begin
by discussing the organization of the section and introducing some key definitions. We avoid discussing
the proof strategy in detail before making necessary definitions; an in-depth proof strategy is covered in
Section 6.2.

Briefly, to estimate the time until the diameter of the configuration falls below a given function of
n, we will perform exponential clustering and consider the more manageable task of (i) estimating the
time until some cluster loses all of its particles to the other clusters. By iterating this estimate, we
can (ii) control the time it takes for the clusters to consolidate into a single cluster. We will find that
the surviving cluster has a diameter which is approximately the logarithm of the original diameter.
Then, by repeatedly applying this estimate, we can (iii) control the time it takes for the diameter of the
configuration to collapse.

The purpose of Section 6.1 is to wield (ii) in the form of Proposition 6.3 and prove Theorem 1, thus
completing (iii). The remaining subsections are dedicated to proving the proposition. An overview of
our strategy will be detailed in Section 6.2. In particular, we describe how the key harmonic measure
estimate of Theorem 4 and the key escape probability estimate of Theorem 5 contribute to addressing
(i). We then develop basic properties of cluster separation and explore the geometric consequences of
timely cluster collapse in Section 6.3. Lastly, in Section 6.4, we prove a series of propositions which
collectively control the timing of individual cluster collapse, culminating in the proof of Proposition 6.3.

Implicit in this discussion is a notion of ‘cluster’ which persists over multiple steps of the dynamics.
Starting from an exponential clustering of 𝑈0, we define the clusters at later times by simply updating
the original clusters to account for the movement of particles. Recall that an exponential clustering
𝑈0 ↦→ {𝑈𝑖

0, 𝑥𝑖 , 𝜃
(𝑖) }𝑘𝑖=1 of 𝑈0 is a partition of 𝑈0 that arises from intersecting 𝑈0 with a collection of

discs and which satisfies an exponential separation property (5.1).

Definition 6.1. Let 𝑈0 have an exponential clustering 𝑈0 ↦→ {𝑈𝑖
0, 𝑥𝑖 , 𝜃

(𝑖) }𝑘𝑖=1. We define a sequence
({𝑈𝑖

𝑡 }𝑘𝑖=1)𝑡≥0, starting with {𝑈𝑖
0}

𝑘
𝑖=1 and such that {𝑈𝑖

𝑡 }𝑘𝑖=1 is a partition of 𝑈𝑡 for each t in the following
way. Given 𝑈𝑡 , 𝑋𝑡 , 𝑌𝑡 and the random walk 𝑆𝑡 that accomplishes the transport step at time t, define

𝑈𝑖
𝑡+1 =

{(
𝑈𝑖

𝑡 \ {𝑋𝑡 }
)
∪ {𝑌𝑡 } 𝑆𝑡

𝜏𝑈𝑡 \{𝑋𝑡 }
∈ 𝑈𝑖

𝑡

𝑈𝑖
𝑡 \ {𝑋𝑡 } 𝑆𝑡

𝜏𝑈𝑡 \{𝑋𝑡 }
∉ 𝑈𝑖

𝑡 .
(6.1)

We refer to the parts of {𝑈𝑖
𝑡 }𝑘𝑖=1 as clusters.

Note that, since {𝑈𝑖
𝑡 }𝑘𝑖=1 is a partition of 𝑈𝑡 , the removal of 𝑋𝑡 from each 𝑈𝑖

𝑡 in equation (6.1) only
affects the cluster to which 𝑋𝑡 belongs. For example, if 𝑋𝑡 belongs to 𝑈𝑖

𝑡 and the random walk 𝑆𝑡 first
hits 𝑈𝑡 \ {𝑋𝑡 } at a different cluster 𝑈 𝑗

𝑡 , then the ith cluster loses 𝑋𝑡 and the jth cluster gains 𝑌𝑡 , while all
other clusters remain the same.

Definition 6.2 (Cluster collapse times). We define the ℓ-cluster collapse time inductively, according to
T0 ≡ 0 and

Tℓ = inf
{
𝑡 ≥ Tℓ−1 : ∃1 ≤ 𝑗 ≤ 𝑘 : 𝑈 𝑗

Tℓ−1
≠ ∅ and 𝑈

𝑗
𝑡 = ∅

}
, 1 ≤ ℓ ≤ 𝑘.

6.1. Proving Theorem 1

We now state the proposition to which most of the effort in this section is devoted and, assuming it,
prove Theorem 1. We will denote by
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◦ n, the number of elements of 𝑈0;
◦ Φ(𝑟), the inverse function of 𝜃𝑛 (𝑟) for all 𝑟 ≥ 0 (𝜃𝑛 (𝑟) is an increasing function of 𝑟 ≥ 0 for every n);
◦ F𝑡 , the sigma algebra generated by the initial configuration 𝑈0, the first t activation sites

𝑋0, 𝑋1, . . . , 𝑋𝑡−1, and the first t random walks 𝑆0, 𝑆1, . . . , 𝑆𝑡−1, which accomplish the transport com-
ponent of the dynamics.

We note that Φ is defined so that, if r equals Φ(diam(𝑈0)), then the diameter of 𝑈0 exceeds 2𝜃𝑛−1 (𝑟).
Lemma 5.2 states that, in this case, an exponential clustering of 𝑈0 with parameter r has at least two
clusters.

Proposition 6.3. There is a constant c such that, if the diameter d of 𝑈0 exceeds 𝜃4𝑛 (𝑐𝑛), then for any
number of clusters k resulting from an exponential clustering of 𝑈0 with parameter 𝑟 = Φ(𝑑), we have

P𝑈0

(
T𝑘−1 ≤ (log 𝑑)1+7𝛿

)
≥ 1 − exp

(
−2𝑛𝑟 𝛿

)
, (6.2)

where 𝛿 = (2𝑛)−4.

In words, if 𝑈0 has a diameter of d, it takes no more than (log 𝑑)1+𝑜𝑛 (1) steps to observe the collapse
of all but one cluster, with high probability. Because no cluster begins with a diameter greater than
log 𝑑 (by exponential clustering) and, as the diameter of a cluster increases at most linearly in time, the
remaining cluster at time T𝑘−1 has a diameter of no more than (log 𝑑)1+𝑜𝑛 (1) . We will obtain Theorem 1
by repeatedly applying Proposition 6.3. We prove the theorem here, assuming the proposition, and then
prove the proposition in the following subsections.

Proof of Theorem 1. We organize time into ‘rounds’ of collapse, which proceed in the following way.
At the beginning of round ℓ ≥ 1, regardless of the diameter 𝑑ℓ of the current configuration, we obtain
an exponential clustering (with parameter 𝑟ℓ = Φ(𝑑ℓ)) of this configuration, and we define clusters and
their collapse times in analogy with Definitions 6.1 and 6.2. The round lasts until all but one of the
clusters have collapsed or until (log 𝑑ℓ)1+7𝛿 steps have passed, at which time the next round begins.

The idea of the proof is to use Proposition 6.3 to bound below the probability that the diameter drops
from 𝑑ℓ to at most (log 𝑑ℓ)2, over each round ℓ until the first round 𝜂 that begins with a diameter of
at most 𝜃4𝑛 (𝑐𝑛) (c is the constant from Proposition 6.3). When this event occurs, the rounds shorten
rapidly enough that the cumulative time it takes to reach round 𝜂 is at most twice the maximum length
(log 𝑑)1+7𝛿 of the first round.

We define the rounds inductively. Set R1 ≡ 0. Round ℓ ≥ 1 begins at time Rℓ , in configuration
𝑉ℓ,0 = 𝑈Rℓ . We further define𝑉ℓ,𝑡 = 𝑈Rℓ+𝑡 for 𝑡 ≥ 0. To define when the round ends, let 𝑑ℓ = diam(𝑉ℓ,0)
and 𝑟ℓ = Φ(𝑑ℓ), and denote the exponential clustering of 𝑉ℓ,0 with parameter 𝑟ℓ by {𝑉 𝑖

ℓ,0}
𝑘ℓ
𝑖=1. We define

the clusters {𝑉 𝑖
ℓ,𝑡 }

𝑘ℓ
𝑖=1 in analogy with Definition 6.1, and the corresponding cluster collapse times in

analogy with Definition 6.2. Specifically, we define the latter according to Tℓ,0 = Rℓ and

Tℓ,𝑚 = inf
{
𝑡 ≥ Tℓ,𝑚−1 : ∃1 ≤ 𝑗 ≤ 𝑘ℓ : 𝑉 𝑗

ℓ,Tℓ,𝑚−1
≠ ∅ and 𝑉

𝑗
ℓ,𝑡 = ∅

}
, 1 ≤ 𝑚 ≤ 𝑘ℓ .

Round ℓ ends, and round ℓ + 1 begins, at time

Rℓ+1 = Rℓ + min
{
Tℓ,𝑘ℓ−1 −Rℓ , (log 𝑑ℓ)1+7𝛿}.

The key event is the event that the diameter drops from 𝑑ℓ to at most (log 𝑑ℓ)2 over each round, until
round

𝜂 = inf{ℓ ≥ 1 : 𝑑ℓ ≤ 𝜃4𝑛 (𝑐𝑛)}.
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The round of the jth diameter drop is

𝜉 𝑗 = inf
{
ℓ > 𝜉 𝑗−1 : 𝑑ℓ ≤ (log 𝑑𝜉 𝑗−1)2}, 𝑗 ≥ 1,

where 𝜉0 ≡ 1. In these terms, the key event is E𝜂−1, where

E𝑚 = ∩𝑚
𝑗=1𝐸 𝑗 and 𝐸 𝑗 = {𝜉 𝑗 − 𝜉 𝑗−1 = 1}.

If E𝜂−1 occurs, then 𝜉 𝑗−1 = 𝑗 for every 𝑗 ≤ 𝜂, and some algebra shows that

log 𝑑 𝑗

log 𝑑1
=

log 𝑑𝜉 𝑗−1

log 𝑑1
≤ 2−( 𝑗−1) , 1 ≤ 𝑗 ≤ 𝜂. (6.3)

We use equation (6.3) to bound the time R𝜂 that it takes to reach round 𝜂 when E𝜂−1 occurs:

R𝜂 ≤
𝜂−1∑
𝑗=1

(log 𝑑 𝑗 )1+7𝛿 ≤ (log 𝑑1)1+7𝛿
𝜂−1∑
𝑗=1

2−( 𝑗−1) ≤ (log 𝑑1)1+8𝛿 .

These inequalities are respectively justified by the fact that the ℓth round lasts at most (log 𝑑ℓ)1+7𝛿 steps
by equation (6.3) and by the fact that (log 𝑑1) 𝛿 is at least 2.

Since R𝜂 is at least T (𝜃4𝑛 (𝑐𝑛)), to complete the proof, it suffices to show that E𝑐
𝜂−1 occurs with a

probability of at most 𝑒−𝑛. We express the probability of E𝑐
𝜂−1 in terms of 𝐺 𝑗 = E 𝑗−1 ∩ {𝜂 > 𝜉 𝑗−1}, as

P𝑈0 (E𝑐
𝜂−1) = E𝑈0

𝜂−1∑
𝑗=1

1(𝐸𝑐
𝑗 ∩ E 𝑗−1) = E𝑈0

∞∑
𝑗=1

1(𝐸𝑐
𝑗 ∩ 𝐺 𝑗 ) =

∞∑
𝑗=1

P𝑈0 (𝐸𝑐
𝑗 ∩ 𝐺 𝑗 ). (6.4)

The three equalities hold by the disjointness of {𝐸𝑐
𝑗 ∩ E 𝑗−1}∞𝑗=1; the fact that 𝜉 𝑗−1 = 𝑗 when E 𝑗−1

occurs, hence {𝜂 > 𝑗} = {𝜂 > 𝜉 𝑗−1}; and Tonelli’s theorem, which applies because the summands are
nonnegative.

For brevity, denote R𝜉 𝑗−1 by 𝑠 𝑗 . The summands on the right-hand side of equation (6.4) satisfy

P𝑈0 (𝐸𝑐
𝑗 ∩ 𝐺 𝑗 ) = E𝑈0

[
P𝑈0 (𝐸𝑐

𝑗 | F𝑠 𝑗 )1𝐺 𝑗

]
= E𝑈0

[
P𝑉𝑗,0 (𝐸𝑐

1 )1𝐺 𝑗

]
≤ E𝑈0

[
𝑒−2𝑛𝑟 𝛿𝑗 1𝐺 𝑗

]
. (6.5)

The first equality holds by the tower rule and the fact that 𝐺 𝑗 is measurable with respect to F𝑠 𝑗 ; the
second equality follows from the strong Markov property applied to time 𝑠 𝑗 , which – when 𝐺 𝑗 occurs
– is the time that the jth round begins; the inequality is due to Proposition 6.3. Note that Proposition 6.3
applies because round j precedes round 𝜂 when 𝐺 𝑗 occurs, hence the diameter of 𝑉 𝑗 ,0 exceeds 𝜃4𝑛 (𝑐𝑛).
We substitute equation (6.5) into equation (6.4) and use Tonelli’s theorem a second time to conclude that

P𝑈0 (E𝑐
𝜂−1) ≤ E𝑈0

⎡⎢⎢⎢⎢⎣
𝜂−1∑
𝑗=1

𝑒−2𝑛𝑟 𝛿𝑗 1𝐺 𝑗

⎤⎥⎥⎥⎥⎦ .
To finish the proof, it therefore suffices to establish the first inequality of

𝜂−1∑
𝑗=1

𝑒−2𝑛𝑟 𝛿𝑗 1𝐺 𝑗 ≤
∞∑
𝑗=1

𝑒−2𝑛 𝑗 ≤ 𝑒−𝑛. (6.6)

https://doi.org/10.1017/fms.2023.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.81


Forum of Mathematics, Sigma 31

Denote the number of drops before round 𝜂 by 𝑁 = sup{ 𝑗 ≥ 0 : 𝜉 𝑗 < 𝜂}. When 𝐺 𝑗 occurs, 𝑟 𝛿
𝑗 satisfies

𝑟 𝛿
𝑗 = 𝑟 𝛿

𝜉 𝑗−1
≥ 𝑟 𝛿

𝜉𝑁
+ 𝑁 + 1 − 𝑗 ≥ 𝑁 + 2 − 𝑗 , 𝑁 ≥ 𝑗 − 1.

The first inequality follows from simple but cumbersome algebra, using the definitions of 𝑟ℓ = 𝜃−1
𝑛 (𝑑ℓ)

and 𝜉 𝑗−1 and the fact that 𝑑ℓ exceeds 𝜃4𝑛 (𝑐𝑛) when ℓ is at most 𝜉𝑁 . In particular, this fact implies that
𝑟 𝛿
𝜉𝑁

is at least 1, which justifies the second inequality. The first sum in equation (6.6) satisfies

𝜂−1∑
𝑗=1

𝑒−2𝑛𝑟 𝛿𝑗 1𝐺 𝑗 ≤
𝜂−1∑
𝑗=1

𝑒−2𝑛(𝑁+2− 𝑗)1𝐺 𝑗 ≤
𝑁+1∑
𝑗=1

𝑒−2𝑛(𝑁+2− 𝑗) ≤
∞∑
𝑗=1

𝑒−2𝑛 𝑗 .

The first bound is due to the preceding lower bound on 𝑟 𝛿
𝑗 ; the second holds because, by definition, N is

at least 𝜂 − 2; the third follows from reversing the order of the sum (𝑁 + 2 − 𝑗 → 𝑗) and then replacing
N with ∞ in the resulting sum. �

For applications in Section 7, we extend Theorem 1 to a more general tail bound of T (𝜃4𝑛).

Corollary 6.4 (Corollary of Theorem 1). Let U be an n-element subset of Z2 with a diameter of d. There
exists a universal positive constant c such that

P𝑈

(
T (𝜃4𝑛 (𝑐𝑛)) > 𝑡 (log max{𝑡, 𝑑})1+𝑜𝑛 (1)

)
≤ 𝑒−𝑡 (6.7)

for all 𝑡 ≥ 1. For the sake of concreteness, this is true with 2𝑛−4 in the place of 𝑜𝑛 (1).

In the proof of the corollary, it will be convenient to have notation for the timescale of collapse after
j failed collapses, starting from a diameter of d. Because diameter increases at most linearly in time, if
the initial configuration has a diameter of d and collapse does not occur in the next (log 𝑑)1+𝑜𝑛 (1) steps,
then the diameter after this period of time is at most 𝑑 + (log 𝑑)1+𝑜𝑛 (1) . In our next attempt to observe
collapse, we would wait at most

(
log(𝑑 + (log 𝑑)1+𝑜𝑛 (1) )

)1+𝑜𝑛 (1) steps. This discussion motivates the
definition of the functions 𝑔 𝑗 = 𝑔 𝑗 (𝑑, 𝜀) by

𝑔0 = (log 𝑑)1+𝜀 and 𝑔 𝑗 =
(

log
(
𝑑 +

𝑗−1∑
𝑖=0

𝑔𝑖
) )1+𝜀

, 𝑗 ≥ 1.

We will use 𝑡 𝑗 = 𝑡 𝑗 (𝑑, 𝜀) to denote the cumulative time
∑ 𝑗

𝑖=0 𝑔𝑖 .

Proof of Corollary 6.4. Let 𝜀 = 𝑛−4, and use this as the 𝜀 parameter for the collapse timescales 𝑔 𝑗 and
cumulative times 𝑡 𝑗 . Additionally, denote 𝜃 = 𝜃4𝑛 (𝑐𝑛) for the constant c from Theorem 1 (this will also
be the constant in the statement of the corollary). The bound (6.7) clearly holds when d is at most 𝜃, so
we assume 𝑑 ≥ 𝜃.

Because the diameter of U is d and as diameter grows at most linearly in time, conditionally on
𝐹𝑗 = {T (𝜃) > 𝑡 𝑗 }, the diameter of 𝑈𝑡 𝑗 is at most 𝑑 + 𝑡 𝑗 . Consequently, by the Markov property applied
to time 𝑡 𝑗 , and by Theorem 1 (the diameter is at least 𝜃) and the fact that 𝑛 ≥ 1, the conditional
probability P𝑈 (𝐹𝑗+1 |𝐹𝑗 ) satisfies

P𝑈 (𝐹𝑗+1 |𝐹𝑗 ) = E𝑈

[
P𝑈𝑡 𝑗

(T (𝜃) > 𝑔 𝑗+1)
1𝐹𝑗

P𝑈 (𝐹𝑗 )

]
≤ 𝑒−1 for any 𝑗 ≥ 0. (6.8)

In fact, Theorem 1 implies that the inequality holds with 𝑒−𝑛 in the place of 𝑒−1, but this will make no
difference to us.
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Define J to be the greatest j such that 𝑡 𝑗 ≤ 𝑡. There are at least J consecutive collapse attempts which
must fail in order for T (𝜃4𝑛) to exceed t. By equation (6.8),

P𝑈 (T (𝜃) > 𝑡) ≤
𝐽−1∏
𝑖=0

P𝑈 (𝐹𝑖+1 |𝐹𝑖) ≤ 𝑒−𝐽 . (6.9)

To bound below J, note that 𝑔 𝑗 increases with j, hence 𝑡 𝑗 ≤ ( 𝑗 + 1)𝑔 𝑗 and 𝑔 𝑗 ≤ 𝑔 𝑗+1, which implies that

𝑗 ≥
𝑡 𝑗 − 𝑔 𝑗

𝑔 𝑗
≥

𝑡 𝑗 − 𝑔 𝑗+1

𝑔 𝑗+1
.

By the definition of J, we have 𝑡𝐽 + 𝑔𝐽+1 ≥ 𝑡 and 𝑔𝐽+1 ≤ (log(𝑑 + 𝑡))1+𝜀 . By combining the preceding
display with these two facts, we find that

𝐽 ≥ 𝑡𝐽 − 𝑔𝐽+1
𝑔𝐽+1

≥ 𝑡 − 2𝑔𝐽+1
𝑔𝐽+1

≥
𝑡 − 2

(
log(𝑑 + 𝑡)

)1+𝜀(
log(𝑑 + 𝑡)

)1+𝜀 .

Returning to equation (6.9), we conclude that

P𝑈 (T (𝜃) > 𝑡) ≤ 𝑒
− 𝑡−2(log(𝑑+𝑡 ) )1+𝜀

(log(𝑑+𝑡 ) )1+𝜀 .

We obtain equation (6.7) by replacing t with 𝑡
(
log max{𝑡, 𝑑}

)1+2𝜀 in the preceding inequality and noting
that, because 𝑑 ≥ 𝜃 and 𝜀 < 1, the resulting bound is at most 𝑒−𝑡 . �

6.2. Proof strategy for Proposition 6.3

We turn our attention to the proof of Proposition 6.3, which finds a high-probability bound on the time
it takes for all but one cluster to collapse. Heuristically, if there are only two clusters, separated by a
distance 𝜌1, then one of the clusters will lose all its particles to the other cluster in log 𝜌1 steps (up to
factors depending on n), due to the harmonic measure and escape probability lower bounds of Theorems
4 and 5. This heuristic suggests that, among k clusters, we should observe the collapse of some cluster
on a timescale which depends on the smallest separation between any two of the k clusters. Similarly, at
the time the ℓth cluster collapses, if the least separation among the remaining clusters is 𝜌ℓ+1, then we
expect to wait log 𝜌ℓ+1 steps for the (ℓ + 1)st collapse.

If the timescale of collapse is small relative to the separation between clusters, then the pairwise
separation and diameters of clusters cannot appreciably change while collapse occurs. In particular, the
separation between any two clusters cannot significantly exceed the initial diameter d of the configuration,
which suggests an overall bound of order (log 𝑑)1+𝑜𝑛 (1) steps for all but one cluster to collapse, where
the 𝑜𝑛 (1) factor accounts for various n-dependent factors. This is the upper bound that we establish.

We now highlight some key aspects of the proof.

6.2.1. Expiry time
As described above, over the timescale typical of collapse, the diameters and separation of clusters
will not change appreciably. Because these quantities determine the probability with which the least
separated cluster loses a particle, we will be able to obtain estimates of this probability which hold
uniformly from the time Tℓ−1 of the (ℓ − 1)st cluster collapse and until the next time Tℓ that some
cluster collapses, unless Tℓ − Tℓ−1 is atypically large. Indeed, if Tℓ − Tℓ−1 is as large as the separation
𝜌ℓ of the least separated cluster at time Tℓ−1, then two clusters may intersect or a cluster may no longer
have an exposed element (e.g., due to a group of clusters surrounding it). We avoid this by defining a
FTℓ−1 -measurable expiry time 𝔱ℓ (which will effectively be (log 𝜌ℓ)2) and restricting our estimates to
the interval from Tℓ−1 to the minimum of Tℓ−1 + 𝔱ℓ and Tℓ . An expiry time of (log 𝜌ℓ)2 is short enough
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Figure 11. Setting of the proof of Proposition 6.3. Least separated clusters i and j (cluster i is the
watched cluster), each with a diameter of approximately log 𝜌ℓ , are separated by a distance 𝜌ℓ at time
Tℓ−1. The diameters of the clusters grow at most linearly in time, so over approximately (log 𝜌ℓ)2 steps,
the clusters remain within the dotted circles. Crosses on the timeline indicate times before collapse and
expiry at which an activated particle reaches the midway point (solid circle). At these times, the number
of particles in the watched cluster may remain the same or increase or decrease by one (indicated by
0,±1 above the crosses). At time t, the watched cluster gains a particle from cluster j.

that the relative separation of clusters will not change significantly before it, but long enough so that
some cluster will collapse before it with overwhelming probability.

6.2.2. Midway point
From time Tℓ−1 to time Tℓ or until expiry, we will track activated particles which reach a circle of radius
1
2 𝜌ℓ surrounding one of the least separated clusters, which we call the watched cluster. We will use this
circle, called the midway point, to organize our argument with the following three estimates, which will
hold uniformly over this interval of time (Figure 11).

1. Activated particles which reach the midway point deposit at the watched cluster with a probability
of at most 0.51.

2. With a probability of at least (log 𝜌ℓ)−1−𝑜𝑛 (1) , the activated particle reaches the midway point.
3. Conditionally on the activated particle reaching the midway point, the probability that it originated

at the watched cluster is at least (log log 𝜌ℓ)−1.

To explain the third estimate, we make two observations. First, consider a cluster j separated from
the watched cluster by a distance of 𝜌. In the relevant context, cluster j will essentially be exponentially
separated, so its diameter will be at most log 𝜌. Consequently, a particle activated at cluster j reaches
the midway point with a probability of at most log log 𝜌

log 𝜌 . (This follows from the fact that random walk
starting at a distance of at most log 𝜌 from the origin escapes to a distance of 𝜌 with a probability of at
most log log 𝜌

log 𝜌 , roughly.) Because this probability is decreasing in 𝜌 and because 𝜌 ≥ 𝜌ℓ , log log 𝜌ℓ
log 𝜌ℓ

further
bounds above it. Second, the probability that a particle activated at the watched cluster reaches the
midway point is at least (log 𝜌ℓ)−1, up to a factor depending on n. Combining these two observations
with Bayes’s rule, a particle which reaches the midway point was activated at the watched cluster with
a probability of at least (log log 𝜌ℓ)−1, up to an n-dependent factor.
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6.2.3. Coupling with random walk
Each time an activated particle reaches the midway point while the watched cluster persists, there is a
chance of at least (log log 𝜌ℓ)−1 up to an n-dependent factor that the particle originated at the watched
cluster and will ultimately deposit at another cluster. When this occurs, the watched cluster loses a
particle. Alternatively, the activated particle may return to its cluster of origin – in which case the
watched cluster retains its particles – or it deposits at the watched cluster, having originated at a different
one – in which case the watched cluster gains a particle (Figure 11).

We will couple the number of elements in the watched cluster with a lazy, one-dimensional random
walk, which will never exceed n and never hit zero before the size of the watched cluster does. It will take
no more than (log log 𝜌ℓ)𝑛 instances of the activated particle reaching the midway point, for the random
walk to make n consecutive down-steps. This is a coarse estimate; with more effort, we could improve
the n-dependence of this term, but it would not qualitatively change the result. On a high probability
event, 𝜌ℓ will be sufficiently large to ensure that (log log 𝜌ℓ)𝑛 ≤ (log 𝜌ℓ)𝑜𝑛 (1) . Then, because it will
typically take no more than (log 𝜌ℓ)1+𝑜𝑛 (1) steps to observe a visit to the midway point, we will wait a
number of steps on the same order to observe the collapse of a cluster.

6.3. Basic properties of clusters and collapse times

We will work in the following setting.

◦ For brevity, if we write 𝜃𝑚 with no parenthetical argument, we will mean 𝜃𝑚 (𝛾𝑛) for the constant 𝛾
given by

𝛾 = 18 max{𝑐1, 𝑐
−1
2 } + 36, (6.10)

where 𝑐1 and 𝑐2 are the constants in Theorems 4 and 5. Any constant larger than 𝛾 would also work
in its place.

◦ 𝑈0 has 𝑛 ≥ 2 elements and diam(𝑈0) is at least 𝜃4𝑛.
◦ The clustering parameter r equals Φ(diam(𝑈0)), where we continue to denote by Φ(·) the inverse

function of 𝜃𝑛 (·). In particular, r satisfies

𝑟 ≥ Φ(𝜃4𝑛) = 𝜃3𝑛 ≥ 𝑒𝑛. (6.11)

◦ We will assume that the initial configuration is exponentially clustered with parameter r as 𝑈0 ↦→𝑟

{𝑈𝑖
0, 𝑥𝑖 , 𝜃

(𝑖) }𝑘𝑖=1. In particular, we assume that clustering produces k clusters. We note that the choice
of r guarantees diam(𝑈0) > 2𝜃𝑛−1 (𝑟) which, by Lemma 5.2, guarantees that 𝑘 > 1.

◦ We denote a generic element of {1, 2, . . . , 𝑘 − 1} by ℓ.

6.3.1. Properties of cluster separation and diameter
We will use the following terms to describe the separation of clusters.

Definition 6.5. We define pairwise cluster separation and the least separation by

sep (𝑈𝑖
𝑡 ) = min

𝑗≠𝑖
dist(𝑈𝑖

𝑡 ,𝑈
𝑗
𝑡 ) and sep (𝑈𝑡 ) = min

𝑖
sep (𝑈𝑖

𝑡 ).

(By convention, the distance to an empty set is∞, so the separation of a cluster is∞ at all times following
its collapse.) If 𝑈𝑖

𝑡 satisfies sep(𝑈𝑖
𝑡 ) = sep(𝑈𝑡 ), then we say that 𝑈𝑖

𝑡 is least separated. Whenever there
are at least two clusters, at least two clusters will be least separated. The least separation at a cluster
collapse time will be an important quantity; we will denote it by

𝜌ℓ = sep(𝑈Tℓ−1 ).
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Next, we introduce the expiry time 𝔱ℓ and the truncated collapse time Tℓ−. As discussed in Section
6.2, if the least separation at time Tℓ−1 is 𝜌ℓ , then we will obtain a lower bound on the probability that
a least separated cluster loses a particle, which holds uniformly from time Tℓ−1 to the first of Tℓ−1 + 𝔱ℓ
and Tℓ − 1 (i.e., the time immediately preceding the ℓth collapse), which we call the truncated collapse
time, Tℓ−. Here, 𝔱ℓ is an FTℓ−1 -measurable random variable which will effectively be (log 𝜌ℓ)2. It will
be rare for Tℓ to exceed Tℓ−1 + 𝔱ℓ , so Tℓ− can be thought of as Tℓ − 1.

Definition 6.6. Given the FTℓ−1 data (in particular 𝜌ℓ and Tℓ−1), we define the expiry time 𝔱ℓ to be the
integer part of

(log 𝜌ℓ)2 − 4 log(𝜌ℓ + Tℓ−1) − Tℓ−1.

We emphasize that 𝔱ℓ should be thought of as (log 𝜌ℓ)2; the other terms will be much smaller and are
included to simplify calculations which follow. Additionally, we define the ℓth truncated cluster collapse
time to be

Tℓ− = (Tℓ−1 + 𝔱ℓ) ∧ (Tℓ − 1).

Note that Tℓ− is not a stopping time, but it will be useful to us anyway.

Cluster diameter and separation have complementary behavior in the sense that diameter increases
at most linearly in time but may decrease abruptly, while separation decreases at most linearly in time
but may increase abruptly. We express these properties in the following lemma.

Lemma 6.7. Cluster diameter and separation obey the following properties.

1. Cluster diameter increases by at most 1 each step:

diam(𝑈𝑖
𝑡 ) ≤ diam(𝑈𝑖

𝑡−1) + 1. (6.12)

2. Cluster separation decreases by at most 1 each step:

dist(𝑈𝑖
𝑡 ,𝑈

𝑗
𝑡 ) ≥ dist(𝑈𝑖

𝑡−1,𝑈
𝑗
𝑡−1) − 1 and sep(𝑈𝑖

𝑡 ) ≥ sep(𝑈𝑖
𝑡−1) − 1. (6.13)

3. For any two times s and t satisfying Tℓ−1 ≤ 𝑠 < 𝑡 < Tℓ and any two clusters i and j:

dist(𝑈𝑖
𝑡 ,𝑈

𝑗
𝑡 ) ≤ dist(𝑈𝑖

𝑠 ,𝑈
𝑗
𝑠 ) + diam(𝑈𝑖

𝑠) + diam(𝑈 𝑗
𝑠 ) + (𝑡 − 𝑠).

Proof. The first two properties are obvious; we prove the third. Let 𝑖, 𝑗 label two clusters which are
nonempty at time Tℓ−1, and let 𝑠, 𝑡 satisfy the hypotheses. If there are 𝑚𝑖 activations at the ith cluster
from time s to time t, then for any 𝑥 ′ in 𝑈𝑖

𝑡 , there is an x in 𝑈𝑖
𝑠 such that |𝑥 − 𝑥 ′ | ≤ 𝑚𝑖 . The same is true

of any 𝑦′ in the jth cluster with 𝑚 𝑗 in the place of 𝑚𝑖 . Since the sum of 𝑚𝑖 and 𝑚 𝑗 is at most 𝑡 − 𝑠, two
uses of the triangle inequality give

dist(𝑈𝑖
𝑡 ,𝑈

𝑗
𝑡 ) ≤ max

𝑥′ ∈𝑈 𝑖
𝑡 , 𝑦

′ ∈𝑈 𝑗
𝑡

|𝑥 ′ − 𝑦′ | ≤ max
𝑥∈𝑈 𝑖

𝑠 , 𝑦∈𝑈
𝑗
𝑠

|𝑥 − 𝑦 | + 𝑡 − 𝑠.

This implies property (3) because, by two more uses of the triangle inequality,

max
𝑥∈𝑈 𝑖

𝑠 , 𝑦∈𝑈
𝑗
𝑠

|𝑥 − 𝑦 | ≤ dist(𝑈𝑖
𝑠 ,𝑈

𝑗
𝑠 ) + diam(𝑈𝑖

𝑠) + diam(𝑈 𝑗
𝑠 ).

�
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6.3.2. Consequences of timely collapse
If clusters collapse before their expiry times – that is, if the event

Timely(ℓ) = ∩ℓ
𝑚=1{T𝑚 − T𝑚−1 ≤ 𝔱𝑚}

occurs – then we will be able to control the separation (Lemma 6.8) and diameters (Lemma 6.10) of the
clusters by combining the initial exponential separation of the clusters with the properties of Lemma
6.7. Moreover, we will be able to guarantee that every cluster that has not yet collapsed has an element
with positive harmonic measure.

The next lemma states that, when cluster collapses are timely, cluster separation decreases little. To
state it, we recall that sep(𝑈𝑖

𝑡 ) is the distance between 𝑈𝑖
𝑡 and the nearest other cluster and that 𝜌ℓ is the

least of these distances among all pairs of distinct clusters at time Tℓ−1. In particular, sep(𝑈𝑖
Tℓ−1

) ≥ 𝜌ℓ
for each i.

Lemma 6.8. For any cluster i, when Timelyℓ−1 occurs and when t is at most Tℓ−,

sep
(
𝑈𝑖

𝑡

)
≥ (1 − 𝑒−𝑛) sep

(
𝑈𝑖

Tℓ−1

)
. (6.14)

Additionally, when Timelyℓ−1 occurs,

𝜌ℓ ≥ 1
2 𝜌1 ≥ 𝑒𝜃2𝑛 . (6.15)

The factor of 1− 𝑒−𝑛 in equation (6.14) does not have special significance; other factors of 1− 𝑜𝑛 (1)
would work, too. Equation (6.14) and the first inequality in equation (6.15) are consequences of the
fact (6.13) that separation decreases at most linearly in time and, when Timelyℓ−1 occurs, Tℓ−1 is small
relative to the separation of the remaining clusters. The second inequality in equation (6.15) follows
from our choice of r in equation (6.11).

Proof of Lemma 6.8. We will prove equation (6.14) by induction, using the fact that separation decreases
at most linearly in time (6.13) and that (by the definition of Tℓ−) at most 𝔱ℓ steps elapse between Tℓ−1
and Tℓ−.

For the base case, take ℓ = 1. Suppose cluster i is nonempty at time Tℓ−1. We must show that, when
𝑡 ≤ T1

−,

sep
(
𝑈𝑖

𝑡

)
≥ (1 − 𝑒−𝑛) sep

(
𝑈𝑖

0
)
.

Because separation decreases at most linearly in time (6.13) and because 𝑡 ≤ T1
−,

sep(𝑈𝑖
𝑡 ) ≥ sep(𝑈𝑖

0) − 𝑡 ≥ sep(𝑈𝑖
0) − T1

−.

This implies equation (6.14) for ℓ = 1 because

sep(𝑈𝑖
0) − T1

− ≥
(
1 − (log 𝜌1)2

𝜌1

)
sep(𝑈𝑖

0) ≥ (1 − 𝑒−𝑛) sep(𝑈𝑖
0).

The first inequality is a consequence of the definitions of T1
−, 𝔱1, and 𝜌1, which imply T1

− ≤ 𝔱1 ≤
(log 𝜌1)2 and sep(𝑈𝑖

0) ≥ 𝜌1. Since the ratio of (log 𝜌1)2 to 𝜌1 decreases as 𝜌1 increases, the second
inequality follows from the bound 𝜌1 ≥ 𝑒𝑒

𝑛 , which is implied by the fact that𝑈0 satisfies the exponential
separation property (5.1) with parameter 𝑟 ≥ 𝑒𝑛 (6.11).

The argument for ℓ > 1 is similar. Assume equation (6.14) holds for ℓ − 1. We have

sep(𝑈𝑖
𝑡 ) ≥ sep(𝑈𝑖

Tℓ−1
) − (𝑡 − Tℓ−1) ≥ sep(𝑈𝑖

Tℓ−1
) − 𝔱ℓ ≥

(
1 − (log 𝜌ℓ )2

𝜌ℓ

)
sep(𝑈𝑖

Tℓ−1
). (6.16)

https://doi.org/10.1017/fms.2023.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.81


Forum of Mathematics, Sigma 37

The first inequality is implied by equation (6.13). The second inequality follows from the definitions of
Tℓ− and 𝔱ℓ , which imply Tℓ− − Tℓ−1 ≤ 𝔱ℓ ≤ (log 𝜌ℓ)2, and 𝑡 ≤ Tℓ−. The third inequality is due to the
same upper bound on 𝔱ℓ and the fact that sep(𝑈𝑖

Tℓ−1
) ≥ 𝜌ℓ by definition.

We will bound below 𝜌ℓ to complete the induction step with equation (6.16) because the ratio of
(log 𝜌ℓ)2 to 𝜌ℓ decreases as 𝜌ℓ increases. Specifically, we will prove equation (6.15). By definition,
when Timelyℓ−1 occurs so too does Timely(ℓ − 2). Accordingly, the induction hypothesis applies and we
apply it ℓ − 1 times:

𝜌ℓ−1 = min
𝑖

sep(𝑈𝑖
Tℓ−2

) ≥ (1 − 𝑒−𝑛)ℓ−1 min
𝑖

sep(𝑈𝑖
0) = (1 − 𝑒−𝑛)ℓ−1𝜌1.

The equalities follow from the definitions of 𝜌ℓ−1 and 𝜌1. We also have

𝜌ℓ ≥ 𝜌ℓ−1 − 𝔱ℓ−1 ≥
(
1 − (log 𝜌ℓ−1)2

𝜌ℓ−1

)
𝜌ℓ−1 ≥ (1 − 𝑒−𝑛)𝜌ℓ−1.

The first inequality is due to equation (6.13) and the fact that at most 𝔱ℓ−1 steps elapse between Tℓ−2 and
Tℓ−1 when Timelyℓ−1 occurs. The second inequality is due to 𝔱ℓ−1 ≤ (log 𝜌ℓ−1)2, and the third is due to
the fact that the ratio of (log 𝜌ℓ−1)2 to 𝜌ℓ−1 decreases as 𝜌ℓ−1 increases.

Combining the two preceding displays and then using the fact that ℓ ≤ 𝑛 and 𝜌1 ≥ 𝑒𝑒
𝑛 and the

inequality (1 + 𝑥)𝑟 ≥ 1 + 𝑟𝑥, which holds for 𝑥 > −1 and 𝑟 > 1, we find

𝜌ℓ ≥ (1 − 𝑒−𝑛)ℓ𝜌1 ≥ (1 − 𝑛𝑒−𝑛)𝜌1.

Because 𝑛𝑒−𝑛 ≤ 1
2 when 𝑛 ≥ 2, this proves 𝜌ℓ ≥ 1

2 𝜌1, which is the first inequality of equation (6.15).
To prove the second inequality in equation (6.15), we note that 𝜌1 is at least 𝜃3𝑛 by equation (6.11).

We now apply 𝜌ℓ ≥ 1
2 𝜌1 to the ratio in equation (6.16):

(log 𝜌ℓ)2

𝜌ℓ
≤ 2(log 𝜌1)2

𝜌1
≤ 𝑒−𝑛.

The second inequality uses 𝜌1 ≥ 𝑒𝑒
𝑛 . We complete the induction step, proving equation (6.14), by

substituting this bound into equation (6.16). �

When cluster collapses are timely, Tℓ− is at most (log 𝜌ℓ)2, up to a factor depending on n.

Lemma 6.9. When Timelyℓ−1 occurs,

Tℓ− ≤ 2𝑛(log 𝜌ℓ)2. (6.17)

The factor of 2 is for brevity; it could be replaced by 1+𝑜𝑛 (1). The lower bound on the least separation
𝜌ℓ at time Tℓ−1 in equation (6.15) indicates that, while 𝜌ℓ may be much larger than 𝜌1, it is at least half
of 𝜌1. Since the expiry time 𝔱ℓ is approximately (log 𝜌ℓ)2, the truncated collapse time Tℓ− – which is
at most the sum of the first ℓ expiry times – should be of the same order, up to a factor depending on ℓ
(which we will replace with n since ℓ ≤ 𝑛).

Proof of Lemma 6.9. We write

Tℓ− = Tℓ− − Tℓ−1 +
ℓ−1∑
𝑚=1

(T𝑚 − T𝑚−1) ≤
ℓ∑

𝑚=1
𝔱𝑚 ≤

ℓ∑
𝑚=1

(log 𝜌𝑚)2.

The first inequality follows from the fact that, when Timelyℓ−1 occurs, T𝑚 − T𝑚−1 ≤ 𝔱𝑚 for 𝑚 ≤ ℓ − 1
and Tℓ− − Tℓ−1 ≤ 𝔱ℓ . The second inequality holds because 𝔱𝑚 ≤ (log 𝜌𝑚)2 by definition.
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Next, assume w.l.o.g. that cluster i is least separated at time Tℓ−1, meaning 𝜌ℓ = sep(𝑈𝑖
Tℓ−1

). Since
Timelyℓ−1 occurs, Lemma 6.8 applies and with its repeated use we establish equation (6.17):

ℓ∑
𝑚=1

(log 𝜌𝑚)2 ≤
ℓ∑

𝑚=1

(
log sep(𝑈𝑖

T𝑚−1
)
)2

≤
ℓ∑

𝑚=1

(
log

(
(1 + 𝑒−𝑛

1−𝑒−𝑛 )
ℓ−𝑚𝜌ℓ

) )2
≤ ℓ(log(2𝜌ℓ ))2 ≤ 2𝑛(log 𝜌ℓ)2.

The first inequality is due to the definition of 𝜌𝑚 as the least separation at time T𝑚−1. This step is helpful
because it replaces each summand with one concerning the ith cluster. The second inequality holds
because, by Lemma 6.8,

𝜌ℓ = sep(𝑈𝑖
Tℓ−1

) ≥ (1 − 𝑒−𝑛)ℓ−𝑚sep(𝑈𝑖
T𝑚−1

) =⇒ sep(𝑈𝑖
T𝑚−1

) ≤
(
1 + 𝑒−𝑛

1−𝑒−𝑛
)ℓ−𝑚

𝜌ℓ .

The third inequality follows from ℓ ≤ 𝑛 and (1 + 𝑒−𝑛

1−𝑒−𝑛 )
𝑛 ≤ 2 when 𝑛 ≥ 2. The fourth inequality is

due to ℓ ≤ 𝑛 and 𝜌ℓ ≥ 𝑒𝜃2𝑛 from equation (6.15). (The factor of 2 could be replaced by 1 + 𝑜𝑛 (1).)
Combining the displays proves equation (6.17). �

When cluster collapse is timely, we can bound cluster diameter at time 𝑡 ∈ [Tℓ−1, Tℓ−] from above,
in terms of its separation at time Tℓ−1 or at time t.

Lemma 6.10. For any cluster i, when Timelyℓ−1 occurs and when t is at most Tℓ−,

diam(𝑈𝑖
𝑡 ) ≤

(
log sep(𝑈𝑖

Tℓ−1
)
)2
. (6.18)

Additionally, if 𝑥𝑖 is the center of the ith cluster resulting from the exponential clustering of 𝑈0, then
when t is at most Tℓ−,

𝑈𝑖
𝑡 ⊆ 𝐷𝑥𝑖

( (
log sep(𝑈𝑖

Tℓ−1
)
)2

)
and 𝑈𝑡\𝑈𝑖

𝑡 ⊆ 𝐷𝑥𝑖

(
0.99 sep(𝑈𝑖

Tℓ−1
)
)𝑐
. (6.19)

Lastly, if 𝑖, 𝑗 label any two clusters which are nonempty at time Tℓ−1, then when t is at most Tℓ−,

log diam(𝑈𝑖
𝑡 )

log dist(𝑈𝑖
𝑡 ,𝑈

𝑗
𝑡 )

≤ 2.1 log log 𝜌ℓ
log 𝜌ℓ

. (6.20)

We use factors of 0.99 and 2.1 for concreteness; they could be replaced by 1 − 𝑜𝑛 (1) and 2 + 𝑜𝑛 (1).
Lemma 6.10 implements the diameter and separation bounds we discussed in Section 6.2.2 (there, we
used 𝜌 in the place of sep(𝑈𝑖

Tℓ−1
)). Before proving the lemma, we discuss some heuristics which explain

equation (6.18) through (6.20).
If a cluster is initially separated by a distance 𝜌, then it has a diameter of at most 2 log 𝜌 by equation

(5.1), which is negligible relative to an expiry time of order (log 𝜌)2. Diameter increases at most
linearly in time by equation (6.12), so when cluster collapse is timely the diameter of 𝑈𝑖

𝑡 is at most(
log sep(𝑈𝑖

Tℓ−1
)
)2. In fact, the definition of the expiry time subtracts the lower order terms, so the bound

will be exactly this quantity. Moreover, since (log 𝜌)2 is negligible relative to the separation 𝜌, and as
separation decreases at most linearly in time by equation (6.13), the separation of 𝑈𝑖

𝑡 should be at least
sep(𝑈𝑖

Tℓ−1
), up to a constant which is nearly one.

Combining these bounds on diameter and separation suggests that the ratio of the diameter of𝑈𝑖
𝑡 to its

separation from another cluster 𝑈 𝑗
𝑡 should be roughly the ratio of

(
log sep(𝑈𝑖

Tℓ−1
)
)2 to sep(𝑈𝑖

Tℓ−1
), up to

a constant factor. Because this ratio is decreasing in the separation (for separation exceeding, say, 𝑒2) and
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because the separation at time Tℓ−1 is at least 𝜌ℓ , the ratio (log 𝜌ℓ )2

𝜌ℓ
should provide a further upper bound,

again up to a constant factor. These three observations correspond to equations (6.18) through (6.20).

Proof of Lemma 6.10. We first address equation (6.18) and use it to prove equation (6.19). We then
combine the results to prove equation (6.20). We bound diam(𝑈𝑖

𝑡 ) from above in terms of diam(𝑈𝑖
0) as

diam(𝑈𝑖
𝑡 ) ≤ diam(𝑈𝑖

0) + Tℓ− ≤ diam(𝑈𝑖
0) + Tℓ−1 + 𝔱ℓ . (6.21)

The first inequality holds because diameter grows at most linearly in time (6.12) and because t is at
most Tℓ−. The second inequality is due to the definition of Tℓ−. We then bound diam(𝑈𝑖

0) from above
in terms of sep(𝑈𝑖

Tℓ−1
) as

diam(𝑈𝑖
0) ≤ 2 log sep(𝑈𝑖

0) ≤ 2 log
(
sep(𝑈𝑖

Tℓ−1
) + Tℓ−1

)
. (6.22)

The exponential separation property (5.1) implies the first inequality, and equation (6.13) implies the
second.

Combining the two preceding displays, we find

diam(𝑈𝑖
𝑡 ) ≤ 2 log

(
sep(𝑈𝑖

Tℓ−1
) + Tℓ−1

)
+ Tℓ−1 + 𝔱ℓ .

Substituting the definition of 𝔱ℓ , the right-hand side becomes

2 log
(
sep(𝑈𝑖

Tℓ−1
) + Tℓ−1

)
+ (log 𝜌ℓ)2 − 4 log(𝜌ℓ + Tℓ−1).

By definition, 𝜌ℓ is the least separation at time Tℓ−1, so we can further bound diam(𝑈𝑖
𝑡 ) from above by

substituting sep(𝑈𝑖
Tℓ−1

) for 𝜌ℓ :

diam(𝑈𝑖
𝑡 ) ≤

(
log sep(𝑈𝑖

Tℓ−1
)
)2 − 2 log

(
sep(𝑈𝑖

Tℓ−1
) + Tℓ−1

)
. (6.23)

Dropping the negative term gives equation (6.18).
We turn our attention to equation (6.19). To obtain the first inclusion of equation (6.19), we observe

that𝑈𝑖
𝑡 is contained in the disk 𝐷𝑥𝑖

(
diam(𝑈𝑖

0) +Tℓ−1+ 𝔱ℓ
)
, the radius of which is the quantity in equation

(6.21) that we ultimately bounded above by
(
log sep(𝑈𝑖

Tℓ−1
)
)2.

Concerning the second inclusion of equation (6.19), we observe that for any y in𝑈𝑡\𝑈𝑖
𝑡 , there is some

𝑦′ in 𝑈Tℓ−1\𝑈𝑖
Tℓ−1

such that |𝑦 − 𝑦′ | is at most 𝔱ℓ because t is at most Tℓ−. By the triangle inequality and
the bound on |𝑦 − 𝑦′ |,

|𝑥𝑖 − 𝑦 | ≥ |𝑥𝑖 − 𝑦′ | − |𝑦 − 𝑦′ | ≥ |𝑥𝑖 − 𝑦′ | − 𝔱ℓ .

Next, we observe that the distance between 𝑥𝑖 and 𝑦′ is at least

|𝑥𝑖 − 𝑦′ | ≥ sep(𝑈𝑖
Tℓ−1

) − diam(𝑈𝑖
0).

The two preceding displays and equation (6.22) imply

|𝑥𝑖 − 𝑦 | ≥ sep(𝑈𝑖
Tℓ−1

) − 2 log
(
sep(𝑈𝑖

Tℓ−1
) + Tℓ−1

)
− 𝔱ℓ . (6.24)

We continue (6.24) with

|𝑥𝑖 − 𝑦 | ≥ sep(𝑈𝑖
Tℓ−1

) −
(
log sep(𝑈𝑖

Tℓ−1
)
)2 ≥

(
1 − (log 𝜌ℓ )2

𝜌ℓ

)
sep(𝑈𝑖

Tℓ−1
) ≥ 0.99 sep(𝑈𝑖

Tℓ−1
). (6.25)

The first inequality follows from substituting the definition of 𝔱ℓ into equation (6.24) and from
sep(𝑈𝑖

Tℓ−1
) ≥ 𝜌ℓ . The second inequality holds because the ratio of

(
log sep(𝑈𝑖

Tℓ−1
)
)2 to sep(𝑈𝑖

Tℓ−1
)
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decreases as sep(𝑈𝑖
Tℓ−1

) increases and because sep(𝑈𝑖
Tℓ−1

) ≥ 𝜌ℓ . The fact (6.15) that 𝜌ℓ is at least
𝑒𝜃2𝑛 ≥ 𝑒𝜃2 (𝛾) when Timelyℓ−1 occurs implies that the ratio in equation (6.25) is at most 0.01 because
𝜃2 (𝛾)2 ≤ 0.01𝑒𝜃2 (𝛾) , which justifies the third inequality. Equation (6.25) proves the second inclusion of
equation (6.19).

Lastly, to address equation (6.20), we observe that any element x in 𝑈𝑖
𝑡 is within a distance(

log sep(𝑈𝑖
Tℓ−1

)
)2 of 𝑥𝑖 by equation (6.23). So, by equation (6.25) and simplifying with 𝜌ℓ ≥ 𝑒𝜃2𝑛 ,

the distance between 𝑈𝑖
𝑡 and 𝑈

𝑗
𝑡 is at least

sep(𝑈𝑖
Tℓ−1

) − 2
(
log sep(𝑈𝑖

Tℓ−1
)
)2 ≥ 0.99 sep(𝑈𝑖

Tℓ−1
).

Combining this with equation (6.18), and then using the fact that sep(𝑈𝑖
Tℓ−1

) is at least 𝜌ℓ , gives

log diam(𝑈𝑖
𝑡 )

log dist(𝑈𝑖
𝑡 ,𝑈

𝑗
𝑡 )

≤
2 log log sep(𝑈𝑖

Tℓ−1
)

log
(
0.99 sep(𝑈𝑖

Tℓ−1
)
) ≤ 2.1 log log 𝜌ℓ

log 𝜌ℓ
.

�

The next lemma concerns two properties of the midway point introduced in Section 6.2. We recall
that the midway point (for the period beginning at time Tℓ−1 and continuing until Tℓ−) is a circle of
radius 1

2 𝜌ℓ , centered on the center 𝑥𝑖 (given by the initial exponential clustering of 𝑈0) of a cluster i
which is least separated at time Tℓ−1. The first property is the simple fact that, when collapse is timely,
the midway point separates 𝑈𝑖

𝑡 from the rest of 𝑈𝑡 until time Tℓ−. This is clear because the midway point
is a distance of 1

2 𝜌ℓ from 𝑈Tℓ−1 and Tℓ− is no more than (log 𝜌ℓ)2 steps away from Tℓ−1 when collapse
is timely. The second property is the fact that a random walk from anywhere in the midway point hits
𝑈𝑖

𝑡 before the rest of 𝑈𝑡 (excluding the site of the activated particle) with a probability of at most 0.51,
which is reasonable because the random walk begins effectively halfway between 𝑈𝑖

𝑡 and the rest of 𝑈𝑡 .
In terms of notation, when activation occurs at u, the bound applies to the probability of the event{

𝜏𝑈 𝑖
𝑡 \{𝑢 } < 𝜏𝑈𝑡\(𝑈 𝑖

𝑡 ∪ {𝑢 })
}
.

We will stipulate that u belongs to a cluster in 𝑈𝑡 which is not a singleton as, otherwise, its activation
at time t necessitates 𝑡 = Tℓ .

Lemma 6.11. Suppose cluster i is least separated at time Tℓ−1 and recall that 𝑥𝑖 denotes the center of
the ith cluster, determined by the exponential clustering of 𝑈0. When Timelyℓ−1 occurs and when t is at
most Tℓ−:

1. the midway point 𝐶 (𝑖; ℓ) = 𝐶𝑥𝑖

(
1
2 𝜌ℓ

)
separates 𝑈𝑖

𝑡 from 𝑈𝑡\𝑈𝑖
𝑡 , and

2. for any u in 𝑈𝑡 which does not belong to a singleton cluster and any y in 𝐶 (𝑖; ℓ),

P𝑦

(
𝜏𝑈 𝑖

𝑡 \{𝑢 } < 𝜏𝑈𝑡\(𝑈 𝑖
𝑡 ∪ {𝑢 })

)
≤ 0.51. (6.26)

Proof. Property (1) is an immediate consequence of equation (6.19) of Lemma 6.10 since 1
2 𝜌ℓ is at

least (log 𝜌ℓ)2 and less than 0.99𝜌ℓ .
Now, let u and y satisfy the hypotheses from #2, denote the center of the ith cluster by 𝑥𝑖 , and denote

𝐶 ((log 𝜌ℓ)2) by B. To prove property (2), we will establish

P𝑦−𝑥𝑖
(
𝜏𝐵 < 𝜏𝑧−𝑥𝑖

)
≤ 0.51, (6.27)

for some 𝑧 ∈ 𝑈𝑡\(𝑈𝑖
𝑡 ∪ {𝑢}). This bound implies equation (6.26) because, equation by (6.19), B

separates 𝑈𝑖
𝑡 − 𝑥𝑖 from the rest of 𝑈𝑡 − 𝑥𝑖 .
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We can express the probability in equation (6.27) in terms of hitting probabilities involving only
three points:

P𝑦−𝑥𝑖 (𝜏𝐵 < 𝜏𝑧−𝑥𝑖 ) = P𝑦−𝑥𝑖 (𝜏𝑜 < 𝜏𝑧−𝑥𝑖 ) + E𝑦−𝑥𝑖
[
P𝑆𝜏𝐵

(𝜏𝑧−𝑥𝑖 < 𝜏𝑜)1(𝜏𝐵 < 𝜏𝑧−𝑥𝑖 )
]

≤ P𝑦−𝑥𝑖 (𝜏𝑜 < 𝜏𝑧−𝑥𝑖 ) + max
𝑣 ∈𝐵
P𝑣 (𝜏𝑧−𝑥𝑖 < 𝜏𝑜) P𝑦−𝑥𝑖 (𝜏𝐵 < 𝜏𝑧−𝑥𝑖 ).

Rearranging, we find

P𝑦−𝑥𝑖 (𝜏𝐵 < 𝜏𝑧−𝑥𝑖 ) ≤
(
1 − max

𝑣 ∈𝐵
P𝑣 (𝜏𝑧−𝑥𝑖 < 𝜏𝑜)

)−1
P𝑦−𝑥𝑖 (𝜏𝑜 < 𝜏𝑧−𝑥𝑖 ). (6.28)

We will choose z so that the points 𝑦 − 𝑥𝑖 and 𝑧 − 𝑥𝑖 will be at comparable distances from the origin
and, consequently, P𝑦−𝑥𝑖 (𝜏𝑜 < 𝜏𝑧−𝑥𝑖 ) will be nearly 1/2. In contrast, every element of B will be far
nearer to the origin than to 𝑧 − 𝑥𝑖 , so P𝑣 (𝜏𝑧−𝑥𝑖 < 𝜏𝑜) will be nearly zero for every v in B. We will
write these probabilities in terms of the potential kernel using Lemma 3.9. We will need bounds on the
distances |𝑧 − 𝑥𝑖 | and |𝑧 − 𝑦 | to simplify the potential kernel terms; we take care of this now.

Suppose cluster j was nearest to cluster i at time Tℓ−1. We then choose z to be the element of 𝑈
𝑗
𝑡

nearest to 𝑈𝑖
𝑡 . Note that such an element exists because, when t is at most Tℓ−, every cluster surviving

until time Tℓ−1 survives until time t. By equation (6.19) of Lemma 6.10,

|𝑧 − 𝑥𝑖 | ≥ 0.99𝜌ℓ .

Part (2) of Lemma A.1 then gives the lower bound

𝔞(𝑧 − 𝑥𝑖) ≥
2
𝜋

log(0.99𝜌ℓ). (6.29)

In the intercollapse period before Tℓ−, the separation between z and y (initially 1
2 𝜌ℓ) can grow by at

most 𝔱ℓ + diam(𝑈 𝑗
Tℓ−1

):

|𝑧 − 𝑦 | ≤ 1
2 𝜌ℓ + 𝔱ℓ + diam(𝑈 𝑗

Tℓ−1
).

By equation (6.18), the diameter of cluster j at time Tℓ−1 is at most (log 𝜌ℓ)2; this upper bound applies
to 𝔱ℓ as well, so

|𝑧 − 𝑦 | ≤ 1
2 𝜌ℓ + 2(log 𝜌ℓ)2 ≤ 0.51𝜌ℓ .

We obtained the second inequality using the fact (6.15) that, when Timely(ℓ − 1) occurs, 𝜌ℓ is at least
𝑒𝜃2𝑛 . (In what follows, we will use this fact without restating it.)

Accordingly, the difference between 𝔞(𝑧 − 𝑦) and 𝔞(𝑦 − 𝑥𝑖) satisfies

𝔞(𝑧 − 𝑦) − 𝔞(𝑦 − 𝑥𝑖) ≤
2
𝜋

log(2 · 0.51) + 4𝜆𝜌−2
ℓ ≤ 2

𝜋
. (6.30)

By Lemma 3.9, the first term of equation (6.28) equals

P𝑦−𝑥𝑖 (𝜏𝑜 < 𝜏𝑧−𝑥𝑖 ) =
1
2
+ 𝔞(𝑧 − 𝑦) − 𝔞(𝑦 − 𝑥𝑖)

2𝔞(𝑧 − 𝑥𝑖)
. (6.31)

Substituting equations (6.29) and (6.30) into equation (6.31), we find

P𝑦−𝑥𝑖 (𝜏𝑜 < 𝜏𝑧−𝑥𝑖 ) ≤
1
2
+ 1

log 𝜌ℓ
≤ 0.501. (6.32)
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We turn our attention to bounding above the maximum of P𝑣 (𝜏𝑧−𝑥𝑖 < 𝜏𝑜) over v in B. This quantity
should be close to 0 for every 𝑣 ∈ 𝐵 because the elements of B are only a distance of roughly (log 𝜌ℓ)2

from the origin, but they are nearly 𝜌ℓ from 𝑧 − 𝑥𝑖 . For any such v, Lemma 3.9 gives

P𝑣 (𝜏𝑧−𝑥𝑖 < 𝜏𝑜) =
1
2
+ 𝔞(𝑣) − 𝔞(𝑧 − 𝑥𝑖 − 𝑣)

2𝔞(𝑧 − 𝑥𝑖)
. (6.33)

By Lemma A.2, 𝔞(𝑣) is at most 𝔞′((log 𝜌ℓ)2) + 2(log 𝜌ℓ)−2. Then, since

|𝑧 − 𝑥𝑖 − 𝑣 | ≥ 0.99𝜌ℓ − (log 𝜌ℓ)2 ≥ 0.98𝜌ℓ ,

we have

𝔞(𝑧 − 𝑥𝑖 − 𝑣) − 𝔞(𝑣) ≥ 2
𝜋

log(0.98𝜌ℓ) −
4
𝜋

log log 𝜌ℓ − 4(log 𝜌ℓ)−2 ≥ 2 · 0.99
𝜋

log(0.99𝜌ℓ). (6.34)

Substituting equations (6.29) and (6.34) into equation (6.33), we find

P𝑣 (𝜏𝑧−𝑥𝑖 < 𝜏𝑜) ≤
1
2
− 0.99

2
≤ 0.005.

This bound holds uniformly over v in B. Applying it and equation (6.32) to equation (6.28), we find

P𝑦−𝑥𝑖 (𝜏𝐵 < 𝜏𝑧−𝑥𝑖 ) ≤ (1 − 0.005)−10.501 ≤ 0.51.

�

Combined with the separation lower bound (6.15) of Lemma 6.8, the inclusions (6.19) of Lemma
6.10 ensure that, when Timelyℓ−1 occurs, nonempty clusters at time 𝑡 ∈ [Tℓ−1, Tℓ−] are contained in
well-separated disks. A natural consequence is that, when Timelyℓ−1 occurs, every nonempty cluster has
positive harmonic measure in 𝑈𝑡 . Later, we will use this fact in conjunction with Theorem 4 to control
the activation step of the HAT dynamics.

Lemma 6.12. Let 𝐼ℓ be the set of indices of nonempty clusters at time Tℓ−1. When Timelyℓ−1 occurs and
when t is at most Tℓ−, H𝑈𝑡 (𝑈𝑖

𝑡 ) > 0 for every 𝑖 ∈ 𝐼ℓ .

The proof shares some ideas with the proof of Lemma 3.13. Recall the definition of the ∗-exterior
boundary (3.18) and define the disk 𝐷𝑖 to be the one from equation (6.19)

𝐷𝑖 = 𝐷𝑥𝑖

( (
log sep(𝑈𝑖

Tℓ−1
)
)2) for each 𝑖 ∈ 𝐼ℓ . (6.35)

For simplicity, assume 1 ∈ 𝐼ℓ . Most of the proof is devoted to showing that there is a path Γ from
𝜕∗ext𝐷

1 to a large circle C about 𝑈𝑡 , which avoids ∪𝑖∈𝐼ℓ𝐷
𝑖 and thus avoids 𝑈𝑡 . To do so, we will specify

a candidate path from 𝜕∗ext𝐷
1 to C, and modify it as follows. If the path encounters a disk 𝐷𝑖 , then we

will reroute the path around 𝜕∗ext𝐷
𝑖 (which will be connected and will not intersect another disk). The

fact that 𝜕∗ext𝐷
𝑖 will not intersect another disk is a consequence of the separation between clusters. The

modified path encounters one fewer disk. We will iterate this argument until the path avoids every disk
and therefore never returns to 𝑈𝑡 .

Proof of Lemma 6.12. Suppose Timelyℓ−1 occurs and 𝑡 ∈ [Tℓ−1, Tℓ−], and assume w.l.o.g. that 1 ∈ 𝐼ℓ .
Let 𝑦 ∈ 𝑈1

𝑡 satisfy H𝑈1
𝑡
(𝑦) > 0. (Note that there must be such a y because we are considering 𝑈1

𝑡 , not
𝑈𝑡 .) For each 𝑖 ∈ 𝐼ℓ , let 𝐷𝑖 be the disk defined in equation (6.35). As H𝑈1

𝑡
(𝑦) is positive, there is a path

from y to 𝜕∗ext𝐷
1 which does not return to 𝑈1

𝑡 . In a moment, we will show that 𝜕∗ext𝐷
1 is connected, so it

will suffice to prove that there is a subsequent path from 𝜕∗ext𝐷
1 to 𝐶 = 𝐶𝑥1 (2 diam(𝑈𝑡 )) which does not

return to 𝐸 = ∪𝑖∈𝐼ℓ𝐷
𝑖 . This suffices when Timelyℓ−1 occurs because then, by Lemma 6.10, 𝑈𝑖

𝑡 ⊆ 𝐷𝑖 for
each 𝑖 ∈ 𝐼ℓ , so 𝑈𝑡 ⊆ 𝐸 .
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We make two observations. First, because each 𝐷𝑖 is finite and ∗-connected, Lemma 2.23 of [Kes86]
(alternatively, Theorem 4 of [Tim13]) states that each 𝜕∗ext𝐷

𝑖 is connected. Second, 𝜕∗ext𝐷
𝑖 is disjoint

from E when Timelyℓ−1 occurs; this is an easy consequence of equation (6.19) and the separation lower
bound (6.15).

We now specify a candidate path from 𝜕∗ext𝐷
1 to C and, if necessary, modify it to ensure that it does

not return to E. Because H𝑈1
𝑡
(𝑦) is positive, there is a shortest path Γ from 𝜕∗ext𝐷

1 to C, which does
not return to 𝑈1

𝑡 . Let L be the set of labels of disks encountered by Γ. If L is empty, then we are done.
Otherwise, let i be the label of the first disk encountered by Γ, and let Γ𝑎 and Γ𝑏 be the first and last
elements of Γ which intersect 𝜕∗ext𝐷

𝑖 . By our first observation, 𝜕∗ext𝐷
𝑖 is connected, so there is a shortest

path Λ in 𝜕∗ext𝐷
𝑖 from Γ𝑎 to Γ𝑏 . When edit Γ to form Γ′ as

Γ′ =
(
Γ1, . . . , Γ𝑎−1,Λ1, . . . ,Λ |Λ | , Γ𝑏+1, . . . , Γ|Γ |

)
.

Because Γ𝑏 was the last element of Γ which intersected 𝜕∗ext𝐷
𝑖 , Γ′ avoids 𝐷𝑖 . Additionally, by our

second observation,Λ avoids E, so if 𝐿 ′ is the set of labels of disks encountered by Γ′, then |𝐿 ′ | ≤ |𝐿 |−1.
If 𝐿 ′ is empty, then we are done. Otherwise, we can relabel Γ to Γ′ and L to 𝐿 ′ in the preceding argument
to continue inductively, obtaining Γ′′ and |𝐿 ′′ | ≤ |𝐿 | −2, and so on. Because |𝐿 | ≤ 𝑛, we need to modify
the path at most n times before the resulting path from y to C does not return to E. �

The last result of this section bounds above escape probabilities; we will shortly specialize it for our
setting. Note that 𝜕𝐴𝜌 denotes the exterior boundary of the 𝜌-fattening of A, not the 𝜌-fattening of 𝜕𝐴.

Lemma 6.13. If A is a subset of Z2 with at least two elements and if 𝜌 is at least twice the diameter of
A, then, for x in A,

P𝑥

(
𝜏𝜕(𝐴\{𝑥 })𝜌 < 𝜏𝐴\{𝑥 }

)
≤ log diam(𝐴) + 2

log 𝜌
. (6.36)

The added 2 in equation (6.36) is unimportant. If 𝐴 \ {𝑥} = {𝑜}, then a standard result (e.g., [Law13,
Proposition 1.6.7]) states that the probability in question is approximately log |𝑥 |

log 𝜌 ≤ log diam(𝐴)
log 𝜌 . If A has

more than two elements, then it can only be more difficult to escape 𝐴 \ {𝑥}, hence this approximate
bound continues to hold. However, it is more convenient for us to directly prove this bound with explicit
constants.

Proof of Lemma 6.13. We will replace the event in equation (6.36) with a more probable but simpler
event and bound above its probability instead. By hypothesis, A has at least two elements, so for any x in
A, there is some y in 𝐴\{𝑥} nearest to x. To escape to 𝜕 (𝐴\{𝑥})𝜌 without hitting 𝐴\{𝑥} it is necessary to
escape to 𝐶𝑦 (𝜌) without hitting y. Accordingly, for a random walk from x, the following inclusion holds

{𝜏𝜕(𝐴\{𝑥 })𝜌 < 𝜏𝐴\{𝑥 }} ⊆ {𝜏𝐶𝑦 (𝜌) < 𝜏𝑦}. (6.37)

To prove equation (6.36), it therefore suffices to obtain the same bound for the larger event.
The hypothesis 𝜌 ≥ 2 diam(𝐴) ensures that 𝑥 − 𝑦 lies in 𝐷 (𝜌), so we can apply the optional stopping

theorem to the martingale 𝔞(𝑆 𝑗∧𝜏𝑜 ) at the stopping time 𝜏𝐶 (𝜌) . Doing so, we find

P𝑥 (𝜏𝐶𝑦 (𝜌) < 𝜏𝑦) = P𝑥−𝑦 (𝜏𝐶 (𝜌) < 𝜏𝑜) =
𝔞(𝑥 − 𝑦)

E𝑥−𝑦 [𝔞(𝑆𝜏𝐶 (𝜌) )
�� 𝜏𝐶 (𝜌) < 𝜏𝑜]

. (6.38)

We apply Lemma A.2 with 𝑟 = 𝜌 and 𝑥 = 𝑜 to find

E𝑥−𝑦 [𝔞(𝑆𝜏𝐶 (𝜌) )
�� 𝜏𝐶 (𝜌) < 𝜏𝑜] ≥ 𝔞′(𝜌) − 𝜌−1 ≥ 2

𝜋
log 𝜌. (6.39)
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By equation (3.9) and the facts that 1 ≤ |𝑥 − 𝑦 | ≤ diam(𝐴) and 𝜅 + 𝜆 ≤ 1.1, the numerator of equation
(6.38), is at most

𝔞(𝑥 − 𝑦) ≤ 2
𝜋

log |𝑥 − 𝑦 | + 𝜅 + 𝜆 |𝑥 − 𝑦 |−2 ≤ 2
𝜋

log diam(𝐴) + 1.1. (6.40)

Substituting equations (6.39) and (6.40) into equation (6.38), and simplifying with 1.1𝜋
2 ≤ 2, we find

P𝑥 (𝜏𝐶𝑦 (𝜌) < 𝜏𝑦) ≤
log diam(𝐴) + 2

log 𝜌
.

Due to the inclusion (6.37), this implies equation (6.36). �

6.4. Proof of Proposition 6.3

Recall that, for 𝑡 ∈ [Tℓ−1, Tℓ−], the midway point is a circle which surrounds one of the clusters which
is least separated at time Tℓ−1. (We choose this cluster arbitrarily from the least separated clusters.) We
call this cluster the watched cluster, to distinguish it from other clusters which are least separated at
Tℓ−1. The results of this section are phrased in these terms and through the following events.

Definition 6.14. For any 𝑥 ∈ Z2, time 𝑡 ≥ 0 and any 1 ≤ 𝑖 ≤ 𝑘 , define the activation events

Act(𝑥, 𝑡) = {𝑥 is activated at time 𝑡} and Act(𝑖, 𝑡) =
⋃
𝑥∈𝑈 𝑖

𝑡

Act(𝑥, 𝑡).

Additionally, define the deposition event

Dep(𝑖, 𝑡) =
⋃
𝑥∈𝑈𝑡

Act(𝑥, 𝑡) ∩
{
𝜏𝑈 𝑖

𝑡 \ {𝑥 } < 𝜏𝑈𝑡 \ (𝑈 𝑖
𝑡 ∪ {𝑥 })

}
.

In words, the deposition event requires that, at time t, the activated particle deposits at the ith cluster.
When Timelyℓ−1 occurs, if the ith cluster is the watched cluster at time Tℓ−1, then for any time

𝑡 ∈ [Tℓ−1, Tℓ−], define the ‘midway’ event as

Mid(𝑖, 𝑡; ℓ) =
⋃
𝑥∈𝑈𝑡

Act(𝑥, 𝑡) ∩
{
𝜏𝐶 (𝑖;ℓ) < 𝜏𝑈𝑡\{𝑥 }

}
.

In words, the midway event specifies that, at time t, the activated particle reaches 𝐶 (𝑖; ℓ) before
deposition.

We will now use the results of the preceding subsection to bound below the probability that activation
occurs at the watched cluster and that the activated particle subsequently reaches the midway point.
Essentially, Theorem 4 addresses the former probability and Theorem 5 addresses the latter. However,
it is necessary to first ensure that the watched cluster has positive harmonic measure so that at least
one of its particles can be activated and the lower bound (1.2) of Theorem 4 can apply. This is handled
by Lemma 6.12, the hypotheses of which are satisfied whenever Timelyℓ−1 occurs and 𝑡 ∈ [Tℓ−1, Tℓ−].
The hypotheses of Theorem 5 will be satisfied in this context so long as we estimate the probability of
escape to a distance 𝜌 which is at least twice the cluster diameter. The distance from the watched cluster
to the midway point is roughly 𝜌ℓ , while the cluster diameter is at most (log 𝜌ℓ)2 by equation (6.19) of
Lemma 6.10, so this will be the case.

The lower bounds from Theorems 4 and 5 will imply that a particle with positive harmonic measure
is activated and reaches the midway point with a probability of at least

exp(−𝑐1𝑛 log 𝑛 + log(𝑐2𝑛
−2)) · (log 𝜌ℓ)−1
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for constants 𝑐1, 𝑐2. By our choice of 𝛾 (6.10), the first factor in the preceding display is at least 𝛼−1
𝑛 ,

where

𝛼𝑛 = 𝑒𝛾𝑛 log 𝑛. (6.41)

Proposition 6.15. Let cluster i be least separated at time Tℓ−1. When Timelyℓ−1 occurs and when
𝑡 ∈ [Tℓ−1, Tℓ−], we have

P
(
Mid(𝑖, 𝑡; ℓ) ∩ Act(𝑖, 𝑡)

�� F𝑡
)
≥ (𝛼𝑛 log 𝜌ℓ)−1. (6.42)

Proof. Fix ℓ, suppose the ith cluster is least separated at time Tℓ−1 and Timelyℓ−1 occurs, and let
𝑡 ∈ [Tℓ−1, Tℓ−]. For any 𝑥 ∈ 𝑈𝑖

𝑡 , we have

P(Mid(𝑖, 𝑡; ℓ) ∩ Act(𝑖, 𝑡)
�� F𝑡 ) ≥ P

(
Mid(𝑖, 𝑡; ℓ)

�� Act(𝑥, 𝑡), F𝑡
)
P(Act(𝑥, 𝑡)

�� F𝑡 ). (6.43)

Let B denote the set of all points within distance 𝜌ℓ of 𝑈𝑖
𝑡 . We have the following inclusion when

Act(𝑥, 𝑡) occurs: {
𝜏𝜕𝐵 < 𝜏𝑈 𝑖

𝑡

}
⊆

{
𝜏𝐶 (𝑖;ℓ) < 𝜏𝑈𝑡\{𝑥 }

}
= Mid(𝑖, 𝑡; ℓ). (6.44)

From equation (6.44), we have

P
(
Mid(𝑖, 𝑡; ℓ)

�� Act(𝑥, 𝑡), F𝑡
)
≥ P

(
𝜏𝜕𝐵 < 𝜏𝑈 𝑖

𝑡

��� Act(𝑥, 𝑡), F𝑡

)
= P𝑥

(
𝜏𝜕𝐵 < 𝜏𝑈 𝑖

𝑡

)
. (6.45)

Now, let x be an element of 𝑈𝑖
𝑡 which is exposed and which maximizes the right-hand side of

equation (6.45). Such an element must exist because, by Lemma 6.12, when Timelyℓ−1 occurs and when
𝑡 ∈ [Tℓ−1, Tℓ−], H𝑈𝑡 (𝑈𝑖

𝑡 ) is positive. We aim to apply Theorem 5 to bound below the probability in
equation (6.45). The hypotheses of Theorem 5 require |𝑈𝑖

𝑡 | ≥ 2 and 𝜌ℓ ≥ 2 diam(𝑈𝑖
𝑡 ). First, the cluster

𝑈𝑖
𝑡 must contain at least two elements as, otherwise, activation at x would necessitate 𝑡 = Tℓ . Second,

𝜌ℓ is indeed at least twice the diameter of 𝑈𝑖
𝑡 because, when Timelyℓ−1 occurs, 𝑈𝑖

𝑡 is contained in a disk
of radius (log 𝜌ℓ)2 by equation (6.19). Theorem 5 therefore applies to equation (6.45), giving

P
(
Mid(𝑖, 𝑡; ℓ)

�� Act(𝑥, 𝑡), F𝑡
)
≥ 𝑐2 (𝑛2 log 𝜌ℓ)−1. (6.46)

The harmonic measure lower bound (1.2) of Theorem 4 applies because x has positive harmonic
measure. According to equation (1.2), the harmonic measure of x is at least

P
(
Act(𝑥, 𝑡)

�� F𝑡
)
= H𝑈𝑡 (𝑥) ≥ 𝑒−𝑐1𝑛 log 𝑛. (6.47)

Combining equations (6.46) and (6.47), we find

P(Mid(𝑖, 𝑡; ℓ) ∩ Act(𝑖, 𝑡)
�� F𝑡 ) ≥ 𝑐2 (𝑛2 log 𝜌ℓ)−1 · 𝑒−𝑐1𝑛 log 𝑛 ≥ (𝛼𝑛 log 𝜌ℓ)−1.

The second inequality is due to the definition of 𝛼𝑛 (6.41). �

Next, we will bound below the conditional probability that activation occurs at the watched cluster,
given that the activated particle reaches the midway point.

Proposition 6.16. Let cluster i be the watched cluster at time Tℓ−1. When Timelyℓ−1 occurs and when
𝑡 ∈ [Tℓ−1, Tℓ−], we have

P
(
Act(𝑖, 𝑡)

�� Mid(𝑖, 𝑡; ℓ), F𝑡
)
≥ (3𝛼𝑛 log log 𝜌ℓ)−1. (6.48)
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Proof. Suppose 𝑡 ∈ [Tℓ−1, Tℓ−] and Timelyℓ−1 occurs. If we obtain a lower bound 𝑝1 on
P
(
Mid(𝑖, 𝑡; ℓ) ∩ Act(𝑖, 𝑡)

�� F𝑡
)

and an upper bound 𝑝2 on P
(⋃

𝑗≠𝑖 Mid(𝑖, 𝑡; ℓ) ∩ Act( 𝑗 , 𝑡)
�� F𝑡

)
, then

P
(
Act(𝑖, 𝑡)

�� Mid(𝑖, 𝑡; ℓ), F𝑡
)
≥ 𝑝1

𝑝1 + 𝑝2
. (6.49)

First, the probability P
(
Mid(𝑖, 𝑡; ℓ) ∩ Act(𝑖, 𝑡)

�� F𝑡
)

is precisely the one we used to establish (6.43) in
the proof of Proposition 6.15; 𝑝1 is therefore at least (𝛼𝑛 log 𝜌ℓ)−1.

Second, for any 𝑗 ≠ 𝑖, we use the trivial upper bound P(Act( 𝑗 , 𝑡)
�� F𝑡 ) ≤ 1 and address the midway

component by writing

P
(
Mid(𝑖, 𝑡; ℓ)

�� Act( 𝑗 , 𝑡), F𝑡
)
= E

[
P𝑋

(
𝜏𝐶 (𝑖;ℓ) < 𝜏𝑈𝑡\{𝑋 }

) �� Act( 𝑗 , 𝑡), F𝑡

]
. (6.50)

Use 𝜌 to denote dist(𝑈𝑖
Tℓ−1

,𝑈
𝑗
Tℓ−1

) and B to denote the set of all points within a distance 𝜌/3 of
𝑈

𝑗
𝑡 \{𝑋}. We can use Lemma 6.13 to bound the probability in equation (6.50) because the following

inclusion holds:

Act( 𝑗 , 𝑡) ∩ {𝜏𝐶 (𝑖;ℓ) < 𝜏𝑈𝑡\{𝑋 }} ⊆ Act( 𝑗 , 𝑡) ∩
{
𝜏𝐵 < 𝜏

𝑈
𝑗
𝑡 \{𝑋 }

}
.

If Act( 𝑗 , 𝑡) occurs, then 𝑈
𝑗
𝑡 must have least two elements as, otherwise, t would equal Tℓ . Then,

because 𝜌/3 is at least twice its diameter, an application of Lemma 6.13 with 𝐴 = 𝑈
𝑗
𝑡 and 𝜌 yields

P𝑥

(
𝜏𝐵 < 𝜏

𝑈
𝑗
𝑡 \{𝑥 }

)
≤

log diam(𝑈 𝑗
𝑡 ) + 2

log 𝜌
≤ 2.2 log log 𝜌ℓ

log 𝜌ℓ
,

uniformly for x in 𝑈
𝑗
𝑡 . The second inequality follows from equation (6.20), which bounds the ratio of

log diam(𝑈 𝑗
𝑡 ) to log 𝜌 by 2.1 log log 𝜌ℓ

log 𝜌ℓ
.

Applying the preceding bound to equation (6.50), we find

P(Mid(𝑖, 𝑡; ℓ)
�� Act( 𝑗 , 𝑡),F𝑡 ) ≤

2.2 log log 𝜌ℓ
log 𝜌ℓ

=: 𝑝2.

Then, substituting 𝑝1 and 𝑝2 in equation (6.49), we conclude

P
(
Act(𝑖, 𝑡)

�� Mid(𝑖, 𝑡; ℓ), F𝑡
)
≥ (1 + 2.2𝛼𝑛 log log 𝜌ℓ)−1 ≥ (3𝛼𝑛 log log 𝜌ℓ)−1.

�

We now use Lemma 6.11 to establish that an activated particle, upon reaching the midway point,
deposits at the watched cluster with a probability of no more than 0.51.

Proposition 6.17. Let cluster i be the watched cluster at time Tℓ−1. When Timelyℓ−1 occurs and when
𝑡 ∈ [Tℓ−1, Tℓ−], for x in 𝑈𝑡 , we have

P
(
Dep(𝑖, 𝑡)

��� Mid(𝑖, 𝑡; ℓ), Act(𝑥, 𝑡), F𝑡

)
≤ 0.51. (6.51)

Proof. Using the definitions of Dep(𝑖, 𝑡) and Mid(𝑖, 𝑡; ℓ), we write

P
(
Dep(𝑖, 𝑡)

�� Mid(𝑖, 𝑡; ℓ), Act(𝑥, 𝑡), F𝑡
)

= P
( ⋃
𝑦∈𝑈𝑡

Act(𝑦, 𝑡) ∩
{
𝜏𝑈 𝑖

𝑡 \ {𝑦 } < 𝜏𝑈𝑡 \ (𝑈 𝑖
𝑡 ∪ {𝑦 })

} ����� ⋃
𝑦∈𝑈𝑡

Act(𝑦, 𝑡) ∩
{
𝜏𝐶 (𝑖;ℓ) < 𝜏𝑈𝑡\{𝑦 }

}
, Act(𝑥, 𝑡), F𝑡

)
.
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Because Act(𝑦, 𝑡) only occurs for one particle y in𝑈𝑖
𝑡 at any given time t, the right-hand side simplifies to

E
[
P𝑥

(
𝜏𝑈 𝑖

𝑡 \ {𝑥 } < 𝜏𝑈𝑡 \ (𝑈 𝑖
𝑡 ∪ {𝑥 })

��� 𝜏𝐶 (𝑖;ℓ) < 𝜏𝑈𝑡\{𝑥 }

) ��� Act(𝑥, 𝑡), F𝑡

]
.

We then apply the strong Markov property to 𝜏𝐶 (𝑖;ℓ) to find that the previous display equals

E
[
P𝑆𝜏𝐶 (𝑖;ℓ)

(
𝜏𝑈 𝑖

𝑡 \ {𝑥 } < 𝜏𝑈𝑡 \ (𝑈 𝑖
𝑡 ∪ {𝑥 })

) ��� Act(𝑥, 𝑡), F𝑡

]
≤ 0.51,

where the inequality follows from the estimate (6.26). �

The preceding three propositions realize the strategy of Section 6.2.2. We proceed to implement the
strategy of Section 6.2.3. In brief, we will compare the number of particles in the watched cluster to a
random walk and bound the collapse time using the hitting time of zero of the walk.

Let cluster i be the watched cluster at time Tℓ−1, and denote by (𝜂ℓ,𝑚)𝑚≥1 the consecutive times at
which the midway event Mid(𝑖, ·; ℓ) occurs. Set 𝜂ℓ,0 ≡ Tℓ−1 and for all 𝑚 ≥ 1 define

𝜂ℓ,𝑚 = inf{𝑡 > 𝜂ℓ,𝑚−1 : Mid(𝑖, 𝑡; ℓ) occurs}.

Additionally, we denote the number of midway event occurrences by time t as

𝑁ℓ (𝑡) =
∞∑

𝑚=1
1(𝜂ℓ,𝑚 ≤ 𝑡).

The number of elements in cluster i viewed at these times can be coupled to a lazy ran-
dom walk (𝑊𝑚)𝑚≥0 on {0, . . . , 𝑛} from 𝑊0 ≡ |𝑈𝑖

𝜂ℓ,0 |, which takes down-steps with probability
𝑞 = (7𝛼𝑛 log log 𝜌ℓ)−1 and up-steps with probability 1 − 𝑞, unless it attempts to take a down-step
at 𝑊𝑚 = 0 or an up-step at 𝑊𝑚 = 𝑛, in which case it remains where it is.

When Timelyℓ−1 occurs, at each time 𝜂ℓ, ·, the watched cluster has a chance of losing a particle of
at least 0.49(3𝛼𝑛 log log 𝜌ℓ)−1 ≥ 𝑞 (Propositions 6.15 and 6.16). The standard coupling of |𝑈𝑖

𝜂ℓ,𝑚 | and
𝑊𝑚 will then guarantee that |𝑈𝑖

𝜂ℓ,𝑚 | ≤ 𝑊𝑚. However, this inequality will only hold when 𝑁ℓ (Tℓ−) ≥ 𝑚.

Lemma 6.18. Let cluster i be the watched cluster at time Tℓ−1. There is a coupling of (|𝑈𝑖
𝜂ℓ,𝑚 |)𝑚≥0 and

(𝑊𝑚)𝑚≥0 such that, when Timelyℓ−1 and {𝑁ℓ (Tℓ−) ≥ 𝑀} occur, |𝑈𝑖
𝜂ℓ,𝑚 | ≤ 𝑊𝑚 for all 𝑚 ≤ 𝑀 .

Proof. Define

𝑞ℓ,𝑚 = P
(
Act(𝑖, 𝜂ℓ,𝑚) ∩

⋃
𝑗≠𝑖

Dep( 𝑗 , 𝜂ℓ,𝑚)

����� F𝜂ℓ,𝑚

)
.

In words, the event in the preceding display is the occurrence of Mid(𝑖, 𝜂ℓ,𝑚; ℓ), preceded by activation
at cluster i and followed by deposition at cluster 𝑗 ≠ 𝑖; the watched cluster loses a particle when this
event occurs.

Couple (|𝑈𝑖
𝜂ℓ,𝑚 |)𝑚≥0 and (𝑊𝑚)𝑚≥0 using the standard monotone coupling. When Timelyℓ−1 occurs,

by Propositions 6.16 and 6.17, the estimates (6.48) and (6.51) hold for all 𝑡 ∈ [Tℓ−1, Tℓ−]. In particular,
these estimates hold at time 𝜂ℓ,𝑚 for any 𝑚 ≤ 𝑀 when {𝑁ℓ (Tℓ−) ≥ 𝑀} occurs. Accordingly, for any
such m, we have 𝑞ℓ,𝑚 ≥ 0.49(3𝛼𝑛 log log 𝜌ℓ)−1 ≥ 𝑞. �

Denote by 𝜏𝑈0 and 𝜏𝑊0 the first hitting times of zero for (|𝑈𝑖
𝜂ℓ,𝑚 |)𝑚≥0 and (𝑊𝑚)𝑚≥0. Under the

coupling, 𝜏𝑊0 cannot precede 𝜏𝑈0 . So an upper bound on 𝜏𝑊0 of m implies 𝜏𝑈0 ≤ 𝑚 and therefore it takes
no more than m occurrences of the midway event after Tℓ−1 for the collapse of the watched cluster to
occur. In other words, Tℓ − Tℓ−1 is at most 𝜂ℓ,𝑚.
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Lemma 6.19. Let cluster i be the watched cluster at time Tℓ−1. When Timelyℓ−1 and {𝑁ℓ (Tℓ−) ≥ 𝑀}
occur, {

Tℓ − Tℓ−1 > 𝜂ℓ,𝑀
}
⊆

{
𝜏𝑊0 > 𝑀

}
. (6.52)

Proof. From Lemma 6.18, there is a coupling of (|𝑈𝑖
𝜂ℓ,𝑚 |)𝑚≥0 and (𝑊𝑚)𝑚≥0 such that, when Timelyℓ−1

and {𝑁ℓ (Tℓ−) ≥ 𝑀} occur, |𝑈𝑖
𝜂ℓ,𝑚 | ≤ 𝑊𝑚 for all 𝑚 ≤ 𝑀 . In particular,{

𝜏𝑈0 > 𝑀
}
⊆

{
𝜏𝑊0 > 𝑀

}
.

The inclusion (6.52) then follows from the fact that
{
Tℓ − Tℓ−1 > 𝜂ℓ,𝑀

}
⊆

{
𝜏𝑈0 > 𝑀

}
. �

We now show that 𝜏𝑊0 , the hitting time of zero for 𝑊𝑚, is at most (log log 𝜌ℓ)𝑛, up to a factor
depending on n, with high probability. With more effort, we could prove a much better bound (in terms
of its dependence on n), but this improvement would not affect the conclusion of Proposition 6.3. By
Lemma 6.19, the bound on 𝜏𝑊0 will imply a bound on Tℓ − Tℓ−1. For brevity, denote 𝛽𝑛 = (8𝛼𝑛)𝑛.
Lemma 6.20. Let cluster i be the watched cluster at time Tℓ−1, and let 𝐾 ≥ 0 be such that 𝑀 =
�𝐾𝛽𝑛 (log log 𝜌ℓ)𝑛� satisfies P(𝑁ℓ (Tℓ−) ≥ 𝑀 | FTℓ−1) > 0. Then

P
(
Tℓ − Tℓ−1 > 𝜂ℓ,𝑀

�� 𝑁ℓ (Tℓ−) ≥ 𝑀,FTℓ−1

)
1Timelyℓ−1 ≤ 𝑒−�𝐾 � . (6.53)

The factor (log log 𝜌ℓ)𝑛 appears because (𝑊𝑚)𝑚≥0 takes down-steps with a probability which is
the reciprocal of 𝑂𝑛 (log log 𝜌ℓ), and we will require it to take n consecutive down-steps. Note that
{𝑁ℓ (Tℓ−) ≥ 𝑀} cannot occur if K is large enough, because 𝑁ℓ (Tℓ−) cannot exceed 𝔱ℓ ≤ (log 𝜌ℓ)2 (i.e.,
there can be no more occurrences of the midway event than there are HAT steps). The implicit bound on
K is (log 𝜌ℓ)2−𝑂𝑛 (1) . We will apply the lemma with a K of approximately (log 𝜌ℓ) 𝛿 for some 𝛿 ∈ (0, 1).

Proof of Lemma 6.20. Denote the distribution of (𝑊𝑚)𝑚≥0 by P𝑊 . If Timelyℓ−1 and {𝑁ℓ (Tℓ−) ≥ 𝑀}
occur, then by Lemma 6.19, we have the inclusion (6.52):{

Tℓ − Tℓ−1 > 𝜂ℓ,𝑀
}
⊆

{
𝜏𝑊0 > 𝑀

}
.

Since (𝑊𝑚)𝑚≥0 is never greater than n, it never takes more than n down-steps for 𝑊𝑚 to hit zero.
Since 𝑊𝑚+1 = 𝑊𝑚 − 1 with a probability of 𝑞𝑊 whenever 𝑚 ≤ 𝑀 − 𝑛, we have

P
𝑊

(
𝜏𝑊0 > 𝑚 + 𝑛

�� 𝜏𝑊0 > 𝑚
)
≤ 1 − 𝑞𝑛

𝑊 .

Applying this fact �𝑀/𝑛� times, we find that

P
𝑊

(
𝜏𝑊0 > 𝑀

)
≤

(
1 − 𝑞𝑛

𝑊

) � 𝑀𝑛 � ≤ 𝑒−�𝐾 � .

For the second inequality, we used the fact that �𝛽𝑛 (log log 𝜌ℓ)𝑛/𝑛� is at least 𝑞−𝑛𝑊 and therefore �𝑀/𝑛�
is at least �𝐾� · 𝑞−𝑛𝑊 . Combining this with equation (6.52) gives equation (6.53). �

For convenience, we will treat (log 𝜌ℓ)1+2𝛿 as an integer, as the distinction will be unimportant.
Define the time

𝔰ℓ (𝛿) = 5𝑛𝛼𝑛 (log 𝜌ℓ)1+2𝛿

and the event that occurrences of the midway event are frequent:

FreqMidℓ (𝛿) =
{
𝜂ℓ,𝑚 − 𝜂ℓ,𝑚−1 ≤ 𝔰ℓ (𝛿), 1 ≤ 𝑚 ≤ 𝑁ℓ (Tℓ−)

}
.

When Timelyℓ−1 occurs, the midway event occurs frequently, with high probability.
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Proposition 6.21. Let cluster i be the watched cluster at time Tℓ−1 and let 𝛿 = (2𝑛)−4. Then

P
(
FreqMidℓ (𝛿)

�� FTℓ−1

)
≥

(
1 − 𝑒−4𝑛(log 𝜌ℓ )2𝛿

)
1Timelyℓ−1 . (6.54)

Proof. Proposition 6.15 states that

P(Mid(𝑖, 𝑡; ℓ)
�� F𝑡 ) ≥ (𝛼𝑛 log 𝜌ℓ)−1, (6.55)

when Timelyℓ−1 and 𝑡 ∈ [Tℓ−1, Tℓ−] occur. The probability that the time between consecutive midway
events exceeds 𝔰ℓ (𝛿) therefore satisfies

P
(
𝜂ℓ,𝑁ℓ (𝑡) − 𝜂ℓ,𝑁ℓ (𝑡)−1 > 𝔰ℓ (𝛿)

�� F𝜂ℓ,𝑁ℓ (𝑡 )−1

)
≤

(
1 − 1

𝛼𝑛 log 𝜌ℓ

)𝔰ℓ (𝛿)
≤ 𝑒−5𝑛(log 𝜌ℓ )2𝛿

. (6.56)

Since FreqMidℓ (𝛿)𝑐 is a union of 𝑁ℓ (Tℓ−) ≤ (log 𝜌ℓ)2 such events, a union bound and equation (6.56)
imply that

P
(
FreqMidℓ (𝛿)𝑐

�� F𝑡
)
≤ (log 𝜌ℓ)2𝑒−5𝑛(log 𝜌ℓ )2𝛿 ≤ 𝑒−4𝑛(log 𝜌ℓ )2𝛿

.

The second inequality follows from the fact that (log 𝜌ℓ)2 ≤ 𝑒 (log 𝜌ℓ )2𝛿 since log 𝜌ℓ ≥ (2𝛿)−2. �

Proof of Proposition 6.3. Let 𝛿 = (2𝑛)−4, and define the event that the ℓth collapse is fast by

FastColℓ (𝛿) =
{
Tℓ − Tℓ−1 ≤ (log 𝜌ℓ)1+6𝛿}, 1 ≤ ℓ < 𝑘.

We will use Lemma 6.20 and Proposition 6.21 to prove the bound

P
(
FastColℓ (𝛿)

�� FTℓ−1

)
≥

(
1 − 𝑒−3𝑛(log 𝜌1)2𝛿

)
1Timelyℓ−1 . (6.57)

This implies the proposition because T𝑘−1 is at most (log 𝑑)1+7𝛿 when every collapse is fast, that is,
when FastCol(𝛿) = ∩𝑘−1

ℓ=1 FastColℓ (𝛿) occurs, and because equation (6.57) implies

P
(
FastCol(𝛿)

�� F0
)
≥ 1 − 𝑒−2𝑛(log 𝜌1)2𝛿

. (6.58)

Note that this lower bound is at least the one in equation (6.2) because the clustering parameter r (6.11)
satisfies 𝑟 ≤ log 𝜌1.

Indeed, FastCol(𝛿) ⊆ {T𝑘−1 ≤ (log 𝑑)1+7𝛿} because, when FastCol(𝛿) occurs, the collapse time
satisfies

T𝑘−1 =
𝑘−1∑
ℓ=1

(Tℓ − Tℓ−1) ≤
𝑘−1∑
ℓ=1

(log 𝜌ℓ)1+6𝛿 ≤ 2𝑛(log 𝑑)1+6𝛿 ≤ (log 𝑑)1+7𝛿 .

The second inequality holds because 𝜌ℓ is never more than twice the diameter d of the initial configuration
𝑈0 when FastCol(𝛿) occurs. The third follows from the fact that 𝑑 ≥ 𝜃4𝑛 by assumption, so log 𝑑 ≥ (2𝑛) 1

𝛿

in particular.
To see why equation (6.57) implies equation (6.58), note that ∩𝑖< 𝑗FastCol𝑖 (𝛿) ⊆ Timely 𝑗−1 for each

𝑗 < 𝑘 , so

P
(
∩𝑖< 𝑗FastCol𝑖 (𝛿) ∩ FastCol 𝑗 (𝛿)𝑐

��� F0

)
≤ E

[
P
(
FastCol 𝑗 (𝛿)𝑐

�� FT 𝑗−1

)
1Timely 𝑗−1

��� F0

]
.
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By equation (6.57), the right-hand side is at most 𝑒−3𝑛(log 𝜌1)2𝛿 . We use this bound and the fact that
𝑘 ≤ 𝑛 to conclude equation (6.58) as

P
(
FastCol(𝛿)𝑐

�� F0
)
=

𝑘−1∑
𝑗=1

P
(
∩𝑖< 𝑗FastCol𝑖 (𝛿) ∩ FastCol 𝑗 (𝛿)𝑐

��� F0

)

≤
𝑘−1∑
𝑗=1

𝑒−3𝑛(log 𝜌1)2𝛿 ≤ 𝑒−2𝑛(log 𝜌1)2𝛿
.

It remains to prove equation (6.57). Consider the bound

P
(
FastColℓ (𝛿)𝑐

�� FTℓ−1

)
≤ P

(
FastColℓ (𝛿)𝑐 ∩ FreqMidℓ (𝛿)

�� FTℓ−1

)
+ P

(
FreqMidℓ (𝛿)𝑐

�� FTℓ−1

)
.

(6.59)

Proposition 6.21 states that the second term on the right-hand side of equation (6.59) is at most
𝑒−4𝑛(log 𝜌ℓ )2𝛿 when Timelyℓ−1 occurs. We claim that the same is true of the first term. Note that when
the ℓth collapse is slow and when occurrences of the midway event are frequent, there must be many
such occurrences. In other words, FastColℓ (𝛿)𝑐 ∩ FreqMidℓ (𝛿) ⊆ {𝑁ℓ (Tℓ−) ≥ 𝑀ℓ (𝛿)}, where 𝑀ℓ (𝛿) =
[ (log 𝜌ℓ )1+6𝛿

𝔰ℓ (𝛿) ] > (log 𝜌ℓ)3𝛿 . Consequently, this term satisfies

P
(
FastColℓ (𝛿)𝑐 ∩ FreqMidℓ (𝛿)

�� FTℓ−1

)
≤ P

(
Tℓ − Tℓ−1 > 𝜂ℓ,𝑀ℓ (𝛿)

�� 𝑁ℓ (Tℓ−) ≥ 𝑀ℓ (𝛿),FTℓ−1

)
.

It is easy to check that 𝑀ℓ (𝛿) is at least [𝐾ℓ (𝛿)𝛽𝑛 (log log 𝜌ℓ)𝑛] for 𝐾ℓ (𝛿) = 4𝑛(log 𝜌ℓ)2𝛿 when
Timelyℓ−1 occurs because 𝜌ℓ ≥ 𝑒𝜃2𝑛 by Lemma 6.8. Hence, by Lemma 6.20, the preceding bound is at
most 𝑒−4𝑛(log 𝜌ℓ )2𝛿 when Timelyℓ−1 occurs. We conclude that, when Timelyℓ−1 occurs,

P
(
FastColℓ (𝛿)𝑐

�� FTℓ−1

)
≤ 2𝑒−4𝑛(log 𝜌ℓ )2𝛿 ≤ 2𝑒−4𝑛(log(𝜌1/2))2𝛿 ≤ 𝑒−3𝑛(log 𝜌1)2𝛿

.

The first inequality follows from the upper bound of 𝑒−4𝑛(log 𝜌ℓ )2𝛿 on both of the terms on the right-hand
side of equation (6.59); the second and third inequalities follow from Lemma 6.8. �

7. Existence of the stationary distribution

In this section, we will prove Theorem 2, which has two parts. The first part states the existence of a
unique stationary distribution, 𝜋𝑛, supported on the equivalence classes of nonisolated configurations,
N̂onIso(𝑛), to which the HAT dynamics converges from any n-element configuration. The second part
provides a tail bound on the diameter of configurations under 𝜋𝑛. We will prove these parts separately,
as the following two propositions.
Proposition 7.1. For all 𝑛 ≥ 1, from any n-element subset U, HAT converges to a unique stationary
distribution 𝜋𝑛 on N̂onIso(𝑛), given by

𝜋𝑛 (𝑈) = 1
E𝑈T𝑈

, for𝑈 ∈ N̂onIso(𝑛), (7.1)

in terms of the return time T𝑈 = inf{𝑡 ≥ 1 : 𝑈𝑡 = 𝑈}.
Proposition 7.2. For any 𝑑 ≥ 2𝜃4𝑛,

𝜋𝑛
(
diam(𝑈) ≥ 𝑑

)
≤ exp

(
− 𝑑

(log 𝑑)1+𝑜𝑛 (1)

)
. (7.2)

For the sake of concreteness, this is true with 6𝑛−4 in the place of 𝑜𝑛 (1).
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Proof of Theorem 2. Combine Propositions 7.1 and 7.2. �

It will be relatively easy to establish Proposition 7.2 using the inputs to the proof of Proposition 7.1
and Corollary 6.4, so we focus on presenting the key components of the proof of Proposition 7.1.

By standard theory for countable state space Markov chains, to prove Proposition 7.1, we must prove
that the HAT dynamics is positive recurrent, irreducible and aperiodic. We address each of these in turn.

Proposition 7.3 (Positive recurrent). For any 𝑈 ∈ NonIso(𝑛), E𝑈T𝑈 < ∞.

To prove Proposition 7.3, we will estimate the return time to an arbitrary n-element configu-
ration 𝑈 by separately estimating the time it takes to reach the line segment �̂�𝑛 from 𝑈, where
𝐿𝑛 = {𝑦 𝑒2 : 𝑦 ∈ {0, 1, . . . , 𝑛 − 1}} in terms of 𝑒2 = (0, 1), and the time it takes to hit 𝑈 from �̂�𝑛.
The first estimate is the content of the following result.

Proposition 7.4. There is a constant c such that, if U is a configuration in NonIso(𝑛) with a diameter
of R, then, for all 𝐾 ≥ max{𝑅, 𝜃5𝑛 (𝑐𝑛)},

P𝑈

(
T𝐿𝑛

≤ 𝐾4
)
≥ 1 − 𝑒−2𝐾 . (7.3)

The second estimate is provided by the next proposition.

Proposition 7.5. There is a constant c such that, if U is a configuration in NonIso(𝑛) with a diameter
of R, then, for all 𝐾 ≥ max{𝑒𝑅2.1

, 𝜃5𝑛 (𝑐𝑛)},

P𝐿𝑛

(
T𝑈 ≤ 𝐾5

)
≥ 1 − 𝑒−𝐾 . (7.4)

The proof of Proposition 7.3 applies equations (7.3) and (7.4) to the tail sum formula for E𝑈T𝑈 .

Proof of Proposition 7.3. Let 𝑈 ∈ NonIso(𝑛). We have

E𝑈T𝑈 =
∞∑
𝑡=0

P𝑈

(
T𝑈 > 𝑡

)
≤

∞∑
𝑡=0

(
P𝑈

(
T𝐿𝑛

> 𝑡
2
)
+ P𝐿𝑛

(
T𝑈 > 𝑡

2
) )
. (7.5)

Suppose U has a diameter of at most R, and let 𝐽 = max{𝑒𝑅2.1
, 𝜃5𝑛 (𝑐𝑛)}, where c is the larger of the

constants from Propositions 7.4 and 7.5. We group the sum (7.5) over t into blocks:

E𝑈T𝑈 ≤ 𝑂 (𝐽5) +
∞∑

𝐾=𝐽

2(𝐾+1)5∑
𝑡=2𝐾 5

(
P𝑈

(
T𝐿𝑛

> 𝑡
2
)
+ P𝐿𝑛

(
T𝑈 > 𝑡

2
) )
.

By equations (7.3) and (7.4) of Propositions 7.4 and 7.5, each of the 𝑂 (𝐾4) summands in the Kth block
is at most

P𝑈

(
T𝐿𝑛

> 𝐾5) + P𝐿𝑛

(
T𝑈 > 𝐾5) ≤ 2𝑒−𝐾 . (7.6)

Substituting equation (7.6) into equation (7.5), we find

E𝑈T𝑈 ≤ 𝑂 (𝐽5) +𝑂 (1)
∞∑

𝐾=𝐽

𝐾4𝑒−𝐾 < ∞.

�

Propositions 7.4 and 7.5 also imply irreducibility.

Proposition 7.6 (Irreducible). For any 𝑛 ≥ 1, HAT is irreducible on N̂onIso(𝑛).
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Proof. Let 𝑈,𝑉 ∈ N̂onIso(𝑛). It suffices to show that HAT reaches 𝑉 from 𝑈 in a finite number of steps
with positive probability. By Propositions 7.4 and 7.5, there is a finite number of steps 𝐾 = 𝐾 (𝑈,𝑉)
such that

P𝑈
(
T𝐿𝑛

< 𝐾
)
> 0 and P𝐿𝑛

(
T𝑉 < 𝐾

)
> 0.

By the Markov property applied to T𝐿𝑛
, the preceding bounds imply that P𝑈 (T𝑉 < 2𝐾) > 0. �

Lastly, because aperiodicity is a class property, it follows from irreducibility and the simple fact that
�̂�𝑛 is aperiodic.

Proposition 7.7 (Aperiodic). �̂�𝑛 is aperiodic.

Proof. We claim that P𝐿𝑛 (𝑈1 = 𝐿𝑛) ≥ 1
4 , which implies that P𝐿𝑛

(
𝑈1 = �̂�𝑛

)
≥ 1

4 > 0. Indeed, every
element of 𝐿𝑛 neighbors another, so, regardless of which one is activated, we can dictate one random
walk step which results in transport to the site of activation and 𝑈1 = 𝐿𝑛. �

The preceding results constitute a proof of Proposition 7.1.

Proof of Proposition 7.1. Combine Propositions 7.3, 7.6, and 7.7. �

The subsections are organized as follows. In Section 7.1, we prove some preliminary results, including
a key lemma which states that it is possible to reach any configuration 𝑈 ∈ NonIso(𝑛) from 𝐿𝑛, in a
number of steps depending only on n and diam(𝑈). These results support the proofs of Propositions 7.4
and 7.5 in Section 7.2 and Section 7.3, respectively. In Section 7.4, we prove Proposition 7.2.

7.1. Preliminaries of hitting estimates for configurations

The purpose of this section is to prove that if HAT can reach 𝑉 from �̂�𝑛, then it does so in at most
𝑂𝑛 (rad(𝑉)) steps with a probability of at least 𝑒−𝑂𝑛 (rad(𝑉 )2) . (Recall that the radius of 𝐴 ⊆ Z2 is defined
as rad(𝐴) = sup{|𝑥 | : 𝑥 ∈ 𝐴}.) We split the proof into two lemmas. The first states that if HAT can form
𝑉1 from 𝑉0 in one step, then it does so with a probability of at least 𝑒−𝑂𝑛 (rad(𝑉0)) .

Lemma 7.8. There is a constant c such that, if 𝑉0 and 𝑉1 are subsets of Z2 with 𝑛 ≥ 2 elements that
satisfy P𝑉0 (𝑈1 = 𝑉1) > 0, then

P𝑉0 (𝑈1 = 𝑉1) ≥ 𝑒−𝑐𝑛
2 rad(𝑉0) . (7.7)

With more work, we could improve the lower bound in equation (7.7) to Ω𝑛 ( 1
log rad(𝑉0) ), but this

would make no difference in our application of the lemma.

Proof of Lemma 7.8. Since P𝑉0 (𝑈1 = 𝑉1) is positive, the transition from 𝑉0 to 𝑉1 can be realized
by activation at some x and transport to some y, where x is exposed in 𝑉0 and there is a path of
length 𝑂 (𝑛rad(𝑉0)) from x to y that lies outside of 𝑉0\{𝑥} (Lemma 3.13). The former implies that
H𝑉0 (𝑥) ≥ 𝑒−𝑂 (𝑛 log 𝑛) (Theorem 4), while the latter implies that P𝑥 (𝑆𝜏𝑉0\{𝑥}−1 = 𝑦) ≥ 4−𝑂 (𝑛rad(𝑉0)) . The
claimed bound (7.7) then follows from

P𝑉0 (𝑈1 = 𝑉1) ≥ H𝑉0 (𝑥) P𝑥
(
𝑆𝜏𝑉0\{𝑥}−1 = 𝑦

)
≥ 𝑒−𝑂 (𝑛 log 𝑛)4−𝑂 (𝑛rad(𝑉0)) . �

The second lemma proves that every 𝑉 ∈ NonIso(𝑛) can be reached from 𝐿𝑛 in 𝑂𝑛 (rad(𝑉)) steps,
through a sequence of configurations with diameters of 𝑂𝑛 (rad(𝑉)).

Lemma 7.9. For any number of elements 𝑛 ≥ 2 and configuration V in NonIso(𝑛), if the radius of V is at
most an integer 𝑟 ≥ 10𝑛, then there is a sequence of 𝑘 ≤ 100𝑛𝑟 activation sites 𝑥1, . . . , 𝑥𝑘 and transport
sites 𝑦1, . . . , 𝑦𝑘 which can be ‘realized’ by HAT from 𝑉0 = 𝐿𝑛 to 𝑉𝑘 = 𝑉 in the following sense: If we
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Figure 12. An instance of Case 2. If any nonisolated element of 𝜕exp𝑉 is removed, the resulting set is
isolated. We use the induction hypothesis to form 𝑉 ′ = (𝑉\{𝑣ne, 𝑢}) ∪ {𝑣sw − 𝑒2}. The subsequent steps
to obtain V from 𝑉 ′ are depicted in Figure 13.

set 𝑉𝑖 = (𝑉𝑖−1\{𝑥𝑖}) ∪ {𝑦𝑖} for each 𝑖 ∈ {1, . . . , 𝑘}, then each transition probability P𝑉𝑖−1 (𝑈𝑖 = 𝑉𝑖) is
positive. Additionally, each 𝑉𝑖 is contained in 𝐷 (𝑟 + 10𝑛).

The factors of 10 and 100 in the lemma statement are for convenience and have no further significance.
We will prove Lemma 7.9 by induction on n. Informally, we will remove one element of 𝐿𝑛 to facilitate
the use of the induction hypothesis, forming most of V before returning the removed element. There is
a complication in this step, as we cannot allow the induction hypothesis to ‘interact’ with the removed
element. We will resolve this problem by proving a slightly stronger claim than the lemma requires.

The proof will overcome two main challenges. First, removing an element from a configuration V in
NonIso(𝑛) can produce a configuration in Iso(𝑛 − 1), in which case the induction hypothesis will not
apply. Indeed, there are configurations of NonIso(𝑛) for which the removal of any exposed, nonisolated
element produces a configuration of Iso(𝑛−1) (such a V is depicted in Figure 12). Second, if an isolated
element is removed alone, it cannot be returned to form V by a single step of the HAT dynamics. To see
how these difficulties interact, suppose that 𝜕exp𝑉 (defined as {𝑥 ∈ 𝑉 : H𝑉 (𝑥) > 0}) contains only one
nonisolated element (say, at v), which is part of a two-element connected component of V. We cannot
remove it and still apply the induction hypothesis, as 𝑉\{𝑣} belongs to Iso(𝑛 − 1). We then have no
choice but to remove an isolated element.

When we are forced to remove an isolated element, we will apply the induction hypothesis to form
a configuration for which the removed element can be ‘treadmilled’ to its proper location, chaperoned
by a element which is nonisolated in the final configuration and so can be returned once the removed
element reaches its destination.

We briefly explain what we mean by treadmilling a pair of elements. Consider elements 𝑣1 and 𝑣1+𝑒2
of a configuration V. If H𝑉 (𝑣1) is positive and if there is a path from 𝑣1 to 𝑣1 + 2𝑒2 which lies outside
of 𝑉\{𝑣1}, then we can activate at 𝑣1 and transport to 𝑣1 + 2𝑒2. The result is that the pair {𝑣1, 𝑣1 + 2𝑒2}
has shifted by 𝑒2. Call the new configuration 𝑉 ′. If 𝑣1 + 𝑒2 is exposed in 𝑉 ′ and if there is a path from
𝑣1 + 𝑒2 to 𝑣1 + 3𝑒2 in 𝑉 ′\{𝑣1 + 𝑒2}, we can analogously shift the pair {𝑣1 + 𝑒2, 𝑣1 + 2𝑒2} by another 𝑒2.

Proof of Lemma 7.9. The proof is by induction on 𝑛 ≥ 2. We will actually prove a stronger claim
because it facilitates the induction step. To state the claim, we denote by 𝑊𝑖 = 𝑉𝑖−1\{𝑥𝑖} the HAT
configuration ‘in between’ 𝑉𝑖−1 and 𝑉𝑖 and by 𝐸𝑖 the event that, during the transition from 𝑉𝑖−1 to 𝑉𝑖 ,
the transport step takes place inside of 𝐵𝑖 = 𝐷 (𝑟 + 10𝑛)\𝑊𝑖:

𝐸𝑖 =
{
{𝑆0, . . . , 𝑆𝜏𝑊𝑖

} ⊆ 𝐵𝑖

}
.

We claim that Lemma 7.9 is true even if the conclusion P𝑉𝑖−1 (𝑈𝑖 = 𝑉𝑖) > 0 is replaced by P𝑉𝑖−1 (𝑈𝑖 =
𝑉𝑖 , 𝐸𝑖) > 0.

To prove this claim, we will show that, for any V satisfying the hypotheses, there are sequences of
at most 100𝑛𝑟 activation sites 𝑥1, . . . , 𝑥𝑘 , transport sites 𝑦1, . . . , 𝑦𝑘 , and random walk paths Γ1, . . . , Γ𝑘

such that the activation and transport sites can be realized by HAT from 𝑉0 = 𝐿𝑛 to 𝑉𝑘 = 𝑉 , and such
that each Γ𝑖 is a finite random walk path from 𝑥𝑖 to 𝑦𝑖 which lies in 𝐵𝑖 . While it is possible to explicitly
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Figure 13. An instance of Case 2 (continued). On the left, we depict the configuration which results
from the use of the induction hypothesis. The element outside of the disk D (the boundary of which is
the orange circle) is transported to 𝑣sw − 2𝑒2 (unfilled circle). In the middle, we depict the treadmilling
of the pair {𝑣sw − 𝑒2, 𝑣sw − 2𝑒2} through the quadrant 𝑄sw, around 𝐷𝑐 and through the quadrant 𝑄ne,
until one of the treadmilled elements is at 𝑣ne. The quadrants are depicted by dashed lines. On the right,
the other element is returned to u (unfilled circle). The resulting configuration is V (see Figure 12).

list these sequences of sites and paths in the proof which follows, the depictions in upcoming Figures
12 and 13 are easier to understand and so we omit some cumbersome details regarding them.

Concerning the base case of 𝑛 = 2, note that NonIso(2) has the same elements as the equivalence
class �̂�2, so 𝑥1 = 𝑒2, 𝑦1 = 𝑒2, Γ1 = ∅ works. Suppose the claim holds up to 𝑛 − 1 for 𝑛 ≥ 3. There are
two cases:

1. There is a nonisolated v in 𝜕exp𝑉 such that 𝑉\{𝑣} belongs to NonIso(𝑛 − 1).
2. For every nonisolated v in 𝜕exp𝑉 , 𝑉\{𝑣} belongs to Iso(𝑛 − 1).

It will be easy to form V using the induction hypothesis in Case 1. In Case 2, we will need to use
the induction hypothesis to form a set related to V and subsequently form V from this related set. An
instance of Case 2 is depicted in Figure 12.

Case 1. Let r be an integer exceeding 10𝑛 and the radius of V and denote 𝑅 = 𝑟 + 10(𝑛 − 1). Recall
that 𝑉0 = 𝐿𝑛. Our strategy is to place one element of 𝐿𝑛 outside of 𝐷 (𝑅) and then apply the induction
hypothesis to 𝐿𝑛−1 to form most of V. This explains the role of the event 𝐸𝑖 – it ensures that the element
outside of the disk does not interfere with our use of the induction hypothesis.

To remove an element of 𝐿𝑛 to 𝐷 (𝑅)𝑐 , we treadmill (see the explanation following the lemma
statement) the pair {(𝑛 − 2)𝑒2, (𝑛 − 1)𝑒2} to {𝑅𝑒2, (𝑅 + 1)𝑒2}, after which we activate at 𝑅𝑒2 and
transport to (𝑛−2)𝑒2. This process requires 𝑅−𝑛+2 steps. It is clear that every transport step can occur
via a finite random walk path which lies in 𝐷 (𝑟 + 10𝑛). Call 𝑎 = (𝑅 + 1)𝑒2. The resulting configuration
is 𝐿𝑛−1 ∪ {𝑎}.

We will now apply induction hypothesis. Choose a nonisolated element v of 𝜕exp𝑉 such that 𝑉 ′ =
𝑉\{𝑣} belongs to NonIso(𝑛 − 1). Such a v exists because we are in Case 1. By the induction hypothesis
and because the radius of 𝑉 ′ is at most r, there are sequences of at most 100(𝑛 − 1)𝑟 activation and
transport sites, which can be realized by HAT from 𝐿𝑛−1∪{𝑎} to𝑉 ′∪{𝑎}, and a corresponding sequence
of finite random walk paths which lie in 𝐷 (𝑅).

To complete this case, we activate at a and transport to v, which is possible because v was exposed
and nonisolated in V. The existence of a random walk path from a to v which lies outside of 𝑉 ′ is a

https://doi.org/10.1017/fms.2023.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.81


Forum of Mathematics, Sigma 55

consequence of Lemma 3.13. Recall that Lemma 3.13 applies only to sets in ℋ𝑛 (n-element sets which
contain an exposed origin). If 𝐴 = 𝑉 ∪ {𝑎}, then 𝐴 − 𝑣 belongs to ℋ𝑛. By Lemma 3.13, there is a finite
random walk path from a to v which does not hit 𝑉 ′ and which is contained in 𝐷 (𝑅 + 3) ⊆ 𝐷 (𝑟 + 10𝑛).

In summary, there are sequences of at most (𝑅 − 𝑛 + 2) + 100(𝑛 − 1)𝑟 + 1 ≤ 100𝑛𝑟 (the inequality
follows from the assumption that 𝑟 ≥ 10𝑛) activation and transport sites which can be realized by HAT
from 𝐿𝑛 to V, as well as corresponding finite random walk paths which remain within 𝐷 (𝑟 + 10𝑛). This
proves the claim in Case 1.

Case 2. In this case, the removal of any nonisolated element v of 𝜕exp𝑉 results in an isolated set
𝑉\{𝑣}, hence we cannot form such a set using the induction hypothesis. Instead, we will form a related,
nonisolated set.

The first 𝑅 − 𝑛 + 2 steps, which produce 𝐿𝑛−1 ∪ {𝑎} from 𝐿𝑛, are identical to those of Case 1. We
apply the induction hypothesis to form the set

𝑉 ′ = (𝑉\{𝑣ne, 𝑢}) ∪ {𝑣sw − 𝑒2},

which is depicted in Figure 12. Here, 𝑣ne is the easternmost of the northernmost elements of V, 𝑣sw is
the westernmost of the southernmost elements of V and u is any nonisolated element of 𝜕exp𝑉 (e.g.,
𝑢 = 𝑣ne is allowed if 𝑣ne is nonisolated).

The remaining steps are depicted in Figure 13. By the induction hypothesis and because the radius
of 𝑉 ′ is at most 𝑟 + 1, there are sequences of at most 100(𝑛 − 1) (𝑟 + 1) activation and transport sites,
which can be realized by HAT from 𝐿𝑛−1 ∪ {𝑎} to 𝑉 ′ ∪ {𝑎}, and a corresponding sequence of finite
random walk paths which lie in 𝐷 (𝑅 + 1).

Next, we activate at a and transport to 𝑣sw − 2𝑒2, which is possible because 𝑣sw − 2𝑒2 is exposed and
nonisolated in 𝑉 ′. Like in Case 1, the existence of a finite random walk path from a to 𝑣sw − 2𝑒2 which
lies in 𝐷 (𝑅 + 3)\𝑉 ′ ⊆ 𝐷 (𝑟 + 10𝑛) is implied by Lemma 3.13. Denote the resulting configuration by 𝑉 ′′.

The choice of 𝑣sw ensures that 𝑣sw − 𝑒2 and 𝑣sw − 2𝑒2 are the only elements of 𝑉 ′′ which lie in the
quadrant defined by

𝑄sw = (𝑣sw − 𝑒2) + {𝑣 ∈ Z2 : 𝑣 · 𝑒1 ≤ 0, 𝑣 · 𝑒2 ≤ 0}.

Additionally, the quadrant defined by

𝑄ne = 𝑣ne + {𝑣 ∈ Z2 : 𝑣 · 𝑒1 ≥ 0, 𝑣 · 𝑒2 ≥ 0}

contains no elements of 𝑉 ′′. As depicted in Figure 13, this enables us to treadmill the pair {𝑣sw −
𝑒2, 𝑣sw − 2𝑒2} from 𝑄sw to 𝐷 (𝑅 + 3)𝑐 and then to {𝑣ne, 𝑣ne + 𝑒2} in 𝑄ne, without the pair encountering
the remaining elements of𝑉 ′′. It is clear that this can be accomplished by fewer than 10(𝑅+3) activation
and transport sites, with corresponding finite random walk paths which lie in 𝐷 (𝑅 + 6). The resulting
configuration is 𝑉 ′′′ = 𝑉 ∪ {𝑣ne + 𝑒2}\{𝑢}.

Lastly, we activate at 𝑣ne + 𝑒2 and transport to u, which is possible because the former is exposed
in 𝑉 ′′′ and the latter is exposed and nonisolated in V. As before, the fact that there is a finite random
walk path in 𝐷 (𝑟 + 10𝑛) which accomplishes the transport step is a consequence of Lemma 3.13. The
resulting configuration is V.

In summary, there are sequences of fewer than (𝑅−𝑛+2) +100(𝑛−1) (𝑟 +1) +10(𝑅+3) +2 ≤ 100𝑛𝑟
(the inequality follows from the assumption that 𝑟 ≥ 10𝑛) activation and transport sites which can be
realized by HAT from 𝐿𝑛 to V, as well as corresponding finite random walk paths which remain in
𝐷 (𝑟 + 10𝑛). This proves the claim in Case 2. �

We can combine Lemma 7.8 and Lemma 7.9 to bound below the probability of forming a configuration
from a line.
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Lemma 7.10. There is a constant c such that, if V is a configuration in NonIso(𝑛) with 𝑛 ≥ 2 and a
diameter of at most 𝑅 ≥ 10𝑛, then

P𝐿𝑛

(
T𝑉 ≤ 200𝑛𝑅

)
≥ 𝑒−𝑐𝑛

3𝑅2
.

Proof. The hypotheses of Lemma 7.9 require an integer upper bound r on the radius of V of at
least 10𝑛. We are free to assume that V contains the origin, in which case a choice of 𝑟 = �𝑅� + 1
works, due to the assumption 𝑅 ≥ 10𝑛. We apply Lemma 7.9 with this r to obtain a sequence of
configurations 𝐿𝑛 = 𝑉0, 𝑉1, . . . , 𝑉𝑘−1, 𝑉𝑘 = 𝑉 such that 𝑘 ≤ 100𝑛𝑟 , and such that 𝑉𝑖 ⊆ 𝐷 (𝑟 + 10𝑛) and
P𝑉𝑖−1 (𝑈𝑖 = 𝑉𝑖) > 0 for each i.

Because the transition probabilities are positive and because they concern sets 𝑉𝑖−1 in the disk of
radius 𝑟 +10𝑛 ≤ 3𝑅, Lemma 7.8 implies that each transition probability is at least 𝑒−𝑐1𝑛

2𝑅 for a constant
𝑐1. We use this fact in the following string of inequalities:

P𝐿𝑛 (T𝑉 ≤ 200𝑛𝑅) ≥ P𝐿𝑛 (T𝑉 ≤ 𝑘) ≥ P𝐿𝑛

(
𝑈𝑘 = 𝑉

)
≥ 𝑒−100𝑛𝑟 ·𝑐1𝑛

2𝑅 ≥ 𝑒−𝑐2𝑛
3𝑅2

.

The first inequality holds because 𝑘 ≤ 100𝑛𝑟 ≤ 200𝑛𝑅; the second because {𝑈𝑘 = 𝑉} ⊆ {T𝑉 ≤ 𝑘};
the third follows from the Markov property, 𝑘 ≤ 100𝑛𝑟 , and the preceding bound from Lemma 7.8; the
fourth from 𝑟 ≤ 2𝑅. �

7.2. Proof of Proposition 7.4

We now use Lemma 7.8 to obtain a tail bound on the time it takes for a given configuration to reach
�̂�𝑛. Our strategy is to repeatedly attempt to observe the formation of �̂�𝑛 in n consecutive steps. If the
attempt fails then, because the diameter of the resulting set may be larger – worsening the estimate (7.7)
– we will wait until the diameter becomes smaller before the next attempt.

Proof of Proposition 7.4. To avoid confusion of U and 𝑈𝑡 , we will use 𝑉0 instead of U. We introduce a
sequence of times, with consecutive times separated by at least n steps (which is enough time to attempt
to form �̂�𝑛) and at which the diameter of the configuration is at most 𝜃1 = 𝜃4𝑛 (𝑐1𝑛) (where 𝑐1 is the
constant in Corollary 6.4). These will be the times at which we attempt to observe the formation of �̂�𝑛.
Define 𝜂0 = inf{𝑡 ≥ 0 : diam(𝑈𝑡 ) ≤ 𝜃1} and, for all 𝑖 ≥ 1, the times

𝜂𝑖 = inf{𝑡 ≥ 𝜂𝑖−1 + 𝑛 : diam(𝑈𝑡 ) ≤ 𝜃1}.

We use these times to define three events. Two of the events involve a parameter K which we assume
is at least the maximum of R and 𝜃2, where 𝜃2 equals 𝜃5𝑛 (𝑐𝑛) with 𝑐 = 𝑐1 + 2𝑐2 and 𝑐2 is the constant
guaranteed by Lemma 7.8. (The constant c is the one which appears in the statement of the proposition.)
In particular, K is at least the maximum diameter 𝜃1 + 𝑛 of a configuration at time 𝜂𝑖−1 + 𝑛.

According to Corollary 6.4, it takes no longer than 3𝐾 (log(3𝐾))1+2𝑛−4 ≤ 𝐾2 steps for the diameter
to fall below 𝜃1, except with a probability of at most 𝑒−3𝐾 . The first event is the event that it takes an
unusually long time for the diameter to fall below 𝜃1 for the first time:

𝐸1 (𝐾) =
{
𝜂0 > 𝐾2}.

The second is the event that an unusually long time elapses between 𝜂𝑖−1 + 𝑛 and 𝜂𝑖 for some 1 ≤ 𝑖 ≤ 𝑚:

𝐸2 (𝑚, 𝐾) =
𝑚⋃
𝑖=1

{
𝜂𝑖 − (𝜂𝑖−1 + 𝑛) > 𝐾2}.
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The third is the event that we do not observe the formation of �̂�𝑛 in 𝑚 ≥ 1 attempts:

𝐸3(𝑚) =
𝑚⋂
𝑖=1

{
T𝐿𝑛

> 𝜂𝑖−1 + 𝑛
}
.

Call 𝐸 (𝑚, 𝐾) = 𝐸1(𝐾) ∪ 𝐸2 (𝑚, 𝐾) ∪ 𝐸3(𝑚). When none of these events occur, we can bound T𝐿𝑛
:

T𝐿𝑛
1𝐸 (𝑚,𝐾 )𝑐 ≤

(
𝜂0 +

𝑚∑
𝑖=1

(𝜂𝑖 − (𝜂𝑖−1 + 𝑛))
)
1𝐸 (𝑚,𝐾 )𝑐 + (𝑚 + 1)𝑛 ≤ (𝑚 + 1) (𝐾2 + 𝑛). (7.8)

We will show that if 𝑚 = 3𝐾 log 𝜃2, then P𝑉0 (𝐸 (𝑚, 𝐾)) is at most 𝑒−𝐾 . Substituting this choice of
m into (7.8) and simplifying with 𝐾 ≥ 𝜃2, we obtain a further upper bound of

T𝐿𝑛
1𝐸 (𝑚,𝐾 )𝑐 ≤ 𝐾4. (7.9)

By equation (7.9), if we show that P𝑉0 (𝐸 (𝑚, 𝐾)) ≤ 𝑒−2𝐾 , then we are done. We start with a bound on
P𝑉0 (𝐸1(𝐾)). Applying Corollary 6.4 with 3𝐾 in the place of t, r in the place of d, and 3𝐾 = max{3𝐾, 𝑅}
in the place of max{𝑡, 𝑑}, gives

P𝑉0 (𝐸1 (𝐾)) ≤ 𝑒−3𝐾 . (7.10)

We will use Corollary 6.4 and a union bound to bound P𝑉0 (𝐸2(𝑚, 𝐾)). Because diameter grows at
most linearly in time, the diameter of 𝑈𝜂𝑖−1+𝑛 ∈ F𝜂𝑖−1 is at most 𝜃1 + 𝑛 ≤ 3𝐾 . Consequently, Corollary
6.4 implies

P𝑉0

(
𝜂𝑖 − (𝜂𝑖−1 + 𝑛) > 𝐾2

��� F𝜂𝑖−1+𝑛
)
≤ 𝑒−3𝐾 . (7.11)

A union bound over the constituent events of 𝐸2(𝑚, 𝐾) and equation (7.11) give

P𝑉0 (𝐸2 (𝑚, 𝐾)) ≤ 𝑚𝑒−3𝐾 . (7.12)

To bound the probability of 𝐸3 (𝑚), we will use Lemma 7.8. First, we need to identify a suitable
sequence of HAT transitions. For any 0 ≤ 𝑗 ≤ 𝑚 − 1, given F𝜂 𝑗 , set 𝑉 ′

0 = 𝑈𝜂 𝑗 ∈ F𝜂 𝑗 . There are
pairs {(𝑥𝑖 , 𝑦𝑖) : 1 ≤ 𝑖 ≤ 𝑛} such that, setting 𝑉 ′

𝑖 = (𝑉 ′
𝑖−1\{𝑥𝑖}) ∪ {𝑦𝑖} for 1 ≤ 𝑖 ≤ 𝑛, each transition

probability P𝑉 ′
𝑖−1

(𝑈𝑖 = 𝑉 ′
𝑖 ) is positive and 𝑉 ′

𝑛 ∈ �̂�𝑛. The diameter of 𝑉 ′
𝑖 is at most 𝜃1 + 𝑛 ≤ 2𝜃1 for each

i, so Lemma 7.8 implies that the transition probabilities satisfy

P𝑉 ′
𝑖−1

(𝑈𝑖 = 𝑉 ′
𝑖 ) ≥ 𝑒−2𝑐2𝑛

2 𝜃1 . (7.13)

By the strong Markov property and equation (7.13),

P𝑉0

(
T𝐿𝑛

≤ 𝜂 𝑗 + 𝑛
��� F𝜂 𝑗

)
≥ P𝑉0

(
𝑈𝜂 𝑗+1 = 𝑉 ′

1, . . . ,𝑈𝜂 𝑗+𝑛 = 𝑉 ′
𝑛

��� F𝜂 𝑗

)
≥ 𝑒−2𝑐2𝑛

3 𝜃1 . (7.14)

Because 𝐸3( 𝑗) ∈ F𝜂 𝑗 , equation (7.14) implies

P𝑉0

(
T𝐿𝑛

≤ 𝜂 𝑗 + 𝑛
��� 𝐸3( 𝑗)

)
≥ 𝑒−2𝑐2𝑛

3 𝜃1 . (7.15)
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Using equation (7.15) and observing that log 𝜃2 ≥ 𝑒2𝑐2𝑛
3 𝜃1 , hence 𝑚 ≥ 3𝐾𝑒2𝑐2𝑛

3 𝜃1 , we calculate

P𝑉0 (𝐸3 (𝑚)) =
𝑚−1∏
𝑗=0

P𝑉0

(
T𝐿𝑛

> 𝜂 𝑗 + 𝑛
��� 𝐸3( 𝑗)

)
≤

(
1 − 𝑒−2𝑐2𝑛

3 𝜃1
)𝑚

≤ 𝑒−3𝐾 . (7.16)

Combining equations (7.10), (7.12) and (7.16) and simplifying using the fact that 𝑚 ≤ 3𝐾2, we find

P𝑉0 (𝐸 (𝑚, 𝐾)) ≤ (𝑚 + 2)𝑒−3𝐾 ≤ 𝑒−2𝐾 .

�

7.3. Proof of Proposition 7.5

To prove this proposition, we will attempt to observe the formation of 𝑈 from �̂�𝑛 and wait for the set to
collapse if its diameter becomes too large, as we did in proving Proposition 7.4. Note that, at the time
that the set collapses, it does not necessarily form �̂�𝑛, so we will need to use Proposition 7.4 to return
to �̂�𝑛 before another attempt at forming 𝑈. For convenience, we package these steps together in the
following lemma.

Lemma 7.11. There is a constant c such that, if 𝑉0 is a configuration in NonIso(𝑛) with a diameter of
R, then for any 𝐾 ≥ max{𝑅, 𝜃5𝑛 (𝑐𝑛)},

P𝑉0

(
T𝐿𝑛

≤ 2𝐾4
)
≥ 1 − 𝑒−𝐾 . (7.17)

Proof. Call 𝜃 = 𝜃5𝑛 (𝑐𝑛), where c is the constant guaranteed by Proposition 7.4. First, we wait until the
diameter falls to 𝜃. Note that 2𝐾 (log(2𝐾))1+2𝑛−4 ≤ 𝐾2, so Corollary 6.4 implies that

P𝑉0

(
T (𝜃) ≤ 𝐾2

)
≥ 1 − 𝑒−2𝐾 . (7.18)

Second, from 𝑈T (𝜃) , we wait until the configuration forms a line. By Proposition 7.4,

P𝑈T (𝜃 )

(
T𝐿𝑛

≤ 𝐾4
)
≥ 1 − 𝑒−2𝐾 . (7.19)

Combining these bounds gives equation (7.17). �

Proof of Proposition 7.5. We will use V to denote the target configuration instead of U, to avoid
confusion with 𝑈𝑡 . Recall that, for any configuration V in NonIso(𝑛) with a diameter upper bound of
𝑟 ≥ 10𝑛, Lemma 7.10 gives a constant 𝑐1 such that

P𝐿𝑛
(T𝑉 ≤ 200𝑛𝑟) ≥ 𝑒−𝑐1𝑛

3𝑟2
.

Since 10𝑛𝑅 ≥ 10𝑛 is a diameter upper bound on V, we can apply the preceding inequality with 𝑟 = 10𝑛𝑅:

P𝐿𝑛

(
T𝑉 ≤ 2000𝑛2𝑅

)
≥ 𝑒−𝑐1𝑛

5𝑅2
. (7.20)

With this result in mind, we denote 𝑘 = 2000𝑛2𝑅 and define a sequence of times by

𝜁0 ≡ 0 and 𝜁𝑖 = inf{𝑡 ≥ 𝜁𝑖−1 + 𝑘 : 𝑈𝑡 = �̂�𝑛} for all 𝑖 ≥ 1.

Here, the buffer of k steps is the period during which we attempt to observe the formation of V. After
each failed attempt, because the diameter increases by at most 1 with each step, the diameter of 𝑈𝜁𝑖+𝑘
can be no larger than 𝑘 + 𝑛.

https://doi.org/10.1017/fms.2023.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.81


Forum of Mathematics, Sigma 59

We define two rare events in terms of these times and a parameter K, which we assume to be at least
max{𝑒𝑅2.1

, 𝜃5𝑛 (𝑐2𝑛)}, where 𝑐2 is the greater of 𝑐1 and the constant from Lemma 7.11. In particular,
under this assumption, K is greater than 𝑒4𝑐1𝑛

5𝑅2 and 𝑘 + 𝑛 – a fact we will use later.
The first rare event is the event that an unusually long time elapses between 𝜁𝑖−1 + 𝑘 and 𝜁𝑖 , for some

𝑖 ≤ 𝑚:

𝐹1 (𝑚, 𝐾) =
𝑚⋃
𝑖=1

{
𝜁𝑖 − (𝜁𝑖−1 + 𝑘) > 72𝐾3}.

The second is the event that we do not observe the formation of 𝑉 in 𝑚 ≥ 1 attempts:

𝐹2 (𝑚) =
𝑚⋂
𝑖=1

{
T𝑉 > 𝜁𝑖−1 + 𝑘

}
.

Call 𝐹 (𝑚, 𝐾) = 𝐹1 (𝑚, 𝐾) ∪ 𝐹2 (𝑚). When 𝐹 (𝑚, 𝐾)𝑐 occurs, we can bound T𝑉 as

T𝑉 1𝐹 (𝑚,𝐾 )𝑐 =
𝑚−1∑
𝑖=0

(𝜁𝑖 − (𝜁𝑖−1 + 𝑘))1𝐸 (𝑚,𝐾 )𝑐 + 𝑚𝑘 ≤ 72𝑚𝐾3 + 𝑚𝑘. (7.21)

We will show that if m is taken to be 2𝐾𝑒𝑐1𝑛
5𝑅2 , then P𝐿𝑛

(𝐹 (𝑚, 𝐾)) is at most 𝑒−𝐾 . Substituting this
value of m into equation (7.21) and simplifying with 𝐾 ≥ 𝑘 and then 𝐾 ≥ 𝑒4𝑐1𝑛

5𝑅2 gives

T𝑉 1𝐹 (𝑚,𝐾 )𝑐 ≤ 𝐾4𝑒2𝑐1𝑛
5𝑅2 ≤ 𝐾5. (7.22)

By equation (7.22), if we prove P𝐿𝑛
(𝐹 (𝑚, 𝐾)𝑐) ≤ 𝑒−𝐾 , then we are done. We start with a bound on

P𝐿𝑛
(𝐹1 (𝑚, 𝐾)). By the strong Markov property applied to the stopping time 𝜁𝑖−1 + 𝑘 ,

P𝐿𝑛

(
𝜁𝑖 − (𝜁𝑖−1 + 𝑘) > 72𝐾3

��� F𝜁𝑖−1+𝑘
)
= P𝑈𝜁𝑖−1+𝑘

(
𝜁1 > 72𝐾3) ≤ 𝑒−2𝐾 . (7.23)

The inequality is due to Lemma 7.11, which applies to 𝑈𝜁𝑖−1+𝑘 and K because 𝑈𝜁𝑖−1+𝑘 is a nonisolated
configuration with a diameter of at most 𝑘 + 𝑛 and because 𝐾 ≥ max{𝑘 + 𝑛, 𝜃5𝑛 (𝑐2𝑛)}. From a union
bound over the events which comprise 𝐹1 (𝑚, 𝐾) and equation (7.23), we find

P𝐿𝑛
(𝐹1 (𝑚, 𝐾)) ≤ 𝑚𝑒−2𝐾 . (7.24)

To bound P𝐿𝑛
(𝐹2 (𝑚)), we apply the strong Markov property to 𝜁 𝑗 and use equation (7.20):

P𝐿𝑛

(
T𝑉 ≤ 𝜁 𝑗 + 𝑘

��� F𝜁 𝑗

)
≥ P𝐿𝑛

(
T𝑉 ≤ 𝑘

)
≥ 1 − 𝑒−𝑐1𝑛

5𝑅2
. (7.25)

Then, because 𝐹2 ( 𝑗) ∈ F𝜁 𝑗 and by equation (7.25),

P𝐿𝑛

(
T𝑉 ≤ 𝜁 𝑗 + 𝑘

��� 𝐹2 ( 𝑗)
)
≥ 1 − 𝑒−𝑐1𝑛

5𝑅2
. (7.26)

We use equation (7.26) to calculate

P𝐿𝑛
(𝐹2 (𝑚)) =

𝑚−1∏
𝑗=0

P𝐿𝑛

(
T𝑉 > 𝜁 𝑗 + 𝑘

��� 𝐹2 ( 𝑗)
)
≤

𝑚−1∏
𝑗=0

(1 − 𝑒−𝑐1𝑛
5𝑅2) ≤ 𝑒−2𝐾 . (7.27)

The second inequality is due to the choice 𝑚 = 2𝐾𝑒𝑐1𝑛
5𝑅2 .
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Recall that 𝐹 (𝑚, 𝐾) is the union of 𝐹1 (𝑚, 𝐾) and 𝐹2 (𝑚). We have

P𝐿𝑛
(𝐹 (𝑚, 𝐾)) ≤ P𝐿𝑛

(𝐹1 (𝑚, 𝐾)) + P𝐿𝑛
(𝐹2 (𝑚)) ≤ 𝑚𝑒−2𝐾 + 𝑒−2𝐾 ≤ 𝑒−𝐾 .

The first inequality is a union bound; the second is due to equations (7.24) and (7.27); the third holds
because 𝑚 + 1 ≤ 𝑒𝐾 . �

7.4. Proof of Proposition 7.2

We now prove a tightness estimate for the stationary distribution – that is, an upper bound on
𝜋𝑛

(
diam(𝑈) ≥ 𝑑

)
. By Proposition 7.1, the stationary probability 𝜋𝑛 (𝑈) of any nonisolated, n-element

configuration 𝑈 is the reciprocal of E𝑈T𝑈 . When d is large (relative to 𝜃4𝑛), this expected return time
will be at least exponentially large in 𝑑

(log 𝑑)1+𝑜𝑛 (1) . This exponent arises from the consideration that, for
a configuration with a diameter below 𝜃4𝑛 to increase its diameter to d, it must avoid collapse over the
timescale for which it is typical (i.e., (log 𝑑)1+𝑜𝑛 (1) ) approximately 𝑑

(log 𝑑)1+𝑜𝑛 (1) times consecutively. Be-
cause the number of n-element configurations with a diameter of approximately d is negligible relative to
their expected return times, the collective weight under 𝜋𝑛 of such configurations will be exponentially
small in 𝑑

(log 𝑑)1+𝑜𝑛 (1) .
We note that, while there are abstract results which relate hitting times to the stationary distribution

(e.g., [GLPP17, Lemma 4]), we cannot directly apply results that require bounds on hitting times which
hold uniformly for any initial configuration. This is because hitting times from𝑉 depend on its diameter.
We could apply such results after partitioning N̂onIso(𝑛) by diameter, but we would then save little
effort from their use.

Proof of Proposition 7.2. Let d be at least 2𝜃4𝑛, and take 𝜀 = 2𝑛−4. We claim that, for any configuration
𝑈 with a diameter in [2 𝑗𝑑, 2 𝑗+1𝑑) for an integer 𝑗 ≥ 0, the expected return time to 𝑈 satisfies

E𝑈T𝑈 ≥ exp
(

2 𝑗𝑑

(log(2 𝑗𝑑))1+2𝜀

)
. (7.28)

We can use equation (7.28) to prove equation (7.2) in the following way. We write {diam(𝑈) ≥ 𝑑} as
a disjoint union of events of the form 𝐻 𝑗 = {2 𝑗 ≤ diam(𝑈) < 2 𝑗+1𝑑} for 𝑗 ≥ 0. Because a disk with
a diameter of at most 2 𝑗+1𝑑 contains fewer than �4 𝑗+1𝑑2� elements of Z2, the number of nonisolated,
n-element configurations with a diameter of at most 2 𝑗+1𝑑 satisfies

��{𝑈 in N̂onIso(𝑛) with 2 𝑗𝑑 ≤ diam(𝑈) < 2 𝑗+1𝑑
}�� ≤ (

�4 𝑗+1𝑑2�
𝑛

)
≤ (4 𝑗+1𝑑2)𝑛. (7.29)

We use equation (7.1) with equations (7.28) and (7.29) to estimate

𝜋𝑛
(
diam(𝑈) ≥ 𝑑

)
=

∞∑
𝑗=0

𝜋𝑛 (𝐻 𝑗 ) =
∞∑
𝑗=0

∑
𝑈 ∈𝐻 𝑗

𝜋𝑛 (𝑈) ≤
∞∑
𝑗=0

(4 𝑗+1𝑑2)𝑛𝑒−
2 𝑗 𝑑

(log(2 𝑗 𝑑) )1+2𝜀 . (7.30)

Using the fact that 𝑑 ≥ 2𝜃4𝑛, it is easy to check that the ratio of the ( 𝑗 +1)st summand to the jth summand
in equation (7.30) is at most 𝑒− 𝑗−1, for all 𝑗 ≥ 0. Accordingly, we have

𝜋𝑛
(
diam(𝑈) ≥ 𝑑

)
≤ (4𝑑2)𝑛𝑒−

𝑑

(log𝑑)1+2𝜀
∞∑
𝑗=0

𝑒− 𝑗 ≤ 𝑒
− 𝑑

(log𝑑)1+3𝜀 ,

where the second inequality is justified by the fact that 𝑑 ≥ 2𝜃4𝑛. This proves equation (7.2) when the
claimed bound (7.28) holds.
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We will prove equation (7.28) by making a comparison with a geometric random variable on
{0, 1, . . . } with a ‘success’ probability of 𝑒−

𝑑

(log𝑑)1+𝜀 (or with 2 𝑗𝑑 in place of d). This geometric random
variable will model the number of visits to configurations with diameters below 𝜃4𝑛 before reaching a
diameter of d, and the success probability arises from the fact that, for a configuration to increase its
diameter to d from 𝜃4𝑛, it must avoid collapse over 𝑑 − 𝜃4𝑛 steps. By Corollary 6.4, this happens with a
probability which is exponentially small in 𝑑

(log 𝑑)1+𝜀 .
Let 𝑈 be a nonisolated, n-element configuration with a diameter in [2 𝑗𝑑, 2 𝑗+1𝑑), and let Ŵ be the

set of configurations in NonIso(𝑛) with a diameter of at most 𝜃4𝑛. Define N to be the number of returns
to Ŵ before time T𝑈 , that is, 𝑁 =

∑T�̂�
𝑡=1 1(𝑈𝑡 ∈ Ŵ), and let 𝑉 minimize E𝑉 𝑁 among Ŵ . We claim that

E𝑈T𝑈 ≥ (log(2 𝑗+1𝑑))−2𝑛 E𝑉 𝑁. (7.31)

Indeed, the factor in front of E𝑉 𝑁 comes from equation (7.13), which implies that

P𝑈 (T𝐿𝑛
< T𝑈 ) ≥

(
log(2 𝑗+1𝑑)

)−2𝑛
.

This bound justifies the first of the following inequalities

E𝑈T𝑈 ≥
(
log(2 𝑗+1𝑑)

)−2𝑛 E𝐿𝑛
T𝑈 ≥

(
log(2 𝑗+1𝑑)

)−2𝑛 E𝐿𝑛
𝑁 ≥

(
log(2 𝑗+1𝑑)

)−2𝑛E𝑉 𝑁.

The second inequality holds because the time it takes to reach 𝑈 is at least the number of returns to Ŵ
before T𝑈 ; the third is due to our choice of 𝑉 . Hence, equation (7.31) holds.

The virtue of the lower bound (7.31) is that we can bound below E𝑉 𝑁 by

E𝑉 𝑁 = P𝑉 (TŴ < T𝑈 )
(
1 + E𝑉

[
𝑁 − 1

�� TŴ < T𝑈
] )

≥ P𝑉 (TŴ < T𝑈 )
(
1 + E𝑉 𝑁

)
.

The inequality holds by the Markov property applied to TŴ and because 𝑉 minimizes the expected
number of returns to Ŵ . This implies that E𝑉 𝑁 is at least the expected value of a geometric random
variable on {0, 1, . . . } with success parameter p of P𝑉 (T𝑈 < TŴ ):

E𝑉 𝑁 ≥ (1 − 𝑝)𝑝−1. (7.32)

It remains to bound above p.
Because diameter increases at most linearly in time, T𝑈 is at least 2 𝑗𝑑−𝜃4𝑛 under P𝑉 . Consequently,

P𝑉 (T𝑈 < TŴ ) ≤ P𝑉

(
T (𝜃4𝑛) > 2 𝑗𝑑 − 𝜃4𝑛

)
. (7.33)

We apply Corollary 6.4 with t equal to 2 𝑗𝑑−𝜃4𝑛
(log(2 𝑗𝑑))1+𝜀 , finding

P𝑉 (T (𝜃4𝑛) > 2 𝑗𝑑 − 𝜃4𝑛) ≤ exp
(
− 2 𝑗𝑑 − 𝜃4𝑛

(log(2 𝑗𝑑))1+𝜀

)
.

By equation (7.33), this is also an upper bound on 𝑝 < 1
2 and so, by equation (7.32), E𝑉 𝑁 is at least

(2𝑝)−1. Substituting these bounds into equation (7.31) and simplifying with the fact that 𝑑 ≥ 2𝜃4𝑛, we
find that the expected return time to 𝑈 satisfies equation (7.28):

E𝑈T𝑈 ≥ 1
2
(
log(2 𝑗+1𝑑)

)−2𝑛 exp

(
2 𝑗𝑑 − 𝜃4𝑛(

log(2 𝑗𝑑)
)1+𝜀

)
≥ exp

(
2 𝑗𝑑(

log(2 𝑗𝑑)
)1+2𝜀

)
.

�

https://doi.org/10.1017/fms.2023.81 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.81


62 J. Calvert, S. Ganguly and A. Hammond

8. Motion of the center of mass

As a consequence of the results of Section 7 and standard renewal theory, the center of mass process
(ℳ𝑡 )𝑡≥0, after linear interpolation and rescaling (𝑡−1/2ℳ𝑠𝑡 )𝑠∈[0,1] and, when viewed as a measure on
𝒞([0, 1]), converges weakly to two-dimensional Brownian motion as 𝑡 → ∞. This is the content of
Theorem 3.

We will use the following lemma to bound the coordinate variances of the Brownian motion limit.
To state it, we denote by 𝜏𝑖 = inf{𝑡 > 𝜏𝑖−1 : 𝑈𝑡 = �̂�𝑛} the ith return time to �̂�𝑛.

Lemma 8.1. Let c be the constant from Proposition 7.4 and abbreviate 𝜃5𝑛 (𝑐𝑛) by 𝜃. If, for some 𝑖 ≥ 0,
X is one of the random variables

𝜏𝑖+1 − 𝜏𝑖 , |ℳ𝜏𝑖+1 −ℳ𝜏𝑖 |, or |ℳ𝑡 −ℳ𝜏𝑖 |1(𝜏𝑖 ≤ 𝑡 ≤ 𝜏𝑖+1),

then the distribution of X satisfies the following tail bound

P𝐿𝑛

(
𝑋 > 𝐾4) ≤ 𝑒−𝐾 , 𝐾 ≥ 𝜃. (8.1)

Consequently,

E𝐿𝑛
𝑋 ≤ 2𝜃4 and Var𝐿𝑛𝑋 ≤ 2𝜃8. (8.2)

Proof. Because the diameter of �̂�𝑛 is at most n, for any 𝐾 ≥ 𝜃, Proposition 7.4 implies

P𝐿𝑛
(𝜏1 > 𝐾4) ≤ 𝑒−𝐾 .

Applying the strong Markov property to 𝜏𝑖 , we find equation (8.1) for 𝑋 = 𝜏𝑖+1 − 𝜏𝑖 . Using equation
(8.1) with the tail sum formulas for the first and second moments gives equation (8.2) for this X. The
other cases of X then follow from ��ℳ𝜏𝑖+1 −ℳ𝜏𝑖

�� ≤ 𝜏𝑖+1 − 𝜏𝑖 .

�

Proof of Theorem 3. Standard arguments (e.g., Section 8 of [Bil99]) combined with the renewal the-
orem show that

(
𝑡−1/2ℳ𝑠𝑡

)
𝑡≥1 is a tight sequence of functions. We claim that the finite-dimensional

distributions of the rescaled process converge as 𝑡 → ∞ to those of two-dimensional Brownian motion.
For any 𝑚 ≥ 1 and times 0 = 𝑠0 ≤ 𝑠1 < 𝑠2 < · · · < 𝑠𝑚 ≤ 1, form the random vector

𝑡−1/2 (ℳ𝑠1𝑡 , ℳ𝑠2𝑡 −ℳ𝑠1𝑡 , . . . , ℳ𝑠𝑚𝑡 −ℳ𝑠𝑚−1𝑡
)
. (8.3)

For s in [0, 1], we denote by 𝐼 (𝑠) the number of returns to �̂�𝑛 by time 𝑠𝑡. Lemma 8.1 and Markov’s
inequality imply that |ℳ𝑠𝑖 𝑡 −ℳ𝜏𝐼 (𝑠𝑖 )

| → 0 in probability as 𝑡 → ∞, hence, by Slutsky’s theorem, the
distributions of equation (8.3) and

𝑡−1/2
(
ℳ𝜏𝐼 (𝑠1 )

, ℳ𝜏𝐼 (𝑠2 )
−ℳ𝜏𝐼 (𝑠1 )+1 , . . . , ℳ𝜏𝐼 (𝑠𝑚 ) −ℳ𝜏𝐼 (𝑠𝑚−1 )+1

)
(8.4)

have the same 𝑡 → ∞ limit. By the renewal theorem, 𝐼 (𝑠1) < 𝐼 (𝑠2) < · · · < 𝐼 (𝑠𝑚) for all sufficiently
large t, so the strong Markov property implies the independence of the entries in equation (8.4) for all
such t.

A generic entry in equation (8.4) is a sum of independent increments of the form ℳ𝜏𝑖+1 −ℳ𝜏𝑖 . As
noted in Section 1, the transition probabilities are unchanged when configurations are multiplied by
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elements of the symmetry group G of Z2. This implies

E𝐿𝑛

[
ℳ𝜏𝑖+1 −ℳ𝜏𝑖

]
= 𝑜 and Σ = 𝜈2I,

where Σ is the variance-covariance matrix of ℳ𝜏𝑖+1 −ℳ𝜏𝑖 and 𝜈 is a constant which, by Lemma 8.1,
is finite. The renewal theorem implies that the scaled variance 𝑡−1𝜈2(𝐼 (𝑠𝑖) − 𝐼 (𝑠𝑖−1)) of the ith entry
converges almost surely to (𝑠𝑖 − 𝑠𝑖−1)𝜒2 where 𝜒2 = 𝜈2/E𝐿𝑛

[𝜏1], hence, by Slutsky’s theorem, we can
replace the scaled variance of each entry in equation (8.4) with this limit, without affecting the limiting
distribution of the vector.

By the central limit theorem,

1
𝜒
√
𝑡

(
ℳ𝜏𝐼 (𝑠𝑖 )

−ℳ𝜏𝐼 (𝑠𝑖−1 )+1

) d−→ N (𝑜, (𝑠𝑖 − 𝑠𝑖−1)I),

which, by the independence of the entries in equation (8.4) for all sufficiently large t, implies

1
𝜒
√
𝑡
(ℳ𝑠1𝑡 , ℳ𝑠2𝑡 −ℳ𝑠1𝑡 , . . . , ℳ𝑠𝑚𝑡 −ℳ𝑠𝑚−1𝑡 )

d−→ (B(𝑠1), B(𝑠2 − 𝑠1), . . . , B(𝑠𝑚 − 𝑠𝑚−1)), (8.5)

as 𝑡 → ∞. Because m and the {𝑠𝑖}𝑚𝑖=1 were arbitrary, the continuous mapping theorem and equation
(8.5) imply the convergence of the finite-dimensional distributions of

(
1

𝜒
√
𝑡
ℳ𝑠𝑡 , 0 ≤ 𝑠 ≤ 1

)
to those of

(B(𝑠), 0 ≤ 𝑠 ≤ 1). This proves the weak convergence component of Theorem 3.
It remains to bound 𝜒2, which we do by estimating E𝐿𝑛

[𝜏1] and 𝜈2. The former is bounded above by
2𝜃4, due to Lemma 8.1, and below by 1. Here, 𝜃 = 𝜃5𝑛 (𝑐1𝑛) and 𝑐1 is the constant from Proposition 7.4.
To bound below 𝜈2, denote the 𝑒2 component of ℳ𝜏𝑖+1 −ℳ𝜏𝑖 by X and observe that P𝐿𝑛

(
𝑋 = 𝑛−1) is

at least the probability that, from 𝐿𝑛, the element at o is activated and subsequently deposited at (0, 𝑛)
(recall that 𝐿𝑛 is the segment from o to (0, 𝑛 − 1)), resulting in 𝜏1 = 1 and ℳ𝜏1 = ℳ0 + 𝑛−1𝑒2. This
probability is at least 𝑒−𝑐2𝑛 for a constant 𝑐2. Markov’s inequality applied to 𝑋2 then gives

Var𝐿𝑛𝑋 ≥ P𝐿𝑛
(𝑋2 ≥ 𝑛−2) ≥ 𝑛−2𝑒−𝑐2𝑛 ≥ 𝑒−𝑐3𝑛.

By Lemma 8.1, 𝜈2 is at most 2𝜃8. In summary,

1 ≤ E𝐿𝑛
[𝜏1] ≤ 2𝜃4 and 𝑒−𝑐3𝑛 ≤ 𝜈2 ≤ 2𝜃8,

which implies

𝜃6𝑛 (𝑐𝑛)−1 ≤ 𝑒−𝑐3𝑛 (2𝜃4)−1 ≤ 𝜒2 ≤ 2𝜃8 ≤ 𝜃6𝑛 (𝑐𝑛),

with 𝑐 = max{𝑐1, 𝑐3}. �

A. Auxiliary lemmas

A.1. Potential kernel bounds

The following lemma collects several facts about the potential kernel which are used in Section 3. As
each fact is a simple consequence of equation (3.9), we omit its proof.

Lemma A.1. In what follows, 𝑥, 𝑦, 𝑧, 𝑧′ are elements of Z2.
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1. For 𝔞(𝑦) to be at least 𝔞(𝑥), it suffices to have

|𝑦 | ≥ |𝑥 | (1 + 𝜋𝜆 |𝑥 |−2 + (𝜋𝜆)2 |𝑥 |−4).

In particular, if |𝑥 | ≥ 2, then |𝑦 | ≥ 1.06|𝑥 | suffices.
2. When |𝑥 | ≥ 1, 𝔞(𝑥) is at least 2

𝜋 log |𝑥 |. When |𝑥 | ≥ 2, 𝔞(𝑥) is at most 4 log |𝑥 |.
3. If 𝑧, 𝑧′ ∈ 𝐶 (𝑟) and 𝑦 ∈ 𝐷 (𝑅)𝑐 for 𝑟 ≤ 1

100 𝑅 and 𝑅 ≥ 100, then

|𝔞(𝑦 − 𝑧) − 𝔞(𝑦 − 𝑧′) | ≤ 4
𝜋 .

4. If x and y satisfy |𝑥 |, |𝑦 | ≥ 1 and 𝐾−1 ≤ |𝑦 |
|𝑥 | ≤ 𝐾 for some 𝐾 ≥ 2, then

𝔞(𝑦) − 𝔞(𝑥) ≤ log 𝐾.

5. If |𝑥 | ≥ 8|𝑦 | and |𝑦 | ≥ 10, then

|𝔞(𝑥 + 𝑦) − 𝔞(𝑥) | ≤ 0.7
|𝑦 |
|𝑥 | .

6. Let 𝑅 ≥ 10𝑟 and 𝑟 ≥ 10. Then, uniformly for 𝑥 ∈ 𝐶 (𝑅) and 𝑦 ∈ 𝐶 (𝑟), we have

0.56 log(𝑅/𝑟) ≤ 𝔞(𝑥) − 𝔞(𝑦) ≤ log(𝑅/𝑟).

In the next section, we will need the following comparison of 𝔞 and 𝔞′.

Lemma A.2. Let 𝜇 be any probability measure on 𝐶𝑥 (𝑟). Suppose 𝑟 ≥ 2(|𝑥 | + 1). Then��� ∑
𝑦∈𝐶𝑥 (𝑟 )

𝜇(𝑦)𝔞(𝑦) − 𝔞′(𝑟)
��� ≤ (

5
2𝜋

+ 2𝜆
) (

|𝑥 | + 1
𝑟

)
.

In particular, if 𝑥 = 𝑜, then |𝔞(𝑦) − 𝔞′(𝑟) | ≤ 𝑟−1 for every 𝑦 ∈ 𝐶 (𝑟).

Proof. We recall that, for any 𝑥 ∈ Z2, the potential kernel has the form specified in equation (3.9) where
the error term conceals a constant of 𝜆, which is no more than 0.07 [KS04]. That is,���𝔞(𝑥) − 2

𝜋
log |𝑥 | − 𝜅

��� ≤ 𝜆 |𝑥 |−2.

For 𝑦 ∈ 𝐶𝑥 (𝑟), we have 𝑟 − |𝑥 | − 1 ≤ |𝑦 | ≤ 𝑟 + |𝑥 | + 1. Accordingly,

𝔞(𝑦) ≤ 2
𝜋

log|𝑟 + |𝑥 | + 1| + 𝜅 +𝑂 (|𝑟 − |𝑥 | − 1|−2)

=
2
𝜋

log 𝑟 + 𝜅 + 2
𝜋

log
(
1 + |𝑥 | + 1

𝑟

)
+𝑂 (|𝑟 − |𝑥 | − 1|−2).

Using the assumption (|𝑥 | + 1)/𝑟 ∈ (0, 1/2) with Taylor’s remainder theorem gives

𝔞(𝑦) ≤ 𝔞′(𝑟) + 2
𝜋

(
|𝑥 | + 1

𝑟
+ 1

2

(
|𝑥 | + 1

𝑟

)2
)
+𝑂 (|𝑟 − |𝑥 | − 1|−2).

Simplifying with 𝑟 ≥ 2(|𝑥 | + 1) and 𝑟 ≥ 2 leads to

𝔞(𝑦) ≤ 𝔞′(𝑟) + 2
𝜋

(
5
4
+ 𝜋𝜆

) (
|𝑥 | + 1

𝑟

)
= 𝔞′(𝑟) +

(
5

2𝜋
+ 2𝜆

) (
|𝑥 | + 1

𝑟

)
.
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The lower bound is similar. Because this holds for any 𝑦 ∈ 𝐶𝑥 (𝑟), for any probability measure 𝜇 on
𝐶𝑥 (𝑟), we have

��� ∑
𝑦∈𝐶𝑥 (𝑟 )

𝜇(𝑦)𝔞(𝑦) − 𝔞′(𝑟)
��� ≤ (

5
2𝜋

+ 2𝜆
) (

|𝑥 | + 1
𝑟

)
.

�

A.2. Comparison between harmonic measure and hitting probabilities

To prove Lemma 3.2, we require a comparison (Lemma A.3) between certain values of harmonic
measure and hitting probabilities. In fact, we need additional quantification of an error term which
appears in standard versions of this result (e.g., [Law13, Theorem 2.1.3]). Effectively, this additional
quantification comes from a bound on 𝜆, the implicit constant in equation (3.9). The proof is similar to
that of Theorem 3.17 in [Pop21].

Lemma A.3. Let 𝑥 ∈ 𝐷 (𝑅)𝑐 for 𝑅 ≥ 100𝑟 and 𝑟 ≥ 10. Then

0.93H𝐶 (𝑟 ) (𝑦) ≤ H𝐶 (𝑟 ) (𝑥, 𝑦) ≤ 1.04H𝐶 (𝑟 ) (𝑦). (A.1)

Proof. We have

H𝐶 (𝑟 ) (𝑥, 𝑦) − H𝐶 (𝑟 ) (𝑦) = −𝔞(𝑦 − 𝑥) +
∑

𝑧∈𝐶 (𝑟 )
P𝑦

(
𝑆𝜏𝐶 (𝑟 ) = 𝑧

)
𝔞(𝑧 − 𝑥). (A.2)

Since 𝐶 (10𝑟) separates x from 𝐶 (𝑟), the optional stopping theorem applied to 𝜎𝐶 (10𝑟 ) ∧ 𝜏𝐶 (𝑟 ) and the
martingale 𝔞

(
𝑆𝑡∧𝜏𝑥 − 𝑥

)
gives

𝔞(𝑦 − 𝑥) =
∑

𝑧∈𝐶 (𝑟 )
P𝑦

(
𝑆𝜏𝐶 (𝑟 ) = 𝑧

)
𝔞(𝑧 − 𝑥)

+ E𝑦
[
𝔞
(
𝑆𝜎𝐶 (10𝑟 ) − 𝑥

)
− 𝔞

(
𝑆𝜏𝐶 (𝑟 ) − 𝑥

) ��� 𝜎𝐶 (10𝑟 ) < 𝜏𝐶 (𝑟 )

]
P𝑦

(
𝜎𝐶 (10𝑟 ) < 𝜏𝐶 (𝑟 )

)
. (A.3)

In the second term of equation (A.3), we analyze the difference in potentials by observing

𝑆𝜎𝐶 (10𝑟 ) − 𝑥 −
(
𝑆𝜏𝐶 (𝑟 ) − 𝑥

)
= 𝑆𝜎𝐶 (10𝑟 ) − 𝑆𝜏𝐶 (𝑟 ) .

Accordingly, letting 𝑢 = 𝑆𝜏𝐶 (𝑟 ) − 𝑥 and 𝑣 = 𝑆𝜎𝐶 (10𝑟 ) − 𝑆𝜏𝐶 (𝑟 ) ,

𝔞
(
𝑆𝜎𝐶 (10𝑟 ) − 𝑥

)
− 𝔞

(
𝑆𝜏𝐶 (𝑟 ) − 𝑥

)
= 𝔞(𝑢 + 𝑣) − 𝔞(𝑢).

We observe that |𝑣 | ≤ 11𝑟 + 2 and |𝑢 | ≥ 99𝑟 − 2, so |𝑢 | ≥ 8|𝑣 |. Since we also have |𝑣 | ≥ 9𝑟 − 2 ≥ 10,
(5) of Lemma A.1 applies to give

𝔞(𝑢 + 𝑣) − 𝔞(𝑢) ≤ 0.7
|𝑣 |
|𝑢 | ≤

2
25

.
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We analyze the other factor of equation (A.3) as

P𝑦
(
𝜎𝐶 (10𝑟 ) < 𝜏𝐶 (𝑟 )

)
=

1
4

∑
𝑧∉𝐶 (𝑟 ):𝑧∼𝑦

P𝑧
(
𝜎𝐶 (10𝑟 ) < 𝜏𝐶 (𝑟 )

)

=
1
4

∑
𝑧∉𝐶 (𝑟 ):𝑧∼𝑦

𝔞(𝑧 − 𝑧0) − E𝑧𝔞
(
𝑆𝜏𝐶 (𝑟 ) − 𝑧0

)
E𝑧

[
𝔞
(
𝑆𝜎𝐶 (10𝑟 )

)
− 𝔞

(
𝑆𝜏𝐶 (𝑟 )

) ��� 𝜎𝐶 (10𝑟 ) < 𝜎𝐶 (𝑟 )

] ,
where 𝑧0 ∈ 𝐴. To obtain an upper bound on the potential difference in the denominator, we apply (6) of
Lemma A.1, which gives

P𝑦
(
𝜎𝐶 (10𝑟 ) < 𝜏𝐶 (𝑟 )

)
≤ 1

0.6 log 10
H𝐶 (𝑟 ) (𝑦).

Combining this with the other estimate for the second term of equation (A.3), we find

𝔞(𝑦 − 𝑥) ≤
∑

𝑧∈𝐶 (𝑟 )
P𝑦

(
𝑆𝜏𝐶 (𝑟 ) = 𝑧

)
𝔞(𝑧 − 𝑥) + 2

25
· 1

0.56 log 10︸��������������︷︷��������������︸
≤0.063

H𝐶 (𝑟 ) (𝑦).

Substituting this into equation (A.2), we have

H𝐶 (𝑟 ) (𝑥, 𝑦) − H𝐶 (𝑟 ) (𝑦) ≥ −0.063H𝐶 (𝑟 ) (𝑦) =⇒ H𝐶 (𝑟 ) (𝑥, 𝑦) ≥ 0.93H𝐶 (𝑟 ) (𝑦).

We again apply (5) and (6) of Lemma A.1 to bound the factors in the second term of A.3 as

𝔞(𝑢 + 𝑣) − 𝔞(𝑢) ≥ −0.0875 and P𝑦
(
𝜎𝐶 (10𝑟 ) < 𝜏𝐶 (𝑟 )

)
≥ 1

log 10
H𝐶 (𝑟 ) (𝑦).

Substituting these into equation (A.3), we find

𝔞(𝑦 − 𝑥) ≥
∑

𝑧∈𝐶 (𝑟 )
P𝑦

(
𝑆𝜏𝐶 (𝑟 ) = 𝑧

)
𝔞(𝑧 − 𝑥) − 0.0875 · 1

log 10
H𝐶 (𝑟 ) (𝑦).

Consequently, equation (A.2) becomes

H𝐶 (𝑟 ) (𝑥, 𝑦) − H𝐶 (𝑟 ) (𝑦) ≤
0.0875
log 10

H𝐶 (𝑟 ) (𝑦) ≤
1

25
H𝐶 (𝑟 ) (𝑦).

Rearranging, we find

H𝐶 (𝑟 ) (𝑥, 𝑦) ≤ 1.04H𝐶 (𝑟 ) (𝑦).

�

A.3. Uniform lower bound on a conditional entrance measure

Recall that Lemma 3.1 bounds below the conditional hitting distribution of 𝐶 (𝜀2𝑅) from 𝐶 (𝜀𝑅), given
that 𝐶 (𝜀2𝑅) is hit before 𝐶 (𝑅), in terms of the uniform distribution on 𝐶 (𝜀2𝑅). The idea of the proof is
to use Lemma A.3 to approximate the hitting distribution of 𝐶 (𝜀2𝑅) with the corresponding harmonic
measure, which is comparable to the uniform distribution on 𝐶 (𝜀2𝑅). The proof is similar to that of
Lemma 2.1 in [DPRZ06].
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Proof of Lemma 3.1. Fix 𝜀 and R which satisfy the hypotheses. Let 𝑥 ∈ 𝐶 (𝜀𝑅) and 𝑦 ∈ 𝐶 (𝜀2𝑅). We
have

P𝑥

(
𝑆𝜏𝐶 (𝜀2𝑅)

= 𝑦, 𝜏𝐶 (𝜀2𝑅) < 𝜏𝐶 (𝑅)

)
= H𝐶 (𝜀2𝑅) (𝑥, 𝑦) − P𝑥

(
𝑆𝜏𝐶 (𝜀2𝑅)

= 𝑦, 𝜏𝐶 (𝜀2𝑅) > 𝜏𝐶 (𝑅)

)
. (A.4)

By the strong Markov property applied to 𝜏𝐶 (𝑅) ,

P𝑥

(
𝑆𝜏𝐶 (𝜀2𝑅)

= 𝑦, 𝜏𝐶 (𝜀2𝑅) > 𝜏𝐶 (𝑅)

)
= E𝑥

[
H𝐶 (𝜀2𝑅)

(
𝑆𝜏𝐶 (𝑅) , 𝑦

)
; 𝜏𝐶 (𝜀2𝑅) > 𝜏𝐶 (𝑅)

]
. (A.5)

We use Lemma A.3 to uniformly bound the terms of the form H𝐶 (𝜀2𝑅) (·, 𝑦) appearing in equations
(A.4) and (A.5). For any 𝑤 ∈ 𝐶 (𝑅), the hypotheses of Lemma A.3 are satisfied with 𝜀2𝑅 in the place
of r, and R as presently defined because then 𝑟 ≥ 10 and 𝑅 ≥ 100𝑟 . Therefore, by equation (A.1),
uniformly for 𝑤 ∈ 𝐶 (𝑅),

H𝐶 (𝜀2𝑅) (𝑤, 𝑦) ≤ 1.04H𝐶 (𝜀2𝑅) (𝑦). (A.6)

Now, for any 𝑥 ∈ 𝐶 (𝜀𝑅), the hypotheses of Lemma A.3 are again satisfied with the same r and with
𝜀𝑅 in the place of R since 𝜀𝑅 ≥ 100𝑟 = 100𝜀2𝑅 by the assumption 𝜀 ≤ 1

100 . We apply equation (A.1)
to find

H𝐶 (𝜀2𝑅) (𝑥, 𝑦) ≥ 0.93H𝐶 (𝜀2𝑅) (𝑦). (A.7)

Substituting equation (A.6) into equation (A.5), we find

P𝑥

(
𝑆𝜏𝐶 (𝜀2𝑅)

= 𝑦, 𝜏𝐶 (𝜀2𝑅) > 𝜏𝐶 (𝑅)

)
≤ 1.04H𝐶 (𝜀2𝑅) (𝑦)P𝑥

(
𝜏𝐶 (𝜀2𝑅) > 𝜏𝐶 (𝑅)

)
.

Similarly, substituting equation (A.7) into equation (A.4) and using the previous display, we find

P𝑥

(
𝑆𝜏𝐶 (𝜀2𝑅)

= 𝑦, 𝜏𝐶 (𝜀2𝑅) < 𝜏𝐶 (𝑅)

)
≥ 0.93H𝐶 (𝜀2𝑅) (𝑦)P𝑥

(
𝜏𝐶 (𝜀2𝑅) < 𝜏𝐶 (𝑅)

)
− (1.04 − 0.93) H𝐶 (𝜀2𝑅) (𝑦)P𝑥

(
𝜏𝐶 (𝜀2𝑅) > 𝜏𝐶 (𝑅)

)
.

Applying hypothesis (3.3), we find that the right-hand side is at least

𝑐1 H𝐶 (𝜀2𝑅) (𝑦)P𝑥
(
𝜏𝐶 (𝜀2𝑅) < 𝜏𝐶 (𝑅)

)
,

for a positive constant 𝑐1. The result then follows the existence of a positive constant 𝑐2 such that
H𝐶 (𝜀2𝑅) (𝑦) ≥ 𝑐2𝜇𝜀2𝑅 (𝑦) for any 𝑦 ∈ 𝐶 (𝜀2𝑅). �

The proof of Lemma 3.2 is a simple application of Lemma 3.1. A short calculation is needed to
verify that the hypotheses of Lemma 3.1 are met.

Proof of Lemma 3.2. Under the conditioning, the random walk must reach 𝐶 (𝛿𝑅𝐽+1) before 𝐶 (𝑅𝐽 ). It
therefore suffices to prove that there exists a positive constant 𝑐1 such that, uniformly for all 𝑥 ∈ 𝐶 (𝛿𝑅𝐽+1)
and 𝑧 ∈ 𝐶 (𝑅𝐽 ),

P𝑥
(
𝑆𝜂 = 𝑧

�� 𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐴
)
≥ 𝑐1𝜇𝑅𝐽 (𝑧), (A.8)

where 𝜂 = 𝜏𝐶 (𝑅𝐽 ) ∧ 𝜏𝐴. Because 𝜕A𝐽 separates x from A, the conditional probability in equation (A.8)
is at least

P𝑥
(
𝑆𝜂 = 𝑧

�� 𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐶 (𝑅𝐽+1) , 𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐴
)
P𝑥

(
𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐶 (𝑅𝐽+1)

)
. (A.9)
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The first factor of equation (A.9) simplifies to

P𝑥
(
𝑆𝜏𝐶 (𝑅𝐽 ) = 𝑧

�� 𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐶 (𝑅𝐽+1)
)
, (A.10)

which we will bound below using Lemma 3.1.
We will verify the hypotheses of Lemma 3.1 with 𝜀 = 𝛿 and 𝑅 = 𝑅𝐽+1. The first hypothesis is

𝑅 ≥ 10𝜀−2, which is satisfied because 𝑅𝐽+1 ≥ 𝑅1 = 10𝛿−2. The second hypothesis is equation (3.3)
which, in our case, can be written as

max
𝑥∈𝐶 (𝛿𝑅𝐽+1)

P𝑥
(
𝜏𝐶 (𝑅𝐽+1) < 𝜏𝐶 (𝑅𝐽 )

)
< 9

10 . (A.11)

Exercise 1.6.8 of [Law13] states that

P𝑥
(
𝜏𝐶 (𝑅𝐽+1) < 𝜏𝐶 (𝑅𝐽 )

)
=

log( |𝑥 |
𝑅𝐽

) +𝑂 (𝑅−1
𝐽 )

log( 𝑅𝐽+1
𝑅𝐽

) +𝑂 (𝑅−1
𝐽 + 𝑅−1

𝐽+1)
, (A.12)

where the implicit constants are at most 2 (i.e., the𝑂 (𝑅−1
𝐽 ) term is at most 2𝑅−1

𝐽 ). For the moment, ignore
the error terms and assume |𝑥 | = 𝛿𝑅𝐽+1, in which case equation (A.12) evaluates to 5 log 10−log 25

5 log 10 < 0.73.
Because 𝑅𝐽 ≥ 105, even after allowing |𝑥 | up to 𝛿𝑅𝐽+1 + 1 and accounting for the error terms, equation
(A.12) is less than 9

10 , which implies equation (A.11).
Applying Lemma 3.1 to equation (A.10), we obtain a constant 𝑐2 such that

P𝑥
(
𝑆𝜏𝐶 (𝑅𝐽 ) = 𝑧

�� 𝜏𝐶 (𝑅𝐽 ) < 𝜏𝐶 (𝑅𝐽+1)
)
≥ 𝑐2𝜇𝑅𝐽 (𝑧). (A.13)

By equation (A.11), the second factor of equation (A.9) is bounded below by 1
10 . We conclude the claim

of equation (A.8) by combining this bound and equation (A.13) with equation (A.9), and by setting
𝑐1 = 1

10𝑐2. �

A.4. Estimate for the exit distribution of a rectangle

Informally, Lemma A.4 says that the probability a walk from one end of a rectangle (which may not
be aligned with the coordinate axes) exits through the opposite end is bounded below by a quantity
depending upon the aspect ratio of the rectangle. We believe this estimate is known but, as we are
unable to find a reference for it, we provide one here. In brief, the proof uses an adaptive algorithm for
constructing a sequence of squares which remain inside the rectangle and the sides of which are aligned
with the axes. We then bound below the probability that the walk follows the path determined by the
squares until exiting the opposite end of the rectangle.

Recall that Rec(𝜙, 𝑤, ℓ) denotes the rectangle of width w, centered along the line segment from
−𝑒i𝜙𝑤 to 𝑒i𝜙ℓ, intersected with Z2 (see Figure 14).

Lemma A.4. For any 24 ≤ 𝑤 ≤ ℓ and any 𝜙, let Rec = Rec(𝜙, 𝑤, ℓ) and Rec+ = Rec(𝜙, 𝑤, ℓ+𝑤). Then,

P𝑜 (𝜏𝜕Rec < 𝜏𝜕Rec+ ) ≥ 𝑐ℓ/𝑤 ,

for a universal positive constant 𝑐 < 1.

We use the hypothesis 𝑤 ≥ 24 to deal with the effects of discreteness; the constant 24 is otherwise
unimportant, and many choices would work in its place.

Proof of Lemma A.4. We will first define a square, centered at the origin and with each corner in Z2,
which lies in Rec+. We will then translate it to form a sequence of squares through which we will guide
the walk to Rec+\Rec without leaving Rec+ (see Figure 14). We split the proof into three steps: (1)
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Figure 14. On the left, we depict the rectangles Rec = Rec(𝜙, 𝑤, 𝑙) (shaded blue) and Rec+ =
Rec(𝜙, 𝑤, 𝑙 + 𝑤) (union of blue- and red-shaded regions) for 𝜙 = 𝜋/4, 𝑤 = 4

√
2, and ℓ = 11

√
2.

I denotes Rec ∩ 𝜕 (Rec+\Rec).

constructing the squares; (2) proving that they lie in Rec+; and (3) establishing a lower bound on the
probability that the walk hits 𝜕Rec before hitting the interior boundary of Rec+.

Step 1: Construction of the squares. Without loss of generality, assume 0 ≤ 𝜙 < 𝜋/2. For 𝑥 ∈ Z2,
we will denote its first coordinate by 𝑥1 and its second coordinate by 𝑥2. We will use this convention
only for this proof. Let 𝔩 be equal to � 𝑤

8 � if it is even and equal to � 𝑤
8 � − 1 otherwise. With this choice,

we define

𝑄 =
{
𝑥 ∈ Z2 : max{|𝑥1 |, |𝑥2 |} ≤ 1

2 𝔩
}
.

Since 𝔩 is even, the translates of Q by integer multiples of 1
2 𝔩 are also subsets of Z2.

We construct a sequence of squares 𝑄𝑖 in the following way, where we make reference to the line
𝐿∞
𝜙 = 𝑒i𝜙

R. Let 𝑦1 = 𝑜 and 𝑄1 = 𝑦1 +𝑄. For 𝑖 ≥ 1, let

𝑦𝑖+1 =

{
𝑦𝑖 + 1

2 𝔩 (0, 1) if 𝑦𝑖lies on or below 𝐿∞
𝜙

𝑦𝑖 + 1
2 𝔩 (1, 0) if 𝑦𝑖 lies above 𝐿∞

𝜙

and 𝑄𝑖+1 = 𝑦𝑖+1 +𝑄.

In words, if the center of the present square lies on or below the line 𝐿∞
𝜙 , then we translate the center

north by 1
2 𝔩 to obtain the next square. Otherwise, we translate the center to the east by 1

2 𝔩.
We further define, for 𝑖 ≥ 1,

𝑀𝑖 =

{{
𝑥 ∈ 𝑄𝑖 : 𝑥2 − 𝑦2

𝑖 =
1
2 𝔩 and |𝑦1

𝑖 − 𝑥1 | ≤ 1
2 𝔩 − 1

}
if 𝑦𝑖 lies on or below 𝐿∞

𝜙{
𝑥 ∈ 𝑄𝑖 : 𝑥1 − 𝑦1

𝑖 =
1
2 𝔩 and |𝑦2

𝑖 − 𝑥2 | ≤ 1
2 𝔩 − 1

}
if 𝑦𝑖 lies above 𝐿∞

𝜙 .

In words, if 𝑦𝑖 lies on or below the line 𝐿∞
𝜙 , we choose 𝑀𝑖 to be the northernmost edge of 𝑄𝑖 , excluding

the corners. Otherwise, we choose it to be the easternmost edge, excluding the corners (Figure 15). We
exclude the corners to ensure that P𝜔

(
𝜏𝑀𝑖+1 ≤ 𝜏𝜕 int𝑄𝑖+1

)
is harmonic for all 𝜔 ∈ 𝑀𝑖; we will shortly need

this to apply the Harnack inequality. Upcoming Figure 16 provides an illustration of 𝑀𝑖 in this context.
We will guide the walk to 𝜕Rec without leaving Rec+ by requiring that it exit each square 𝑄𝑖 through

𝑀𝑖 for 1 ≤ 𝑖 ≤ 𝐽, where we define

𝐽 = min{𝑖 ≥ 1 : 𝑀𝑖 ⊆ Rec𝑐}.

That is, J is the first index for which 𝑀𝑖 is fully outside Rec. It is clear that J is finite.
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Figure 15. Two steps in the construction of squares. Respectively on the left and right, 𝑦𝑖+1 ∈ 𝑀𝑖 and
𝑦𝑖+2 ∈ 𝑀𝑖+1 (indicated by the × symbols) lie above 𝐿∞

𝜙 , so 𝑀𝑖+1 and 𝑀𝑖+2 are situated on the eastern
sides of 𝑄𝑖+1 and 𝑄𝑖+2. However, on the left, as 𝑄𝑖 was translated north to form 𝑄𝑖+1, the relative
orientation of 𝑀𝑖 and 𝑀𝑖+1 is perpendicular. In contrast, as 𝑄𝑖+1 is translated east to form 𝑄𝑖+2, the
right-hand side has parallel 𝑀𝑖+1 and 𝑀𝑖+2.

Figure 16. The two cases for lower-bounding 𝑀𝑖+1 hitting probabilities.

Step 2: Proof that ∪𝐽
𝑖=1𝑄𝑖 is a subset of Rec+. Let v be the northeastern endpoint of 𝐿𝜙 , where 𝐿𝜙

is the segment of 𝐿∞
𝜙 from o to 𝑒i𝜙 (ℓ + 𝑤/2) and define k to be the first index for which 𝑦𝑘 satisfies

𝑦1
𝑘 > 𝑣1 or 𝑦2

𝑘 > 𝑣2.

It will also be convenient to denote by I the interface between Rec and Rec+\Rec (the dashed line in
Figure 14), given by

I = Rec ∩ 𝜕
(
Rec+\Rec

)
.

By construction, we have |𝑦𝑘 −𝑦𝑘−1 | = 1
2 𝔩 and |𝑦𝑘 −𝑣 | ≤ 1

2 𝔩. By the triangle inequality, |𝑦𝑘−1−𝑣 | ≤ 𝔩.
As |𝑣 | = ℓ + 𝑤/2 and because dist(𝑜, I) ≤ ℓ + 1, we must have – again by the triangle inequality – that
dist(𝑣, I) ≥ 𝑤/2 − 1. From a third use of the triangle inequality and the hypothesized lower bound on
w, we conclude

dist(𝑦𝑘−1, I) ≥
𝑤

2
− 1 − 𝔩 ≥ 𝑤

2
− 1 − 𝑤

8
≥ 𝑤

3
> 2𝔩. (A.14)

To summarize in words, 𝑦𝑘−1 is not in Rec and it is separated from Rec by a distance strictly greater
than 2𝔩.

Because the sides of 𝑄𝑘−1 have length 𝔩, equation (A.14) implies 𝑄𝑘−1 ⊆ Rec𝑐 . Since 𝑀𝑘−1 is a
subset of 𝑄𝑘−1, we must also have 𝑀𝑘−1 ⊆ Rec𝑐 , which implies 𝐽 ≤ 𝑘 − 1. As k was the first index for
which 𝑦1

𝑘 > 𝑣1 or 𝑦2
𝑘 > 𝑣2, 𝑦𝐽 satisfies 𝑦1

𝐽 ≤ 𝑣1 and 𝑦2
𝐽 ≤ 𝑣2. Then, by construction, for all 1 ≤ 𝑖 ≤ 𝐽,

the centers satisfy

𝑦1 ≤ 𝑦1
𝑖 ≤ 𝑣1 and 𝑦2 ≤ 𝑦2

𝑖 ≤ 𝑣2. (A.15)
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From equation (A.15) and the fact that dist(𝑦𝑖 , 𝐿∞
𝜙 ) ≤

1
2 𝔩, we have

dist(𝑦𝑖 , 𝐿𝜙) = dist(𝑦𝑖 , 𝐿∞
𝜙 ) ≤

1
2
𝔩 ∀ 1 ≤ 𝑖 ≤ 𝐽.

As the diagonals of the 𝑄𝑖 have length
√

2𝔩, equation (A.15) and the triangle inequality imply

dist(𝑥, 𝐿𝜙) ≤ dist(𝑦𝑖 , 𝐿𝜙) +
1
2
√

2𝔩 =
1
2
(1 +

√
2)𝔩 < 𝑤

4
∀ 𝑥 ∈

𝐽⋃
𝑖=1

𝑄𝑖 .

To summarize, any element of 𝑄𝑖 for some 1 ≤ 𝑖 ≤ 𝐽 is within a distance 𝑤/4 of 𝐿𝜙 . As Rec+ contains
all points x within a distance 𝑤

2 of 𝐿𝜙 , we conclude

𝐽⋃
𝑖=1

𝑄𝑖 ⊆ Rec+.

Step 3: Lower bound for P𝑜 (𝜏𝜕Rec < 𝜏𝜕Rec+ ). From the previous step, to obtain a lower bound on
the probability that the walk exits Rec before Rec+, it suffices to obtain an upper bound 𝐽∗ on J and a
lower bound 𝑐 < 1 on

P𝜔
(
𝜏𝑀𝑖+1 ≤ 𝜏𝜕 int𝑄𝑖+1

)
,

uniformly for 𝜔 ∈ 𝑀𝑖 , for 0 ≤ 𝑖 ≤ 𝐽−1. This way, if we denote𝑌0 ≡ 𝑦 and𝑌𝑖 = 𝑆𝜏𝜕 int𝑄𝑖
for 1 ≤ 𝑖 ≤ 𝐽−1,

we can apply the strong Markov property to each 𝜏𝑀𝑖 and use the lower bound for each factor to obtain
the lower bound

P𝑜 (𝜏𝜕Rec < 𝜏𝜕Rec+ ) ≥ 𝑐𝐽
∗
. (A.16)

To obtain an upper bound on J, we first recall that 𝐿𝜙 has a length of ℓ + 𝑤/2, which satisfies

ℓ + 𝑤/2 =
𝔩
2

(
2ℓ
𝔩
+ 𝑤

𝔩

)
≤ 𝔩

2

(
2ℓ

𝑤/8 − 1
+ 𝑤

𝑤/8 − 1

)
≤ 𝔩

2

(
48

ℓ

𝑤
+ 24

)
, (A.17)

due to the fact that 𝔩 ≥ �𝑤/8� −1 ≥ 𝑤/8−2 and the hypothesis of 𝑤 ≥ 24. The number of steps to reach
J is no more than twice the ratio (ℓ + 𝑤/2)/(𝔩/2). Accordingly, using the bound in equation (A.17) and
the hypothesis that ℓ/𝑤 ≥ 1, we have

𝐽 ≤ 2
(
48

ℓ

𝑤
+ 24

)
≤ 144

ℓ

𝑤
=: 𝐽∗. (A.18)

We now turn to the hitting probability lower bounds.
From the construction, there are only two possible orientations of 𝑀𝑖 relative to 𝑀𝑖+1 (Figure 16).

Either 𝑀𝑖 and 𝑀𝑖+1 have parallel orientation or they do not. Consider the former case. The hitting
probability P𝜔

(
𝜏𝑀𝑖+1 ≤ 𝜏𝜕 int𝑄𝑖+1

)
is a harmonic function of 𝜔 for all 𝜔 in 𝑄𝑖+1\𝜕 int𝑄𝑖+1 and 𝑀𝑖+1 in

particular. Therefore, by the Harnack inequality [Law13, Theorem 1.7.6], there is a constant 𝑎1 such that

P𝜔
(
𝜏𝑀𝑖+1 ≤ 𝜏𝜕 int𝑄𝑖+1

)
≥ 𝑎1P𝑦𝑖+1

(
𝜏𝑀𝑖+1 ≤ 𝜏𝜕 int𝑄𝑖+1

)
∀ 𝜔 ∈ 𝑀𝑖+1. (A.19)

The same argument applies to the case when 𝑀𝑖 and 𝑀𝑖+1 do not have parallel orientation and we find
there is a constant 𝑎2 such that equation (A.19) holds with 𝑎2 in place of 𝑎1. Setting 𝑎 = min{𝑎1, 𝑎2},
we conclude that, for all 0 ≤ 𝑖 ≤ 𝐽 − 1 and any 𝜔 ∈ 𝑀𝑖 ,

P𝜔
(
𝜏𝑀𝑖+1 ≤ 𝜏𝜕 int𝑄𝑖+1

)
≥ 𝑎P𝑦𝑖+1

(
𝜏𝑀𝑖+1 ≤ 𝜏𝜕 int𝑄𝑖+1

)
. (A.20)
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We have reduced the lower bound for any 𝜔 ∈ 𝑀𝑖 and either of the two relative orientations of 𝑀𝑖 and
𝑀𝑖+1 to a lower bound on the hitting probability of one side of 𝑄𝑖+1 from the center. By symmetry, the
walk hits 𝑀𝑖+1 first with a probability of exactly 1/4. We emphasize that the probability on the left-hand
side of equation (A.20) is exactly 1/4 as although 𝑀𝑖+1 does not include the adjacent corners of 𝑄𝑖+1,
which are elements of 𝜕 int𝑄𝑖+1, the corners are separated from 𝑦𝑖+1 by the other elements of 𝜕 int𝑄𝑖+1.

Calling 𝑏 = 𝑎/4 and combining equations (A.18) and (A.20) with equation (A.16), we have

P𝑜 (𝜏𝜕Rec < 𝜏𝜕Rec+ ) ≥ 𝑏𝐽 ∗
= 𝑏144ℓ/𝑤 = 𝑐ℓ/𝑤

for a positive constant 𝑐 < 1. �
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