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Power Residue Criteria for Quadratic Units
and the Negative Pell Equation

Tommy Bülow

Abstract. Let d > 1 be a square-free integer. Power residue criteria for the fundamental unit εd of the

real quadratic fields Q(
√

d) modulo a prime p (for certain d and p) are proved by means of class field

theory. These results will then be interpreted as criteria for the solvability of the negative Pell equation

x2 − dp2 y2
= −1. The most important solvability criterion deals with all d for which Q(

√
−d) has

an elementary abelian 2-class group and p ≡ 5 (mod 8) or p ≡ 9 (mod 16).

1 Introduction

Let D be a non-square natural number. The problem of deciding whether the negative
Pell equation

(1) x2 − Dy2
= −1,

has integral solutions is a classical problem in number theory which is not solved in
general. Obvious necessary conditions for the solvability of (1) are that 4 - D and

that every odd prime factor of D is ≡ 1 (mod 4); they are not sufficient.

Consider two indefinite integral binary quadratic forms of positive discriminant:

f (x, y) = ax2 + bxy + cy2 and g(x, y) = a ′x2 + b ′xy + c ′y2. Then f and g are

called equivalent if there is a matrix A =

[

α β
γ δ

]

∈ GL2(Z) such that f (x, y) =

g(αx + βy, γx + δy); if this holds and A ∈ SL2(Z), then f and g are called properly

equivalent (these matters where studied by Gauss). The discriminant of f is b2 −4ac.
If we consider forms of fixed positive non-square discriminant D, then it is known
that

proper equivalence = equivalence ⇐⇒ x2 − Dy2
= −4 is solvable.

If 4 - D, then these two statements are true if and only if x2 − Dy2
= −1 is solvable.

Many mathematicians have made sporadic contributions to the problem about

the solvability of (1). Fermat and Euler were some of the first to study the equation
systematically. First, suppose that D is square-free. Dirichlet [2] proved (by rather
elementary means) certain sufficient conditions for solvability (expressed in terms of
the quadratic or biquadratic residue character of the prime factors of D). More recent

results can be found in [3], [10], [11], [12], [13].
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We shall consider the case where D is not square-free. Let d > 1 be a square-free
integer and let k > 1 be a an odd integer. The equation (1) with D not square-free

(and, of course, 4 - D) can be written

(2) x2 − dk2 y2
= −1.

We note that the problem in question is that of deciding whether the norm of the
fundamental unit of the order of conductor k in Q(

√
d) is 1 or −1. This has con-

sequences for the structure of the corresponding ring class fields. For the class field
theory to be used we refer to [1] or [5].

We mention (without proof) another formulation of the problem in terms of class

field theory: Consider the two ideal groups in K := Q(
√

d) (where A(k)(K) denotes
the group of fractional ideals in K relatively prime to k):

H ′ :=
{

(α) ∈ A(k)(K) | ∃ r ∈ Q : α ≡ r
(

mod (k)
)}

and

H ′ ′ :=
{

(α) ∈ A(k)(K) | ∃ r ∈ Q : α ≡ r
(

mod (k)∞
)}

;

(k) (resp. (k)∞) is clearly a congruence module for H ′ (resp. H ′ ′); ∞ is the divisor

of K which is the product of the real embeddings of K. Let L ′ (resp. L ′ ′) be the
abelian extension of K corresponding to H ′ (resp. H ′ ′). By definition of infinite
ramification, L ′ ⊆ R. It is also clear that H ′ ⊇ H ′ ′. Then the following is true:

Proposition 1 The following three conditions are equivalent (for 2 - k).

(1) x2 − dk2 y2
= −1 is solvable.

(2) H ′
= H ′ ′.

(3) L ′ ′ ⊆ R.

When studying the existence of integral solutions to (2) one can, as is well-known,

assume that k is a prime number p ≡ 1 (mod 4). Of course, one can assume that (2)
with k = 1 has a solution. We shall also assume that p - d. It is not hard to show that
if ( d

p
) = −1 and if x2 − dy2

= −1 is solvable, then x2 − dp2 y2
= −1 is also solvable.

The remaining case, ( d
p

) = 1, is still not completely settled. Below we use class

field theory to prove some results concerning this case.

Let εd > 1 be the fundamental unit of the real quadratic field Q(
√

d). When the

norm of εd is −1, the solvability of (2) with k being a prime number p ≡ 1 (mod 4)
is closely related to the power residue character of εd modulo p. In [7], the following
lemma is proved in an elementary way.

Lemma 1 Let d > 1 be a square-free integer. Let the fundamental unit εd of Q(
√

d)
have norm −1 and let p ≡ 1 (mod 4) be a prime number with ( d

p
) = 1. Suppose that

2λ ‖ p − 1. Then

x2 − dp2 y2
= −1 is solvable ⇐⇒ (εd)

p−1

2λ−1 ≡ −1 (mod p) (in O
Q(

√
d)).
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If c is an integer not divisible by the odd prime p and the Legendre symbol ( c
p

) has

the value 1, then we define the symbol ( c
p

)4 to be be 1 or −1 according as c is or is not

a fourth power modulo p. If ( d
p

) = 1, then we can interpret εd as an integer modulo

p and if the norm N(εd) of εd is 1 or if N(εd) = −1 and p ≡ 1 (mod 4), the symbol
( εd

p
) is well-defined. When there is no risk of ambiguity, we define, recursively, the

symbol ( εd

p
)2t+1 = 1 (resp. = −1) to mean that ( εd

p
)2t = 1 and εd is (resp. is not)

a 2t+1-th power modulo p. For our purposes it will be sufficient to know that if

N(εd) = 1 or if N(εd) = −1 and p ≡ 1 (mod 8), the symbol ( εd

p
)4 is well defined.

Observation 1 Let p ≡ 1 (mod 2λ) (λ = 2, 3) be a prime number with ( d
p

) = 1

and let p be one of the two prime ideals in Q(
√
−d) above p. Then

( εd

p

)

2λ−1
= 1 ⇐⇒ (εd)

p−1

2λ−1 ≡ 1 (mod p)

⇐⇒ p splits totally in Q( 2λ−1√εd, i),

by Theorem 119 in [6]. In particular, we immediately have (cf. Lemma 1):

A) p ≡ 5 (mod 8):

x2 − dp2 y2
= −1 is solvable ⇐⇒

( εd

p

)

= −1;

B) p ≡ 9 (mod 16):

x2 − dp2 y2
= −1 is solvable ⇐⇒

( εd

p

)

4
= −1;

C) p ≡ 1 (mod 16):

x2 − dp2 y2
= −1 is solvable =⇒

( εd

p

)

4
= 1.

2 Some Related Results in the Literature

We describe some of the known results dealing with the power residue criteria for εd

or the solvability of (2) with k being a prime p. They are almost all expressed in terms
of one or two representations of powers of p by binary quadratic forms.

Reference [4] contains several power residue criteria for εd being a 2t -th power
residue (t = 1, 2, 3) for special classes of d. A typical example is Potenzrestkriterium 1
in [4]:

Theorem 1 Let d ≡ 7 (mod 8), let the prime divisors q of m be ≡ ±1 (mod 8),

let the class group of Q(
√
−d) have no invariant divisible by 4, let m be the odd part

of the class number of Q(
√
−d), let p ≡ 1 (mod 8) be a prime number such that

( q
p

) = 1 for every prime factor q of d. Then pm
= s2 + 16dv2, s, v ∈ Z, ( εd

p
) = 1 and

( εd

p
)4 = (−1)v. If p ≡ 1 (mod 16) and ( εd

p
)4 = 1, i.e., pm

= s2 + 64d(v1)2, s, v1 ∈ Z,

then ( εd

p
)8 = (−1)v1 .
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We refer to [4] for references to older power residue criteria in the literature.

Let us now turn to the case which interests us in this paper, namely N(εd) = −1
(i.e., x2 − dy2

= −1 is solvable), p ≡ 1 (mod 4) and ( d
p

) = 1. This is assumed in

the rest of this section.

The old paper [9] contains the following criterion:

Theorem 2 Let p ≡ 1 (mod 8) be a prime represented by p = s2 + 2v2; a necessary

condition for the solvability of x2 − 2p2 y2
= −1 is that 8|v; for p ≡ 9 (mod 16) this

condition is also sufficient.

Remark 1 Let p ≡ 1 (mod 8) be a prime. Then (by Gauss) 2 is a biquadratic

residue modulo p if and only if p = x2 + 64y2. If p ≡ 1 (mod 16), then this is
equivalent to p = s2 + 128v2.

In [8], Theorem 2 was extended to a similar criterion when p ≡ 17 (mod 32):

Theorem 3 Let p ≡ 1 (mod 16) be a prime satisfiying the necessary condition of

Theorem 2, i.e., representable by the form p = s2 + 128v2
1 and hence also by p =

x2 + 64y2. Then a necessary condition for the solvability of x2 − 2p2 y2
= −1 is that

y + v1 ≡ p−1
16

(mod 2); for p ≡ 17 (mod 32) this condition is also sufficient.

In [7], a necessary and sufficient condition was given in the case d = q ≡ 1
(mod 4) a prime and p ≡ 5 (mod 8). For example, for q ≡ 5 (mod 8):

Theorem 4 Let q ≡ 5 (mod 8) be a prime. Let p be a prime ≡ 1 (mod 4) with

( d
p

) = 1. Then ph/2
= u2 + qv2, h being the class number of Q(

√−q).

A necessary condition for the solvability of x2 − qp2 y2
= −1 is that p−1

4
+ v is even;

for p ≡ 5 (mod 8) this condition is also sufficient.

In this paper, generalized criteria of the same type as the three previous ones are

obtained. Certain (infinite) classes of not necessarily prime d will be covered.

3 The Main Results

We first fix some relevant notation for the subsequent discussion.

Let d > 1 be a square-free integer. Let p1, . . . , pr be the odd prime factors of

d. Let εd =
u+t

√
d

2
> 1 (u, t ∈ Z) be the fundamental unit of Q(

√
d). Assume

that N(εd) = −1. It is readily verified that ( u
pi

) = 1. If u is a biquadratic residue

(mod pi), we say that pi is of type I; otherwise, pi is of type II. Let β be the number

of pi of type II. The symbol ∧ will denote the logical ‘and’; the symbol ∨ is the logical
‘or’.

Proofs of the results in this section can be found in the subsequent section.

Lemma 2 Let d > 1 be a square-free integer and assume that N(εd) = −1 (i.e.,

x2 − dy2
= −1 is solvable). Let p ≡ 1 (mod 4) be a prime number such that
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( d
p

) = 1; let p be one of the two prime ideals in Q(
√
−d) above p. Let the class number

of Q(
√
−d) be h

(

Q(
√
−d)

)

= 2zm, 2 - m.

For d ≡ 5 (mod 8) or 2|d: Assume that p2m is a principal ideal. For d ≡ 1

(mod 8): Assume that pm is a principal ideal. Then the following assertions hold:

(1) d ≡ 5 (mod 8): There is a relation

pm0 = d1s2 + d2v2, s, v ∈ Z \ {0}, d1, d2 ∈ N, d1d2 = d, pr - d1,

with m0 minimal (this implies m0|m). Put

Σ1 := the number of prime factors of d1 of type II (with respect to d).

(2) 2|d: There is a relation

pm0 = d1s2 + d2v2, s, v ∈ Z \ {0}, d1, d2 ∈ N, d1d2 = d, 2 - d1,

with m0 minimal (this implies m0|m). Put

Σ2 := the number of prime factors of d1 of type II (with respect to d).

(3) d ≡ 1 (mod 8): ∃ s, v ∈ Z \ {0}, minimal odd n0 ∈ N: pn0 = s2 + dv2.

And this is equivalent to pm being a principal ideal.

Theorem 5 Let the assumptions and the notation be as in Lemma 2. Then
( εd

p

)

= (−1)
p−1

4
+ sv

2 .

Remark 2 Clearly, if 2|d, then this can be written as ( εd

p
) = (−1)

p−1
4

+ v
2 ; and if d ≡ 1

(mod 8), then we have ( εd

p
) = 1.

Theorem 6 Let the assumptions and the notation be as in Lemma 2. Let d ≡ 5
(mod 8). Let p ≡ 1 (mod 8) and write p = a2 + 16b2, a, b ∈ Z. Then for

(i) 2|β:
( εd

p

)

4
= 1 ⇐⇒

(

2|b ∧
(

(2|Σ1 ∧ 8|sv) ∨ (2 - Σ1 ∧ 4 ‖ sv)
)

)

∨
(

2 - b ∧
(

(2|Σ1 ∧ 4 ‖ sv) ∨ (2 - Σ1 ∧ 8|sv)
)

)

;

(ii) 2 - β:
( εd

p

)

4
= 1 ⇐⇒

(

2|b ∧
(

(

2|Σ1 ∧ (4 ‖ s ∨ 8|v)
)

∨
(

2 - Σ1 ∧ (8|s ∨ 4 ‖ v)
)

)

)

∨
(

2 - b ∧
(

(

2|Σ1 ∧ (8|s ∨ 4 ‖ v)
)

∨
(

2 - Σ1 ∧ (4 ‖ s ∨ 8|v)
)

)

)

.
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Theorem 7 Let the assumptions and the notation be as in Lemma 2. Let 2|d. Let

p ≡ 1 (mod 8) and write p = a2 + 16b2, a, b ∈ Z. Then

( εd

p

)

4
= 1 ⇐⇒

(

2|b ∧
(

(2|Σ2 ∧ 8|v) ∨ (2 - Σ2 ∧ 4 ‖ v)
)

)

∨
(

2 - b ∧
(

(2|Σ2 ∧ 4 ‖ v) ∨ (2 - Σ2 ∧ 8|v)
)

)

.

Theorem 8 Let the assumptions and the notation be as in Lemma 2. Let d ≡ 1
(mod 8). Let p ≡ 1 (mod 8) and write p = a2 + 16b2, a, b ∈ Z. Then for

(i) 2|β:
( εd

p

)

4
= 1 ⇐⇒ (2|b ∧ 8|sv) ∨ (2 - b ∧ 8 - sv);

(ii) 2 - β:

( εd

p

)

4
= 1 ⇐⇒

(

2|b ∧ (4 ‖ s ∨ 8|v)
)

∨ (2 - b ∧ 4 ∦ s ∧ 8 - v).

When Theorems 6, 7 and 8 are interpreted in terms of the solvability of the nega-
tive Pell equation x2−dp2 y2

= −1 (cf. Observation 1), we easily deduce the following
three theorems.

Theorem 9 Let the assumptions and the notation be as in Lemma 2. Let d ≡ 5
(mod 8). If p ≡ 1 (mod 8), we write p = a2 + 16b2, a, b ∈ Z. Then for

(A) p ≡ 5 (mod 8):

x2 − dp2 y2
= −1 is solvable ⇐⇒ 4|sv.

(B) p ≡ 9 (mod 16):

(i) 2|β:

x2 − dp2 y2
= −1 is solvable ⇐⇒

(

2 - b ∧
(

(2|Σ1 ∧ 8|sv) ∨ (2 - Σ1 ∧ 4 ‖ sv)
)

)

∨
(

2|b ∧
(

(2|Σ1 ∧ 4 ‖ sv) ∨ (2 - Σ1 ∧ 8|sv)
)

)

;

(ii) 2 - β:

x2 − dp2 y2
= −1 is solvable ⇐⇒

(

2 - b ∧
(

(

2|Σ1 ∧ (4 ‖ s ∨ 8|v)
)

∨
(

2 - Σ1 ∧ (8|s ∨ 4 ‖ v)
)

)

)

∨
(

2|b ∧
(

(

2|Σ1 ∧ (8|s ∨ 4 ‖ v)
)

∨
(

2 - Σ1 ∧ (4 ‖ s ∨ 8|v)
)

)

)

.
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(C) p ≡ 1 (mod 16):

(i) 2|β:

x2 − dp2 y2
= −1 is solvable =⇒

(

2|b ∧
(

(2|Σ1 ∧ 8|sv) ∨ (2 - Σ1 ∧ 4 ‖ sv)
)

)

∨
(

2 - b ∧
(

(2|Σ1 ∧ 4 ‖ sv) ∨ (2 - Σ1 ∧ 8|sv)
)

)

;

(ii) 2 - β:

x2 − dp2 y2
= −1 is solvable =⇒

(

2|b ∧
(

(

2|Σ1 ∧ (4 ‖ s ∨ 8|v)
)

∨
(

2 - Σ1 ∧ (8|s ∨ 4 ‖ v)
)

)

)

∨
(

2 - b ∧
(

(

2|Σ1 ∧ (8|s ∨ 4 ‖ v)
)

∨
(

2 - Σ1 ∧ (4 ‖ s ∨ 8|v)
)

)

)

.

Theorem 10 Let the assumptions and the notation be as in Lemma 2. Let 2|d. If

p ≡ 1 (mod 8), we write p = a2 + 16b2, a, b ∈ Z. Then for

(A) p ≡ 5 (mod 8):

x2 − dp2 y2
= −1 is solvable ⇐⇒ 2 ∦ v;

(B) p ≡ 9 (mod 16):

x2 − dp2 y2
= −1 is solvable ⇐⇒

(

2 - b ∧
(

(2|Σ2 ∧ 8|v) ∨ (2 - Σ2 ∧ 4 ‖ v)
)

)

∨
(

2|b ∧
(

(2|Σ2 ∧ 4 ‖ v) ∨ (2 - Σ2 ∧ 8|v)
)

)

;

(C) p ≡ 1 (mod 16):

x2 − dp2 y2
= −1 is solvable =⇒

(

2|b ∧
(

(2|Σ2 ∧ 8|v) ∨ (2 - Σ2 ∧ 4 ‖ v)
)

)

∨
(

2 - b ∧
(

(2|Σ2 ∧ 4 ‖ v) ∨ (2 - Σ2 ∧ 8|v)
)

)

.

Theorem 11 Let the assumptions and the notation be as in Lemma 2. Let d ≡ 1
(mod 8). If p ≡ 1 (mod 8), we write p = a2 + 16b2, a, b ∈ Z. Then for

(A) p ≡ 5 (mod 8):

x2 − dp2 y2
= −1 is not solvable.
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(B) p ≡ 9 (mod 16):

(a) 2|β:

x2 − dp2 y2
= −1 is solvable ⇐⇒ (2 - b ∧ 8|sv) ∨ (2|b ∧ 8 - sv).

(b) 2 - β:

x2 − dp2 y2
= −1 is solvable ⇐⇒

(

2 - b ∧ (4 ‖ s ∨ 8|v)
)

∨ (2|b ∧ 4 ∦ s ∧ 8 - v).

(C) p ≡ 1 (mod 16):

(a) 2|β:

x2 − dp2 y2
= −1 is solvable =⇒ (2|b ∧ 8|sv) ∨ (2 - b ∧ 8 - sv).

(b) 2 - β:

x2 − dp2 y2
= −1 is solvable =⇒

(

2|b ∧ (4 ‖ s ∨ 8|v)
)

∨ (2 - b ∧ 4 ∦ s ∧ 8 - v).

Remark 3 If x2 − dy2
= −1 has a solution and the 2-class group of Q(

√
−d) is el-

ementary abelian, then the condition about p2m being principal is clearly fulfilled for

all p and it is not hard to show that d ≡ 5 (mod 8) or 2|d. We note that Theorem 10
is a generalization of Theorem 2.

Example 1 Let d = 85 = 5 · 17 ≡ 5 (mod 8). Then: ε85 =
9+

√
85

2
; N(ε85) = −1;

β = 2. The class number is h
(

Q(
√
−85)

)

= 4, so the class group of Q(
√
−85) is

(Z/2)2 which implies that Theorems 6 and 9 cover all prime numbers p ≡ 1 (mod 4)
for which 85 is a quadratic residue (and we have m0 = 1). For example, for the prime
p = 1481 = 352 + 16 · 42

= 112 + 85 · 42 ≡ 9 (mod 16): ( 85
1481

) = 1; Σ1 = 0;
( ε85

1481

)

= (−1)
1481−1

4
+ 11·4

2 = 1;
( ε85

1481

)

4
= −1;

x2 − 85 · 14812 y2
= −1 is solvable.

Example 2 Let d = 10 = 2 · 5. ε10 = 3 +
√

10; N(ε10) = −1; h
(

Q(
√
−10)

)

= 2.
So Theorems 7 and 10 cover all prime numbers p ≡ 1 (mod 4) for which ( 10

p
) = 1

(and m0 = 1). For example, for the prime p = 809 = 52 + 16 · 72
= 132 + 10 · 82 ≡ 9

(mod 16): ( 10
809

) = 1; Σ2 = 0;
( ε10

809

)

= (−1)
809−1

4
+ 8

2 = 1;
( ε10

809

)

4
= −1; x2 − 10 · 8092 y2

= −1 is solvable.

Example 3 Let d = 145 = 5 · 29 ≡ 1 (mod 8). ε145 = 12 +
√

145; N(ε145) = −1;
β = 1; h

(

Q(
√
−145)

)

= 8. So Theorems 8 and 11 cover all prime numbers p =

s2 + 145v2. For example, for the prime p = 2441 = 292 + 16 ·102
= 112 + 145 ·42 ≡ 9

(mod 16):
( ε145

2441

)

= 1;
( ε145

2441

)

4
= −1; x2 − 145 · 24412 y2

= −1 is solvable.
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4 Proofs of the Main Results

In this section we prove the results (and work with the assumptions and notation)
from the previous section. Put ε = εd.

The extension Q(
√

ε, i)/Q(
√
−d) is Galois with Galois group Z/4; but the ex-

tension Q( 4
√

ε, i)/Q(
√
−d) is not Galois for d 6= 2. From now on, we assume that

d 6= 2, cf. Remark 3. The extension Q( 4
√

2ε, i)/Q(
√
−d) is Galois with Galois group

Z/8. By well-known ramification theory we have for a prime ideal p in Q(
√
−d)

above p:

p splits totally in Q( 4
√

ε, i) ⇐⇒

p splits totally in Q(
√

ε, i)∧
(

(

( 2

p

)

4
= 1 ∧ p splits totally in Q(

4
√

2ε, i)

)

∨
(

( 2

p

)

4
= −1 ∧ p does not split totally in Q(

4
√

2ε, i)

)

)

.

The solvability of our equation is, therefore, a question of the splitting of p in abelian

extensions of Q(
√
−d); hence we can apply class field theory.

Clearly, in the extensions Q(
√

ε, i)/Q(
√
−d) and Q( 4

√
2ε, i)/Q(

√
−d) there can

only be ramification above 2. Let A(2) be the group of fractional ideals in Q(
√
−d)

relatively prime to 2. Let (in the sense of class field theory) H−1, Hε, H2ε, H ⊆ A(2)

be the ideal groups in Q(
√
−d) where

(a) H−1 corresponds to Q(
√

d, i);
(b) Hε corresponds to Q(

√
ε, i);

(c) H2ε corresponds to Q(
√

2ε, i);
(d) H corresponds to Q( 4

√
2ε, i).

As a prime ideal in a base field splits totally in an abelian extension if and only if it is
in the corresponding ideal group, it is our task to describe the prime ideals in Hε and

in H.

Proposition 2 Let p0 be the prime ideal in Q(
√
−d) above the odd prime factor n

of d. Then

(1) p0 ∈ H2ε.

(2) (
√
−d) ∈ H2ε if d is odd.

(3) p0 ∈ H ⇔ n is of type I.

(4) For d odd: (
√
−d) ∈ H ⇔ 2|β.

(5) p0 ∈ Hε ⇔ n ≡ 1 (mod 8).

(6) (
√
−d) ∈ Hε ⇔ d ≡ 1 (mod 8).
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Proof (1) Let p1 be the prime ideal in Q(
√

d) above n. We have:

p0 ∈ H2ε ⇐⇒ p0 splits totally in Q(
√

2ε, i)

⇐⇒ p1 splits totally in Q(
√

2ε)

⇐⇒ x2 ≡ u + t
√

d (mod p1) is solvable in O
Q(

√
d)

⇐⇒ u
N(p1)−1

2 ≡ 1 (mod p1)

⇐⇒
( u

n

)

= 1.

And this last statement is true.
(2) Follows from (1) and the fact that (

√
−d) is the product of the prime ideals in

Q(
√
−d) above the prime factors of d

(3) Let (cf. (1)) p2 be one (of the two) prime ideal(s) in Q(
√

2ε) above n. We
have:

p0 ∈ H ⇐⇒ p0 splits totally in Q(
4
√

2ε, i)

⇐⇒ p2 splits totally in Q(
4
√

2ε)

⇐⇒
(

√

u + t
√

d
)

N(p2)−1

2 ≡ 1 (mod p2)

⇐⇒ u
n−1

4 ≡ 1 (mod n)

⇐⇒ n is of type I.

(4) Since p0 ∈ H2ε, this is an immediate consequence of (3) and the fact that
|H2ε/H| = 2.

(5) and (6) are proved by similar means.

Lemma 3 Let p ≡ 1 (mod 4) be a prime number. Let 2ε = u + t
√

d. Then

(1) For p|d:

(p) ∈ H.

(2) For ( d
p

) = 1:

(p) ∈ H.

(3) For ( d
p

) = −1:

(u + t
√

d)
p2

−1
4 ≡ 1 (mod p) in O

Q(
√

d) =⇒ (p) ∈ H.

Proof (1) and (3) are easy, cf. (the proof of) Proposition 2.
(2) ( d

p
) = 1: Let p be a prime ideal in Q(

√
−d) above p, let p ′ be the conjugate

ideal. As p and p ′ split totally in Q(
√

d, i), the inertial degrees of p and p ′ in L :=
Q( 4

√
2ε, i) divide 4. So if we put K := Q(

√
−d), then we have (for the Artin symbols)

ord

(

( L/K

p

)

)

= ord(pH) = ord(p ′H) = ord

(

( L/K

p ′

)

)

∣

∣

∣
4.
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If ord(pH) = ord(p ′H) = 1, then (p) = pp ′ ∈ H. If ord(pH) = ord(p ′H) = 2,
then (since A(2)/H ' Z/8) (p) ∈ (p)H = (pH)(p ′H) = H.

Consider the remaining case: ord(pH) = ord(p ′H) = 4; then

( L/K

p

)

,
( L/K

p ′

)

∈ Gal
(

L/Q(
√

d, i)
)

.

So (
L/K

p
) and (

L/K
p ′

) are determined by their values on 4
√

2ε. It is readily verified that

( L/K

p

)

◦
( L/K

p ′

)

(
4
√

2ε) =
4
√

2ε.

Hence, by the isomorphism A(2)/H ' Gal(L/K) (induced by the Artin map),

(p) ∈ (p)H = (pH)(p ′H) = H.

Let SM denote the ray class group modulo the divisor M in Q(
√
−d). We are now

able to determine the principal ideals in the ideal groups:

Theorem 12 The subgroups of principal ideals in the ideal groups H−1, Hε, H2ε, H

are as follows (where β is the number of odd prime factors of d of type II):

(1) d ≡ 1 (mod 4):

H−1 ∩ S(1) = A(2) ∩ S(1);

Hε ∩ S(1) =

{

A(2) ∩ S(1), if d ≡ 1 (mod 8)

S(2), if d ≡ 5 (mod 8);

H2ε ∩ S(1) = {(1), (
√
−d)}S(4);

H ∩ S(1) =

{

{(1), (5), (
√
−d), (5

√
−d)}S(8), 2|β

{(1), (5), (4 +
√
−d), (4 + 5

√
−d)}S(8), 2 - β.

(2) 2|d:

H−1 ∩ S(1) = S(2);

Hε ∩ S(1) = H2ε ∩ S(1) = S(4);

H ∩ S(1) = {(1), (5)}S(8).

Proof We prove the case d ≡ 1 (mod 4) for the ideal groups corresponding to

Q( 4
√

2ε, i)/Q(
√
−d) and its subextensions; the other assertions are proved in a sim-

ilar way.
(1) Since Q(

√
d, i)/Q(

√
−d) is unramified, we have

H−1 ∩ S(1) = A(2) ∩ S(1).
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(2) It is not hard to show (for instance by the conductor-discriminant formula, see
[5, p. 136]) that the conductor of the abelian extension Q(

√
2ε, i)/Q(

√
−d) divides

(4); hence S(4) ⊆ H2ε. As Q(
√

2ε, i)/Q(
√
−d) is ramified, we have H2ε ∩ S(1) 6=

A(2) ∩ S(1). We infer that

[A(2) ∩ S(1) : H2ε ∩ S(1)] = [H−1 ∩ S(1) : H2ε ∩ S(1)] = 2.

Since (
√
−d) ∈ H2ε ∩ S(1) (by Proposition 2), we conclude that

H2ε ∩ S(1) = {(1), (
√
−d)}S(4).

(3) It is not difficult to show (for instance by the conductor-discriminant for-
mula) that the conductor of the extension Q( 4

√
2ε, i)/Q(

√
−d) divides (8); hence

S(8) ⊆ H. Using the fact that A(2)/H is cyclic one finds that
[

{(1), (
√
−d)}S(4) :

H ∩ S(1)

]

= 2. As A(2) ∩ S(1)/S(4) is not cyclic, we get H ∩ S(1) 6= S(4). From (5) ∈ H

(by Lemma 3) and {(1), (
√
−d)}S(4) ⊇ H ∩ S(1) ⊇ S(8) it follows that

H ∩ S(1) = {(1), (5), (
√
−d), (5

√
−d)}S(8)

or
H ∩ S(1) = {(1), (5), (4 +

√
−d), (4 + 5

√
−d)}S(8).

Since

H ∩ S(1) = {(1), (5), (
√
−d), (5

√
−d)}S(8) ⇐⇒ (

√
−d) ∈ H ∩ S(1) ⇐⇒ 2|β

(cf. Proposition 2), we have proved what was asserted about H ∩ S(1).

We now turn to the proofs of the results of the previous section. We concentrate
on d ≡ 5 (mod 8); the other cases are similar .

The existence of a relation pm0 = d1s2 + d2v2 follows by genus theory and if m0 is
minimal, it is not difficult to show that m0|m and that if we write d1 = pa1

1 · · · p
ar−1

r−1 ,
a1, . . . , ar−1 ∈ {0, 1}, then, for a suitable sign of v, we have (where Pi is the prime
ideal in Q(

√
−d) above pi)

pm0 Pa1

1 · · · P
ar−1

r−1 = (d1s + v
√
−d).

Note that
Σ1 =

∑

pi of type II

ai .

Put
Σa :=

∑

pi≡5 (mod 8)

ai .

One checks that

v ≡ Σa (mod 2) ⇐⇒
(

4|sv ∧ p ≡ 1 (mod 8)
)

∨
(

4 - sv ∧ p ≡ 5 (mod 8)
)

.
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We find that

p ∈ Hε ⇐⇒ pm0 ∈ Hε

⇐⇒ pm0 ·
∏

Pi≡5 (mod 8)

(

Pi(
√
−d)

) ai ·
∏

Pi≡1 (mod 8)

Pai

i ∈ Hε

⇐⇒
(

2|Σa ∧ (d1s + v
√
−d) ∈ Hε

)

∨
(

2 - Σa ∧ (d1s + v
√
−d)(

√
−d) ∈ Hε

)

⇐⇒ (2|Σa ∧ 2|v) ∨ (2 - Σa ∧ 2 - v)

⇐⇒ v ≡ Σa (mod 2)

⇐⇒
(

4|sv ∧ p ≡ 1 (mod 8)
)

∨
(

4 - sv ∧ p ≡ 5 (mod 8)
)

and

p ∈ H ⇐⇒ pm0 ∈ H

⇐⇒ pm0 ·
∏

Pi of type I

Pai

i ·
∏

Pi of type II

(

Pi(1 + 4
√
−d)

) ai ∈ H

⇐⇒
(

2|Σ1 ∧ (d1s + v
√
−d) ∈ H

)

∨
(

2 - Σ1 ∧ (d1s + v
√
−d)(1 + 4

√
−d) ∈ H

)

⇐⇒
{

(2|Σ1 ∧ 8|sv) ∨ (2 - Σ1 ∧ 4 ‖ sv), 2|β
(

2|Σ1 ∧ (4 ‖ s ∨ 8|v)
)

∨
(

2 - Σ1 ∧ (8|s ∨ 4 ‖ v)
)

, 2 - β.

Note that ( εd

p
) = 1 if and only if p ∈ Hε and that ( εd

p
)4 = 1 if and only if p ∈

Hε∧
(

(2|b∧p ∈ H)∨ (2 - b∧p /∈ H)
)

, cf. Observation 1 and the observations at the
beginning of this section. From this it is routine to deduce the criteria in the previous

section. Note that ( 2
p

)4 = 1 is equivalent to 2|b (if p = a2 + 16b2), cf. Remark 1.

5 A Similar Result

We state a general result for d even. It can be proved in a manner similar to the proofs

in the previous section.

Theorem 13 Let d > 1 be a square-free even integer, and assume that N(εd) = −1
(i.e., x2 − dy2

= −1 is solvable). Let p ≡ 1 (mod 4) be a prime number such that

( d
p

) = 1. Let the class number of Q(
√
−d) be h

(

Q(
√
−d)

)

= 2zm, 2 - m. For p ≡ 1

(mod 8) we write p = a2 + 16b2, a, b ∈ Z. There are integers g1, . . . , gr ∈ N and prime

numbers p̂1, . . . , p̂r, q̂1, . . . , q̂r (depending only on d) such that the following statements

hold:

(1) Let p 6= p̂1, . . . , p̂r . There is a minimal odd m0 ∈ N such that

https://doi.org/10.4153/CMB-2003-004-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-004-1


52 Tommy Bülow

pm0 p̂a1

1 · · · p̂ar
r = s2 + dv2

for suitable ai ∈ {0, 1, . . . , gi}; s, v ∈ Z \ {0}. This minimal odd m0 satisfies

m0 ≤ m.

(2) Let p 6= q̂1, . . . , q̂r. There is a minimal odd m ′
0 ∈ N such that

pm ′

0 q̂
a ′

1

1 · · · q̂
a ′

r
r = (s ′)2 + d(v ′)2

for suitable a ′
i ∈ {0, 1, . . . , g ′

i }; s ′, v ′ ∈ Z \ {0}. This minimal odd m ′
0 satisfies

m ′
0 ≤ m.

(3) q̂1, . . . , q̂r 6= p:
( εd

p

)

= 1 ⇐⇒ 4|v ′.

(4) p̂1, . . . , p̂r, q̂1, . . . , q̂r 6= p ≡ 1 (mod 8):

( εd

p

)

4
= 1 ⇐⇒ 4|v ′ ∧

(

(2|b ∨ 8|v) ∨ (2 - b ∨ 8 - v)
)

.

Theorem 14 Let the assumptions and the notation be as in Theorem 13. Then

(A) q̂1, . . . , q̂r 6= p ≡ 5 (mod 8):

x2 − dp2 y2
= −1 is solvable ⇐⇒ 4 - v ′.

(B) p̂1, . . . , p̂r, q̂1, . . . , q̂r 6= p ≡ 9 (mod 16):

x2 − dp2 y2
= −1 is solvable ⇐⇒ 4|v ′ ∧

(

(2 - b ∨ 8|v) ∨ (2|b ∨ 8 - v)
)

.

(C) p̂1, . . . , p̂r, q̂1, . . . , q̂r 6= p ≡ 1 (mod 16):

x2 − dp2 y2
= −1 is solvable =⇒ 4|v ′ ∧

(

(2|b ∨ 8|v) ∨ (2 - b ∨ 8 - v)
)

.

Remark 4 If we choose prime ideals p1, . . . , pr ∈ H and q1, . . . , qr ∈ Hε such that

p1(A(2) ∩ S(1)), . . . , pr(A(2) ∩ S(1)) and q1(A(2) ∩ S(1)), . . . , qr(A(2) ∩ S(1))

are bases for the 2-Sylow group of A(2)/(A(2) ∩ S(1)) (where the ideal groups are as
before), then p̂1, . . . , p̂r, q̂1, . . . , q̂r can be taken as the norms of these prime ideals;
put gi := ord

(

pi(A(2) ∩ S(1))
)

− 1 and g ′
i := ord

(

qi(A(2) ∩ S(1))
)

− 1.

Example 4 We give an explicit criterion for d = 2 ·41. This d with arbitrary p is not
covered by the criteria in the previous sections since the class group of Q(

√
−82) is

isomorphic to Z/4. We have ε82 = 9 +
√

82 of norm −1. Let p13, p29 be prime ideals

in Q(
√
−82) above 13, 29, respectively. Let p̄13, p̄29 be prime ideals in Q(

√
82) above

13, 29, respectively. It is easily seen that each of

p13(A(2) ∩ S(1)), p29(A(2) ∩ S(1))
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generates A(2)/(A(2) ∩ S(1)) (with notation as before). Since

(2ε)
N(p̄13)−1

4 = 23 · (9 +
√

82)3 ≡ 1 (mod 13),

it follows that p13 ∈ H. Similarly, p29 ∈ Hε. Hence we have the following criterion:
Let p = a2 + 16b2 ≡ 9 (mod 16) be a prime number with ( 82

p
) = 1; write

p · 13a1 = s2 + 82v2, p · 29a ′

1 = (s ′)2 + 82(v ′)2

where a1, a ′
1 ∈ {0, 1, 2, 3} and s, v, s ′, v ′ ∈ Z \ {0}. Then (since necessarily p 6=

13, 29)

x2 − 82p2 y2
= −1 is solvable ⇐⇒ 4|v ′ ∧

(

(2 - b ∨ 8|v) ∨ (2|b ∨ 8 - v)
)

.
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