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Motion of a disk embedded in a nearly inviscid
Langmuir film. Part 1. Translation
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The motion of a disk in a Langmuir film bounding a liquid substrate is a classical
hydrodynamic problem, dating back to Saffman (J. Fluid Mech., vol. 73, 1976, p. 593) who
focused upon the singular problem of translation at large Boussinesq number, Bq � 1.
A semianalytic solution of the dual integral equations governing the flow at arbitrary Bq
was devised by Hughes et al. (J. Fluid Mech., vol. 110, 1981, p. 349). When degenerated to
the inviscid-film limit Bq → 0, it produces the value 8 for the dimensionless translational
drag, which is 50 % larger than the classical 16/3-value corresponding to a free surface.
While that enhancement has been attributed to surface incompressibility, the mathematical
reasoning underlying the anomaly has never been fully elucidated. Here we address the
inviscid limit Bq → 0 from the outset, revealing a singular mechanism where half of the
drag is contributed by the surface pressure. We proceed beyond that limit, considering a
nearly inviscid film. A naïve attempt to calculate the drag correction using the reciprocal
theorem fails due to an edge singularity of the leading-order flow. We identify the
formation of a boundary layer about the edge of the disk, where the flow is primarily in the
azimuthal direction with surface and substrate stresses being asymptotically comparable.
Utilising the reciprocal theorem in a fluid domain tailored to the asymptotic topology
of the problem produces the drag correction (8 Bq/π)[ln(2/Bq)+ γE + 1], γE being the
Euler–Mascheroni constant.
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1. Introduction

The problem of particle motion in a fluid membrane was originally motivated by diffusion
of proteins and lipid molecules in biological membranes separating aqueous phases
(Saffman & Delbrück 1975). In his pioneering work, Saffman (1976) modelled the
membrane as an incompressible film (say of width h) of a non-isotropic viscous fluid (say
of Newtonian viscosity μm), with no variations of fluid velocity across it; the diffusing
biological molecule was modelled as a cylindrical particle of radius a and height h.
Assuming that the unbounded substrates separated by the membrane are viscous liquids
(viscosity μ), the dimensionless problem depends upon a single parameter, namely the
Boussinesq number

Bq = hμm

aμ
. (1.1)

The analysis of Saffman (1976) involves h and μm only through the product hμm. It is
therefore equivalent to one involving a zero-thickness film with a Boussinesq–Scriven
rheology (Scriven 1960) quantified by the surface viscosity μs = hμm. In what follows we
employ that modern description, where the superfluous dependence upon h is eliminated.
The flow problem remains essentially the same if one considers, for simplicity, a single
liquid substrate. We refer hereafter to that simplified scenario.

Making use of the underlying linear structure of the viscous flow problem, Saffman
(1976) represented the flow field via Hankel transforms. The constraint of surface
incompressibility enforces a substrate flow in planes parallel to the film, with a uniform
substrate pressure. The boundary conditions at the film provide dual integral equations
governing the kernel of the transforms, with Bq appearing as a parameter. Rather than
solving the general problem, Saffman (1976) focused on a translating disk in the limit
Bq → ∞, corresponding to relatively large surface viscosity. That limit is singular, since
neglecting the action of the substrate stresses on the film readily leads to the Stokes
paradox.

It is well known that the Stokes paradox can be resolved by accounting for the role
of inertia at distances comparable to the ratio of the kinematic viscosity to the particle
speed (Leal 2007). Given the minute particle velocities in diffusion experiments, however,
these distances exceed those where other regularisation mechanisms become relevant. In
particular, Saffman (1976) noted that the (presumably small) substrate stresses become
comparable to the film stresses at distances of order μs/μ(= Bq a). Making use of the
method of matched asymptotic expansions, Saffman (1976) obtained his celebrated drag
approximation (see (1.2)). The comparable rotational problem in the limit Bq → ∞ is
rather straightforward, since the two-dimensional (2-D) problem of a circular disk rotating
in an unbounded viscous domain is well posed, the flow simply being a rotlet (Pozrikidis
2011).

With the goal of extending Saffman’s work to arbitrary values of Bq, Hughes, Pailthorpe
& White (1981) solved the dual integral equations directly. While not of the ‘standard form’
(Sneddon 1966), they can be reduced to a single integral equation, which may be solved
in a semianalytic manner, eventually leading to an infinite set of algebraic equations that
depend upon Bq. The main quantity of interest is the drag D on the disk (normalised by
the product of μa with the disk velocity); it is a function of Bq alone.

Degenerating the resulting equations to the limit Bq → ∞, Hughes et al. (1981)
reproduced Saffman’s result (for a single substrate),

D ∼ 4πBq
ln(2Bq)− γE

, (1.2)
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Motion of a disk embedded in a nearly inviscid Langmuir film

wherein γE is the Euler–Mascheroni constant. In the other extreme of an inviscid surface,
one might have expected to retrieve the well-known drag value

D = 16
3 , (1.3)

for a disk moving within a free surface. By symmetry, this value must be half the drag
on a disk moving edgewise within an unbounded fluid, a classical problem that has
been calculated using various methods (Ray 1936; Lamb 1945; Tanzosh & Stone 1996).
However, Hughes et al. (1981) found the drag to be 50 % larger,

lim
Bq→0

D = 8. (1.4)

Hughes et al. (1981) wrote that ‘The discrepancy . . . is further evidence of the singular
nature of the translational problem in that even in the limit that the membrane becomes
infinitely thin, it continues to influence the flow fields in the surrounding infinite fluid
media’. However, other than pointing to the difference between the free-surface drag (1.3)
and the small-Bq drag (1.4), no actual singularity was exposed.

In the literature following Hughes et al. (1981), the difference between (1.3) and (1.4)
is attributed to the need to impose surface incompressibility in the inviscid limit, a
requirement absent in the case of a free surface (Fischer 2004a; Stone & Masoud 2015;
Manikantan & Squires 2020). While surface incompressibility is indeed the underlying
source of that difference, the technical nature of the singular limit Bq → 0 has remained
unclear. In fact, naïvely setting Bq = 0 in the governing equations (see below) results in
an ill-posed problem. Indeed, when the constraint of surface incompressibility is relaxed,
that leading-order problem admits a unique solution, namely the flow leading to (1.3);
that solution does not satisfy surface incompressibility, which would over-specify the flow
problem.

We here revisit the translation problem using an asymptotic modus operandi. Thus,
rather than analysing the dual integral equations at the limit Bq → 0, we address the
singular limit Bq → 0 from the outset. The goal is threefold. The first is to illuminate
the mechanistic nature of the limit Bq → 0. The second is to rederive (1.4) directly,
from the solution in that limit. The third is to go beyond the inviscid limit and obtain
the leading-order correction to (1.4). Beyond the fundamental interest, the small-Bq limit
is of practical value for relatively large objects (Sickert, Rondelez & Stone 2007) and
highly viscous substrates (Vaz et al. 1987). More generally, the understanding of particle
motion within membranes may help in the interpretation of experimental results obtained
from modern rheometers that use surface probes to measure interfacial viscosities (Prasad,
Koehler & Weeks 2006; Zell et al. 2014).

We note that the Boussinesq–Scriven modelling (Scriven 1960) of the membrane as
an incompressible viscous interface – the modern version of Saffman’s description –
coincides with that of a monolayer of insoluble surfactants (‘Langmuir monolayer’) in
the limit of infinite Marangoni number (Manikantan & Squires 2020). In that limit
the description is purely mechanical, with no need to address the underlying surfactant
concentration. In what follows, we shall use the notation ‘Langmuir film’ and ‘Langmuir
monolayer’ interchangeably when referring to the viscous membrane.

The paper is arranged as follows. In the next section we formulate the problem, discuss
the apparent incompatibility at Bq = 0, and derive a representation for the drag in terms
of the far-field behaviour of the pertinent fields. In § 3 we extract certain simplifications
of the problem, valid for all Bq. In § 4 we address the inviscid limit Bq → 0, obtaining an
appropriate set of dual integral equations. These are solved in closed form, thus providing
the velocity field as an explicit Hankel transform. The associated drag (1.4) is derived
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Figure 1. Schematic of the problem geometry and the (ρ, φ, z) coordinates: (a) ‘side’ view; (b) ‘bottom’
view.

using several alternative methods. In § 5 we go beyond the inviscid limit, formulating
the problem for the leading-order flow correction. Following a failed attempt to obtain
the associated ord(Bq) drag correction via a naïve use of the reciprocal theorem, we
identify a breakdown of the asymptotic expansion near the edge of the disk. The analysis
of the near-edge region is carried out in § 6. A careful reciprocal scheme, tailored to the
asymptotic topology of the problem, is carried out in § 7, yielding both ord(Bq ln Bq) and
ord(Bq) drag corrections. We conclude in § 8, describing the rotational problem which
will be analysed in Part 2 of this work.

2. Problem formulation

2.1. Physical problem
The system comprises an incompressible Langmuir film that is bounding an infinite
viscous substrate (viscosity μ) on one side and air on the other. The surface rheology
of the film is described by the Boussinesq–Scriven model (Scriven 1960), with a uniform
surface viscosity μs.

A rigid disk (radius a) is embedded in the film. Our goal is the calculation of the
hydrodynamic drag experienced by the disk as it translates with velocity U . We neglect the
dynamical effect of the air and the deformation of the film. Dimensional arguments then
imply that the ratio of the drag to μUa can only depend upon the Boussinesq number,

Bq = μs

aμ
. (2.1)

2.2. Dimensionless formulation
We employ a dimensionless notation using a and U as length and velocity scales,
respectively. The substrate stresses, and in particular the pressure, are normalised by
μU/a. The surface stresses, and in particular the surface pressure, are normalised
by μs U/a. We utilise cylindrical coordinates (ρ, φ, z) in a comoving frame with the
origin coinciding with the disk centre, see figure 1. The plane z = 0 coincides with the
monolayer, with z > 0 being the liquid substrate. The upstream direction is φ = 0. The
radial unit vector êρ at that angle is denoted by ı̂. (Henceforth, the unit vector associated
with a generic coordinate q is denoted by êq.)

The continuity and Stokes equations governing the substrate velocity u and pressure p
therefore read

∇ · u = 0, ∇ · σ = 0 for z > 0, (2.2a,b)
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Motion of a disk embedded in a nearly inviscid Langmuir film

where
σ = −pI + ∇u + (∇u)† (2.3)

is the Newtonian stress in the substrate, with † denoting tensor transposition. They are
subject to the streaming condition

u → −ı̂ as ρ2 + z2 → ∞ (z > 0), (2.4)

and the boundary conditions at z = 0, namely no-slip on the disk

u = 0 for ρ < 1, (2.5a)

and velocity continuity at the interface,

u = us for ρ > 1. (2.5b)

We note that the impermeability condition,

êz · u = 0 at z = 0, (2.6)

is trivially satisfied.
The surface velocity us at z = 0 is governed by the incompressibility constraint

∇s · us = 0 for ρ > 1 (2.7)

and the momentum balance

Is · σ |z=0+ · êz + Bq∇s · σ s = 0 for ρ > 1. (2.8)

Here, Is = I − êzêz is the surface idemfactor (which acts here as a projection operator),
∇s = Is · ∇ is the surface gradient operator, and the surface stress σ s possesses a
Newtonian form

σ s = −ps Is + ∇sus + (∇sus)
†, (2.9)

wherein ps is the surface pressure.
The flow field is fully determined by (2.2a,b)–(2.9). It follows from conditions (2.5) that

the surface velocity must satisfy the no-slip condition

us = 0 at ρ = 1. (2.10)

It also follows from (2.4) and (2.5b) that it satisfies the streaming condition

us → −ı̂ as ρ → ∞. (2.11)

2.3. Surface pressure rescaling
Naïvely, the limit of an inviscid monolayer may be obtained by simply setting Bq = 0.
Then, the surface balance (2.8) becomes, using (2.3),

Is · ∂u
∂z

∣∣∣∣
z=0+

= 0 for ρ > 1. (2.12)

This shear-free condition, together with (2.4)–(2.5a), uniquely determines the solution of
the Stokes equations (2.2a,b), reproducing the familiar description of a disk moving in a
clean interface (Happel & Brenner 1965). That solution, however, when projected onto the
interface via (2.5b), does not satisfy interfacial incompressibility (2.7).
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The above impasse highlights the anomalous nature of the limit Bq → 0. The resolution
to it has to do with the scaling of the surface pressure. We conjecture that it actually
becomes ord(Bq−1) large, balancing substrate stresses in (2.8). We therefore write

ps = Bq−1p̃. (2.13)

Given constraint (2.5b), no such amplification applies to the viscous surface stresses. Thus,
with ∇sus = O(1), the viscous-stress contribution to (2.8) remains O(Bq). The rescaling
(2.13) represents a normalisation of the surface pressure by the substrate scale μU . The
original normalisation by μs U/a, natural for both Bq = ord(1) and Bq � 1, is ill-suited
for the limit Bq → 0.

Consistently with (2.13) we also write

σ s = Bq−1σ̃ , (2.14)

whereby (2.8) becomes

Is · σ |z=0+ · êz + ∇s · σ̃ = 0 for ρ > 1, (2.15)

wherein (cf. (2.9))
σ̃ = −p̃Is + Bq[∇sus + (∇sus)

†]. (2.16)

2.4. Drag
The problem symmetry implies that the hydrodynamic force on the disk is antiparallel
to the direction of motion. Consequently, the drag force acts in the negative-ı̂ direction.
Denoting the drag magnitude (normalised by μUa) by D, we therefore have

Is ·
∫
ρ<1

σ |z=0+ · êz dA +
∮
ρ=1+

σ̃ · êρ dl = −ı̂D, (2.17)

where the first integral is evaluated over the disk ‘bottom’ (z = 0+) while the second is
carried over its perimeter, dl being a differential length element. Equivalently,

D = −ı̂ ·
∫
ρ<1

σ |z=0+ · êz dA − ı̂ ·
∮
ρ=1+

σ̃ · êρ dl. (2.18)

In what follows, we derive an alternative expression for D, involving the flow behaviour
at large distances. We start by integrating (2.15) over the annular domain 1 < ρ < Λ, for
a fixed Λ > 1. Using the 2-D variant of the divergence theorem, we obtain

Is ·
∫

1<ρ<Λ
σ |z=0+ · êz dA +

(∮
ρ=Λ

−
∮
ρ=1+

)
σ̃ · êρ dl = 0 for ρ > 1. (2.19)

Multiplying by ı̂ and subtracting from (2.18) yields

D = −ı̂ ·
∫
ρ<Λ

σ |z=0+ · êz dA − ı̂ ·
∮
ρ=Λ

σ̃ · êρ dl, (2.20)

where the first integral is evaluated over the ‘bottom’ (z = 0+) of the z = 0-plane.
At this point we introduce the surface SΛ, a hemisphere (z > 0) of radius Λ centred

about the origin. Making use of (2.2b) and the divergence theorem, transforms (2.20) to

D = −ı̂ ·
∫
SΛ

σ · êr dA − ı̂ ·
∮
ρ=Λ

σ̃ · êρ dl, (2.21)

wherein êr is a unit vector in the radial direction. Since Λ is at our disposal, it can be
taken to be arbitrarily large. The drag representation (2.21) then depends only upon the
asymptotic behaviour of the substrate and surface stresses at large distances.
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Motion of a disk embedded in a nearly inviscid Langmuir film

3. Simplifications

3.1. General
Using (2.3) and (2.6), it is readily seen that

σ · êz = −p êz + ∂u
∂z

at z = 0. (3.1)

The interfacial momentum balance (2.15) therefore simplifies to

Is · ∂u
∂z

∣∣∣∣
z=0+

+ ∇s · σ̃ = 0 for ρ > 1, (3.2)

while the drag expression (2.18) becomes

D = −ı̂ ·
∫
ρ<1

∂u
∂z

∣∣∣∣
z=0+

dA − ı̂ ·
∮
ρ=1+

σ̃ · êρ dl. (3.3)

In fact, both (3.2) and (3.3) may be written in terms of substrate velocity u. Thus, making
use of (2.5b), (2.7) and (2.16), (3.2) becomes

Is · ∂u
∂z

− ∇sp̃ + Bq∇2
s u = 0 for ρ > 1, (3.4)

when it is understood that both u and ∂u/∂z are evaluated at z = 0. Similarly, making use
of (2.5b) and (2.16), (3.3) becomes

D = −ı̂ ·
∫
ρ<1

∂u
∂z

dA + ı̂ ·
∮
ρ=1+

êρ p̃ dl − Bq ı̂ ·
∮
ρ=1+

[∇su + (∇su)†] · êρ dl. (3.5)

With the surface velocity absent in (3.4)–(3.5), it only appears in (2.7).

3.2. Flow in parallel planes
In the analysis of equivalent problems (Saffman 1976; Hughes et al. 1981), it was
rigorously shown that the constraint of surface incompressibility eventually necessitates
a flow structure where u has no component in the z-direction. Following Stone & Ajdari
(1998) we elect here to follow a simplified path, where we postulate that the substrate flow
has no z-component. Then, substrate incompressibility (2.2a) readily implies that surface
incompressibility (2.7) is trivially satisfied. In particular, the surface velocity us no longer
appears in the governing equations.

The restriction of fluid motion to parallel planes has two immediate consequences. First,
we can omit the projection operator in (3.4). Second, with (2.2a,b) necessitating pressure
gradients which are independent of z, it follows from (2.4) that p is uniform throughout.
Thus, the stress is purely deviatoric (cf. (2.3)),

σ = ∇u + (∇u)†, (3.6)

and the Stokes equations (2.2b) simply read

∇2u = 0 for z > 0. (3.7)
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3.3. Symmetries
It follows from the problem symmetry that the substrate velocity possesses the form

u = êρuρ(ρ, z) cosφ + êφuφ(ρ, z) sinφ. (3.8)

The surface pressure is then
p̃(ρ, φ) = Π(ρ) cosφ. (3.9)

With the aforementioned structure, the continuity equation (2.2a) becomes

∂

∂ρ
(ρuρ)+ uφ = 0, (3.10)

while the ρ- and φ-components of the Stokes equations (3.7) give

∂2uρ
∂z2 + ∂2uρ

∂ρ2 + 1
ρ

∂uρ
∂ρ

− 2
uρ + uφ
ρ2 = 0, (3.11a)

∂2uφ
∂z2 + ∂2uφ

∂ρ2 + 1
ρ

∂uφ
∂ρ

− 2
uρ + uφ
ρ2 = 0. (3.11b)

The variables uρ and uφ are subject to the streaming condition (cf. (2.4))

uρ → −1, uφ → 1 as ρ2 + z2 → ∞ (z > 0). (3.12)

At z = 0, the no-slip condition (2.5a) becomes

uρ = uφ = 0 for ρ < 1, (3.13)

while the ρ- and φ-components of the interfacial balance (3.4) become

∂uρ
∂z

− dΠ
dρ

+ Bq

(
∂2uρ
∂ρ2 + 1

ρ

∂uρ
∂ρ

− 2
uρ + uφ
ρ2

)
= 0, (3.14a)

∂uφ
∂z

+ Π

ρ
+ Bq

(
∂2uφ
∂ρ2 + 1

ρ

∂uφ
∂ρ

− 2
uρ + uφ
ρ2

)
= 0, (3.14b)

for ρ > 1.
Substitution of (3.8)–(3.9) into (3.5) followed by integration over φ yields

D = π

∫ 1−

0

(
∂uφ
∂z

− ∂uρ
∂z

)
ρ dρ + π Π |ρ=1+ − πBq

(
2
∂uρ
∂ρ

− ∂uφ
∂ρ

+ uρ + uφ

)
ρ=1+

,

(3.15)

with the understanding that both uρ and uφ as well as their z-derivatives are evaluated at
z = 0.

4. The small-Bq limit

We now proceed to the limit Bq � 1, posing the generic expansion

f ∼ f (0) + Bq f (1) + . . . (4.1)

for all field variables. We note that, in the problem formulation, the small parameter Bq
appears only in condition (3.14). Equations (3.10)–(3.13) therefore hold at any asymptotic
order.
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Motion of a disk embedded in a nearly inviscid Langmuir film

4.1. Inviscid solution
Setting Bq = 0 in (3.14) we obtain

∂u(0)ρ
∂z

= dΠ(0)

dρ
,

∂u(0)φ
∂z

= −Π
(0)

ρ
for ρ > 1. (4.2a,b)

By eliminating Π(0) we readily obtain the vorticity balance

∂

∂r

(
ρ
∂u(0)φ
∂z

)
+ ∂u(0)ρ

∂z
= 0. (4.3)

The general solution of (3.10)–(3.11) that satisfies (3.12) is given in terms of Hankel
transforms (Saffman 1976)

u(0)ρ + 1 = 1
2

∫ ∞

0
B(k)[J2(kρ)+ J0(kρ)]e−kz dk, (4.4a)

u(0)φ − 1 = 1
2

∫ ∞

0
B(k)[J2(kρ)− J0(kρ)]e−kz dk, (4.4b)

wherein Jn is the Bessel function of the first kind. From (4.2b) we then obtain

Π(0) = ρ

2

∫ ∞

0
kB(k)[J2(kρ)− J0(kρ)] dk. (4.5)

We now apply the boundary conditions at z = 0 to the Hankel transforms (4.4). The first
condition is at the interface. Substituting (4.4) into the vorticity equation (4.3) yields the
integral equation ∫ ∞

0
k2B(k)J1(kρ) dk = 0 for ρ > 1. (4.6)

The second equation is at the disk bottom. Substitution of (4.4) into the no-slip condition
(3.13) at ord(1) yields∫ ∞

0
B(k)J2(kρ) dk = 0,

∫ ∞

0
B(k)J0(kρ) dk = 2, (4.7a,b)

for ρ < 1. Mutual addition of (4.7a,b), in conjunction with the identity

J0(x)+ J2(x) = 2
x

J1(x), (4.8)

yields the second equation governing B(k),∫ ∞

0

B(k)
k

J1(kρ) dk = ρ for ρ < 1. (4.9)

The function B(k) is determined by the dual integral equations (4.6) and (4.9).
Multiplying (4.9) by ρ and differentiating with respect to ρ gives∫ ∞

0
B(k)J0(kρ) dk = 2 for ρ < 1, (4.10)
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where we have used the identity

dJ0

dx
= −J1(x). (4.11)

Also, integrating (4.6) from ρ to ∞ and making use of (4.11) in conjunction with J0(∞) =
0 yields ∫ ∞

0
kB(k)J0(kρ) dk = 0 for ρ > 1. (4.12)

The dual set (4.10) and (4.12) is equivalent to that encountered in the classical
calculation of the capacitance of an electrified disk, a problem originally solved by Weber
(1873). In the present context we find (Sneddon 1966)

B(k) = 4 sin k
πk

. (4.13)

Substitution of (4.13) into (4.5) yields the simple expression

Π(0) = 4
πρ
. (4.14)

No comparable closed-form for the substrate fields u(0)ρ and u(0)φ is obtained by substituting
(4.13) into (4.4) for arbitrary z. Nonetheless, evaluation at z = 0 (with ρ > 1) gives

u(0)ρ + 1 = 2
π

(√
ρ2 − 1
ρ2 + arcsin

1
ρ

)
, u(0)φ − 1 = 2

π

(√
ρ2 − 1
ρ2 − arcsin

1
ρ

)
.

(4.15a,b)

Similarly, evaluation of the derivatives at z = 0 (with ρ < 1) gives

∂u(0)ρ
∂z

= 4
πρ2

(√
1 − ρ2 − 1

)
,

∂u(0)φ
∂z

= 4
πρ2

(
1√

1 − ρ2
− 1

)
. (4.16a,b)

We can also obtain the asymptotic behaviour of u(0) at large distances, ρ2 + z2 → ∞.
To that end, we employ the spherical polar coordinates (r, θ, φ), related to the present
cylindrical coordinates via

z = r cos θ, ρ = r sin θ. (4.17a,b)

In the limit r → ∞, the integral representations (4.4) are dominated by k = O(1/r). We
readily obtain

u(0)ρ + 1 ∼ 2
πr cos2(θ/2)

, u(0)φ − 1 ∼ − 2 cos θ
πr cos2(θ/2)

as r → ∞. (4.18a,b)

Note that at θ = π/2, where r = ρ and u = us, (4.18a,b) reduces to the purely radial field

u(0)s + ı̂ ∼ 4
πρ

êρ êρ · ı̂ as ρ → ∞, (4.19)

in agreement with the associated 2-D Green’s function of the problem (Fischer 2004b).
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Motion of a disk embedded in a nearly inviscid Langmuir film

4.2. Drag in an inviscid monolayer
We now proceed to the calculation of the drag D(0), which is the quantity of interest. Here,
the simplest calculation method is the direct one, using (3.15). Setting Bq = 0 we obtain

D(0) = π

∫ 1−

0

(
∂u(0)φ
∂z

− ∂u(0)ρ
∂z

)
ρ dρ + πΠ(0)

∣∣∣
ρ=1+ . (4.20)

Substitution of (4.14) and (4.16a,b) into (4.20) yields

D(0) = 8, (4.21)

where half the drag is contributed by viscous stresses on the disk bottom while the
other half is due to interfacial pressure. A derivation of (4.21) using the direct formula
(3.15), which does not require the explicit expressions (4.14) and (4.16a,b), is presented in
Appendix A.

Alternatively, we can use representation (2.21), which at leading order gives

D(0) = −ı̂ ·
∫
SΛ

σ (0) · êr dA − ı̂ ·
∮
ρ=Λ

σ̃ (0) · êρ dl. (4.22)

Noting that (see (3.6) and (2.16))

σ (0) = ∇u(0) + (∇u(0))†, σ̃ (0) = −p̃(0)Is, (4.23a,b)

we see that

D(0) = −ı̂ ·
∫
SΛ

[∇u(0) + (∇u(0))†] · êr dA + ı̂ ·
∮
ρ=Λ

êρ p̃(0) dl. (4.24)

The contribution of the second integral, using (3.9) and (4.14), is 4. In evaluating the
contribution of the first integral, we exploit the independence of the drag upon the arbitrary
parameter Λ, and form the limit Λ → ∞. Substitution of (4.18a,b) yields 4. We have
therefore reproduced (4.21), where again half the drag is contributed by the interfacial
pressure.

Considering the limit Λ → ∞, it is evident that the 1/r decay rate in (4.18a,b) is
necessary for a finite drag contribution from viscous stresses over the hemisphere SΛ,
which decay there as 1/Λ2. We observe that (4.18a,b), which must satisfy a surface
incompressibility condition at the interface θ = π/2, differ from the large-r asymptotic
limit of the classical solution of a disk in a clean interface, which is the familiar Stokeslet
(corresponding to drag 16/3).

5. Nearly inviscid film

We now proceed to calculate the drag correction D(1). With the use of the reciprocal
theorem in mind, we find it convenient to summarise first the equations governing the
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ord(1) problem in an invariant notation. The continuity and Stokes equations read

∇ · u(0) = 0, ∇ · σ (0) = 0 for z > 0. (5.1a,b)

These are supplemented by the streaming condition

u(0) → −ı̂ as r → ∞ (z > 0), (5.2)

and two conditions at z = 0: the first is the no-slip condition (see (2.5a)),

u(0) = 0 for ρ < 1; (5.3)

the second is the shear balance (see (2.15)),

Is · σ (0)
∣∣∣
z=0+ · êz + ∇s · σ̃ (0) = 0 for ρ > 1. (5.4)

The stress expressions are given in (4.23a,b). The surface velocity is simply provided by
the substrate velocity at z = 0 (cf. (2.5b))

u(0)s = u(0)(z = 0); (5.5)

it satisfies surface incompressibility (cf. (2.7))

∇s · u(0)s = 0 for ρ > 1. (5.6)

The ord(Bq) balances readily follow. The continuity and Stokes equations read

∇ · u(1) = 0, ∇ · σ (1) = 0 for z > 0. (5.7a,b)

These are supplemented by the decay condition

u(1) → 0 as r → ∞, (5.8)

and two conditions at z = 0: the first,

u(1) = 0 for ρ < 1, (5.9)

obtained from (2.5a); and the second,

Is · σ (1)
∣∣∣
z=0+ · êz + ∇s · σ̃ (1) = 0 for ρ > 1, (5.10)

obtained from (2.15). From (2.16) and (3.6) we have (cf. (4.23a,b))

σ (1) = ∇u(1) + (∇u(1))†, σ̃ (1) = −p̃(1)Is + ∇su(0)s + (∇su(0)s )†. (5.11a,b)

The associated drag correction is obtained from (2.21), which at ord(Bq) gives
(cf. (4.22))

D(1) = −ı̂ ·
∫
SΛ

σ (1) · êr dA − ı̂ ·
∮
ρ=Λ

σ̃ (1) · êρ dl. (5.12)
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Motion of a disk embedded in a nearly inviscid Langmuir film

5.1. Drag correction: naïve try with the reciprocal theorem
In principle, the drag correction can be obtained using (5.12) from the solution of the
problem (5.7a,b)–(5.11a,b) governing u(1) and p̃(1). As we want to avoid that detailed
solution, we resort to the use of the reciprocal theorem (Masoud & Stone 2019), already
employed in related problems in the field (Stone & Masoud 2015). Exploiting the fact that
both the flow u(0) (with stress σ (0)) and u(1) (with stress σ (1)) satisfy the homogeneous
Stokes equations, see (5.1a,b) and (5.7a,b), our starting point is (Happel & Brenner 1965)

∇ · (u(0) · σ (1)) = ∇ · (u(1) · σ (0)). (5.13)

We integrate (5.13) over the domain bounded by the hemisphere SΛ and the plane z = 0+.
Integration of the left-hand side gives, upon making use the divergence theorem,∫

SΛ
u(0) · σ (1) · êr dA −

∫
0<ρ<1

u(0) · σ (1) · êz dA −
∫

1<ρ<Λ
u(0) · σ (1) · êz dA. (5.14)

(In what follows, integrals over the domains 0 < ρ < 1 and 1 < ρ < Λ are understood to
be evaluated at z = 0+.) Using (5.3) and (5.10), (5.14) simplifies to∫

SΛ
u(0) · σ (1) · êr dA +

∫
1<ρ<Λ

u(0) · (∇s · σ̃ (1)) dA. (5.15)

At this point we make use of (2.5b), conveniently employing the surface velocity u(0)s
instead of u(0) in the second integral of (5.15). Noting that, for any surface tensor field S
and surface vector field a,

∇s · (S · a) = (∇s · S) · a + S : ∇sa, (5.16)

the second integral in (5.15) becomes∫
1<ρ<Λ

[∇s · (u(0)s · σ̃ (1))− σ̃ (1) : ∇su(0)s ] dA. (5.17)

Upon making use of the surface variant of the divergence theorem and exploiting (5.3), we
find that ∫

1<ρ<Λ
∇s · (u(0)s · σ̃ (1)) dA =

∮
ρ=Λ

u(0)s · σ̃ (1) · êρ dl. (5.18)

Also, making use of (5.6) and (5.11b)∫
1<ρ<Λ

σ̃ (1) : ∇su(0)s dA = 2
∫

1<ρ<Λ
e(0)s : e(0)s dA (5.19)

wherein

e(0)s = 1
2 [∇su(0)s + (∇su(0)s )†], (5.20)

is the surface rate-of-strain tensor associated with u(0).
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To summarise, the volume integral of the left-hand side of (5.13) is∫
SΛ

u(0) · σ (1) · êr dA +
∮
ρ=Λ

u(0) · σ̃ (1) · êρ dl − 2
∫

1<ρ<Λ
e(0)s : e(0)s dA, (5.21)

where we reverted to the substrate velocity. In a similar manner we find that the integral of
the right-hand side of (5.13) is∫

SΛ
u(1) · σ (0) · êr dA +

∮
ρ=Λ

u(1) · σ̃ (0) · êρ dl. (5.22)

We now form the limit Λ → ∞. Recalling that σ (0) = O(r−2) and σ̃ (0) = O(r−1) at
large r, we see from (5.8) that (5.22) vanishes in that limit. From (5.2) and (5.21) we
therefore obtain

− ı̂ · lim
Λ→∞

[∫
SΛ

σ (1) · êr dA +
∮
ρ=Λ

σ̃ (1) · êρ dl
]

− 2
∫
ρ>1

e(0)s : e(0)s dA = 0. (5.23)

Since Λ is arbitrary in (5.12), the first term in (5.23) is D(1). We therefore find the drag as
a surface-dissipation quadrature,

D(1) = 2
∫
ρ>1

e(0)s : e(0)s dA. (5.24)

Substituting (4.15a,b) in conjunction with the angular dependence (3.8) and using the
expressions for the rate-of-strain components in polar coordinates (Batchelor 1967) gives,
upon integrating over φ,

D(1) = 2π

∫ ∞

1
D(ρ) dρ, (5.25)

wherein

D = ρ

⎡
⎣(∂u(0)ρ

∂ρ

)2

+ 1
2

(
∂u(0)φ
∂ρ

)2

+ 3
2

(
u(0)ρ + u(0)φ

ρ

)2

− u(0)ρ + u(0)φ
ρ

∂u(0)φ
∂ρ

⎤
⎦

z=0

.

(5.26)

While (5.24) may appear plausible, it is in fact meaningless, as the integral does not
converge. Indeed, (4.15a,b) implies the following asymptotic behaviours at z = 0:

u(0)ρ = O{(ρ − 1)3/2} as ρ ↘ 1 (5.27)

and

u(0)φ ∼ 4
π

21/2(ρ − 1)1/2 + O{(ρ − 1)3/2} as ρ ↘ 1. (5.28)

Substitution into (5.26) gives

D ∼ 4
π2(ρ − 1)

as ρ ↘ 1. (5.29)

With that behaviour, the integral appearing in (5.25) diverges logarithmically.
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Motion of a disk embedded in a nearly inviscid Langmuir film

z

ρ1

ψ

�
ψ

X

R

Y
SΛ : r = Λ

Sλ : � = λ

r

θ

(a) (b)

Figure 2. (a) Integration domain and local polar coordinates (	,ψ). (b) Edge-layer coordinates.

5.2. Edge singularity
Our attempt to employ the reciprocal theorem has failed because of the square-root
singularity in the surface-velocity field (5.28). While u(0)φ possesses a finite limit as ρ ↘ 1,

the derivative ∂u(0)φ /∂ρ diverges. A similar singularity is also manifested over the disk
(ρ < 1). Indeed, expressions (4.16a,b) imply that, at z = 0,

∂u(0)ρ
∂z

∼ − 4
π
,

∂u(0)φ
∂z

∼ 2
√

2
π(1 − ρ)1/2

− 4
π

as ρ ↗ 1, (5.30a,b)

the asymptotic error being of order (1 − ρ)1/2. The derivative (5.30b) is therefore singular
as the rim is approached. We conclude (recall (3.8)) that the φ-component of u(0) has a
square-root singularity near the edge, a singularity possessed by neither the ρ-component
nor the interfacial pressure.

Towards the asymptotic analysis that follows, it is desirable to understand the behaviour
of both u(0)ρ and u(0)φ near the rim without the restriction to z = 0. We therefore consider a
generic point within the substrate, z > 0 (with ρ smaller or larger than 1). To conveniently
address an approach to the rim, we use the polar-like coordinates (	,ψ), defined by (see
figure 2)

ρ − 1 = −	 cosψ, z = 	 sinψ. (5.31a,b)

(In terms of these, (5.28) applies at ψ = π.) The near-edge behaviour is revealed by
applying the limit	 � 1 (with 0 < ψ < π) to the velocity components (4.4). The results,
obtained in Appendix B, are

u(0)ρ ∼ −4	
π

sinψ + O(	 3/2) (5.32)

and

u(0)φ ∼ 4
π
(2	)1/2 sin

ψ

2
+ O(	). (5.33)

Note that (5.33) constitutes the harmonic continuation of (5.28) that vanishes on the disk,
where ψ = 0.
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6. Edge layer

The breakdown of the asymptotic expansion (4.1) near the rim suggests the formation of
local edge layer. Recall that with asymptotic expansion (4.1) the last term of condition (3.4)
does not enter the leading-order problem. We therefore seek a distinguished limit where
that term resurfaces. The form (3.14) of condition (3.4) suggests a region of ord(Bq) extent.
Matching with (5.33) then implies that uφ = ord(Bq1/2) in that region.

To describe that region we define the Cartesian-like coordinates (see figure 2)

ρ − 1 = Bq X, z = Bq Y, (6.1a,b)

and pose the edge-layer expansion

uφ = Bq1/2U + . . . . (6.2)

In what follows, we seek the leading-order velocity U. Note that (5.32) and (4.14) imply
that both uρ and Π − 4/π are O(Bq) in the edge layer; neither of them participates in the
following analysis.

From (3.11b) we find that U satisfies Laplace’s equation in the upper-half XY-plane,

∂2U
∂X2 + ∂2U

∂Y2 = 0 for Y > 0. (6.3)

At Y = 0 it satisfies a mixed boundary condition. Thus, the no-slip condition (3.13) gives

U = 0 for X < 0, (6.4)

while the interface balance (3.14b) gives

∂U
∂Y

+ ∂2U
∂X2 = 0 for X > 0. (6.5)

Finally, we have matching with (5.33),

U ∼ 321/2

π
R1/2 sin

ψ

2
as R → ∞, (6.6)

wherein R = √
X2 + Y2 (see figure 2). Note that R = Bq	 , cf. (6.1a,b). We made no use

of the continuity equation (3.10); it merely relates U to the radial velocity component in
the edge region.

We note that (X, Y) are related to the polar coordinates (R, ψ) as (cf. (5.31a,b))

X = −R cosψ, Y = R sinψ. (6.7a,b)

When using (R, ψ) as independent variables, Laplace’s equation becomes

∂2U
∂R2 + 1

R
∂U
∂R

+ 1
R2
∂2U
∂ψ2 = 0, (6.8)

while conditions (6.4)–(6.5) read, respectively,

U = 0 for ψ = 0, (6.9)

∂U
∂ψ

= R
∂2U
∂R2 for ψ = π. (6.10)
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Motion of a disk embedded in a nearly inviscid Langmuir film

6.1. Local analysis
We now perform a local analysis at large R, seeking the correction to (6.6). We therefore
write

U ∼ 321/2

π
R1/2 sin

ψ

2
+Ω + . . . for R → ∞, (6.11)

where the harmonic field Ω satisfies the boundary conditions

Ω = 0 for ψ = 0, (6.12)

∂Ω

∂ψ
= −21/2

π
R−1/2 for ψ = π (6.13)

and the requirement

Ω � R1/2 for R → ∞. (6.14)

Condition (6.13) may appear to suggest a correction of ord(R−1/2), which is compatible
with (6.14). To satisfy (6.12), the harmonic correction would then have the form

Ω = KR−1/2 sin
ψ

2
. (6.15)

This expression, however, has zero derivative with respect to ψ at ψ = π, and is
therefore incompatible with (6.13). We therefore have a degenerate case, where we need
to supplement (6.15) by a slightly more singular harmonic solution (Brandão & Schnitzer
2020). Keeping in mind the need to satisfy (6.12), we replace (6.15) by

Ω = KR−1/2 sin
ψ

2
+ LR−1/2

(
sin

ψ

2
ln R − ψ cos

ψ

2

)
. (6.16)

Condition (6.13) then gives

L = −81/2

π2 . (6.17)

6.2. Behaviour on the positive real axis
To determine K we make use of the dispersion relation between the real (Q1) and
imaginary (Q2) parts of a function that is analytic in the upper half-plane and decays
at large R. When applied on the positive real axis, it gives

Q2(X, 0) = − 1
π
P
∫ ∞

−∞
Q1(ξ, 0)
ξ − X

dξ, (6.18)

wherein P denotes the Cauchy principal value. Here, we choose Q1 as ∂U/∂X (which is
evidently harmonic), whose harmonic conjugate Q2 is −∂U/∂Y . Making use of (6.4)–(6.5)
we obtain the following singular integro-differential equation governing ∂U/∂X on the
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positive real axis:

∂2U
∂X2 (X, 0) = − 1

π
P
∫ ∞

0

∂U
∂X
(ξ, 0)

dξ
ξ − X

for X > 0. (6.19)

The general solution of equations of that type was constructed by Varley & Walker
(1989). In the present context, it is given by the Laplace transform

∂U
∂X
(X, 0) =

∫ ∞

0

(s)e−Xs ds, (6.20)

wherein


(s) = A
s1/2(1 + s2)3/4

exp
{
− 1

π

∫ s

0

ln t
1 + t2

dt
}
. (6.21)

Note that ∂U/∂X, and whence the in-plane stress, is finite at the origin.
The arbitrary constant A cannot be determined from the above analysis of the

homogeneous relation (6.19). At this point, we require that (6.20) is compatible with the
far-field behaviour (6.6). To that end, we obtain the large-X asymptotic limit of (6.20)
using the small-s asymptotic limit of 
(s), 
(s) ∼ A/s1/2. Substitution into (6.20) gives

∂U
∂X
(X, 0) ∼ Aπ1/2

X1/2 for X � 1. (6.22)

Comparing with (6.6) at X > 0 (i.e. ψ = π) gives

A = 81/2/π3/2. (6.23)

We can go further now, obtaining (in the spirit of Watson’s Lemma) the large-X
asymptotic expansion of (6.20) using the small-s asymptotic expansion of 
(s). From (6.21)
and (6.23) we readily obtain


(s) ∼ 81/2

π3/2s1/2

[
1 − s

π
(ln s − 1)+ Ol(s2)

]
for s � 1, (6.24)

where Ol means that the order includes (an unspecified power of) the logarithm of the
expansion parameter. Substitution into (6.20) gives the asymptotic refinement of (6.22),

∂U
∂X
(X, 0) ∼ 81/2

πX1/2 + 21/2

π2X3/2 (ln 4X + γE − 1)+ Ol(X−5/2) for X � 1, (6.25)

wherein γE = 0.57721 . . . is the Euler–Mascheroni constant. Comparing with the refined
far-field behaviour (6.11) and (6.16) reproduces (6.17) and gives

K = −81/2(γE + ln 4 + 1)
π2 . (6.26)

6.3. The inner limit of the outer correction
We now reconsider the flow in the ‘outer’ region, outside the ‘inner’ edge layer. The
appearance of a ln	 term in (6.16) and the requirement of asymptotic matching implies
the appearance of ord(Bq ln Bq) terms in the outer expansion of uφ . Following the standard
approach in matched asymptotic expansions (Van Dyke 1964), we do not separate by
logarithms. Thus, expansion (4.1) still holds, with the understanding that terms beyond
leading order (and in particular D(1)) may depend upon ln Bq.
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Motion of a disk embedded in a nearly inviscid Langmuir film

Van Dyke matching, using the two-term inner expansion (6.11) and expression (6.16),
implies that

u(1)φ ∼
(

K − L ln
Bq
	

)
	−1/2 sin

ψ

2
− L	−1/2ψ cos

ψ

2
as 	 → 0. (6.27)

7. Drag correction

7.1. Revised reciprocal scheme
In employing the reciprocal theorem using various terms of the asymptotic expansion
(4.1), it is necessary to restrict the analysis to the portion of the fluid domain where that
expansion is valid. Given the breakdown of that expansion near the rim, the domain naïvely
chosen in § 5.1 is clearly inadequate. We here outline a modified approach for using the
reciprocal theorem.

Introducing a cut torus of radius λ(< 1) about the rim ρ = 1 (Brandão & Schnitzer
2020), we employ a domain that is bounded by the hemisphere SΛ, where the
outward-pointing unit normal n̂ coincides with êr; the cut torus Sλ, where n̂ = −ê	 ;
and two regions at z = 0+, where n̂ = −êz: the disk region 0 < ρ < 1 − λ, and the ring
1 + λ < ρ < Λ. The domain is illustrated in figure 2.

To avoid the rim singularity, we impose λ� Bq. Expansion (4.1) is then valid within
the domain, allowing for integration of (5.13). The integration of the left-hand side gives,
upon making use the divergence theorem (cf. (5.14)),∫

SΛ
u(0) · σ (1) · êr dA −

∫
Sλ

u(0) · σ (1) · ê	 dA

−
∫

0<ρ<1−λ
u(0) · σ (1) · êz dA −

∫
1+λ<ρ<Λ

u(0) · σ (1) · êz dA. (7.1)

(In what follows, integrals over the domains 0 < ρ < 1 − λ and 1 + λ < ρ < Λ are
understood to be evaluated at z = 0+.) Using (5.3) and (5.10), this simplifies to (cf. (5.15))∫

SΛ
u(0) · σ (1) · êr dA −

∫
Sλ

u(0) · σ (1) · ê	 dA +
∫

1+λ<ρ<Λ
u(0) · (∇s · σ̃ (1)) dA. (7.2)

At this point we make use of (2.5b), conveniently employing the surface velocity u(0)s
instead of u(0) in the last integral. Making use of (5.16), the third integral in (7.2) becomes∫

1+λ<ρ<Λ
[∇s · (u(0)s · σ̃ (1))− σ̃ (1) : ∇su(0)s ] dA. (7.3)

Upon making use of the surface variant of the divergence theorem, we find that∫
1+λ<ρ<Λ

∇s · (u(0)s · σ̃ (1)) dA =
(∮

ρ=Λ
−
∮
ρ=1+λ

)
u(0)s · σ̃ (1) · êρ dl. (7.4)

Also, making use of (5.6) and (5.11b) gives (recall (5.20))∫
1+λ<ρ<Λ

σ̃ (1) : ∇su(0)s dA = 2
∫

1+λ<ρ<Λ
e(0)s : e(0)s dA. (7.5)

977 A30-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

95
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.954


E. Yariv, R. Brandão, M. Siegel and H.A. Stone

To summarise, (7.2) becomes∫
SΛ

u(0) · σ (1) · êr dA −
∫
Sλ

u(0) · σ (1) · ê	 dA

+
(∮

ρ=Λ
−
∮
ρ=1+λ

)
u(0) · σ̃ (1) · êρ dl − 2

∫
1+λ<ρ<Λ

e(0)s : e(0)s dA, (7.6)

where we reverted to substrate velocities. In a similar manner we find that the integral of
the right-hand side of (5.13) is∫

SΛ
u(1) · σ (0) · êr dA −

∫
Sλ

u(1) · σ (0) · ê	 dA

+
(∮

ρ=Λ
−
∮
ρ=1+λ

)
u(1) · σ̃ (0) · êρ dl. (7.7)

Forming the limit Λ → ∞ and using (5.2) and (5.8) thus gives

− ı̂ · lim
Λ→∞

[∫
SΛ

σ (1) · êr dA +
∮
ρ=Λ

σ̃ (1) · êρ dl
]

−
∫
Sλ

u(0) · σ (1) · ê	 dA

−
∮
ρ=1+λ

u(0) · σ̃ (1) · êρ dl − 2
∫
ρ>1+λ

e(0)s : e(0)s dA

= −
∫
Sλ

u(1) · σ (0) · ê	 dA −
∮
ρ=1+λ

u(1) · σ̃ (0) · êρ dl. (7.8)

Since Λ is arbitrary in (5.12), the first term in (7.8) is D(1). We conclude that

D(1) = 2
∫
ρ>1+λ

e(0)s : e(0)s dA +
∫
Sλ

[u(0) · σ (1) − u(1) · σ (0)] · ê	 dA

+
∮
ρ=1+λ

[u(0) · σ̃ (1) − u(1) · σ̃ (0)] · êρ dl, (7.9)

which replaces the naïve (5.24).

7.2. Calculation of D(1)

Since λ is at our disposal, we now refine the original requirement λ� Bq to the more
restrictive form Bq � λ� 1. Thus, the evaluation of the second and third integrals in
(7.9) requires the inner limit of the outer fields, namely the asymptotic behaviour of both
u(0) and u(1) (as well as σ̃ (0) and σ̃ (1)) for small 	 . In addition to the exact result (4.14),
we have available approximations (5.32)–(5.33) for the leading-order flow, and (6.27) for
u(1)φ . In Appendix C we additionally find that

Π(1) = o(	−3/2), u(1)ρ = o(1) for 	 � 1. (7.10a,b)

These asymptotic bounds suffice for the following calculation.
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Motion of a disk embedded in a nearly inviscid Langmuir film

7.2.1. Surface-dissipation contribution
Consider the first integral in (7.9). Substituting the angular dependence (3.8) gives, upon
integrating over φ (cf. (5.25)),

2π

∫ ∞

1+λ
D(ρ) dρ, (7.11)

wherein D is given by (5.26). In what follows, we wish to subtract off the singular
behaviour (5.29). We employ a regularised version of that behaviour, writing

D = 4
π2(ρ − 1)

e1−ρ +
{
D − 4

π2(ρ − 1)
e1−ρ

}
. (7.12)

Substitution of the first term into (7.11) yields (8/π)E1(λ), wherein E1 is the exponential
integral. With λ� 1 we therefore obtain the contribution (8/π)[−γE − ln λ+ o(1)] from
that term.

Given (5.29), the second term in (7.12) is o[(ρ − 1)−1] as ρ ↘ 1 and is accordingly
integrable over (1,∞). In the limit λ� 1 we then obtain the contribution (8/π)[γE −
ln 2 + o(1)] to (7.11) from that term. We conclude that the first integral in (7.9) is

− 8
π

ln(2λ)+ o(1) for λ� 1. (7.13)

7.2.2. Torus contribution
To evaluate the contribution of the second integral in (7.9) for λ� 1 we employ the
local polar-like coordinates (	,ψ) defined by (5.31a,b). For small 	 , (	,ψ, φ) appear
locally as cylindrical coordinates with φ playing the role of the axial coordinate. Given
(5.32)–(5.33), u(0) is primarily in the φ-direction; given (6.27) and (7.10b), the same is
true for u(1). Recalling (3.8) we therefore have

u(0) ∼ êφu(0)φ sinφ, u(1) ∼ êφu(1)φ sinφ. (7.14a,b)

Using λ� 1 we find, after integrating over φ,

∫
Sλ

[u(0) · σ (1) − u(1) · σ (0)] · ê	 dA ∼ πλ

∫ π

0

[
u(0)φ

∂u(1)φ
∂	

− u(1)φ
∂u(0)φ
∂	

]
	=λ

dψ.

(7.15)
Substituting (5.33) and (6.27) yields

81/2π

(
2L − K + L ln

Bq
λ

)
. (7.16)

Using (6.17) and (6.26), we conclude that the second integral in (7.9) is

8
π

(
ln

4λ
Bq

+ γE − 1
)

+ o(1) for λ� 1. (7.17)
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7.2.3. Circle contribution
Making use of (4.23a,b) and (5.11a,b) in conjunction with (3.9) we find that the third
integral in (7.9) is

π(1 + λ)[u(1)ρ Π(0) − u(0)ρ Π
(1)]ρ=1+λ +

∮
ρ=1+λ

u(0) · [∇su(0)s + (∇su(0)s )†] · êρ dl.

(7.18)
In the limit λ→ 0 we see from (7.10a,b) that the first term is o(1). In that limit, we find
using (5.32)–(5.33) that the second term gives

16
π

+ o(1) for λ� 1. (7.19)

7.3. Drag correction
Combining (7.13), (7.17) and (7.19) we find that ln λ cancels out, as it should, thus obtaining
from (7.9)

D(1) = 8
π

(
ln

2
Bq

+ γE + 1
)
. (7.20)

We conclude that

D ∼ 8 + 8Bq
π

(
ln

2
Bq

+ γE + 1
)

for Bq � 1. (7.21)

Approximation (7.21) is the key result of this paper.

8. Concluding remarks

We have studied the translational motion of a disk in a Langmuir film, focusing upon
the singular limit of small surface viscosity. The dimensionless surface pressure scales as
Bq−1, thus affecting the leading-order problem. This scaling is not evident in the solution
of the dual integral equations governing the exact problem. We observe that the surface
pressure accounts for half of the leading-order hydrodynamic drag.

Yet another feature of the singular nature of the small-Bq limit has to do with a
square-root singularity of the leading-order flow at the edge of the disk. While that
singularity is not strong enough to hinder the leading-order calculation, it prohibits a
straightforward evaluation of the leading-order interfacial viscous stress, which would
appear in the direct expression for the ord(Bq) drag correction. In fact, the associated
inverse-square-root singularity of the strain-rate precludes the direct use of the reciprocal
theorem for calculating that drag correction.

A significant part of the present paper is therefore dedicated to the analysis of the edge
layer that is formed about the rim of the disk, where the flow is primarily in the azimuthal
direction, and to the construction of a reciprocal scheme adapted to the presence of that
layer. This procedure provides the requisite ord(Bq) drag correction, with the appearance
of ln Bq being a signature of the singular nature of the nearly inviscid limit.

Ideally, one would wish to compare the present asymptotic results with an exact solution
of the problem. To the best of our knowledge, the only available such solution is that of
Hughes et al. (1981). Unfortunately, it provides the particle mobility only down to Bq =
0.1, see their figure 2. (The parameter ε, appearing in Hughes et al. (1981), corresponds
here to 1/Bq.) Moreover, even at such mild values the numerical results of Hughes et al.
(1981), which are shown graphically, appear rather crude. This is hardly surprising, as the
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Motion of a disk embedded in a nearly inviscid Langmuir film

numerical evaluation of their Hankel-transform solution encounters difficulties at small
Bq as the edge layer emerges.

Our analysis has been motivated by the anomalous 50 %-enhancement of the drag
in an inviscid surface relative to that in a free surface. It is interesting to note that a
similar increase, though less dramatic (approximately 8 %), was found when calculating
the effective viscosity of particle-laden interface (Lishchuk 2014). Presumably there are
other situations where the singular nature of the inviscid limit is manifested in such a
finite difference. The critical role played by surface viscosity was recently illustrated
in the context of hole closure (Jia & Shelley 2022), where its incorporation regularises
non-physical predictions of a comparable inviscid model (Alexander et al. 2006). In that
problem, however, the regularisation has to do with the time-dependent Boussinsq number
eventually becoming large, as the hole size diminishes (recall (2.1)).

In the present contribution we have exclusively focused upon the translational problem.
In his pioneering paper, Saffman (1976) noted that the rotational problem is rather
straightforward in the limit Bq → ∞, with the surface velocity varying as 1/ρ. The
rotational problem for arbitrary Bq was addressed by Hughes et al. (1981); just as
in the translational problem, it has been reduced to a set of dual integral equations.
In degenerating their solution in the limit Bq → 0, Hughes et al. (1981) found the
dimensionless torque 16/3 – identical to that on a disk rotating in a free surface (Ray 1936;
Tanzosh & Stone 1996). In retrospect, that was to be expected: with circular streamlines,
surface incompressibility is trivially satisfied, so no pressure gradients are set up within
the film (Manikantan & Squires 2020).

While that leading-order coincidence with a free surface does not suggest any
singularity, scrutiny of the flow field in the substrate reveals a square-root singularity of the
azimuthal velocity component, identical to that observed in the translational problem. The
singular nature of the rotational problem at small Bq has already been hinted by Goodrich
& Chatterjee (1970), where numerical results indicate an anomalous negative excess torque
in a small interval about Bq = 0. In the end of their paper, Goodrich & Chatterjee (1970)
wrote: ‘We are at the present time attempting to clarify the hydrodynamic problem in the
ultralow surface viscosity region by the use of perturbation methods. . . ’; to the best of our
knowledge, no such perturbative analysis has been published since. In Part 2 of this series
we address the singular limit of disk rotation at small Bq.
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Appendix A. Alternative calculation of D(0)

Plugging the Hankel transforms (4.4)–(4.5) into (4.20) yields

D(0) = π

∫ 1−

0
dρ ρ

∫ ∞

0
dk kB(k)J0(kρ)+ π

2

∫ ∞

0
kB(k)[J2(k+)− J0(k+)] dk. (A1)
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Interchanging the order of integration in the double integral then gives

D(0) = π

∫ ∞

0
B(k)J1(k−) dk + π

2

∫ ∞

0
kB(k)[J2(k+)− J0(k+)] dk. (A2)

In the above we have employed the compact notation∫ ∞

0
f (k, k±) dk = lim

r→1±

∫ ∞

0
f (k, kρ) dk. (A3)

Using the identity (4.8) we eventually obtain

D(0) = π

∫ ∞

0
kB(k)J2(k+) dk + π

∫ ∞

0
B(k)J1(k−) dk − π

∫ ∞

0
B(k)J1(k+) dk, (A4)

where we allow for the possible discontinuity of the integrals∫ ∞

0
kB(k)J2(kρ) dk,

∫ ∞

0
B(k)J1(kρ) dk (A5a,b)

at ρ = 1.
In calculating the drag using (A4) together with (4.13), we observe that the second

integral in (A5a,b) does not undergo a jump discontinuity with (4.13). The first integral in
(A5a,b) does, however, require a careful treatment. Recalling the interpretation (A3), we
rewrite (A4) in the form

D(0) = 4 lim
ρ→1+

∫ ∞

0
J2(kρ) sin k dk. (A6)

For ρ > 1 the integral is (Gradshteyn & Rhyzhik 2007)

sin
(

2 arcsin
1
ρ

)
√
ρ2 − 1

. (A7)

For ρ − 1 � 1 the numerator ∼81/2(ρ − 1)1/2 while the denominator ∼21/2(ρ − 1)1/2.
We therefore reproduce (4.21).

Appendix B. Near-edge asymptotics

Consider first u(0)ρ , as given by (4.4a). Using (4.13) we obtain

u(0)ρ = 2
π

∫ ∞

0

sin k
k

{
[J2(kρ)+ J0(kρ)]e−kz − [J2(k)+ J0(k)]

}
dk, (B1)

or, in terms of the polar coordinates (5.31a,b),

u(0)ρ = 2
π

∫ ∞

0

sin k
k

{
[J2(k − k	 cosψ)+ J0(k − k	 cosψ)]e−k	 sinψ

− [J2(k)+ J0(k)]
}

dk. (B2)

A Taylor expansion for 	 � 1 gives

u(0)ρ ∼ −4	
π

∫ ∞

0

sin k
k

{J1(k) sinψ − J2(k) cosψ} dk. (B3)

Evaluation of the integral yields (5.32).
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Motion of a disk embedded in a nearly inviscid Langmuir film

Consider now u(0)φ , as given by (4.4b). From (4.13) we obtain

u(0)φ = 2
π

∫ ∞

0

sin k
k

{
[J2(kρ)− J0(kρ)]e−kz − [J2(k)− J0(k)]

}
dk, (B4)

or, in terms of the polar coordinates (5.31a,b),

u(0)φ = 2
π

∫ ∞

0

sin k
k

{
[J2(k − k	 cosψ)− J0(k − k	 cosψ)]e−k	 sinψ

− [J2(k)− J0(k)]
}

dk. (B5)

Here, an attempt to use a Taylor expansion as before results in a divergent integral. In
fact, the leading-order contribution in the limit 	 → 0 is a ‘local’ one, from the region
k = ord(1/	) (Hinch 1991). Transforming to the integration variable s = k	 , we have

u(0)φ = 2
π

∫ ∞

0
sin
( s
	

) {[
J2

( s
	

− s cosψ
)

− J0

( s
	

− s cosψ
)]

e−s sinψ

−
[
J2

( s
	

)
− J0

( s
	

)]} ds
s
. (B6)

Making use of the large-argument approximation of the Bessel functions we get at leading
order

4
π

(
2	
π

)1/2 ∫ ∞

0
sin
( s
	

) [
cos

( s
	

− π

4

)
− e−s sinψ cos

( s
	

− s cosψ − π

4

)] ds
s3/2 .

(B7)

Following Schnitzer, Davis & Yariv (2020), we now transform each product of a ‘rapidly’
oscillating sine and cosine (of slightly different frequencies) into sums of ‘slow’ and ‘fast’
sines, obtaining

2
π

(
2	
π

)1/2 ∫ ∞

0

{[
sin
(

2s
	

− π

4

)
+ sin

π

4

]

−e−s sinψ
[

sin
(

2s
	

− s cosψ − π

4

)
+ sin

(
s cosψ + π

4

)]} ds
s3/2 . (B8)

Using the standard method of integration by parts, it may be shown that the contribution
of the ‘fast’ terms is subdominant. We conclude that

u(0)φ ∼ 2
π

(
2	
π

)1/2 ∫ ∞

0

{
2−1/2 − e−s sinψ sin

(
s cosψ + π

4

)} ds
s3/2 . (B9)

Integration gives (5.33).
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Appendix C. Asymptotic estimates of Π(1) and u(1)
ρ

The surface-pressure perturbation may be obtained from the azimuthal momentum balance
(3.14b) as

Π(1) = −ρ ∂u(1)φ
∂z

− ρ
∂2u(0)φ
∂ρ2 − ∂u(0)φ

∂ρ
+ 2

u(0)ρ + u(0)φ
ρ

, (C1)

which, for 	 � 1, gives

Π(1) ∼ 1
	

∂u(1)φ
∂ψ

− ∂2u(0)φ
∂	 2 − ∂u(0)φ

∂	
+ 2u(0)ρ + u(0)φ , (C2)

evaluated at ψ = π. With u(0)φ = O(	 1/2) and u(0)ρ = O(	), the last three terms are
o(	−3/2). Moreover, we find using (5.33), (6.17) and (6.27) that the ord(	−3/2)
contributions of the first two terms mutually cancel. We conclude that Π(1) = o(	−3/2).

The component u(1)ρ is governed by (cf. (3.10))

∂

∂ρ
(ρu(1)ρ )+ u(1)φ = 0, (C3)

or, for 	 � 1,

∂u(1)ρ
∂ψ

sinψ
	

− ∂u(1)ρ
∂	

cosψ ∼ −u(1)φ . (C4)

The homogeneous solution is simply F(	 sinψ) = F(0)+ O(	), with F an arbitrary
function. With u(1)φ = O(	−1/2 ln	) we note the existence of an o(1) particular integral.
From condition (5.9) on the disk (ψ = 0) we see, moreover, that F(0) = 0. We conclude
that u(1)ρ = o(1) for 	 � 1.
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