ISOMORPHISMS AND AUTOMORPHISMS OF WITT RINGS

BY

DAVID LEEP AND MURRAY MARSHALL

ABSTRACT. For a field F, char(F) $\neq 2$, let WF denote the Witt ring of quadratic forms of F and let $\langle F^* \rangle \subseteq WF$ denote the multiplicative group of 1-dimensional forms $\langle a \rangle$, $a \in F^*$. It follows from a construction of D. K. Harrison that if E, F are fields (both of characteristic $\neq 2$) and $\rho: WE \to WF$ is a ring isomorphism, then there exists a ring isomorphism $\overline{\rho}: WE \to WF$ which "preserves dimension" in the sense that $\overline{\rho}\langle E^* \rangle = \langle F^* \rangle$. In this paper, the relationship between ρ and $\overline{\rho}$ is clarified.

1. **Preliminaries.** Let R be an (abstract) Witt ring in the terminology of [6] and let G denote the distinguished group of units of R. For example, one could take R = WF where F is some field, char(F) $\neq 2$. In this case, $G = \langle F^* \rangle$.

One needs to know something of the structure of the full unit group R^* . If $u \in R^*$ then u decomposes uniquely as u = a(1 + x) where $a \in G$ and $x \in I^2$. Here $I \subseteq R$ denotes the fundamental ideal. $a = d_{\pm}(u)$, the signed discriminant of u. Thus, it is enough to consider units of the form u = 1 + x, $x \in I^2$. Computing signatures this yields $\pm 1 = \sigma(u) = 1 + \sigma(x) \equiv 1 \pmod{4}$ so $\sigma(x) = 0$ for all signatures σ of R. By Pfister's local-global principle, this implies x is nilpotent (i.e., 2-primary torsion). Conversely, if x is nilpotent then, from general ring theory, 1 + x is a unit.

For almost everything done here, the above will suffice. However to obtain certain refinements it is necessary to know the relationship between the additive order of x and the multiplicative order of 1 + x. The first half of this is fairly easy:

1.1. PROPOSITION. If $x \in I$ and $2^{k}x = 0$ then $(1 + x)^{2^{k}} = 1$.

PROOF. $(1 + x)^{2^k} = (1 + 2x + x^2)^{2^{k-1}} = (1 + y)^{2^{k-1}}$ where $y = 2x + x^2$. By the Annihilator Theorem for Pfister forms, $x = \sum_i (1 - s_i)t_i$ where $t_i \in R$ and $s_i \in D(\langle 1, 1 \rangle^k)$. Here, D(q) denotes the value set of the quadratic form q. Thus

$$\begin{aligned} x^2 &= \sum_i (1 - s_i)^2 t_i^2 + \sum_{i \neq j} (1 - s_i)(1 - s_j) t_i t_j \\ &= \sum_i 2(1 - s_i) t_i^2 + \sum_{i < j} 2(1 - s_i)(1 - s_j) t_i t_j. \end{aligned}$$

Received by the editors February 10, 1987, and, in revised form, May 21, 1987. AMS Subject Classification (1980): 10C05, 10C03. © Canadian Mathematical Society 1987.

²⁵⁰

Since $2^k(1-s_i) = 0$, it follows that $2^{k-1}y = 0$. By induction on k this implies $(1 + y)^{2^{k-1}} = 1$.

The second half follows from the theory of logarithms and exponentials developed in [5]. This does not seem to have any simple proof:

1.2. PROPOSITION. If $x \in I^2$ and $(1 + x)^{2^k} = 1$ then $2^k x = 0$.

PROOF. See [5].

2. Homomorphisms. R can be described as the quotient of the integral group ring $\mathbb{Z}[G]$ obtained by factoring by the ideal generated by 1 + (-1) and all elements (1 - a)(1 - b) where $a, b \in G$ satisfy $1 \in D\langle a, b \rangle$.

Let \overline{R} be another Witt ring and let \overline{G} be its distinguished group of units. From the presentation of R as a quotient of $\mathbb{Z}[G]$, specifying a (ring) homomorphism $\rho: R \to \overline{R}$ is equivalent to specifying a group homomorphism $\rho: G \to \overline{R}^*$ satisfying:

- (1) $\rho(-1) = -1$ and
- (2) $\forall a, b \in G, 1 \in D\langle a, b \rangle \Rightarrow (1 \rho(a))(1 \rho(b)) = 0.$

Since G may not be a ring invariant, one should not expect $\rho(G) \subseteq \overline{G}$ to hold in general. ρ will be referred to as a *scheme homomorphism* if $\rho(G) \subseteq \overline{G}$. For scheme homomorphisms, condition (2) can be replaced by the equivalent condition:

(2')
$$\forall a, b \in G, 1 \in D\langle a, b \rangle \Rightarrow 1 \in \overline{D} \langle \rho(a), \rho(b) \rangle.$$

2.1. PROPOSITION. If either $G = \{\pm 1\}$ or \overline{I}^2 is torsion free then each homomorphism $\rho: \mathbb{R} \to \overline{\mathbb{R}}$ is a scheme homomorphism.

PROOF. If $G = \{\pm 1\}$ then $\rho(G) = \rho(\{\pm 1\}) = \{\pm 1\} \subseteq \overline{G}$. If \overline{I}^2 is torsion free then, by results in section 1, $\overline{R}^* = \overline{G}$, so $\rho(G) \subseteq \overline{G}$ holds in this case too.

2.2. EXAMPLES. (i) $G = \{\pm 1\}$ holds if and only if $R = \mathbb{Z}$, $\mathbb{Z}/(2)$, or $\mathbb{Z}/(4)$. Specific realizations of these three types can be obtained by taking R = WF where F is (respectively) **R**, **C**, or a finite field \mathbf{F}_q , $q \equiv 3 \pmod{4}$. If $q \equiv 1 \pmod{4}$, then $W\mathbf{F}_q = \mathbb{Z}/(2)[C_2]$ (the group ring over $\mathbb{Z}/(2)$ of the cyclic group C_2) so $G \neq \{\pm 1\}$ in this case. (ii) I (resp. I^2) is torsion free if and only if $D\langle 1, 1\rangle = 1$ (resp. $D\langle 1, -a\rangle = G$ for all $a \in D\langle 1, 1\rangle$). Thus, if R = WF, F a field, then I (resp. I^2) is torsion free if and only if F is Pythagorean (resp. Quasi-Pythagorean). Elementary examples: **R**, **C** are Pythagorean; finite fields are Quasi-Pythagorean. (iii) If R = WF where F is a global field or a local field $\neq \mathbf{R}$, **C** then I^2 is not torsion free but I^3 is torsion free.

To obtain Harrison's map $\rho \rightarrow \overline{\rho}$ (see [2], [3], and [6]) one needs to assume that \overline{R} satisfies an additional property:

(*)
$$\forall a, b \in \overline{G}, (1-a)(1-b) \in \overline{I}^3 \Rightarrow (1-a)(1-b) = 0.$$

This is true if $\overline{R} = WF$, F a field, char(F) $\neq 2$, e.g., see [4]. In what follows, this special property is assumed whenever necessary.

Let $\rho: R \to \overline{R}$ be a homomorphism. $\rho^{-1}(\overline{I})$ is an ideal of index 2 in R so $\rho^{-1}(\overline{I}) = I$. In particular, $\rho(I) \subseteq \overline{I}$. For $a \in G$, consider $\rho(a) \in \overline{R}^*$. This decomposes uniquely as $\rho(a) = \overline{\rho}(a)(1 + x(a))$ where $\overline{\rho}(a) \in \overline{G}$ and $x(a) \in \overline{I}^2$. Thus $\overline{\rho}: G \to \overline{G}$ is a group homomorphism. Since $\rho(-1) = -1 \in \overline{G}$, it follows that $\overline{\rho}(-1) = -1$. Now suppose $a, b \in G$ satisfy $1 \in D\langle a, b \rangle$. Then $(1 - \rho(a))(1 - \rho(b)) = 0$. Since $\overline{\rho}(c) - \rho(c) \in \overline{I}^2$ holds for any $c \in G$, this implies that $(1 - \overline{\rho}(a))(1 - \overline{\rho}(b)) \in \overline{I}^3$ and hence, by (*), that $(1 - \overline{\rho}(a))(1 - \overline{\rho}(b)) = 0$. Thus $\overline{\rho}$ induces a scheme homomorphism $\overline{\rho}: R \to \overline{R}$.

 $\overline{\rho}$ is characterized as the unique scheme homomorphism satisfying $\overline{\rho}(x) \equiv \rho(x) \pmod{\overline{I}^2}$ for all $x \in R$. Clearly $\overline{\rho} = \rho$ if and only if ρ is a scheme homomorphism. Also $\rho \to \overline{\rho}$ is functorial in the sense that $\overline{\psi \circ \rho} = \overline{\psi} \circ \overline{\rho}$ and $\overline{1} = 1$. In particular, if ρ is bijective, then $\overline{\rho}$ is bijective.

2.3. NOTE. For $a \in G$, $\rho(a) = \overline{\rho}(a)(1 + x(a))$ with $x(a) \in \overline{I}^2$. 1 + x(a) is a unit of order 2 in \overline{R} . Thus x(a) is 2-primary torsion so $\rho(a) - \overline{\rho}(a) = \overline{\rho}(a)x(a)$ is 2-primary torsion. Since G generates R additively, this implies that $\rho(x) \equiv \overline{\rho}(x) \pmod{(\overline{I}^2)_{\text{tor}}}$ holds for all $x \in R$. Here, $(\overline{I}^k)_{\text{tor}}$ denotes the torsion part of \overline{I}^k . Actually, if we use (1.2), we can conclude that 2x(a) = 0 for each $a \in G$ so $2\rho = 2\overline{\rho}$.

2.4. PROPOSITION. Suppose $G \neq \{\pm 1\}$, \overline{I}^2 is not torsion free, but \overline{I}^k is torsion free for some $k \ge 3$. Then, for each scheme homomorphism $\alpha: \mathbb{R} \to \overline{\mathbb{R}}$, there exists a homomorphism $\rho: \mathbb{R} \to \overline{\mathbb{R}}$ such that $\overline{\rho} = \alpha, \rho \neq \alpha$.

PROOF. We may as well assume $(\overline{I}^{k-1})_{tor} \neq 0$ so $G/\{\pm 1\}$ and $(\overline{I}^{k-1})_{tor}$ are non-trivial groups of exponent 2. Thus there exists a non-trivial group homomorphism $x:G \to (\overline{I}^{k-1})_{tor}$ with x(-1) = 0. Pick any such homomorphism and define $\rho:G \to R^*$ by $\rho(a) = \alpha(a)(1 + x(a)) \quad \forall a \in G$. Now $x(a)x(b) \in (\overline{I}^k)_{tor} = 0$ so (1 + x(a))(1 + x(b)) = 1 + x(a) + x(b) =1 + x(ab). Thus ρ is a group homomorphism. Also x(-1) = 0 and $\alpha(-1) = -1$ so $\rho(-1) = -1$. Assume $1 \in D\langle a, b \rangle$, $a, b \in G$. Then

$$(1 - \rho(a))(1 - \rho(b)) = (1 - \alpha(a))(1 - \alpha(b)) + (1 - \alpha(a))\alpha(b)x(b) + (1 - \alpha(b))\alpha(a)x(a) + \alpha(a)x(a)\alpha(b)x(b).$$

The first term here is zero since α is a homomorphism. The last three terms are zero since $(\overline{I}^k)_{tor} = 0$. Thus ρ induces a homomorphism $\rho: R \to \overline{R}$.

WITT RINGS

3. Automorphisms. Consider a homomorphism $\rho: R \to R$ satisfying $\overline{\rho} = 1$. That is, assume $\rho(x) \equiv x \pmod{I^2}$ holds for all $x \in R$.

3.1. LEMMA. Suppose $k \ge 2$ and that $\rho(x) \equiv x \pmod{I^k}$ holds for all $x \in R$. Then $\rho(x) \equiv x \pmod{I^{i+k}}$ holds for all $x \in I^{i+1}$, $i \ge 0$.

PROOF. The result is clear if i = 0. If $i \ge 1$, the result follows by induction using

$$\rho(xy) - xy = \rho(x)(\rho(y) - y) + (\rho(x) - x)y$$

with $x \in I, y \in I^i$.

3.2. LEMMA. If $k \ge 2$ and $\rho(x) \equiv x \pmod{I^k}$ holds for all $x \in R$ then $\rho^2(a) \equiv a \pmod{I^{2k-1}}$ holds for all $a \in R$.

PROOF. Since G generates R we can assume $a \in G$. Thus $\rho(a) = a(1 + x)$ with $x \in I^k$.

$$\rho^{2}(a) = \rho(\rho(a)) = \rho(a(1 + x)) = \rho(a)(1 + \rho(x))$$
$$= a(1 + x)(1 + \rho(x)) = a + a(x + \rho(x) + x\rho(x)).$$

Thus we have to show that

х

$$x + \rho(x) + x\rho(x) = 2x + (\rho(x) - x) + x\rho(x) \in I^{2k-1}.$$

Clearly $x\rho(x) \in I^{2k}$. By (3.1), $\rho(x) - x \in I^{2k-1}$. Also, 1 + x has order 2 in R^* , so $2x + x^2 = 0$. Thus $2x = -x^2 \in I^{2k}$. (In fact, by (1.2), 2x = 0.)

3.3. PROPOSITION. Suppose I^2 is not torsion free but I^k is torsion free for some $k \ge 3$. Then there exists an automorphism $\rho: R \to R$ such that $\overline{\rho} = 1$, $\rho \neq 1$.

PROOF. If $G = \{\pm 1\}$ then $R = \mathbb{Z}$, $\mathbb{Z}/(2)$, or $\mathbb{Z}/(4)$ and I^2 is torsion free. Thus $G \neq \{\pm 1\}$. Thus, by (2.4), there is some homomorphism $\rho: R \to R$ such that $\overline{\rho} = 1$, $\rho \neq 1$. Pick any such ρ and pick s so large that $2^s + 1 \ge k$. Then for any $x \in R$, (3.2) implies that $\rho^{2^s}(x) \equiv x \pmod{I^{2^s+1}}$. By (2.3), $\rho^{2^s}(x) - x$ is torsion so $\rho^{2^s}(x) = x$. Thus, $\rho^{2^s} = 1$. This implies ρ is bijective.

Let Aut(R) denote the group of automorphisms $\rho: R \to R$. Let Aut_{sc}(R) \subseteq Aut(R) be the subgroup consisting of scheme automorphisms. For $j \ge 1$ let Aut_j(R) \subseteq Aut(R) be the subgroup of automorphisms satisfying $\rho(x) \equiv x \pmod{I^{j+1}}$ for all $x \in R$. Harrison's map $\rho \to \overline{\rho}$ is a group homomorphism from Aut(R) onto Aut_{sc}(R) with kernel Aut₁(R). Since $\overline{\rho} = \rho$ for $\rho \in$ Aut_{sc}(R), Aut(R) is a semi-direct product of Aut₁(R) and Aut_{sc}(R). If I^2 is torsion free, Aut₁(R) = 1 and Aut(R) = Aut_{sc}(R). Suppose I^2 is not torsion free but I^{k+1} is torsion free for some $k \ge 2$. Then Aut₁(R) \neq 1 but Aut_k(R) = 1. Each Aut_j(R) is normal in Aut(R). Also, by (3.2), $\rho \in$ Aut_j(R) $\Rightarrow \rho^2 \in$ Aut₂(R). Thus, in this case, Aut₁(R) is solvable

https://doi.org/10.4153/CMB-1988-038-7 Published online by Cambridge University Press

1988]

and each element of $Aut_1(R)$ has finite 2-power order.

3.4. PROPOSITION. If I^3 is torsion free then $\operatorname{Aut}_1(R)$ is canonically isomorphic to the group $\operatorname{Hom}_{\operatorname{gr}}(G/\{\pm 1\}, (I^2)_{\operatorname{tor}})$. (Here, " $\operatorname{Hom}_{\operatorname{gr}}$ " denotes group homomorphisms.)

PROOF. If $x: G \to (I^2)_{tor}$ is any group homomorphism satisfying x(-1) = 0then, by the proof of (2.4), x induces a homomorphism $\rho: R \to R$ given by $\rho(a) = a(1 + x(a))$ for all $a \in G$. As in the proof of (3.3), $\rho^2 = 1$ so ρ is an automorphism and hence $\rho \in Aut_1(R)$. $x \to \rho$ provides the desired isomorphism.

R is said to be of local type if it is the Witt ring of a local field. *R* is said to be of elementary type if $|G| < \infty$ and *R* is built up from $\mathbb{Z}/(2)$, $\mathbb{Z}/(4)$, \mathbb{Z} and local types by forming Witt products and group rings. For elementary types, it is possible to give a precise inductive description of $\operatorname{Aut}_{sc}(R)$. This is an easy consequence of the material on quadratic form schemes developed in [6] and will not be given here.

For local types, $\operatorname{Aut}_1(R)$ and the action of $\operatorname{Aut}_{sc}(R)$ on $\operatorname{Aut}_1(R)$ can be computed explicitly using (3.4). In contrast, the structure of $\operatorname{Aut}_1(R)$ for general elementary types is not at all well understood. This is because $\operatorname{Aut}_1(R)$ is not very well behaved with respect to formation of Witt products and group rings.

Denote by $J_k \subseteq R$ the ideal of elements of (additive) order 2 in I^{k+1} . For elementary types it is known that $J_k \neq 0 \Rightarrow J_k \neq J_{k+1}$. For general Witt rings this appears to be open. Each $\rho \in \operatorname{Aut}_k(R)$ satisfies $\rho(x) \equiv x \pmod{J_k}$ for all $x \in R$. This follows from (1.2) (also see (2.3)). If $k \ge 1$ is such that $J_k \neq 0$, $J_{k+1} = 0$, then the element $\rho \in \operatorname{Aut}_1(R)$, $\rho \neq 1$, constructed in (3.3), is actually in the group $\operatorname{Aut}_k(R)$. One would hope that if $k \ge 1$ is arbitrary then $J_k \neq J_{k+1} \Rightarrow \operatorname{Aut}_k(R) \neq \operatorname{Aut}_{k+1}(R)$. In general it is not known if this is true.

3.5. PROPOSITION. If R is of elementary type, $k \ge 1$, and $J_k \ne 0$ then there exists $\rho \in \operatorname{Aut}_k(R)$, $\rho \notin \operatorname{Aut}_{k+1}(R)$.

PROOF. The proof is by induction on |G|. If R is of local type then k = 1 and the result is clear. There are two cases left to consider. Case 1: $R = R_1 \times R_2$ (Witt product). Then $J_k = (J_1)_k \times (J_2)_k$ (ordinary product) so $(J_i)_k \neq 0$ for i = 1 or 2, say $(J_1)_k \neq 0$. Thus, by induction, there exists $\rho_1 \in \operatorname{Aut}_k(R_1) \setminus \operatorname{Aut}_{k+1}(R_1)$. Take $\rho = \rho_1 \times 1$. Case 2: $R = \overline{R}[\Delta], \Delta = \{1, g\}$. Then $J_k = \overline{J}_k \oplus (1 - g)\overline{J}_{k-1}$, so $\overline{J}_{k-1} \neq 0$. Pick $x \in \overline{J}_{k-1} \setminus \overline{J}_k$ and define $\rho: R \to R$ by $\rho(a) = a$ for $a \in \overline{G}, \rho(g) = g + (1 - g)x$. Then ρ is a ring automorphism, $\rho \in \operatorname{Aut}_k(R) \setminus \operatorname{Aut}_{k+1}(R)$.

If we drop the assumption that I^{k+1} is torsion free for some $k \ge 2$ then it is not known whether I^2 not torsion free $\Rightarrow Aut_1(R) \ne 1$. In fact very little

WITT RINGS

is known. If R is the Witt ring of a field then $\bigcap_j I^j = 0$ by [1]. In this case it follows that $\bigcap_j \operatorname{Aut}_j(R) = 1$. Combining this with (3.2) one can deduce that any element $\rho \in \operatorname{Aut}_1(R)$ which has finite order has 2-power order. See example 4 below for a case where $\operatorname{Aut}_1(R)$ has elements of infinite order.

4. Examples.

(1) Take $R = \mathbb{Z}/(4)[\Delta]$, Δ a group of exponent 2 (so $G = \Delta \times \{\pm 1\}$). Thus, if $|\Delta| = 2^k$, then $J_k \neq 0$, $J_{k+1} = 0$. We show that $\operatorname{Aut}_1(R)$ has exponent 2. $D\langle 1, 1 \rangle = \{\pm 1\}$ so $J_0 \subseteq R$ is the ideal generated by 2. Let $\rho \in \operatorname{Aut}_1(R)$ be arbitrary. Then, for $a \in G$, $\rho(a)$ has the form $\rho(a) = a + 2r$, $r \in I$. Let $\rho(r) - r = 2s$, $s \in I$. Then $\rho^2(a) = \rho(a) + 2\rho(r) = a + 2r + 2(r + 2s) = a + 4r + 4s = a$. This shows $\rho^2 = 1$.

(2) $\operatorname{Aut}_{l}(R)/\operatorname{Aut}_{2l}(R)$ is abelian of exponent 2. To obtain an example where $\operatorname{Aut}_{l}(R)/\operatorname{Aut}_{2l+1}(R)$ is not abelian one can take $R = \mathbb{Z}/(2)[\Delta]$ where Δ is a group of exponent 2 with $\mathbb{Z}/(2)$ - basis $a_1, \ldots, a_l, b_0, \ldots, b_l$. Set

$$\rho(a_1) = \psi(a_1) = a_1 + \prod_{i=0}^l (1 + b_i) \text{ and}$$

 $\rho(b_0) = b_0 + (1 + b_0) \prod_{i=1}^l (1 + a_i), \psi(b_0) = b_0.$

For $i \ge 2$ and $j \ge 1$ set $\rho(a_i) = \psi(a_i) = a_i$ and $\rho(b_j) = \psi(b_j) = b_j$. Then ρ , $\psi \in \operatorname{Aut}_l(R)$ but, as one can verify by direct computation, $\rho(\psi(a_1)) \not\equiv \psi(\rho(a_1))$ (mod J_{2l+1}).

(3) If $J_{2^m} = 0$ then each $\rho \in \operatorname{Aut}_1(R)$ has order at most 2^m . To obtain an example where this bound is attained take $m \ge 1$ and $R = \mathbb{Z}/(2)[\Delta]$ where Δ has exponent 2 and $\mathbb{Z}/(2)$ -dimension 2^m . Fix a $\mathbb{Z}/(2)$ -basis for Δ of the form $\{a_i, b_i | i \in \mathbb{Z}/(2^{m-1})\}$. Define $\rho \in \operatorname{Aut}_1(R)$ by

$$\rho(a_i) = a_i + (1 + a_{i+1})(1 + b_i),$$

$$\rho(b_i) = b_i.$$

A careful inductive argument shows that

$$\rho^{2^{s}}(a_{i}) = a_{i} + (1 + a_{i+2^{s}}) \prod_{j=1}^{2^{s}} (1 + b_{i+j-1})$$

for s = 0, ..., m - 1. Taking s = m - 1 in this formula, it follows that $\rho^{2^{m-1}} \neq 1$.

(4) It is possible to show (for example by patching together automorphisms constructed in the above example) that the Witt ring $R = \mathbb{Z}/(2)[\Delta]$, Δ countably infinite, has elements $\rho \in \operatorname{Aut}_1(R)$ of infinite order.

References

1. J. Arason and A. Pfister, *Beweis des Krullschen Durchschnittsatzes fur der Wittring*, Invent. Math. **12** (1971), pp. 173-176.

2. C. M. Cordes, The Witt group and equivalence of fields with respect to quadratic forms, J. Algebra 26 (1973), pp. 400-421.

3. D. K. Harrison, *Witt rings*, lecture notes, Department of Mathematics, University of Kentucky, Lexington (1970).

4. T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, New York (1973).

5. M. Marshall, *Exponentials and logarithms on Witt rings*, Pac. J. of Math. 127 (1) (1987), pp. 127-140.

6. ——, Abstract Witt Rings, Queen's Papers in Pure and Applied Math. 57, Queen's University, Kingston, Ontario (1980).

7. M. Marshall and J. Yucas, *Linked quaternionic mappings and their associated Witt rings*, Pac. J. of Math. 95 (2) (1981), pp. 411-425.

UNIVERSITY OF KENTUCKY LEXINGTON, KY, 40506

UNIVERSITY OF SASKATCHEWAN SASKATOON, SASK., S7N 0W0