Power Residue Criteria for Quadratic Units and the Negative Pell Equation

Tommy Bülow

Abstract

Let $d>1$ be a square-free integer. Power residue criteria for the fundamental unit ε_{d} of the real quadratic fields $\mathbb{O}(\sqrt{d})$ modulo a prime p (for certain d and p) are proved by means of class field theory. These results will then be interpreted as criteria for the solvability of the negative Pell equation $x^{2}-d p^{2} y^{2}=-1$. The most important solvability criterion deals with all d for which $\mathbb{O}(\sqrt{-d})$ has an elementary abelian 2 -class group and $p \equiv 5(\bmod 8)$ or $p \equiv 9(\bmod 16)$.

1 Introduction

Let D be a non-square natural number. The problem of deciding whether the negative Pell equation

$$
\begin{equation*}
x^{2}-D y^{2}=-1 \tag{1}
\end{equation*}
$$

has integral solutions is a classical problem in number theory which is not solved in general. Obvious necessary conditions for the solvability of (1) are that $4 \nmid D$ and that every odd prime factor of D is $\equiv 1(\bmod 4)$; they are not sufficient.

Consider two indefinite integral binary quadratic forms of positive discriminant: $f(x, y)=a x^{2}+b x y+c y^{2}$ and $g(x, y)=a^{\prime} x^{2}+b^{\prime} x y+c^{\prime} y^{2}$. Then f and g are called equivalent if there is a matrix $A=\left[\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right] \in \mathrm{GL}_{2}(\mathbb{Z})$ such that $f(x, y)=$ $g(\alpha x+\beta y, \gamma x+\delta y)$; if this holds and $A \in \mathrm{SL}_{2}(\mathbb{Z})$, then f and g are called properly equivalent (these matters where studied by Gauss). The discriminant of f is $b^{2}-4 a c$. If we consider forms of fixed positive non-square discriminant D, then it is known that
proper equivalence $=$ equivalence $\Longleftrightarrow x^{2}-D y^{2}=-4$ is solvable.
If $4 \nmid D$, then these two statements are true if and only if $x^{2}-D y^{2}=-1$ is solvable.
Many mathematicians have made sporadic contributions to the problem about the solvability of (1). Fermat and Euler were some of the first to study the equation systematically. First, suppose that D is square-free. Dirichlet [2] proved (by rather elementary means) certain sufficient conditions for solvability (expressed in terms of the quadratic or biquadratic residue character of the prime factors of D). More recent results can be found in [3], [10], [11], [12], [13].

[^0]We shall consider the case where D is not square-free. Let $d>1$ be a square-free integer and let $k>1$ be a an odd integer. The equation (1) with D not square-free (and, of course, $4 \nmid D$) can be written

$$
\begin{equation*}
x^{2}-d k^{2} y^{2}=-1 \tag{2}
\end{equation*}
$$

We note that the problem in question is that of deciding whether the norm of the fundamental unit of the order of conductor k in $\mathbb{O}_{2}(\sqrt{d})$ is 1 or -1 . This has consequences for the structure of the corresponding ring class fields. For the class field theory to be used we refer to [1] or [5].

We mention (without proof) another formulation of the problem in terms of class field theory: Consider the two ideal groups in $K:=(\mathbb{O})(\sqrt{d})$ (where $A_{(k)}(K)$ denotes the group of fractional ideals in K relatively prime to k):

$$
\begin{aligned}
H^{\prime} & :=\left\{(\alpha) \in A_{(k)}(K) \mid \exists r \in(\mathbb{O}: \alpha \equiv r(\bmod (k))\} \quad\right. \text { and } \\
H^{\prime \prime} & \left.:=\left\{(\alpha) \in A_{(k)}(K) \mid \exists r \in \mathbb{O}\right): \alpha \equiv r(\bmod (k) \infty)\right\} ;
\end{aligned}
$$

$(k)($ resp. $(k) \infty)$ is clearly a congruence module for H^{\prime} (resp. $H^{\prime \prime}$); ∞ is the divisor of K which is the product of the real embeddings of K. Let L^{\prime} (resp. $L^{\prime \prime}$) be the abelian extension of K corresponding to H^{\prime} (resp. $H^{\prime \prime}$). By definition of infinite ramification, $L^{\prime} \subseteq \mathbb{R}$. It is also clear that $H^{\prime} \supseteq H^{\prime \prime}$. Then the following is true:

Proposition 1 The following three conditions are equivalent (for $2 \nmid k$).
(1) $x^{2}-d k^{2} y^{2}=-1$ is solvable.
(2) $H^{\prime}=H^{\prime \prime}$.
(3) $L^{\prime \prime} \subseteq \mathbb{R}$.

When studying the existence of integral solutions to (2) one can, as is well-known, assume that k is a prime number $p \equiv 1(\bmod 4)$. Of course, one can assume that (2) with $k=1$ has a solution. We shall also assume that $p \nmid d$. It is not hard to show that if $\left(\frac{d}{p}\right)=-1$ and if $x^{2}-d y^{2}=-1$ is solvable, then $x^{2}-d p^{2} y^{2}=-1$ is also solvable.

The remaining case, $\left(\frac{d}{p}\right)=1$, is still not completely settled. Below we use class field theory to prove some results concerning this case.

Let $\varepsilon_{d}>1$ be the fundamental unit of the real quadratic field $\mathbb{O}(\mathbb{O}(\sqrt{d})$. When the norm of ε_{d} is -1 , the solvability of (2) with k being a prime number $p \equiv 1(\bmod 4)$ is closely related to the power residue character of ε_{d} modulo p. In [7], the following lemma is proved in an elementary way.

Lemma 1 Let $d>1$ be a square-free integer. Let the fundamental unit ε_{d} of $\mathbb{O}(\sqrt{d})$ have norm -1 and let $p \equiv 1(\bmod 4)$ be a prime number with $\left(\frac{d}{p}\right)=1$. Suppose that $2^{\lambda} \| p-1$. Then

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longleftrightarrow\left(\varepsilon_{d}\right)^{\frac{p-1}{2^{\lambda-1}}} \equiv-1(\bmod p) \quad\left(\text { in } \mathcal{O}_{\mathbb{Q}(\sqrt{d})}\right)
$$

If c is an integer not divisible by the odd prime p and the Legendre symbol $\left(\frac{c}{p}\right)$ has the value 1 , then we define the symbol $\left(\frac{c}{p}\right)_{4}$ to be be 1 or -1 according as c is or is not a fourth power modulo p. If $\left(\frac{d}{p}\right)=1$, then we can interpret ε_{d} as an integer modulo p and if the norm $N\left(\varepsilon_{d}\right)$ of ε_{d} is 1 or if $N\left(\varepsilon_{d}\right)=-1$ and $p \equiv 1(\bmod 4)$, the symbol $\left(\frac{\varepsilon_{d}}{p}\right)$ is well-defined. When there is no risk of ambiguity, we define, recursively, the symbol $\left(\frac{\varepsilon_{d}}{p}\right)_{2^{t+1}}=1$ (resp. $=-1$) to mean that $\left(\frac{\varepsilon_{d}}{p}\right)_{2^{t}}=1$ and ε_{d} is (resp. is not) a 2^{t+1}-th power modulo p. For our purposes it will be sufficient to know that if $N\left(\varepsilon_{d}\right)=1$ or if $N\left(\varepsilon_{d}\right)=-1$ and $p \equiv 1(\bmod 8)$, the symbol $\left(\frac{\varepsilon_{d}}{p}\right)_{4}$ is well defined.

Observation 1 Let $p \equiv 1\left(\bmod 2^{\lambda}\right)(\lambda=2,3)$ be a prime number with $\left(\frac{d}{p}\right)=1$ and let \mathfrak{p} be one of the two prime ideals in $\mathbb{O}(\sqrt{-d})$ above p. Then

$$
\begin{aligned}
\left(\frac{\varepsilon_{d}}{p}\right)_{2^{\lambda-1}}=1 & \Longleftrightarrow\left(\varepsilon_{d}\right)^{\frac{p-1}{2^{\lambda-1}}} \equiv 1(\bmod p) \\
& \Longleftrightarrow \mathfrak{p} \text { splits totally in }\left(\mathbb{O}\left(\sqrt[2^{\lambda-1}]{\varepsilon_{d}}, i\right)\right.
\end{aligned}
$$

by Theorem 119 in [6]. In particular, we immediately have ($c f$. Lemma 1):
A) $p \equiv 5(\bmod 8)$:

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longleftrightarrow\left(\frac{\varepsilon_{d}}{p}\right)=-1
$$

B) $p \equiv 9(\bmod 16)$:

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longleftrightarrow\left(\frac{\varepsilon_{d}}{p}\right)_{4}=-1 ;
$$

C) $p \equiv 1(\bmod 16)$:

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longrightarrow\left(\frac{\varepsilon_{d}}{p}\right)_{4}=1
$$

2 Some Related Results in the Literature

We describe some of the known results dealing with the power residue criteria for ε_{d} or the solvability of (2) with k being a prime p. They are almost all expressed in terms of one or two representations of powers of p by binary quadratic forms.

Reference [4] contains several power residue criteria for ε_{d} being a 2^{t}-th power residue $(t=1,2,3)$ for special classes of d. A typical example is Potenzrestkriterium 1 in [4]:

Theorem 1 Let $d \equiv 7(\bmod 8)$, let the prime divisors q of $m b e \equiv \pm 1(\bmod 8)$, let the class group of $\mathbb{O}(\sqrt{-d})$ have no invariant divisible by 4 , let m be the odd part of the class number of $(\mathbb{O}(\sqrt{-d})$, let $p \equiv 1(\bmod 8)$ be a prime number such that $\left(\frac{q}{p}\right)=1$ for every prime factor q of d. Then $p^{m}=s^{2}+16 d v^{2}, s, v \in \mathbb{Z},\left(\frac{\varepsilon_{d}}{p}\right)=1$ and $\left(\frac{\varepsilon_{d}}{p}\right)_{4}=(-1)^{v}$. If $p \equiv 1(\bmod 16)$ and $\left(\frac{\varepsilon_{d}}{p}\right)_{4}=1$, i.e., $p^{m}=s^{2}+64 d\left(v_{1}\right)^{2}, s, v_{1} \in \mathbb{Z}$, then $\left(\frac{\varepsilon_{d}}{p}\right)_{8}=(-1)^{v_{1}}$.

We refer to [4] for references to older power residue criteria in the literature.
Let us now turn to the case which interests us in this paper, namely $N\left(\varepsilon_{d}\right)=-1$ (i.e., $x^{2}-d y^{2}=-1$ is solvable), $p \equiv 1(\bmod 4)$ and $\left(\frac{d}{p}\right)=1$. This is assumed in the rest of this section.

The old paper [9] contains the following criterion:
Theorem 2 Let $p \equiv 1(\bmod 8)$ be a prime represented by $p=s^{2}+2 v^{2}$; a necessary condition for the solvability of $x^{2}-2 p^{2} y^{2}=-1$ is that $8 \mid v$; for $p \equiv 9(\bmod 16)$ this condition is also sufficient.

Remark 1 Let $p \equiv 1(\bmod 8)$ be a prime. Then (by Gauss) 2 is a biquadratic residue modulo p if and only if $p=x^{2}+64 y^{2}$. If $p \equiv 1(\bmod 16)$, then this is equivalent to $p=s^{2}+128 v^{2}$.

In [8], Theorem 2 was extended to a similar criterion when $p \equiv 17(\bmod 32)$:

Theorem 3 Let $p \equiv 1(\bmod 16)$ be a prime satisfiying the necessary condition of Theorem 2, i.e., representable by the form $p=s^{2}+128 v_{1}^{2}$ and hence also by $p=$ $x^{2}+64 y^{2}$. Then a necessary condition for the solvability of $x^{2}-2 p^{2} y^{2}=-1$ is that $y+v_{1} \equiv \frac{p-1}{16}(\bmod 2) ;$ for $p \equiv 17(\bmod 32)$ this condition is also sufficient.

In [7], a necessary and sufficient condition was given in the case $d=q \equiv 1$ $(\bmod 4)$ a prime and $p \equiv 5(\bmod 8)$. For example, for $q \equiv 5(\bmod 8)$:

Theorem 4 Let $q \equiv 5(\bmod 8)$ be a prime. Let p be a prime $\equiv 1(\bmod 4)$ with $\left(\frac{d}{p}\right)=1$. Then $p^{h / 2}=u^{2}+q v^{2}, h$ being the class number of $(\mathbb{O}(\sqrt{-q})$.

A necessary condition for the solvability of $x^{2}-q p^{2} y^{2}=-1$ is that $\frac{p-1}{4}+v$ is even; for $p \equiv 5(\bmod 8)$ this condition is also sufficient.

In this paper, generalized criteria of the same type as the three previous ones are obtained. Certain (infinite) classes of not necessarily prime d will be covered.

3 The Main Results

We first fix some relevant notation for the subsequent discussion.
Let $d>1$ be a square-free integer. Let p_{1}, \ldots, p_{r} be the odd prime factors of d. Let $\varepsilon_{d}=\frac{u+t \sqrt{d}}{2}>1(u, t \in \mathbb{Z})$ be the fundamental unit of $(\mathbb{O})(\sqrt{d})$. Assume that $N\left(\varepsilon_{d}\right)=-1$. It is readily verified that $\left(\frac{u}{p_{i}}\right)=1$. If u is a biquadratic residue $\left(\bmod p_{i}\right)$, we say that p_{i} is of type I; otherwise, p_{i} is of type II. Let β be the number of p_{i} of type II. The symbol \wedge will denote the logical 'and'; the symbol \vee is the logical 'or'.

Proofs of the results in this section can be found in the subsequent section.
Lemma 2 Let $d>1$ be a square-free integer and assume that $N\left(\varepsilon_{d}\right)=-1$ (i.e., $x^{2}-d y^{2}=-1$ is solvable). Let $p \equiv 1(\bmod 4)$ be a prime number such that
$\left(\frac{d}{p}\right)=1 ;$ let \mathfrak{p} be one of the two prime ideals in $\mathbb{O}(\sqrt{-d})$ above p. Let the class number of $\mathbb{Q}(\sqrt{-d})$ be $h(\mathbb{O}(\sqrt{-d}))=2^{z} m, 2 \nmid m$.

For $d \equiv 5(\bmod 8)$ or $2 \mid d$: Assume that $\mathfrak{p}^{2 m}$ is a principal ideal. For $d \equiv 1$ (mod 8): Assume that \mathfrak{p}^{m} is a principal ideal. Then the following assertions hold:
(1) $d \equiv 5(\bmod 8):$ There is a relation

$$
p^{m_{0}}=d_{1} s^{2}+d_{2} v^{2}, \quad s, v \in \mathbb{Z} \backslash\{0\}, d_{1}, d_{2} \in \mathbb{N}, d_{1} d_{2}=d, p_{r} \nmid d_{1},
$$

with m_{0} minimal (this implies $m_{0} \mid m$). Put

$$
\Sigma_{1}:=\text { the number of prime factors of } d_{1} \text { of type II (with respect to } d \text {). }
$$

(2) $2 \mid d$: There is a relation

$$
p^{m_{0}}=d_{1} s^{2}+d_{2} v^{2}, \quad s, v \in \mathbb{Z} \backslash\{0\}, d_{1}, d_{2} \in \mathbb{N}, d_{1} d_{2}=d, 2 \nmid d_{1},
$$

with m_{0} minimal (this implies $m_{0} \mid m$). Put
$\Sigma_{2}:=$ the number of prime factors of d_{1} of type II (with respect to d).
(3) $d \equiv 1(\bmod 8): \exists s, v \in \mathbb{Z} \backslash\{0\}$, minimal odd $n_{0} \in \mathbb{N}: p^{n_{0}}=s^{2}+d v^{2}$.

And this is equivalent to \mathfrak{p}^{m} being a principal ideal.
Theorem 5 Let the assumptions and the notation be as in Lemma 2. Then

$$
\left(\frac{\varepsilon_{d}}{p}\right)=(-1)^{\frac{p-1}{4}+\frac{s v}{2}} .
$$

Remark 2 Clearly, if $2 \mid d$, then this can be written as $\left(\frac{\varepsilon_{d}}{p}\right)=(-1)^{\frac{p-1}{4}+\frac{\nu}{2}}$; and if $d \equiv 1$ $(\bmod 8)$, then we have $\left(\frac{\varepsilon_{d}}{p}\right)=1$.

Theorem 6 Let the assumptions and the notation be as in Lemma 2. Let $d \equiv 5$ $(\bmod 8)$. Let $p \equiv 1(\bmod 8)$ and write $p=a^{2}+16 b^{2}, a, b \in \mathbb{Z}$. Then for
(i) $2 \mid \beta$:

$$
\begin{aligned}
\left(\frac{\varepsilon_{d}}{p}\right)_{4}=1 \Longleftrightarrow(2 \mid b & \left.\wedge\left(\left(2\left|\Sigma_{1} \wedge 8\right| s v\right) \vee\left(2 \nmid \Sigma_{1} \wedge 4 \| s v\right)\right)\right) \\
& \vee\left(2 \nmid b \wedge\left(\left(2 \mid \Sigma_{1} \wedge 4 \| s v\right) \vee\left(2 \nmid \Sigma_{1} \wedge 8 \mid s v\right)\right)\right) ;
\end{aligned}
$$

(ii) $2 \nmid \beta$:

$$
\begin{aligned}
&\left(\frac{\varepsilon_{d}}{p}\right)_{4}= 1 \Longleftrightarrow \\
&\left(2 \mid b \wedge\left(\left(2 \mid \Sigma_{1} \wedge(4 \| s \vee 8 \mid v)\right) \vee\left(2 \nmid \Sigma_{1} \wedge(8 \mid s \vee 4 \| v)\right)\right)\right) \\
& \vee\left(2 \nmid b \wedge\left(\left(2 \mid \Sigma_{1} \wedge(8 \mid s \vee 4 \| v)\right) \vee\left(2 \nmid \Sigma_{1} \wedge(4 \| s \vee 8 \mid v)\right)\right)\right) .
\end{aligned}
$$

Theorem 7 Let the assumptions and the notation be as in Lemma 2. Let 2|d. Let $p \equiv 1(\bmod 8)$ and write $p=a^{2}+16 b^{2}, a, b \in \mathbb{Z}$. Then

$$
\begin{aligned}
\left(\frac{\varepsilon_{d}}{p}\right)_{4}=1 \Longleftrightarrow(2 \mid b & \left.\wedge\left(\left(2\left|\Sigma_{2} \wedge 8\right| v\right) \vee\left(2 \nmid \Sigma_{2} \wedge 4 \| v\right)\right)\right) \\
& \vee\left(2 \nmid b \wedge\left(\left(2 \mid \Sigma_{2} \wedge 4 \| v\right) \vee\left(2 \nmid \Sigma_{2} \wedge 8 \mid v\right)\right)\right)
\end{aligned}
$$

Theorem 8 Let the assumptions and the notation be as in Lemma 2. Let $d \equiv 1$ $(\bmod 8)$. Let $p \equiv 1(\bmod 8)$ and write $p=a^{2}+16 b^{2}, a, b \in \mathbb{Z}$. Then for
(i) $2 \mid \beta$:

$$
\left(\frac{\varepsilon_{d}}{p}\right)_{4}=1 \Longleftrightarrow(2|b \wedge 8| s v) \vee(2 \nmid b \wedge 8 \nmid s v) ;
$$

(ii) $2 \nmid \beta$:

$$
\left(\frac{\varepsilon_{d}}{p}\right)_{4}=1 \Longleftrightarrow(2 \mid b \wedge(4 \| s \vee 8 \mid v)) \vee(2 \nmid b \wedge 4 \nmid s \wedge 8 \nmid v)
$$

When Theorems 6, 7 and 8 are interpreted in terms of the solvability of the negative Pell equation $x^{2}-d p^{2} y^{2}=-1(c f$. Observation 1$)$, we easily deduce the following three theorems.

Theorem 9 Let the assumptions and the notation be as in Lemma 2. Let $d \equiv 5$ $(\bmod 8)$. If $p \equiv 1(\bmod 8)$, we write $p=a^{2}+16 b^{2}, a, b \in \mathbb{Z}$. Then for
(A) $p \equiv 5(\bmod 8)$:

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longleftrightarrow 4 \mid s v
$$

(B) $p \equiv 9(\bmod 16)$:
(i) $2 \mid \beta$:

$$
\begin{aligned}
x^{2}-d p^{2} y^{2} & =-1 \text { is solvable } \Longleftrightarrow \\
(2 \nmid b & \left.\wedge\left(\left(2\left|\Sigma_{1} \wedge 8\right| s v\right) \vee\left(2 \nmid \Sigma_{1} \wedge 4 \| s v\right)\right)\right) \\
\vee & \left(2 \mid b \wedge\left(\left(2 \mid \Sigma_{1} \wedge 4 \| s v\right) \vee\left(2 \nmid \Sigma_{1} \wedge 8 \mid s v\right)\right)\right)
\end{aligned}
$$

(ii) $2 \nmid \beta$:

$$
\begin{aligned}
x^{2}-d p^{2} y^{2} & =-1 \text { is solvable } \Longleftrightarrow \\
(2 \nmid b & \left.\wedge\left(\left(2 \mid \Sigma_{1} \wedge(4 \| s \vee 8 \mid v)\right) \vee\left(2 \nmid \Sigma_{1} \wedge(8 \mid s \vee 4 \| v)\right)\right)\right) \\
& \vee\left(2 \mid b \wedge\left(\left(2 \mid \Sigma_{1} \wedge(8 \mid s \vee 4 \| v)\right) \vee\left(2 \nmid \Sigma_{1} \wedge(4 \| s \vee 8 \mid v)\right)\right)\right) .
\end{aligned}
$$

(C) $p \equiv 1(\bmod 16)$:
(i) $2 \mid \beta$:

$$
\begin{aligned}
x^{2}-d p^{2} y^{2} & =-1 \text { is solvable } \Longrightarrow \\
(2 \mid b & \left.\wedge\left(\left(2\left|\Sigma_{1} \wedge 8\right| s v\right) \vee\left(2 \nmid \Sigma_{1} \wedge 4 \| s v\right)\right)\right) \\
& \vee\left(2 \nmid b \wedge\left(\left(2 \mid \Sigma_{1} \wedge 4 \| s v\right) \vee\left(2 \nmid \Sigma_{1} \wedge 8 \mid s v\right)\right)\right)
\end{aligned}
$$

(ii) $2 \nmid \beta$:

$$
\begin{aligned}
x^{2}-d p^{2} y^{2} & =-1 \text { is solvable } \Longrightarrow \\
(2 \mid b & \left.\wedge\left(\left(2 \mid \Sigma_{1} \wedge(4 \| s \vee 8 \mid v)\right) \vee\left(2 \nmid \Sigma_{1} \wedge(8 \mid s \vee 4 \| v)\right)\right)\right) \\
& \vee\left(2 \nmid b \wedge\left(\left(2 \mid \Sigma_{1} \wedge(8 \mid s \vee 4 \| v)\right) \vee\left(2 \nmid \Sigma_{1} \wedge(4 \| s \vee 8 \mid v)\right)\right)\right) .
\end{aligned}
$$

Theorem 10 Let the assumptions and the notation be as in Lemma 2. Let $2 \mid d$. If $p \equiv 1(\bmod 8)$, we write $p=a^{2}+16 b^{2}, a, b \in \mathbb{Z}$. Then for
(A) $p \equiv 5(\bmod 8)$:

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longleftrightarrow 2 \nVdash v ;
$$

(B) $p \equiv 9(\bmod 16)$:

$$
\begin{aligned}
x^{2}-d p^{2} y^{2} & =-1 \text { is solvable } \Longleftrightarrow \\
(2 \nmid b & \left.\wedge\left(\left(2\left|\Sigma_{2} \wedge 8\right| v\right) \vee\left(2 \nmid \Sigma_{2} \wedge 4 \| v\right)\right)\right) \\
& \vee\left(2 \mid b \wedge\left(\left(2 \mid \Sigma_{2} \wedge 4 \| v\right) \vee\left(2 \nmid \Sigma_{2} \wedge 8 \mid v\right)\right)\right)
\end{aligned}
$$

(C) $p \equiv 1(\bmod 16)$:

$$
\begin{aligned}
x^{2}-d p^{2} y^{2} & =-1 \text { is solvable } \Longrightarrow \\
(2 \mid b & \left.\wedge\left(\left(2\left|\Sigma_{2} \wedge 8\right| v\right) \vee\left(2 \nmid \Sigma_{2} \wedge 4 \| v\right)\right)\right) \\
& \vee\left(2 \nmid b \wedge\left(\left(2 \mid \Sigma_{2} \wedge 4 \| v\right) \vee\left(2 \nmid \Sigma_{2} \wedge 8 \mid v\right)\right)\right) .
\end{aligned}
$$

Theorem 11 Let the assumptions and the notation be as in Lemma 2. Let $d \equiv 1$ $(\bmod 8)$. If $p \equiv 1(\bmod 8)$, we write $p=a^{2}+16 b^{2}, a, b \in \mathbb{Z}$. Then for
(A) $p \equiv 5(\bmod 8)$:

$$
x^{2}-d p^{2} y^{2}=-1 \text { is not solvable. }
$$

(B) $p \equiv 9(\bmod 16)$:
(a) $2 \mid \beta$:

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longleftrightarrow(2 \nmid b \wedge 8 \mid s v) \vee(2 \mid b \wedge 8 \nmid s v) .
$$

(b) $2 \nmid \beta$:
$x^{2}-d p^{2} y^{2}=-1$ is solvable \Longleftrightarrow

$$
(2 \nmid b \wedge(4 \| s \vee 8 \mid v)) \vee(2 \mid b \wedge 4 \nmid s \wedge 8 \nmid v) .
$$

(C) $p \equiv 1(\bmod 16)$:
(a) $2 \mid \beta$:

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longrightarrow(2|b \wedge 8| s v) \vee(2 \nmid b \wedge 8 \nmid s v) .
$$

(b) $2 \nmid \beta$:

$$
\begin{aligned}
& x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longrightarrow \\
& \qquad(2 \mid b \wedge(4 \| s \vee 8 \mid v)) \vee(2 \nmid b \wedge 4 \nmid s \wedge 8 \nmid v) .
\end{aligned}
$$

Remark 3 If $x^{2}-d y^{2}=-1$ has a solution and the 2-class group of $\mathbb{O}(\sqrt{-d})$ is elementary abelian, then the condition about $\mathfrak{p}^{2 m}$ being principal is clearly fulfilled for all p and it is not hard to show that $d \equiv 5(\bmod 8)$ or $2 \mid d$. We note that Theorem 10 is a generalization of Theorem 2.

Example 1 Let $d=85=5 \cdot 17 \equiv 5(\bmod 8)$. Then: $\varepsilon_{85}=\frac{9+\sqrt{85}}{2} ; N\left(\varepsilon_{85}\right)=-1$; $\beta=2$. The class number is $h(\mathbb{O}(\sqrt{-85}))=4$, so the class group of $\mathbb{O}(\sqrt{-85})$ is $(\mathbb{Z} / 2)^{2}$ which implies that Theorems 6 and 9 cover all prime numbers $p \equiv 1(\bmod 4)$ for which 85 is a quadratic residue (and we have $m_{0}=1$). For example, for the prime $p=1481=35^{2}+16 \cdot 4^{2}=11^{2}+85 \cdot 4^{2} \equiv 9(\bmod 16):\left(\frac{85}{1481}\right)=1 ; \Sigma_{1}=0 ;$

$$
\begin{gathered}
\left(\frac{\varepsilon_{85}}{1481}\right)=(-1)^{\frac{1481-1}{4}+\frac{11 \cdot 4}{2}}=1 ; \quad\left(\frac{\varepsilon_{85}}{1481}\right)_{4}=-1 ; \\
x^{2}-85 \cdot 1481^{2} y^{2}=-1 \text { is solvable. }
\end{gathered}
$$

Example 2 Let $\left.d=10=2 \cdot 5 . \varepsilon_{10}=3+\sqrt{10} ; N\left(\varepsilon_{10}\right)=-1 ; h(\mathbb{O})(\sqrt{-10})\right)=2$. So Theorems 7 and 10 cover all prime numbers $p \equiv 1(\bmod 4)$ for which $\left(\frac{10}{p}\right)=1$ (and $m_{0}=1$). For example, for the prime $p=809=5^{2}+16 \cdot 7^{2}=13^{2}+10 \cdot 8^{2} \equiv 9$ $(\bmod 16):\left(\frac{10}{809}\right)=1 ; \Sigma_{2}=0$;
$\left(\frac{\varepsilon_{10}}{809}\right)=(-1)^{\frac{809-1}{4}+\frac{8}{2}}=1 ; \quad\left(\frac{\varepsilon_{10}}{809}\right)_{4}=-1 ; \quad x^{2}-10 \cdot 809^{2} y^{2}=-1$ is solvable.
Example 3 Let $d=145=5 \cdot 29 \equiv 1(\bmod 8) . \varepsilon_{145}=12+\sqrt{145} ; N\left(\varepsilon_{145}\right)=-1$; $\beta=1 ; h(\mathbb{O}(\sqrt{-145}))=8$. So Theorems 8 and 11 cover all prime numbers $p=$ $s^{2}+145 v^{2}$. For example, for the prime $p=2441=29^{2}+16 \cdot 10^{2}=11^{2}+145 \cdot 4^{2} \equiv 9$ $(\bmod 16)$:

$$
\left(\frac{\varepsilon_{145}}{2441}\right)=1 ; \quad\left(\frac{\varepsilon_{145}}{2441}\right)_{4}=-1 ; \quad x^{2}-145 \cdot 2441^{2} y^{2}=-1 \text { is solvable. }
$$

4 Proofs of the Main Results

In this section we prove the results (and work with the assumptions and notation) from the previous section. Put $\varepsilon=\varepsilon_{d}$.

The extension $\mathbb{O}(\sqrt{\varepsilon}, i) / \mathbb{O}(\sqrt{-d})$ is Galois with Galois group $\mathbb{Z} / 4$; but the extension $\mathbb{O}(\sqrt[4]{\varepsilon}, i) / \mathbb{O}(\sqrt{-d})$ is not Galois for $d \neq 2$. From now on, we assume that $d \neq 2$, cf. Remark 3. The extension $\mathbb{O}(\sqrt[4]{2 \varepsilon}, i) / \mathbb{O}(\sqrt{-d})$ is Galois with Galois group $\mathbb{Z} / 8$. By well-known ramification theory we have for a prime ideal \mathfrak{p} in $(\mathbb{O})(\sqrt{-d})$ above p :
\mathfrak{p} splits totally in $(\mathbb{O}(\sqrt[4]{\varepsilon}, i) \Longleftrightarrow$
\mathfrak{p} splits totally in $\mathbb{O}_{2}(\sqrt{\varepsilon}, i) \wedge$

$$
\begin{aligned}
& \left(\left(\left(\frac{2}{p}\right)_{4}=1 \wedge \mathfrak{p} \text { splits totally in } \mathbb{O}\right)(\sqrt[4]{2 \varepsilon}, i)\right) \\
& \quad \vee\left(\left(\frac{2}{p}\right)_{4}=-1 \wedge \mathfrak{p} \text { does not split totally in }(\mathbb{O}(\sqrt[4]{2 \varepsilon}, i))\right)
\end{aligned}
$$

The solvability of our equation is, therefore, a question of the splitting of \mathfrak{p} in abelian extensions of $\mathbb{O})(\sqrt{-d})$; hence we can apply class field theory.

Clearly, in the extensions $\mathbb{O}(\sqrt{\varepsilon}, i) / \mathbb{O}(\sqrt{-d})$ and $\mathbb{O}(\sqrt[4]{2 \varepsilon}, i) / \mathbb{O}(\sqrt{-d})$ there can only be ramification above 2. Let $A_{(2)}$ be the group of fractional ideals in $(\mathbb{O})(\sqrt{-d})$ relatively prime to 2 . Let (in the sense of class field theory) $H_{-1}, H_{\varepsilon}, H_{2 \varepsilon}, H \subseteq A_{(2)}$ be the ideal groups in $(\mathbb{O})(\sqrt{-d})$ where
(a) H_{-1} corresponds to $\mathbb{O}(\sqrt{d}, i)$;
(b) H_{ε} corresponds to $\mathbb{O}(\sqrt{\varepsilon}, i)$;
(c) $H_{2 \varepsilon}$ corresponds to $\mathbb{O}(\sqrt{2 \varepsilon}, i)$;
(d) H corresponds to $(\mathbb{O})(\sqrt[4]{2 \varepsilon}, i)$.

As a prime ideal in a base field splits totally in an abelian extension if and only if it is in the corresponding ideal group, it is our task to describe the prime ideals in H_{ε} and in H.

Proposition 2 Let \mathfrak{p}_{0} be the prime ideal in $\mathbb{O}(\sqrt{-d})$ above the odd prime factor n of d. Then
(1) $\mathfrak{p}_{0} \in H_{2 \varepsilon}$.
(2) $(\sqrt{-d}) \in H_{2 \varepsilon}$ if d is odd.
(3) $\mathfrak{p}_{0} \in H \Leftrightarrow n$ is of type I.
(4) For d odd: $(\sqrt{-d}) \in H \Leftrightarrow 2 \mid \beta$.
(5) $\mathfrak{p}_{0} \in H_{\varepsilon} \Leftrightarrow n \equiv 1(\bmod 8)$.
(6) $(\sqrt{-d}) \in H_{\varepsilon} \Leftrightarrow d \equiv 1(\bmod 8)$.

Proof (1) Let \mathfrak{p}_{1} be the prime ideal in $(\mathbb{O})(\sqrt{d})$ above n. We have:

$$
\begin{aligned}
\mathfrak{p}_{0} \in H_{2 \varepsilon} & \Longleftrightarrow \mathfrak{p}_{0} \text { splits totally in } \mathbb{O}_{2}(\sqrt{2 \varepsilon}, i) \\
& \Longleftrightarrow \mathfrak{p}_{1} \text { splits totally in }\left(\mathbb{O}_{(}(\sqrt{2 \varepsilon})\right. \\
& \Longleftrightarrow x^{2} \equiv u+t \sqrt{d}\left(\bmod \mathfrak{p}_{1}\right) \text { is solvable in } \mathcal{O}_{\mathbb{O}(\sqrt{d})} \\
& \Longleftrightarrow u^{\frac{N\left(p_{1}\right)-1}{2}} \equiv 1\left(\bmod \mathfrak{p}_{1}\right) \\
& \Longleftrightarrow\left(\frac{u}{n}\right)=1
\end{aligned}
$$

And this last statement is true.
(2) Follows from (1) and the fact that $(\sqrt{-d})$ is the product of the prime ideals in $\mathbb{O}_{(}(\sqrt{-d})$ above the prime factors of d
(3) Let ($c f$. (1)) \mathfrak{p}_{2} be one (of the two) prime ideal(s) in $\mathbb{O}(\sqrt{2 \varepsilon})$ above n. We have:

$$
\begin{aligned}
\mathfrak{p}_{0} \in H & \Longleftrightarrow \mathfrak{p}_{0} \text { splits totally in } \mathbb{O}_{2}(\sqrt[4]{2 \varepsilon}, i) \\
& \Longleftrightarrow \mathfrak{p}_{2} \text { splits totally in }(\mathbb{O}(\sqrt[4]{2 \varepsilon}) \\
& \Longleftrightarrow(\sqrt{u+t \sqrt{d}})^{\frac{N\left(p_{2}\right)-1}{2}} \equiv 1\left(\bmod \mathfrak{p}_{2}\right) \\
& \Longleftrightarrow u^{\frac{n-1}{4}} \equiv 1(\bmod n) \\
& \Longleftrightarrow n \text { is of type I. }
\end{aligned}
$$

(4) Since $\mathfrak{p}_{0} \in H_{2 \varepsilon}$, this is an immediate consequence of (3) and the fact that $\left|H_{2 \varepsilon} / H\right|=2$.
(5) and (6) are proved by similar means.

Lemma 3 Let $p \equiv 1(\bmod 4)$ be a prime number. Let $2 \varepsilon=u+t \sqrt{d}$. Then
(1) For $p \mid d$:

$$
(p) \in H
$$

(2) $\operatorname{For}\left(\frac{d}{p}\right)=1$:

$$
(p) \in H
$$

(3) $\operatorname{For}\left(\frac{d}{p}\right)=-1$:

$$
(u+t \sqrt{d})^{\frac{p^{2}-1}{4}} \equiv 1 \quad(\bmod p) \quad \text { in } \mathcal{O}_{\mathbb{Q}(\sqrt{d})} \Longrightarrow(p) \in H
$$

Proof (1) and (3) are easy, $c f$. (the proof of) Proposition 2.
(2) $\left(\frac{d}{p}\right)=1$: Let \mathfrak{p} be a prime ideal in $\mathbb{O}(\sqrt{-d})$ above p, let \mathfrak{p}^{\prime} be the conjugate ideal. As \mathfrak{p} and \mathfrak{p}^{\prime} split totally in $\mathbb{O}(\sqrt{d}, i)$, the inertial degrees of \mathfrak{p} and \mathfrak{p}^{\prime} in $L:=$ $\mathbb{O}(\sqrt[4]{2 \varepsilon}, i)$ divide 4 . So if we put $K:=\mathbb{O}(\sqrt{-d})$, then we have (for the Artin symbols)

$$
\left.\operatorname{ord}\left(\left(\frac{L / K}{\mathfrak{p}}\right)\right)=\operatorname{ord}(\mathfrak{p} H)=\operatorname{ord}\left(\mathfrak{p}^{\prime} H\right)=\operatorname{ord}\left(\left(\frac{L / K}{\mathfrak{p}^{\prime}}\right)\right) \right\rvert\, 4
$$

If $\operatorname{ord}(\mathfrak{p} H)=\operatorname{ord}\left(\mathfrak{p}^{\prime} H\right)=1$, then $(p)=\mathfrak{p p}^{\prime} \in H$. If $\operatorname{ord}(\mathfrak{p} H)=\operatorname{ord}\left(\mathfrak{p}^{\prime} H\right)=2$, then $\left(\right.$ since $\left.A_{(2)} / H \simeq \mathbb{Z} / 8\right)(p) \in(p) H=(p H)\left(p^{\prime} H\right)=H$.

Consider the remaining case: $\operatorname{ord}(\mathfrak{p} H)=\operatorname{ord}\left(\mathfrak{p}^{\prime} H\right)=4$; then

$$
\left(\frac{L / K}{\mathfrak{p}}\right),\left(\frac{L / K}{\mathfrak{p}^{\prime}}\right) \in \operatorname{Gal}(L / \mathbb{O}(\sqrt{d}, i)) .
$$

So $\left(\frac{L / K}{\mathfrak{p}}\right)$ and $\left(\frac{L / K}{\mathfrak{p}^{\prime}}\right)$ are determined by their values on $\sqrt[4]{2 \varepsilon}$. It is readily verified that

$$
\left(\frac{L / K}{\mathfrak{p}}\right) \circ\left(\frac{L / K}{\mathfrak{p}^{\prime}}\right)(\sqrt[4]{2 \varepsilon})=\sqrt[4]{2 \varepsilon}
$$

Hence, by the isomorphism $A_{(2)} / H \simeq \operatorname{Gal}(L / K)$ (induced by the Artin map),

$$
(p) \in(p) H=(\mathfrak{p} H)\left(\mathfrak{p}^{\prime} H\right)=H
$$

Let $S_{\mathfrak{M}}$ denote the ray class group modulo the divisor \mathfrak{M} in $\mathbb{O}_{\mathcal{L}}(\sqrt{-d})$. We are now able to determine the principal ideals in the ideal groups:

Theorem 12 The subgroups of principal ideals in the ideal groups $H_{-1}, H_{\varepsilon}, H_{2 \varepsilon}, H$ are as follows (where β is the number of odd prime factors of d of type II):
(1) $d \equiv 1(\bmod 4)$:

$$
\left.\begin{array}{c}
H_{-1} \cap S_{(1)}=A_{(2)} \cap S_{(1)} ; \\
H_{\varepsilon} \cap S_{(1)}= \begin{cases}A_{(2)} \cap S_{(1)}, & \text { if } d \equiv 1(\bmod 8) \\
S_{(2)}, & \text { if } d \equiv 5(\bmod 8) ;\end{cases} \\
H_{2 \varepsilon} \cap S_{(1)}=\{(1),(\sqrt{-d})\} S_{(4)} ;
\end{array}\right\} \begin{array}{ll}
\{(1),(5),(\sqrt{-d}),(5 \sqrt{-d})\} S_{(8)}, & 2 \mid \beta \\
\{(1),(5),(4+\sqrt{-d}),(4+5 \sqrt{-d})\} S_{(8)}, & 2 \nmid \beta .
\end{array}
$$

(2) $2 \mid d$:

$$
\begin{gathered}
H_{-1} \cap S_{(1)}=S_{(2)} ; \\
H_{\varepsilon} \cap S_{(1)}=H_{2 \varepsilon} \cap S_{(1)}=S_{(4)} ; \\
H \cap S_{(1)}=\{(1),(5)\} S_{(8)} .
\end{gathered}
$$

Proof We prove the case $d \equiv 1(\bmod 4)$ for the ideal groups corresponding to $\mathbb{O}(\sqrt[4]{2 \varepsilon}, i) / \mathbb{O}(\sqrt{-d})$ and its subextensions; the other assertions are proved in a similar way.
(1) Since $(\mathbb{O}(\sqrt{d}, i) / \mathbb{O})(\sqrt{-d})$ is unramified, we have

$$
H_{-1} \cap S_{(1)}=A_{(2)} \cap S_{(1)}
$$

(2) It is not hard to show (for instance by the conductor-discriminant formula, see [5, p. 136]) that the conductor of the abelian extension $\mathbb{O}(\sqrt{2 \varepsilon}, i) / \mathbb{O})(\sqrt{-d})$ divides (4); hence $S_{(4)} \subseteq H_{2 \varepsilon}$. As $(\mathbb{O})(\sqrt{2 \varepsilon}, i) / \mathbb{O}(\sqrt{-d})$ is ramified, we have $H_{2 \varepsilon} \cap S_{(1)} \neq$ $A_{(2)} \cap S_{(1)}$. We infer that

$$
\left[A_{(2)} \cap S_{(1)}: H_{2 \varepsilon} \cap S_{(1)}\right]=\left[H_{-1} \cap S_{(1)}: H_{2 \varepsilon} \cap S_{(1)}\right]=2
$$

Since $(\sqrt{-d}) \in H_{2 \varepsilon} \cap S_{(1)}$ (by Proposition 2), we conclude that

$$
H_{2 \varepsilon} \cap S_{(1)}=\{(1),(\sqrt{-d})\} S_{(4)}
$$

(3) It is not difficult to show (for instance by the conductor-discriminant formula) that the conductor of the extension $(\mathbb{O}(\sqrt[4]{2 \varepsilon}, i) / \mathbb{O}(\sqrt{-d})$ divides (8); hence $S_{(8)} \subseteq H$. Using the fact that $A_{(2)} / H$ is cyclic one finds that $\left[\{(1),(\sqrt{-d})\} S_{(4)}:\right.$ $\left.H \cap S_{(1)}\right]=2$. As $A_{(2)} \cap S_{(1)} / S_{(4)}$ is not cyclic, we get $H \cap S_{(1)} \neq S_{(4)}$. From (5) $\in H$ (by Lemma 3) and $\{(1),(\sqrt{-d})\} S_{(4)} \supseteq H \cap S_{(1)} \supseteq S_{(8)}$ it follows that

$$
H \cap S_{(1)}=\{(1),(5),(\sqrt{-d}),(5 \sqrt{-d})\} S_{(8)}
$$

or

$$
H \cap S_{(1)}=\{(1),(5),(4+\sqrt{-d}),(4+5 \sqrt{-d})\} S_{(8)}
$$

Since

$$
H \cap S_{(1)}=\{(1),(5),(\sqrt{-d}),(5 \sqrt{-d})\} S_{(8)} \Longleftrightarrow(\sqrt{-d}) \in H \cap S_{(1)} \Longleftrightarrow 2 \mid \beta
$$

(cf. Proposition 2), we have proved what was asserted about $H \cap S_{(1)}$.
We now turn to the proofs of the results of the previous section. We concentrate on $d \equiv 5(\bmod 8)$; the other cases are similar .

The existence of a relation $p^{m_{0}}=d_{1} s^{2}+d_{2} v^{2}$ follows by genus theory and if m_{0} is minimal, it is not difficult to show that $m_{0} \mid m$ and that if we write $d_{1}=p_{1}^{a_{1}} \cdots p_{r-1}^{a_{r-1}}$, $a_{1}, \ldots, a_{r-1} \in\{0,1\}$, then, for a suitable sign of v, we have (where P_{i} is the prime ideal in $(\mathbb{O})(\sqrt{-d})$ above $\left.p_{i}\right)$

$$
\mathfrak{p}^{m_{0}} P_{1}^{a_{1}} \cdots P_{r-1}^{a_{r-1}}=\left(d_{1} s+v \sqrt{-d}\right)
$$

Note that

$$
\Sigma_{1}=\sum_{p_{i} \text { of type II }} a_{i}
$$

Put

$$
\Sigma_{a}:=\sum_{p_{i} \equiv 5(\bmod 8)} a_{i}
$$

One checks that

$$
v \equiv \Sigma_{a}(\bmod 2) \Longleftrightarrow(4 \mid s v \wedge p \equiv 1(\bmod 8)) \vee(4 \nmid s v \wedge p \equiv 5(\bmod 8))
$$

We find that

$$
\begin{aligned}
\mathfrak{p} \in H_{\varepsilon} & \Longleftrightarrow \mathfrak{p}^{m_{0}} \in H_{\varepsilon} \\
& \Longleftrightarrow \mathfrak{p}^{m_{0}} \cdot \prod_{P_{i} \equiv 5}\left(P_{i}(\sqrt{-d})\right)^{a_{i}} \cdot \prod_{P_{i} \equiv 1} \prod_{(\bmod 8)} P_{i}^{a_{i}} \in H_{\varepsilon} \\
& \Longleftrightarrow\left(2 \mid \Sigma_{a} \wedge\left(d_{1} s+v \sqrt{-d}\right) \in H_{\varepsilon}\right) \\
& \vee\left(2 \nmid \Sigma_{a} \wedge\left(d_{1} s+v \sqrt{-d}\right)(\sqrt{-d}) \in H_{\varepsilon}\right) \\
& \Longleftrightarrow\left(2\left|\Sigma_{a} \wedge 2\right| v\right) \vee\left(2 \nmid \Sigma_{a} \wedge 2 \nmid v\right) \\
& \Longleftrightarrow v \equiv \Sigma_{a}(\bmod 2) \\
& \Longleftrightarrow(4 \mid s v \wedge p \equiv 1(\bmod 8)) \vee(4 \nmid s v \wedge p \equiv 5(\bmod 8))
\end{aligned}
$$

and

$$
\begin{aligned}
\mathfrak{p} \in H & \Longleftrightarrow \mathfrak{p}^{m_{0}} \in H \\
& \Longleftrightarrow \mathfrak{p}^{m_{0}} \cdot \prod_{P_{i} \text { of type I }} P_{i}^{a_{i}} \cdot \prod_{P_{i} \text { of type II }}\left(P_{i}(1+4 \sqrt{-d})\right)^{a_{i}} \in H \\
& \Longleftrightarrow\left(2 \mid \Sigma_{1} \wedge\left(d_{1} s+v \sqrt{-d}\right) \in H\right) \\
& \vee\left(2 \nmid \Sigma_{1} \wedge\left(d_{1} s+v \sqrt{-d}\right)(1+4 \sqrt{-d}) \in H\right) \\
& \Longleftrightarrow \begin{cases}\left(2\left|\Sigma_{1} \wedge 8\right| s v\right) \vee\left(2 \nmid \Sigma_{1} \wedge 4 \| s v\right), \\
\left(2 \mid \Sigma_{1} \wedge(4 \| s \vee 8 \mid v)\right) \vee\left(2 \nmid \Sigma_{1} \wedge(8 \mid s \vee 4 \| v)\right), & 2 \nmid \beta\end{cases}
\end{aligned}
$$

Note that $\left(\frac{\varepsilon_{d}}{p}\right)=1$ if and only if $\mathfrak{p} \in H_{\varepsilon}$ and that $\left(\frac{\varepsilon_{d}}{p}\right)_{4}=1$ if and only if $\mathfrak{p} \in$ $H_{\varepsilon} \wedge((2 \mid b \wedge \mathfrak{p} \in H) \vee(2 \nmid b \wedge \mathfrak{p} \notin H)), c f$. Observation 1 and the observations at the beginning of this section. From this it is routine to deduce the criteria in the previous section. Note that $\left(\frac{2}{p}\right)_{4}=1$ is equivalent to $2 \mid b$ (if $p=a^{2}+16 b^{2}$), cf. Remark 1 .

5 A Similar Result

We state a general result for d even. It can be proved in a manner similar to the proofs in the previous section.

Theorem 13 Let $d>1$ be a square-free even integer, and assume that $N\left(\varepsilon_{d}\right)=-1$ (i.e., $x^{2}-d y^{2}=-1$ is solvable). Let $p \equiv 1(\bmod 4)$ be a prime number such that $\left(\frac{d}{p}\right)=1$. Let the class number of $\left(\mathbb{O}(\sqrt{-d})\right.$ be $h(\mathbb{O}(\sqrt{-d}))=2^{z} m, 2 \nmid m$. For $p \equiv 1$ $(\bmod 8)$ we write $p=a^{2}+16 b^{2}, a, b \in \mathbb{Z}$. There are integers $g_{1}, \ldots, g_{r} \in \mathbb{N}$ and prime numbers $\hat{p}_{1}, \ldots, \hat{p}_{r}, \hat{q}_{1}, \ldots, \hat{q}_{r}$ (depending only on d) such that the following statements hold:
(1) Let $p \neq \hat{p_{1}}, \ldots, \hat{p_{r}}$. There is a minimal odd $m_{0} \in \mathbb{N}$ such that

$$
p^{m_{0}} \hat{p}_{1}^{a_{1}} \cdots \hat{p}_{r}^{a_{r}}=s^{2}+d v^{2}
$$

for suitable $a_{i} \in\left\{0,1, \ldots, g_{i}\right\} ; s, v \in \mathbb{Z} \backslash\{0\}$. This minimal odd m_{0} satisfies $m_{0} \leq m$.
(2) Let $p \neq \hat{q}_{1}, \ldots, \hat{q}_{r}$. There is a minimal odd $m_{0}^{\prime} \in \mathbb{N}$ such that

$$
p^{m_{0}^{\prime}} \hat{q}_{1}^{a_{1}^{\prime}} \cdots \hat{q}_{r}^{a_{r}^{\prime}}=\left(s^{\prime}\right)^{2}+d\left(v^{\prime}\right)^{2}
$$

for suitable $a_{i}^{\prime} \in\left\{0,1, \ldots, g_{i}^{\prime}\right\} ; s^{\prime}, v^{\prime} \in \mathbb{Z} \backslash\{0\}$. This minimal odd m_{0}^{\prime} satisfies $m_{0}^{\prime} \leq m$.
(3) $\hat{q}_{1}, \ldots, \hat{q}_{r} \neq p$:

$$
\left.\left(\frac{\varepsilon_{d}}{p}\right)=1 \quad \Longleftrightarrow 4 \right\rvert\, v^{\prime}
$$

(4) $\hat{p_{1}}, \ldots, \hat{p_{r}}, \hat{q_{1}}, \ldots, \hat{q_{r}} \neq p \equiv 1(\bmod 8):$

$$
\left.\left(\frac{\varepsilon_{d}}{p}\right)_{4}=1 \quad \Longleftrightarrow 4 \right\rvert\, v^{\prime} \wedge((2|b \vee 8| v) \vee(2 \nmid b \vee 8 \nmid v)) .
$$

Theorem 14 Let the assumptions and the notation be as in Theorem 13. Then
(A) $\hat{q_{1}}, \ldots, \hat{q_{r}} \neq p \equiv 5(\bmod 8)$:

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longleftrightarrow 4 \nmid v^{\prime}
$$

(B) $\hat{p}_{1}, \ldots, \hat{p_{r}}, \hat{q_{1}}, \ldots, \hat{q}_{r} \neq p \equiv 9(\bmod 16):$

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longleftrightarrow 4 \mid v^{\prime} \wedge((2 \nmid b \vee 8 \mid v) \vee(2 \mid b \vee 8 \nmid v))
$$

(C) $\hat{p}_{1}, \ldots, \hat{p_{r}}, \hat{q_{1}}, \ldots, \hat{q}_{r} \neq p \equiv 1(\bmod 16):$

$$
x^{2}-d p^{2} y^{2}=-1 \text { is solvable } \Longrightarrow 4 \mid v^{\prime} \wedge((2|b \vee 8| v) \vee(2 \nmid b \vee 8 \nmid v))
$$

Remark 4 If we choose prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r} \in H$ and $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{r} \in H_{\varepsilon}$ such that

$$
\mathfrak{p}_{1}\left(A_{(2)} \cap S_{(1)}\right), \ldots, \mathfrak{p}_{r}\left(A_{(2)} \cap S_{(1)}\right) \quad \text { and } \quad \mathfrak{q}_{1}\left(A_{(2)} \cap S_{(1)}\right), \ldots, \mathfrak{q}_{r}\left(A_{(2)} \cap S_{(1)}\right)
$$

are bases for the 2-Sylow group of $A_{(2)} /\left(A_{(2)} \cap S_{(1)}\right)$ (where the ideal groups are as before), then $\hat{p_{1}}, \ldots, \hat{p}_{r}, \hat{q}_{1}, \ldots, \hat{q}_{r}$ can be taken as the norms of these prime ideals; put $g_{i}:=\operatorname{ord}\left(\mathfrak{p}_{i}\left(A_{(2)} \cap S_{(1)}\right)\right)-1$ and $g_{i}^{\prime}:=\operatorname{ord}\left(\mathfrak{q}_{i}\left(A_{(2)} \cap S_{(1)}\right)\right)-1$.

Example 4 We give an explicit criterion for $d=2 \cdot 41$. This d with arbitrary p is not covered by the criteria in the previous sections since the class group of $(\mathbb{O})(\sqrt{-82})$ is isomorphic to $\mathbb{Z} / 4$. We have $\varepsilon_{82}=9+\sqrt{82}$ of norm -1 . Let $\mathfrak{p}_{13}, \mathfrak{p}_{29}$ be prime ideals in $(\mathbb{O})(\sqrt{-82})$ above 13,29 , respectively. Let $\bar{p}_{13}, \overline{\mathfrak{p}}_{29}$ be prime ideals in $\mathbb{O}(\mathcal{O}(\sqrt{82})$ above 13,29 , respectively. It is easily seen that each of

$$
\mathfrak{p}_{13}\left(A_{(2)} \cap S_{(1)}\right), \quad \mathfrak{p}_{29}\left(A_{(2)} \cap S_{(1)}\right)
$$

generates $A_{(2)} /\left(A_{(2)} \cap S_{(1)}\right)$ (with notation as before). Since

$$
(2 \varepsilon)^{\frac{N\left(\tilde{p}_{13}\right)-1}{4}}=2^{3} \cdot(9+\sqrt{82})^{3} \equiv 1(\bmod 13),
$$

it follows that $\mathfrak{p}_{13} \in H$. Similarly, $\mathfrak{p}_{29} \in H_{\varepsilon}$. Hence we have the following criterion:
Let $p=a^{2}+16 b^{2} \equiv 9(\bmod 16)$ be a prime number with $\left(\frac{82}{p}\right)=1$; write

$$
p \cdot 13^{a_{1}}=s^{2}+82 v^{2}, \quad p \cdot 29^{a_{1}^{\prime}}=\left(s^{\prime}\right)^{2}+82\left(v^{\prime}\right)^{2}
$$

where $a_{1}, a_{1}^{\prime} \in\{0,1,2,3\}$ and $s, v, s^{\prime}, v^{\prime} \in \mathbb{Z} \backslash\{0\}$. Then (since necessarily $p \neq$ 13, 29)

$$
x^{2}-82 p^{2} y^{2}=-1 \text { is solvable } \Longleftrightarrow 4 \mid v^{\prime} \wedge((2 \nmid b \vee 8 \mid v) \vee(2 \mid b \vee 8 \nmid v)) .
$$

References

[1] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory. Thompson, Washington D.C, 1967.
[2] P. G. L. Dirichlet, Einige neue Sätze über unbestimmte Gleichungen. Gesammelte Werke, Chelsea, New York, 219-236.
[3] Y. Furuta, Norm of Units of Quadratic Fields. J. Math. Soc. Japan 11(1959), 139-145.
[4] F. Halter-Koch, Konstruktion von Klassenkörpern und Potenzrestkriterien für quadratische Einheiten. Manuscripta Math 54(1986), 453-492.
[5] H. Hasse, Vorlesungen über Klassenkörpertheorie. Physica-Verlag, Würzburg, 1967.
[6] E. Hecke, Lectures on the Theory of Algebraic Numbers. Springer-Verlag, 1981.
[7] Chr. U. Jensen, On the Solvability of a Certain Class of non-Pellian Equations. Math. Scand. 10(1962), 71-84.
[8] \longrightarrow On the Diophantine Equation $\xi^{2}-2 m^{2} \eta^{2}=-1$. Math. Scand. 11(1962), 58-62.
[9] J. Perrot, Sur l'equation $t^{2}-D y^{2}=-1$. J. Reine Angew. Math. 102(1888), 185-223.
[10] L. Rédei, Bedingtes Artinsymbol mit Anwendungen in der Klassenkörpertheorie. Acta Math. Sci. Hung. 4(1953), 1-29.
[11] Die 2-Ringklassengruppe des quadratischen Zahlkörpers und die Theorie der Pellschen Gleichung. Acta Math. Sci. Hung. 4(1953), 31-87.
[12] L. Rédei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppe eines beliebigen quadratischen Zahlkörbers. J. Reine Angew. Math. 170(1934), 69-74.
[13] A. Scholz, Über die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$. Math. Zeitschrift 39(1935), 95-111.

Department of Mathematics

University of Copenhagen
DK-2100 Copenhagen
Denmark
email: tommy@math.ku.dk

[^0]: Received by the editors April 27, 2001; revised August 19, 2001.
 AMS subject classification: 11R11, 11R27.
 (C)Canadian Mathematical Society 2003.

