ISOMORPHISMS AND AUTOMORPHISMS OF WITT RINGS

BY
DAVID LEEP AND MURRAY MARSHALL

Abstract

For a field $F, \operatorname{char}(F) \neq 2$, let $W F$ denote the Witt ring of quadratic forms of F and let $\left\langle F^{*}\right\rangle \subseteq W F$ denote the multiplicative group of 1 -dimensional forms $\langle a\rangle, a \in F^{*}$. It follows from a construction of D. K. Harrison that if E, F are fields (both of characteristic $\neq 2$) and $\rho: W E \rightarrow W F$ is a ring isomorphism, then there exists a ring isomorphism $\bar{\rho}: W E \rightarrow W F$ which "preserves dimension" in the sense that $\bar{\rho}\left\langle E^{*}\right\rangle=\left\langle F^{*}\right\rangle$. In this paper, the relationship between ρ and $\bar{\rho}$ is clarified.

1. Preliminaries. Let R be an (abstract) Witt ring in the terminology of [6] and let G denote the distinguished group of units of R. For example, one could take $R=W F$ where F is some field, $\operatorname{char}(F) \neq 2$. In this case, $G=\left\langle F^{*}\right\rangle$.

One needs to know something of the structure of the full unit group R^{*}. If $u \in R^{*}$ then u decomposes uniquely as $u=a(1+x)$ where $a \in G$ and $x \in I^{2}$. Here $I \subseteq R$ denotes the fundamental ideal. $a=d_{ \pm}(u)$, the signed discriminant of u. Thus, it is enough to consider units of the form $u=1+x, x \in I^{2}$. Computing signatures this yields $\pm 1=\sigma(u)=1+\sigma(x) \equiv 1(\bmod 4)$ so $\sigma(x)=0$ for all signatures σ of R. By Pfister's local-global principle, this implies x is nilpotent (i.e., 2-primary torsion). Conversely, if x is nilpotent then, from general ring theory, $1+x$ is a unit.

For almost everything done here, the above will suffice. However to obtain certain refinements it is necessary to know the relationship between the additive order of x and the multiplicative order of $1+x$. The first half of this is fairly easy:
1.1. Proposition. If $x \in I$ and $2^{k} x=0$ then $(1+x)^{2^{k}}=1$.

Proof. $(1+x)^{2^{k}}=\left(1+2 x+x^{2}\right)^{2^{k-1}}=(1+y)^{2^{k-1}}$ where $y=2 x+x^{2}$. By the Annihilator Theorem for Pfister forms, $x=\sum_{i}\left(1-s_{i}\right) t_{i}$ where $t_{i} \in R$ and $s_{i} \in D\left(\langle 1,1\rangle^{k}\right)$. Here, $D(q)$ denotes the value set of the quadratic form q. Thus

$$
\begin{aligned}
x^{2} & =\sum_{i}\left(1-s_{i}\right)^{2} t_{i}^{2}+\sum_{i \neq j}\left(1-s_{i}\right)\left(1-s_{j}\right) t_{i} t_{j} \\
& =\sum_{i} 2\left(1-s_{i}\right) t_{i}^{2}+\sum_{i<j} 2\left(1-s_{i}\right)\left(1-s_{j}\right) t_{i} t_{j} .
\end{aligned}
$$

[^0]Since $2^{k}\left(1-s_{i}\right)=0$, it follows that $2^{k-1} y=0$. By induction on k this implies $(1+y)^{2^{k-1}}=1$.

The second half follows from the theory of logarithms and exponentials developed in [5]. This does not seem to have any simple proof:
1.2. Proposition. If $x \in I^{2}$ and $(1+x)^{2^{k}}=1$ then $2^{k} x=0$.

Proof. See [5].
2. Homomorphisms. R can be described as the quotient of the integral group ring $\mathbf{Z}[G]$ obtained by factoring by the ideal generated by $1+(-1)$ and all elements $(1-a)(1-b)$ where $a, b \in G$ satisfy $1 \in D\langle a, b\rangle$.

Let \bar{R} be another Witt ring and let \bar{G} be its distinguished group of units. From the presentation of R as a quotient of $\mathbf{Z}[G]$, specifying a (ring) homomorphism $\rho: R \rightarrow \bar{R}$ is equivalent to specifying a group homomorphism $\rho: G \rightarrow \bar{R}^{*}$ satisfying:

$$
\begin{align*}
& \text { (1) } \rho(-1)=-1 \text { and } \tag{1}\\
& \text { (2) } \forall a, b \in G, 1 \in D\langle a, b\rangle \Rightarrow(1-\rho(a))(1-\rho(b))=0 .
\end{align*}
$$

Since G may not be a ring invariant, one should not expect $\rho(G) \subseteq \bar{G}$ to hold in general. ρ will be referred to as a scheme homomorphism if $\rho(G) \subseteq \bar{G}$. For scheme homomorphisms, condition (2) can be replaced by the equivalent condition:

$$
\forall a, b \in G, 1 \in D\langle a, b\rangle \Rightarrow 1 \in \bar{D}\langle\rho(a), \rho(b)\rangle
$$

2.1. Proposition. If either $G=\{ \pm 1\}$ or \bar{I}^{2} is torsion free then each homomorphism $\rho: R \rightarrow \bar{R}$ is a scheme homomorphism.

Proof. If $G=\{ \pm 1\}$ then $\rho(G)=\rho(\{ \pm 1\})=\{ \pm 1\} \subseteq \bar{G}$. If \bar{I}^{2} is torsion free then, by results in section $1, \bar{R}^{*}=\bar{G}$, so $\rho(G) \subseteq \bar{G}$ holds in this case too.
2.2. Examples. (i) $G=\{ \pm 1\}$ holds if and only if $R=\mathbf{Z}, \mathbf{Z} /(2)$, or $\mathbf{Z} /(4)$. Specific realizations of these three types can be obtained by taking $R=W F$ where F is (respectively) \mathbf{R}, \mathbf{C}, or a finite field $\mathbf{F}_{q}, q \equiv 3(\bmod 4)$. If $q \equiv 1(\bmod 4)$, then $W \mathbf{F}_{q}=\mathbf{Z} /(2)\left[C_{2}\right]$ (the group ring over $\mathbf{Z} /(2)$ of the cyclic group C_{2}) so $G \neq\{ \pm 1\}$ in this case. (ii) I (resp. I^{2}) is torsion free if and only if $D\langle 1,1\rangle=1$ (resp. $D\langle 1,-a\rangle=G$ for all $a \in D\langle 1,1\rangle$). Thus, if $R=W F, F$ a field, then I (resp. I^{2}) is torsion free if and only if F is Pythagorean (resp. Quasi-Pythagorean). Elementary examples: R, C are Pythagorean; finite fields are Quasi-Pythagorean. (iii) If $R=W F$ where F is a global field or a local field $\neq \mathbf{R}, \mathbf{C}$ then I^{2} is not torsion free but I^{3} is torsion free.

To obtain Harrison's map $\rho \rightarrow \bar{\rho}$ (see [2], [3], and [6]) one needs to assume that \bar{R} satisfies an additional property:

$$
\begin{equation*}
\forall a, b \in \bar{G},(1-a)(1-b) \in \bar{I}^{3} \Rightarrow(1-a)(1-b)=0 . \tag{*}
\end{equation*}
$$

This is true if $\bar{R}=W F, F$ a field, $\operatorname{char}(F) \neq 2$, e.g., see [4]. In what follows, this special property is assumed whenever necessary.

Let $\rho: R \rightarrow \bar{R}$ be a homomorphism. $\rho^{-1}(\bar{I})$ is an ideal of index 2 in R so $\rho^{-1}(\bar{I})=I$. In particular, $\rho(I) \subseteq \bar{I}$. For $a \in G$, consider $\rho(a) \in \bar{R}^{*}$. This decomposes uniquely as $\rho(a)=\bar{\rho}(a)(1+x(a))$ where $\bar{\rho}(a) \in \bar{G}$ and $x(a) \in \bar{I}^{2}$. Thus $\bar{\rho}: G \rightarrow \bar{G}$ is a group homomorphism. Since $\rho(-1)=$ $-1 \in \bar{G}$, it follows that $\bar{\rho}(-1)=-1$. Now suppose $a, b \in G$ satisfy $1 \in D\langle a, b\rangle$. Then $(1-\rho(a))(1-\rho(b))=0$. Since $\bar{\rho}(c)-\rho(c) \in \bar{I}^{2}$ holds for any $c \in G$, this implies that $(1-\bar{\rho}(a))(1-\bar{\rho}(b)) \in \bar{I}^{3}$ and hence, by (*), that $(1-\bar{\rho}(a))(1-\bar{\rho}(b))=0$. Thus $\bar{\rho}$ induces a scheme homomorphism $\bar{\rho}: R \rightarrow \bar{R}$.
$\bar{\rho}$ is characterized as the unique scheme homomorphism satisfying $\bar{\rho}(x) \equiv$ $\rho(x)\left(\bmod \bar{I}^{2}\right)$ for all $x \in R$. Clearly $\bar{\rho}=\rho$ if and only if ρ is a scheme homomorphism. Also $\rho \rightarrow \bar{\rho}$ is functorial in the sense that $\overline{\psi \circ \rho}=\bar{\psi} \circ \bar{\rho}$ and $\overline{1}$ $=1$. In particular, if ρ is bijective, then $\bar{\rho}$ is bijective.
2.3. Note. For $a \in G, \rho(a)=\bar{\rho}(a)(1+x(a))$ with $x(a) \in \bar{I}^{2} .1+x(a)$ is a unit of order 2 in \bar{R}. Thus $x(a)$ is 2-primary torsion so $\rho(a)-\bar{\rho}(a)=\bar{\rho}(a) x(a)$ is 2-primary torsion. Since G generates R additively, this implies that $\rho(x) \equiv \bar{\rho}(x)\left(\bmod \left(\bar{I}^{2}\right)_{\text {tor }}\right)$ holds for all $x \in R$. Here, $\left(\bar{I}^{k}\right)_{\text {tor }}$ denotes the torsion part of \bar{I}^{k}. Actually, if we use (1.2), we can conclude that $2 x(a)=0$ for each $a \in G$ so $2 \rho=2 \bar{\rho}$.
2.4. Proposition. Suppose $G \neq\{ \pm 1\}, \bar{I}^{2}$ is not torsion free, but \bar{I}^{k} is torsion free for some $k \geqq 3$. Then, for each scheme homomorphism $\alpha: R \rightarrow \bar{R}$, there exists a homomorphism $\rho: R \rightarrow \bar{R}$ such that $\bar{\rho}=\alpha, \rho \neq \alpha$.

Proof. We may as well assume $\left(\bar{I}^{k-1}\right)_{\text {tor }} \neq 0$ so $G /\{ \pm 1\}$ and $\left(\bar{I}^{k-1}\right)_{\text {tor }}$ are non-trivial groups of exponent 2 . Thus there exists a non-trivial group homomorphism $x: G \rightarrow\left(\bar{I}^{k-1}\right)_{\text {tor }}$ with $x(-1)=0$. Pick any such homomorphism and define $\rho: G \rightarrow R^{*}$ by $\rho(a)=\alpha(a)(1+x(a)) \forall a \in G$. Now $x(a) x(b) \in\left(\bar{I}^{k}\right)_{\text {tor }}=0$ so $(1+x(a))(1+x(b))=1+x(a)+x(b)=$ $1+x(a b)$. Thus ρ is a group homomorphism. Also $x(-1)=0$ and $\alpha(-1)=-1$ so $\rho(-1)=-1$. Assume $1 \in D\langle a, b\rangle, a, b \in G$. Then

$$
\begin{aligned}
(1-\rho(a))(1-\rho(b)) & =(1-\alpha(a))(1-\alpha(b))+(1-\alpha(a)) \alpha(b) x(b) \\
& +(1-\alpha(b)) \alpha(a) x(a)+\alpha(a) x(a) \alpha(b) x(b)
\end{aligned}
$$

The first term here is zero since α is a homomorphism. The last three terms are zero since $\left(\bar{I}^{k}\right)_{\text {tor }}=0$. Thus ρ induces a homomorphism $\rho: R \rightarrow \bar{R}$.
3. Automorphisms. Consider a homomorphism $\rho: R \rightarrow R$ satisfying $\bar{\rho}=1$. That is, assume $\rho(x) \equiv x\left(\bmod I^{2}\right)$ holds for all $x \in R$.
3.1. Lemma. Suppose $k \geqq 2$ and that $\rho(x) \equiv x\left(\bmod I^{k}\right)$ holds for all $x \in R$. Then $\rho(x) \equiv x\left(\bmod I^{i+k}\right)$ holds for all $x \in I^{i+1}, i \geqq 0$.

Proof. The result is clear if $i=0$. If $i \geqq 1$, the result follows by induction using

$$
\rho(x y)-x y=\rho(x)(\rho(y)-y)+(\rho(x)-x) y
$$

with $x \in I, y \in I^{i}$.
3.2. Lemma. If $k \geqq 2$ and $\rho(x) \equiv x\left(\bmod I^{k}\right)$ holds for all $x \in R$ then $\rho^{2}(a) \equiv a\left(\bmod I^{2 k-1}\right)$ holds for all $a \in R$.

Proof. Since G generates R we can assume $a \in G$. Thus $\rho(a)=a(1+x)$ with $x \in I^{k}$.

$$
\begin{aligned}
\rho^{2}(a)=\rho(\rho(a)) & =\rho(a(1+x))=\rho(a)(1+\rho(x)) \\
& =a(1+x)(1+\rho(x))=a+a(x+\rho(x)+x \rho(x))
\end{aligned}
$$

Thus we have to show that

$$
x+\rho(x)+x \rho(x)=2 x+(\rho(x)-x)+x \rho(x) \in I^{2 k-1}
$$

Clearly $x \rho(x) \in I^{2 k}$. By (3.1), $\rho(x)-x \in I^{2 k-1}$. Also, $1+x$ has order 2 in R^{*}, so $2 x+x^{2}=0$. Thus $2 x=-x^{2} \in I^{2 k}$. (In fact, by (1.2), $2 x=0$.)
3.3. Proposition. Suppose I^{2} is not torsion free but I^{k} is torsion free for some $k \geqq 3$. Then there exists an automorphism $\rho: R \rightarrow R$ such that $\bar{\rho}=1, \rho \neq 1$.

Proof. If $G=\{ \pm 1\}$ then $R=\mathbf{Z}, \mathbf{Z} /(2)$, or $\mathbf{Z} /(4)$ and I^{2} is torsion free. Thus $G \neq\{ \pm 1\}$. Thus, by (2.4), there is some homomorphism $\rho: R \rightarrow R$ such that $\bar{\rho}=1, \rho \neq 1$. Pick any such ρ and pick s so large that $2^{s}+1 \geqq k$. Then for any $x \in R$, (3.2) implies that $\rho^{2^{s}}(x) \equiv x\left(\bmod I^{2^{s}+1}\right)$. By (2.3), $\rho^{2^{s}}(x)-x$ is torsion so $\rho^{2^{s}}(x)=x$. Thus, $\rho^{2^{s}}=1$. This implies ρ is bijective.

Let $\operatorname{Aut}(R)$ denote the group of automorphisms $\rho: R \rightarrow R$. Let $\operatorname{Aut}_{s c}(R) \subseteq$ $\operatorname{Aut}(R)$ be the subgroup consisting of scheme automorphisms. For $j \geqq 1$ let $\operatorname{Aut}_{j}(R) \subseteq \operatorname{Aut}(R)$ be the subgroup of automorphisms satisfying $\rho(x) \equiv x\left(\bmod I^{j+1}\right)$ for all $x \in R$. Harrison's map $\rho \rightarrow \bar{\rho}$ is a group homomorphism from $\operatorname{Aut}(R)$ onto $\mathrm{Aut}_{s c}(R)$ with kernel $\mathrm{Aut}_{1}(R)$. Since $\bar{\rho}=\rho$ for $\rho \in \operatorname{Aut}_{s c}(R), \operatorname{Aut}(R)$ is a semi-direct product of $\operatorname{Aut}_{1}(R)$ and $\operatorname{Aut}_{s c}(R)$. If I^{2} is torsion free, $\operatorname{Aut}_{1}(R)=1$ and $\operatorname{Aut}(R)=\operatorname{Aut}_{s c}(R)$. Suppose I^{2} is not torsion free but I^{k+1} is torsion free for some $k \geqq 2$. Then $\operatorname{Aut}_{1}(R) \neq 1$ but $\operatorname{Aut}_{k}(R)=1$. Each $\operatorname{Aut}_{j}(R)$ is normal in $\operatorname{Aut}(R)$. Also, by (3.2), $\rho \in \operatorname{Aut}_{j}(R) \Rightarrow \rho^{2} \in \operatorname{Aut}_{2 j}(R)$. Thus, in this case, $\operatorname{Aut}_{1}(R)$ is solvable
and each element of $\mathrm{Aut}_{1}(R)$ has finite 2-power order.
3.4. Proposition. If I^{3} is torsion free then $\mathrm{Aut}_{1}(R)$ is canonically isomorphic to the group $\operatorname{Hom}_{\mathrm{gr}}\left(G /\{ \pm 1\}\right.$, $\left.\left(I^{2}\right)_{\mathrm{tor}}\right)$. (Here, "Hom ${ }_{\mathrm{gr}}$ " denotes group homomorphisms.)

Proof. If $x: G \rightarrow\left(I^{2}\right)_{\text {tor }}$ is any group homomorphism satisfying $x(-1)=0$ then, by the proof of (2.4), x induces a homomorphism $\rho: R \rightarrow R$ given by $\rho(a)=a(1+x(a))$ for all $a \in G$. As in the proof of (3.3), $\rho^{2}=1$ so ρ is an automorphism and hence $\rho \in \operatorname{Aut}_{1}(R) . x \rightarrow \rho$ provides the desired isomorphism.
R is said to be of local type if it is the Witt ring of a local field. R is said to be of elementary type if $|G|<\infty$ and R is built up from $\mathbf{Z} /(2), \mathbf{Z} /(4), \mathbf{Z}$ and local types by forming Witt products and group rings. For elementary types, it is possible to give a precise inductive description of $\mathrm{Aut}_{s c}(R)$. This is an easy consequence of the material on quadratic form schemes developed in [6] and will not be given here.

For local types, $\operatorname{Aut}_{1}(R)$ and the action of $\operatorname{Aut}_{s c}(R)$ on $\operatorname{Aut}_{1}(R)$ can be computed explicitly using (3.4). In contrast, the structure of Aut (R) for general elementary types is not at all well understood. This is because $\operatorname{Aut}_{1}(R)$ is not very well behaved with respect to formation of Witt products and group rings.

Denote by $J_{k} \subseteq R$ the ideal of elements of (additive) order 2 in I^{k+1}. For elementary types it is known that $J_{k} \neq 0 \Rightarrow J_{k} \neq J_{k+1}$. For general Witt rings this appears to be open. Each $\rho \in \operatorname{Aut}_{k}(R)$ satisfies $\rho(x) \equiv x\left(\bmod J_{k}\right)$ for all $x \in R$. This follows from (1.2) (also see (2.3)). If $k \geqq 1$ is such that $J_{k} \neq 0$, $J_{k+1}=0$, then the element $\rho \in \operatorname{Aut}_{1}(R), \rho \neq 1$, constructed in (3.3), is actually in the group $\operatorname{Aut}_{k}(R)$. One would hope that if $k \geqq 1$ is arbitrary then $J_{k} \neq J_{k+1} \Rightarrow \operatorname{Aut}_{k}(R) \neq \operatorname{Aut}_{k+1}(R)$. In general it is not known if this is true.
3.5. Proposition. If R is of elementary type, $k \geqq 1$, and $J_{k} \neq 0$ then there exists $\rho \in \operatorname{Aut}_{k}(R), \rho \notin \operatorname{Aut}_{k+1}(R)$.

Proof. The proof is by induction on $|G|$. If R is of local type then $k=1$ and the result is clear. There are two cases left to consider. Case 1: $R=R_{1} \times R_{2}$ (Witt product). Then $J_{k}=\left(J_{1}\right)_{k} \times\left(J_{2}\right)_{k}$ (ordinary product) so $\left(J_{i}\right)_{k} \neq 0$ for $i=1$ or 2 , say $\left(J_{1}\right)_{k} \neq 0$. Thus, by induction, there exists $\rho_{1} \in \operatorname{Aut}_{k}\left(R_{1}\right) \backslash \operatorname{Aut}_{k+1}\left(R_{1}\right)$. Take $\rho=\rho_{1} \times 1$. Case 2: $R=\bar{R}[\Delta], \Delta=\{1, g\}$. Then $J_{k}=\bar{J}_{k} \oplus(1-g) \bar{J}_{k-1}$, so $\bar{J}_{k-1} \neq 0$. Pick $x \in \bar{J}_{k-1} \backslash \bar{J}_{k}$ and define $\rho: R \rightarrow R$ by $\rho(a)=a$ for $a \in \bar{G}, \rho(g)=g+(1-g) x$. Then ρ is a ring automorphism, $\rho \in \operatorname{Aut}_{k}(R) \backslash \mathrm{Aut}_{k+1}(R)$.

If we drop the assumption that I^{k+1} is torsion free for some $k \geqq 2$ then it is not known whether I^{2} not torsion free $\Rightarrow \operatorname{Aut}_{1}(R) \neq 1$. In fact very little
is known. If R is the Witt ring of a field then $\cap_{j} I^{j}=0$ by [1]. In this case it follows that $\cap_{j} \mathrm{Aut}_{j}(R)=1$. Combining this with (3.2) one can deduce that any element $\rho \in \operatorname{Aut}_{1}(R)$ which has finite order has 2-power order. See example 4 below for a case where $\operatorname{Aut}_{1}(R)$ has elements of infinite order.

4. Examples.

(1) Take $R=\mathbf{Z} /(4)[\Delta], \Delta$ a group of exponent 2 (so $G=\Delta \times\{ \pm 1\}$). Thus, if $|\Delta|=2^{k}$, then $J_{k} \neq 0, J_{k+1}=0$. We show that $\operatorname{Aut}_{1}(R)$ has exponent 2. $D\langle 1,1\rangle=\{ \pm 1\}$ so $J_{0} \subseteq R$ is the ideal generated by 2 . Let $\rho \in \operatorname{Aut}_{1}(R)$ be arbitrary. Then, for $a \in G, \rho(a)$ has the form $\rho(a)=a+2 r, r \in I$. Let $\rho(r)-r=2 s, s \in I$. Then $\rho^{2}(a)=\rho(a)+2 \rho(r)=a+2 r+2(r+2 s)=$ $a+4 r+4 s=a$. This shows $\rho^{2}=1$.
(2) $\mathrm{Aut}_{l}(R) / \mathrm{Aut}_{2 l}(R)$ is abelian of exponent 2 . To obtain an example where $\operatorname{Aut}_{l}(R) / \operatorname{Aut}_{2 l+1}(R)$ is not abelian one can take $R=\mathbf{Z} /(2)[\Delta]$ where Δ is a group of exponent 2 with $\mathbf{Z} /(2)$ - basis $a_{1}, \ldots, a_{l}, b_{0}, \ldots, b_{l}$. Set

$$
\begin{aligned}
& \rho\left(a_{1}\right)=\psi\left(a_{1}\right)=a_{1}+\prod_{i=0}^{l}\left(1+b_{i}\right) \text { and } \\
& \rho\left(b_{0}\right)=b_{0}+\left(1+b_{0}\right) \prod_{i=1}^{l}\left(1+a_{i}\right), \psi\left(b_{0}\right)=b_{0}
\end{aligned}
$$

For $i \geqq 2$ and $j \geqq 1$ set $\rho\left(a_{i}\right)=\psi\left(a_{i}\right)=a_{i}$ and $\rho\left(b_{j}\right)=\psi\left(b_{j}\right)=b_{j}$. Then ρ, $\psi \in \operatorname{Aut}_{l}(R)$ but, as one can verify by direct computation, $\rho\left(\psi\left(a_{1}\right)\right) \not \equiv \psi\left(\rho\left(a_{1}\right)\right)$ $\left(\bmod J_{2 l+1}\right)$.
(3) If $J_{2^{m}}=0$ then each $\rho \in \operatorname{Aut}_{1}(R)$ has order at most 2^{m}. To obtain an example where this bound is attained take $m \geqq 1$ and $R=\mathbf{Z} /(2)[\Delta]$ where Δ has exponent 2 and $\mathbf{Z} /(2)$-dimension 2^{m}. Fix a $\mathbf{Z} /(2)$-basis for Δ of the form $\left\{a_{i}, b_{i} \mid i \in \mathbf{Z} /\left(2^{m-1}\right)\right\}$. Define $\rho \in \operatorname{Aut}_{1}(R)$ by

$$
\begin{aligned}
& \rho\left(a_{i}\right)=a_{i}+\left(1+a_{i+1}\right)\left(1+b_{i}\right), \\
& \rho\left(b_{i}\right)=b_{i} .
\end{aligned}
$$

A careful inductive argument shows that

$$
\rho^{2^{s}}\left(a_{i}\right)=a_{i}+\left(1+a_{i+2^{s}}\right) \prod_{j=1}^{2^{s}}\left(1+b_{i+j-1}\right)
$$

for $s=0, \ldots, m-1$. Taking $s=m-1$ in this formula, it follows that $\rho^{2^{m-1}} \neq 1$.
(4) It is possible to show (for example by patching together automorphisms constructed in the above example) that the Witt ring $R=\mathbf{Z} /(2)[\Delta], \Delta$ countably infinite, has elements $\rho \in \operatorname{Aut}_{1}(R)$ of infinite order.

References

1. J. Arason and A. Pfister, Beweis des Krullschen Durchschnittsatzes fur der Wittring, Invent. Math. 12 (1971), pp. 173-176.
2. C. M. Cordes, The Witt group and equivalence of fields with respect to quadratic forms, J. Algebra 26 (1973), pp. 400-421.
3. D. K. Harrison, Witt rings, lecture notes, Department of Mathematics, University of Kentucky, Lexington (1970).
4. T. Y. Lam, The algebraic theory of quadratic forms, Benjamin, New York (1973).
5. M. Marshall, Exponentials and logarithms on Witt rings, Pac. J. of Math. 127 (1) (1987), pp. 127-140.
6. -, Abstract Witt Rings, Queen's Papers in Pure and Applied Math. 57, Queen's University, Kingston, Ontario (1980).
7. M. Marshall and J. Yucas, Linked quaternionic mappings and their associated Witt rings, Pac. J. of Math. 95 (2) (1981), pp. 411-425.

University of Kentucky
Lexington, KY, 40506
University of Saskatchewan
Saskatoon, Sask., S7N 0W0

[^0]: Received by the editors February 10, 1987, and, in revised form, May 21, 1987.
 AMS Subject Classification (1980): 10C05, 10C03.
 © Canadian Mathematical Society 1987.

