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Capsules, composed of a liquid core protected by a thin deformable membrane, offer
high-potential applications in many fields of industry such as bioengineering. One of their
limitations comes from the absence of models of capsule damage and/or rupture when
they are subjected to an external flow. To assess when rupture is initiated, we develop a
fluid–structure interaction (FSI) numerical model of a capsule in Stokes flow that accounts
for potential damage of the capsule membrane. We consider the framework of continuum
damage mechanics and model the membrane with an isotropic brittle damage model, in
which the membrane damage state depends on the history of loading. The FSI problem is
solved by coupling the finite element method, to solve for the membrane deformation, with
the boundary integral method, to solve for the inner and outer fluid flows. The model is
applied to an initially spherical capsule subjected to a simple shear flow. Damage initiates
at a critical value of the capillary number, ratio of the fluid viscous forces to the membrane
elastic forces and rupture occurs at a higher capillary number, when it reaches a threshold
value. The material parameters introduced in the damage model do not influence the mode
of damage but only the values of the critical and threshold capillary numbers. When the
capillary number is larger than the critical value, damage develops in the two symmetric
central regions containing the vorticity axis. It is indeed in these regions that the internal
tensions are the highest on the membrane.
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1. Introduction

Capsules consisting of a liquid droplet enclosed by a thin elastic membrane are commonly
encountered in nature in the form of red blood cells, fish eggs and vesicles and in numerous
industrial processes. The protection and controlled release of active agents is of great
importance for diverse applications in the food, cosmetic, bioengineering and medical
engineering industries, among others. In medicine, encapsulation has opened the way to
new treatment techniques like targeted drug/gene therapy (Bhujbal, de Vosl & Niclou
2014). New-generation bioartificial organs/cells are being developed, for instance, by
encapsulating islets of Langerhans to treat diabetic patients (Su et al. 2010) or haemoglobin
to create artificial blood (Li, Nickels & Palmer 2005).

But when placed in suspension, capsules are subjected to intense stresses from the
surrounding flow, which may cause the mechanical degradation of the membrane. In
vivo tests have shown that artificial blood cells could be easily damaged in circulation
depending on the particle shape and deformability (Li et al. 2005): this example illustrates
the importance of controlling rupture. Depending on the application, capsule damage
is to be prevented to preserve the inner substance, or, on the contrary, fostered and
directed to allow a targeted release of the encapsulated substance. This necessitates a good
understanding of the capsule damage mechanisms under low-inertia flow conditions and
of the parameters that control the initiation of rupture.

Very few studies have been conducted on the rupture of capsules subjected to
hydrodynamic stresses. The only results that currently exist are experimental. Early
experimental studies showed the possibility of wrinkling formation at low shear rates
(Walter, Rehage & Leonhard 2001), which could lead to fatigue mechanisms, and of
capsule burst at high shear (Chang & Olbricht 1993). The results by Chang and Olbricht
(Chang & Olbricht 1993) were obtained on macroscopic spherical capsules, produced
through interfacial polymerization. Flow-induced rupture initiated from one of the major
axis tips of the deformed ellipsoidal shape of the capsule, which corresponds to the
point of minimum thickness. The crack then propagated in the shear plane. Rupture of
microcapsules under simple shear flow was observed by Koleva & Rehage (2012) on
thin polysiloxane capsules having a high degree of crosslinking. It was reached at small
deformations, indicating a brittle behaviour of the capsule membrane. Increasing the shear
rate, rupture typically occurred in the central region, close to the tips of the flow vorticity
axis, which correspond to the zones of maximum tension. This study corroborated
the results by Husmann et al. (2005), who showed that spherical and non-spherical
polysiloxane microcapsules burst at the points of maximum elastic tensions, when placed
in a spinning-drop apparatus. A similar breakup mechanism has been obtained in confined
environments by Abkarian et al. (2008) for red blood cells flowing through a 5 μm wide
channel, and by Le Goff et al. (2017) for artificial millimetric capsules and fish eggs
trapped at a constriction within a cylindrical channel under a set pressure difference. In
both studies, rupture initiated at the front of the capsule, where the tensile tension is the
highest. Note that, in Le Goff et al. (2017), rupture could also occur at the point of contact
between the capsule and the constriction, but this mode of rupture is different, as it is
induced by contact and not by deformation under flow.

What is currently lacking is a model of capsule deformation under flow, capable of
assessing when and where the initiation of rupture occurs. The objective of the present
study is to develop the first fluid–structure interaction model accounting for membrane
damage induced on a liquid-core microcapsule subjected to a simple shear flow. We
will use continuum damage mechanics (CDM) to model the initiation and growth of
microdiscontinuities (microcavities and microcracks), which lead to the local initiation
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Capsule damage in simple shear flow

of macrocracking as they accumulate and coalesce. Contrary to fracture mechanics, which
accounts explicitly for the inherent geometrical discontinuity and the associated boundary
conditions, the microdiscontinuities are not geometrically modelled in CDM. The local
average damage state due to the microdiscontinuities is instead represented by a continuum
variable: the damage variable. The CDM has benefited from numerous contributions to
its theoretical development (e.g. Kachanov 1986; Lemaitre & Desmorat 2005) since the
pioneering work of Kachanov (1958). It is based on the thermodynamics of irreversible
processes with internal variables (Coleman & Gurtin 1967), and has been applied to model
the damage mechanisms of a large spectrum of materials, from engineering materials (an
overview of applications is presented in Lemaitre & Desmorat 2005) to biological tissues
(Hokanson & Yazdani 1997; Natali et al. 2005; Holzapfel & Fereidoonnezhad 2017).
We propose to incorporate a CDM model into a fluid–structure interaction framework,
in order to investigate the time evolution of damage as the capsule deforms under
flow.

In this study, we focus on the damage process of a capsule under intense hydrodynamic
stresses induced by an external flow over a relatively short time. Due to the short time
scale of the phenomena, fatigue or creep damage models are thus not presently relevant.
Previous studies have shown that microcapsules may experience ductile (Ghaemi et al.
2016) or brittle (Koleva & Rehage 2012; Le Goff et al. 2017) damage depending on
the material and history of loading (external thermo-mechanical stresses). We derive the
damage model assuming a quasi-brittle behaviour of the capsule membrane, for which
dissipation prior to cracking occurs with negligible irreversible strains (i.e. negligible
plasticity). However, CDM provides a general framework: the present model will thus
be straightforwardly extended to the other damage behaviours (ductile material, creep or
fatigue).

After having detailed the formulation of the damage model of a capsule in infinite shear
flow in § 2, we present the model discretization and numerical solver in § 3. We first
investigate damage of a spherical capsule under isotropic inflation in § 4, as it provides
insight into capsule damage and allows us to validate the numerical method by comparison
of the results with the corresponding analytical solution. We then study damage in simple
shear flow in § 5, and assess the effect that the dimensionless parameters of the model have
on damage evolution and rupture initiation. We finally discuss the model and results in § 6
and analyse the potential of the model to identify the capsule membrane limit of elasticity
by comparison with experiments.

2. Formulation of the problem

We consider a spherical microcapsule of radius a enclosed in an elastic envelope
of very small thickness with respect to its radius. The capsule is thus modelled
as a two-dimensional incompressible membrane with surface shear elastic modulus
Gs. It is placed in an infinite shear flow of shear rate γ̇ . The problem is studied
in the reference frame of centre O and Cartesian basis (ex, ey, ez) corresponding to
the barycentric reference frame of the capsule oriented such that the unperturbed
velocity field is given by v∞(x) = γ̇ zex (figure 1). The inner and outer fluids are
the same incompressible Newtonian fluids of dynamic viscosity μ and density ρ.
Gravitational and inertial effects being negligible due to the microscopic capsule size, the
fluid–structure interaction problem is governed by only one non-dimensional parameter:
the capillary number Ca = μγ̇ a/Gs, the ratio of the viscous to the elastic characteristic
forces.
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Figure 1. Capsule suspended in the unbounded simple shear flow.

2.1. Internal and external flows
Inertial effects being neglected, the fluid problem is governed by the Stokes equations

div (σ ) = 0, div (v) = 0, (2.1a,b)

where σ designates the Cauchy stress tensor, v is the velocity vector and div(·) is
the divergence operator. At a given point x of the membrane S, the boundary integral
formulation of the Stokes equations gives the relationship between the velocity vector v
and the stress tensor σ (Pozrikidis 1992)

∀x ∈ S, v(x) = v∞(x) − 1
8πμ

∫
S

J(x, y) · [[σ ]] · n( y) dSy, (2.2)

where n is the unit vector normal to S pointing towards the external fluid and [[σ ]] · n =
(σ ext − σ int) · n is the stress jump across the membrane. We denote as J the second-order
Oseen–Burgers tensor defined by

J(x, y) = 1
r

1 + 1
r3 r ⊗ r, (2.3)

where r = x − y, r = ‖r‖ and 1 is the identity tensor.

2.2. Wall mechanics
The capsule wall is modelled as a membrane of mid-surface S. The curvilinear coordinates
(ξ1, ξ2) describe the position x(ξ1, ξ2, t) on S in the configuration at time t. The position
x(ξ1, ξ2, 0) on the initial configuration S0 of S is noted X . It is convenient to write the
membrane equations in local tangent bases. In what follows, if not specified, indices
written with Latin letters take values in {1, 2, 3}, while indices written with Greek letters
are in {1, 2}. The covariant basis (ai) attached to S is defined by

aα = ∂x
∂ξα

, a3 = a1 × a2

‖a1 × a2‖ . (2.4a,b)

The contravariant basis (ai) is defined by ai · a j = δ
j
i , where δ

j
i designates the Kronecker

symbol. On S0, the covariant and contravariant bases are denoted (Ai) and (Ai),
respectively. The metric tensor is g on S and G on S0. The contravariant and covariant
components of g are aαβ = aα · aβ and aαβ = aα · aβ , respectively (similar definitions
for the components Aαβ and Aαβ of G).
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Capsule damage in simple shear flow

State/Associated variables Green Lagrange strain e/Second Piola–Kirchhoff tension π

Damage variable d/energy release rate Y

State potential Free energy φ(e, d) = (1 − d)φNH(e)

with φNH the isochore neo-Hookean potential

Damage threshold function f = Y − κ(d)

with κ(d) = YD + YCd,
YD and YC being the model constants

Table 1. Summary of the key ingredients of the present associated damage model.

The wall inertia being negligible (Walter et al. 2010), the motion of the membrane is
governed by the local mechanical equilibrium

∀x ∈ S, ∇s · T + q = 0, (2.5)

where q is the surface external load, T is the tension (resultant of the internal Cauchy
stress over the thickness), ∇s· is the surface divergence operator. The dynamic boundary
condition imposes that

∀x ∈ S, q = [[σ ]] · n. (2.6)

The weak form of the membrane equilibrium equation is obtained applying the principle
of virtual work

For any virtual displacement û ∈ H1(S),∫
S

û · q dS =
∫

S
T : ε(û) dS,

(2.7)

where H1(S) designates the Sobolev space associated with the Lebesgue space L2(S) and
ε(û) is the symmetric part of g · ∇ û, the tensor ∇ û being the gradient of û.

In terms of kinematics, the no-slip boundary condition holds on S and gives the
relationship between the fluid velocity and the position x of the corresponding point of
the membrane

v = dx
dt

. (2.8)

2.3. Material behaviour
The model of the capsule wall behaviour is developed in the standard framework of CDM
(Lemaitre & Desmorat 2005) to account for the progressive degradation of the membrane
while staying in the field of continuum mechanics. More specifically, CDM is a branch of
the thermodynamics of irreversible processes with internal variables, the focus of which
is to model irreversible transformations associated with damage. The development of a
damage model is thus based on four key concepts inherited from the thermodynamics
of irreversible processes: state variables, state potential, damage criterion and damage
evolution law. A short review of these concepts together with the details of how we
developed the model are given hereafter. We specify them in the case of quasi-brittle
damage which corresponds to the membrane deformation until the initiation of rupture
without irreversible strains (see table 1 for a summary).
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v∞

k

δSD

δS
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O

RVE

δS �

(a)
(b) (c)

Figure 2. Representation of a microcapsule of mid-surface S placed in an infinite shear flow (a). Zoom on
a representative volume element (RVE) containing microcavities and microcracks (b). Decomposition of the
cross-section δS of normal vector k into the effective load-bearing cross-section δS̃ and the total surface of the
microdefects δSD (c).

2.3.1. State variables
We assume that the transformations of the capsule wall correspond to isothermal elastic
deformation and damage. The damage variable represents the irreversible growth of
microdefects in a representative volume element (RVE) (figure 2).

To illustrate the definition of the damage variable, we consider a deformed RVE of
the capsule wall containing microdefects in the form of microcavities and microcracks
(figure 2). We define damage in direction k as the surface ratio δSD/δS, with δSD the
maximum intersection of microdefects in a cross-section δS of normal k of the RVE.
The stresses on this cross-section are thus transmitted on δS̃ = δS − δSD. We assume that
the microdefects have no preferential orientation: the δSD/δS ratio is thus independent of
the direction k and corresponds to isotropic damage. The state variable is then the scalar
damage variable d defined as

d = δSD

δS
= 1 − δS̃

δS
. (2.9)

It ranges from 0, for the local sound (undamaged) state of the material, to 1, when a crack
initiates having the size of the RVE.

The other state variable is the standard elastic deformation, used in all the mechanical
models. The capsule incompressible wall being modelled as a membrane, the in-plane
deformation tensor on the mid-surface S is given by the Green–Lagrange strain tensor e:

e = 1
2 (F T · F − G). (2.10)

The tensor F is the gradient of the transformation of S

F = ∂x
∂X

= aα ⊗ Aα, (2.11)

in which, as in what follows, we adopt the convention of summation over repeated indices.
In conclusion, the state variables are d and e, which both depend only on x ∈ S.

2.3.2. State potential
Following the standard framework of CDM, the constitutive law of the membrane and the
definition of the variable controlling d are derived from a unique state potential function

914 A25-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

65
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.652


Capsule damage in simple shear flow

of the state variables. We note φ(e, d) the specific membrane free energy per unit surface
of S0. Knowing φ, one can derive the associated variables dual to e and d, using the state
laws

π = ∂φ

∂e
,

Y = −∂φ

∂d
,

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

where π is the second Piola–Kirchhoff tension tensor and Y the specific elastic energy
release rate. The Cauchy tension tensor T is related to π through

T = 1
J

F · π · F T , (2.13)

where J is the Jacobian of the transformation of S. The undamaged wall is chosen to follow
the neo-Hookean (NH) law, which was shown to model well the elastic behaviour of thin
artificial proteic membranes (Chu et al. 2011; Gubspun et al. 2016). The corresponding
specific free energy φNH (Barthès-Biesel, Diaz & Dhenin 2002) is

φNH(e) = Gs

2

(
I1 − 1 + 1

I2 + 1

)
, (2.14)

where the two invariants of the transformation I1 and I2 are defined by

I1 = tr(F T · F ) − 2 = Aαβaαβ − 2,

I2 = det(F T · F ) − 1 = det(Aαβ)det(aαβ) − 1.

}
(2.15)

What is classical in CDM is to obtain the free energy φ in the damage state using
homogenization, which is based on the principle of strain equivalence. We propose to
illustrate this concept on the three-dimensional (3-D) RVE shown in figure 2, in the case
of a uniaxial traction of intensity δFtrac which induces an elongation λ (figure 3).We look
for the equivalent RVE (right) having the same cross-section δS, and being subjected to
the same elongation λ and loading δFtrac as the real RVE. The stress in the equivalent RVE
is thus σ = δFtrac/δS, which is related to the effective stress σ̃ = δFtrac/δS̃ through

σ(λ, d) = δS̃
δS

σ̃ (λ) = (1 − d)σ̃ (λ), (2.16)

where σ̃ is computed from the constitutive law of the undamaged material.
The concept of (2.16) can be translated to our 2-D membrane and generalized to any

in-plane stress state with

∂φ

∂e
(e, d) = (1 − d)

∂φNH

∂e
(e). (2.17)

We thus choose to express the specific free energy φ as

φ(I1, I2, d) = (1 − d)φNH(I1, I2). (2.18)

Note that the present homogenization process preserves the membrane properties observed
in the undamaged case. The state laws defined by (2.12) and (2.13) then have the following

914 A25-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

65
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.652


N. Grandmaison, D. Brancherie and A.-V. Salsac

δFtrac

δFtrac δFtrac

δFtrac

σ � = δFtrac/δS �

σ  = δFtrac/δS

δS �

δS

λ/2

λ/2

Undeformed RVE Real RVE Equivalent RVE

Figure 3. Illustration of the homogenization principle on a RVE under a uniaxial traction of intensity
δFtrac and of the associated elongation λ. The heterogeneous damaged material (real RVE) is modelled
as a homogeneous domain (equivalent RVE) with the same cross-section δS and subjected to the same
loading/elongation. The force equilibrium leads to σ = δS̃/δSσ̃ = (1 − d)σ̃ , where the effective stress σ̃ is
the stress transmitted through the load-bearing cross-section δS̃ and determined with the constitutive law of the
undamaged material.

expressions:

Tαβ = (1 − d)Gs

(
1
J

Aαβ − 1
J3 aαβ

)
,

Y = φNH,

⎫⎪⎬
⎪⎭ (2.19)

where the Cauchy tension tensor is given through its contravariant components.

2.3.3. Damage criterion and damage evolution law
The last ingredients of the model are the damage criterion and the damage evolution law.
We choose to adopt an associated model (Besson et al. 2010), which is numerically robust.
It only requires the introduction of the damage threshold function f (Y; d) (d acts as a
parameter) to derive the damage criterion and the evolution law through the admissibility
condition (i) and the principle of maximum dissipation (ii).

(i) Admissibility condition
To be admissible, the associated variable Y must satisfy the standard admissibility
condition

f (Y; d) ≤ 0. (2.20)

It defines a bounded domain for Y , illustrated in figure 4(a).
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f = 0

f = 0 f = 0(Non-admissible)

f < 0

1
4

1

2
3

f > 0

η̇ = 0 η̇ = 0η̇ > 0

(b)(a) (c)

d
�

Figure 4. Illustration in two dimensions of (a) the admissible domain of the associated variable Y , defined
by f (Y) ≤ 0, (b) the case of damage evolution (η̇ > 0) where the yield surface f = 0 moves due to hardening
and where the rate of damage ḋ is along the normal to the yield surface (normality rule) and (c) the case
when damage ceases (η̇ = 0). The thick black lines represent one example of loading cycle, which successively
contains all the phases given in table 2: (a) elastic loading 1©, (b) loading with damage 4©, (c) neutral loading
3© followed by elastic unloading 2© + 1©.

(ii) Principle of maximum dissipation
The damage evolution is accompanied by dissipation. The associated governing laws
are based on the principle of maximum dissipation

D(Y, ḋ) = max
f (Y∗;d)≤0

{D(Y∗, ḋ)}, (2.21)

where D(Y, ḋ) = Yḋ, and ḋ designates the material temporal derivative of d.

The solution of the maximization problem under constrain (2.21) is provided by the
Kuhn–Tucker conditions

ḋ = η̇
∂f
∂Y

,

f ≤ 0, η̇ ≥ 0, η̇f = 0.

⎫⎬
⎭ (2.22)

the four of which constitute the evolution law of damage, where η̇ acts as a Lagrange
multiplier.

The three conditions within (2.22)2 are known as the loading/unloading conditions.
They provide the damage criterion

f (Y) < 0 ⇒ η̇ = 0,

f (Y) = 0 ⇒ η̇ ≥ 0.

}
(2.23)

The interior of the admissible domain corresponding to f (Y) < 0 (figure 4a) is thus
the elastic domain, in which damage remains constant (ḋ = 0). The domain boundary
corresponds to f (Y) = 0 and thus to cases where damage evolves. The damage evolution
follows (2.22)1 which can be interpreted geometrically as ḋ being along the normal to the
yield surface f = 0 (figure 4b). It is thus referred to as the normality rule.

Together, the admissibility condition (2.20) and the damage criterion (2.23) lead to the
consistency condition

η̇ḟ = 0. (2.24)

Different cases of loading may exist (see table 2 and figure 4). When η̇ = 0, no damage
occurs regardless the values of f and ḟ . Damage only occurs when η̇ /= 0, the value of
which is obtained by solving ḟ (Y; d) = 0 (imposed by (2.24)).
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1© Elastic loading/unloading f < 0 — η̇ = 0

2© Elastic unloading f = 0 ḟ < 0 η̇ = 0

3© Neutral loading f = 0 ḟ = 0 η̇ = 0

4© Loading with damage f = 0 ḟ = 0 η̇ > 0

Table 2. Loading case possibilities as a function of the values of f , ḟ and η̇. An illustration is given in figure 4
for a loading/unloading cycle.

Note that from the inequality of Clausius–Duhem D ≥ 0, and given that Y ≥ 0, the
damage variable d can only grow in time

ḋ ≥ 0. (2.25)

Thus, during damage ( f = 0)
∂f
∂Y

≥ 0, (2.26)

which restrains the choice of f .
Since most artificial and natural microcapsules have been shown to be brittle, we choose

to follow the model developed by Marigo (1981) for quasi-brittle damage

f (Y; d) = Y − κ(d) ≤ 0. (2.27)

We presently define κ as a function of two parameters, the damage threshold YD ≥ 0 and
the hardening modulus YC ≥ 0, such that

κ(d) = YD + YCd. (2.28)

The size of the domain of admissible states f ≤ 0 increases with damage (figure 4b). It is
due to the hardening of the material and is controlled by the parameter YC.

The damage evolution law (2.22) can be written equivalently in an explicit form

d = 〈
ζ(Ymax)

〉+
, (2.29)

where 〈·〉+ designates the Macaulay brackets defined by

〈x〉+ = x, if x ≥ 0,

〈x〉+ = 0, otherwise.

}
(2.30)

The function ζ(Y) = (Y − YD)/YC designates the reciprocal of the bijection κ , and Ymax

is defined by
Ymax(t) = max

τ≤t
{Y(τ )} . (2.31)

3. Numerical method

Knowing the current position of the material points of the membrane, we perform a
Lagrangian tracking of the nodes of the capsule to solve the fluid–structure interaction
problem ((2.2), (2.6), (2.7), (2.8) and (2.29)). We use the strategy proposed by Walter et al.
(2010) coupling the finite element method to solve for the solid and the boundary integral
method to solve for the fluid (figure 5). The problem is solved using the dimensionless
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( σ  · n)n

Dynamical coupling

Solid solver
Finite element method

Initial position

Kinematical coupling

Fluid solver
Boundary integral

Method

Find ( σ  · n)n  using (2.6)

Find vn solving (2.2)
at the nodes.

vn 

x0

qn, dn

(1) Find dn solving (2.29)
at the integration points.
(2) Find qn at the nodes
solving (2.7)

Find the position xn + 1
at the next time step
solving (2.8) at the nodes
using an explicit scheme

xn ← xn + 1

Figure 5. Numerical method to solve the fluid–structure interaction problem over a time step.

forms of the equations, in which the lengths are non-dimensionalized by a, time by 1/γ̇

and tensions by Gs. The two parameters YD and YC are thus also non-dimensionalized by
Gs.

The originality of our work consists in introducing a damage model in the solid problem.
At the material level, the evolution of the damage variable d is determined for each
integration point using the explicit equation (2.29). The external load q is then obtained
by solving the global problem (2.7) and transferred to the fluid problem. The velocity is
computed explicitly at each node from (2.2). Finally, (2.8) is integrated with a second-order
explicit Runge–Kutta scheme to solve for the position of the membrane nodes at the next
time step.

3.1. Mesh
A conformal mesh is used, the nodes on the capsule S being shared by the fluid and the
solid problems. The mesh is composed of curved triangular elements containing six nodes
with quadratic shape functions (P2 elements). The mesh is generated on the spherical
shape corresponding to the initial configuration (figure 6). Following a previous study
(Walter et al. 2010), the mesh contains NE = 1280 P2 elements corresponding to a total of
NN = 2562 nodes.

3.2. Solid solver
For a given deformed configuration of the capsule, the discrete solid problem consists
in finding the external load q ∈ L2

h and the damage d ∈ L2
h that satisfy (2.7) and (2.29),

where the subscript h indicates the finite element space. The position x and the virtual
displacement û are searched in H1

h . Using isoparametric elements, we restrict the solution
for q in H1

h . A field v(x, t) ∈ H1
h writes: v(x, t) = N( p)(x)v( p)(t), p ∈ [1, NN], where N( p)
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ez

ex

(b)(a)

Figure 6. Projection on the shear plane of the mesh of a damaged capsule captured (a) in the initial
configuration and (b) at a steady deformed state. P2 elements, NE = 1280, NN = 2562.

and v( p) are the shape function and the nodal coordinates of v associated with the node
p, respectively. Noting v

( p)
Xj the coordinates of v( p) in a Cartesian basis (eXj), the left-hand

side of the discretized form of (2.7) writes

∑
el

û( p)
Xj

∫
el

N( p)N(q) dS q(q)
Xj = {û}T [M]{q}, (3.1)

and the right-hand side writes

∑
el

∫
el

Tαβ(e, d)χ
( p)Xj
αβ dS û( p)

Xj = {û}T{R}(e, d), (3.2)

where {q} and {û} are the vectors of size 3NN of the nodal coordinates, and χ
( p)Xj
αβ is

defined by

χ
( p)Xj
αβ = 1

2

(
∂N( p)

∂ξβ

aα + ∂N( p)

∂ξα

aβ

)
· eXj, p ∈ [1, NN]. (3.3)

Equation (2.7) being satisfied for any virtual displacement, the discrete solid problem
writes

Find q and d, such that,

{
[M] {q} = {R}(e, d)

(3.4a)
d = 〈

ξ(Ymax)
〉+

. (3.4b)

The square and column matrices [M] and {R} are, respectively, computed at each time step
by using six Hammer points on each element (Hammer, Marlowe & Stroud 1956). The
new value of the damage variable is obtained from (3.4b), solved locally at each integration
point while computing {R}. Knowing the deformation, the variable d is computed explicitly
as Ymax depends only on the deformation. The computation of d ensures the admissibility
condition (2.27) at each time step. Finally, q is computed by solving (3.4a) with the Pardiso
solver (Schenk & Gärtner 2004).

3.3. Fluid solver
For a given deformed configuration of the capsule and knowing the stress exerted by the
membrane on the fluid, the velocity field v is given explicitly by (2.2). The velocity field
v is computed at each node. The integral on the right-hand side of (2.2) is computed with
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12 Hammer points per element. To handle the singularity of the tensor J at node x, we
use polar coordinates centred on x when integrating on the elements sharing this node
(for more details see e.g. Lac et al. 2004). We do not use penalty methods to impose
the conservation of the volume of the fluids. Still, the maximum relative variation of the
capsule volume is limited to 0.1 % of the initial volume.

3.4. Coupling
Using a conformal mesh with isoparametric elements, the loads [[σ ]] · n and q are in
the same space H1

h . Hence the dynamic coupling between the fluid and the solid (2.6)
is verified in its strong form in this space. Considering the kinematic coupling, the no-slip
condition (2.8) is solved at the nodes with an explicit second-order Runge–Kutta scheme
to find the position of the nodes at the next temporal increment. Since the local problem of
damage is solved in the solid problem with an implicit scheme, the condition of stability of
the scheme of temporal integration of the fluid–structure interaction problem is the same
as the one initially developed by Walter et al. (2010).

4. Capsule damage under isotropic inflation

We first analyse the damage of a spherical capsule under osmotic inflation. We impose
radial displacements inflating the capsule from radius a to radius a(1 + α(t)), where the
inflation ratio α is such that α ≥ 0. We will study two cases: a monotonic increase of α

and cyclic variations of α with successive increase and decrease of the capsule diameter.
We compare the solution given by the solid solver to the analytical solution.

The problem consists in finding the damage variable d and the external load q that
satisfy the evolution law of damage (2.29) and the equilibrium of the membrane (2.7). An
analytical solution of the problem exists. We look for it in the form of uniform fields that
satisfy the spherical symmetry of the problem. The stretch ratio of the membrane, which
is the square root of the isotropic principal value of the dilatation tensor F T · F , is simply
λ = 1 + α. The corresponding isotropic principal value T of the tension is

T = (1 − d)Gs

(
1 − 1
λ6

)
, (4.1)

and the elastic energy release rate Y

Y = Gs

2

(
2λ2 + 1

λ4 − 3
)

. (4.2)

As Y increases monotonically with α, the evolution law for damage (2.29) writes

d = 〈
ξ(Y(αmax))

〉+
, (4.3)

where αmax is defined similarly to Ymax in (2.31). Hence, the condition for d to increase is
that α is larger than any of its previous values.

The external load is q = pn, where p ≥ 0 is the difference between the internal and
external pressures. Choosing test functions of the form û = ûx in the equilibrium equation
(2.7), we obtain the Laplace relation between T and p

T = a(1 + α)p
2

. (4.4)

We prescribe the radial displacements to the nodes and impose x(m) = (1 + α)X (m), ∀m ∈
[1, NN]. The pressure difference and damage variable d are obtained analytically using
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Analytic
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P2 elements
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α�0.4 0.6 0.8

(b)

(a)

(c)

Figure 7. Case of a monotonic inflation: for the stretch ratio α shown in (a), corresponding curves of the
dimensionless pressure difference (b) and of the damage variable (c), computed for YD = 0.2, YC = 2.0.

(4.1)–(4.4), and numerically using the solid solver presented in § 3. For the numerical
solution, we compute p and d as surface averages, the pressure difference p being given by
q · n. Between the numerical and analytical solutions, we always find relative errors lower
than 10−3% for the pressure difference p and 10−4% for damage d.

We first compare how ap/Gs (the dimensionless value of p) and d evolve with the
inflation ratio α in the case of a monotonic inflation of the capsule (figure 7). The
numerical and analytical curves are perfectly superimposed (figure 7b,c) and comparison
with the analytical solution of the undamaged capsule (d = 0) shows a clear effect of
damage on the pressure difference (figure 7b). Damage is initiated at the critical value
α = αc, which corresponds to Y(αc) = YD. The loss in elastic properties of the damaged
capsule leads to a reduction in pressure difference as compared to the undamaged case.
The pressure difference returns to zero when d = 1, which occurs when α = α�.

We then compare the evolution of ap/Gs and d with α in the case of a capsule subjected
to cyclic inflations and deflations with increasing maximum sizes (figure 8). During the
first cycle corresponding to the inflation of the capsule until point A, the value of α does not
exceed the critical value αc. Hence damage does not initiate and the curves of ap/Gs for the
damaged and undamaged capsules coincide during inflation and deflation. For the second
cycle (inflation until point B), the curves of d and ap/Gs coincide with the corresponding
curves obtained for the monotonic size increase (figure 7b,c). During deflation from point
B, damage remains constant and the curve of pressure difference ap/Gs stays below the
inflation curve when α decreases back to 0. For the third cycle, the inflation curves of
ap/Gs and d overlap the corresponding curves of the previous deflation until point B. But,
between points B and C, damage increases during inflation, and the curve of ap/Gs again
coincides with the corresponding curve obtained for the monotonic size increase. The
deflation from point C is then similar to that of the second cycle with constant damage and
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Figure 8. Case of cycles of inflations and deflations with increasing maximum capsule size: for the stretch
ratio α shown in (a), corresponding curves of the dimensionless pressure difference (b) and of the damage
variable (c), computed for YD = 0.2, YC = 2.0.

an ap/Gs-curve below the inflation one. During the last inflation, capsule rupture occurs,
when α reaches the limit value α� (corresponding to d = 1).

The case of the capsule under isotropic inflation illustrates the effects of damage on the
behaviour of the capsule. For a given value of the inflation ratio α, the more the membrane
is damaged, the lower the pressure difference (figure 8b), in other words, damage reduces
the loading capacity of the membrane. For increasing d, the slope at the origin for the
curve ap/Gs(α) decreases (figure 8b), which means that damage reduces the stiffness of
the structure. It is interesting to see how the values of αc and α� depend on the parameter
values YD and YC. Following (4.3), the values of α initiating damage and rupture are given
respectively by the equations Y(αc) = YD and Y(α�) = YD + YC, where the expression of
Y(α) is obtained using (4.2). The critical inflation ratio αc thus depends solely on YD,
but the limit inflation ratio α� depends on both YD and YC. Furthermore, the higher the
parameter values, the higher the two threshold inflation ratios.

5. Capsule damage under simple shear flow

We now study the damage of a capsule in simple shear flow. We first show the typical
motion and evolution of damage of a capsule in a reference case and then study the
influence of the capillary number on the capsule behaviour. We will see that, when the
capillary number is increased, three different regimes are found. The capsule is first
undamaged until a critical capillary number Cac is reached, corresponding to the onset
of damage. Above this value, the capsule reaches a steady-state deformed shape in which
it is partly damaged. When the limit capillary number Ca� is reached, rupture initiates
putting a limit to the damage regime. In the last part of this section, we will finally study
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Figure 9. Two principal ellipses of the ellipsoid of inertia of the capsule.

the influence of the material parameters YD and YC on the three identified regimes and on
the values of Cac and Ca�.

5.1. Coupled kinetics of motion and damage on a reference case (Ca = 0.7)
As reference case, we choose YD = 0.2, YC = 2.0 and Ca = 0.7. The value of Ca is such
that Cac < Ca < Ca�. Hence the capsule is damaged but the damage stabilizes and a
steady state is reached.

Upon the start of the shear flow at t = 0, the initially spherical capsule rotates and takes
an ellipsoidal deformed shape. It gets flattened while inclining towards the direction of the
flow ex (figure 9). Figure 10 shows the evolution of the capsule state over time until steady
state. Note that the membrane rotates around the vorticity axis ey and has a so-called
tank-treading motion. We choose to show the capsule shape and damage distribution at
different stages: at the onset of damage (t = tc), at an intermediate instant while damage
develops, at maximum elongation (t = t1) and at steady state (t = t∞). The capsule states
are shown in the current configuration from two view points in the shear plane and in
the transverse inclined plane containing the maximum principal direction e1 (figure 9).
Damage is initiated, at time tc, at the points P and P′ which are on the vorticity axis (O, ey).
As the capsule elongates, two symmetric disjoint damaged areas form around points P and
P′, which correspond to the locations of maximum damage dmax at each instant. Due to the
irreversibility of damage, the maximum values d∞

max are found at P and P′ at steady state
(t = t∞). In order to see whether preferential direction of damage exists, we plotted the
damage distributions on the initial capsule configuration (last row of figure 10). Damage
initially develops preferentially along the direction of maximum elongation e1 but the
anisotropy decreases after time t1 to reach a quasi-isotropic damage distribution at steady
state. This may be induced by the tank treading of the capsule membrane around the
vorticity axis.

Figure 11 gives complementary information on the evolution of the state of the capsule
over time until the steady damaged state. The localization of the energy release rate Y , and
hence of damage, in the regions around the points P and P′ (see figure 10) is correlated
with the maximum of the principal tension T1 (figures 11a–d and 11e–h). Damage has
no visible consequences on membrane wrinkling: the wrinkles visible on the normal load
maps in figure 11(i–l) are the same as in Walter et al. (2010) in the case without damage.
They are induced by the presence of negative T2 tensions transverse to the direction of the
wrinkles (figure 11m–p). The capsule wall being presently modelled as a membrane devoid
of bending stiffness, the wrinkle amplitude and wavelength are purely numerical. But the
small amplitude of the negative part of T2 tensions indicates that they hardly contribute
to the energy release rate Y and thus to damage. Consequently, they do not lead to any
numerical artefact and damage is well predicted by the present model.
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(e) ( f ) (g) (h)

(i) ( j) (k) (l)

Current configuration

Reference configuration

t = tc tc < t < t1 t = t1 t = t∞

Figure 10. Map of damage at the instant of initiation of damage tc, at an intermediary instant between tc and
the instant of maximum elongation t1, at time t1, and at steady state (t∞). The map of damage is represented
on the current and reference configurations. The current configuration is observed in the shear plane (O, ex, ez)

and in the plane (O, e1, ey) which is defined in figure 9. The reference configuration of the capsule is observed
in the shear plane (O, ex, ez). The points P and P′ correspond to the intersection of the membrane with the
vorticity axis ey. The results are obtained for Ca = 0.7, YD = 0.2 and YC = 2.0. All the pictures are at the
same scale. The capsule is delimited by a black line.

We now investigate how the capsule shape and deformation are influenced by damage. In
figure 12, we compare the time evolution of geometric parameters to the case of a capsule
without damage. Since the shape of the capsule can be approximated by an ellipsoid of
inertia, we define the principal lengths L1 and L2 of the major and minor axes (directions
e1 and e2) in the shear plane (O, ex, ez) and L3, the length along the vorticity axis ey (see
figure 9). The capsule indeed elongates along the directions e1 and ey (L1 > L3 > 2a)
and shrinks along the direction of the minor axis (L2 < 2a) (figure 12a). We quantify the
deformation of the capsule with the Taylor parameter D12 = (L1 − L2)/(L1 + L2) which
measures the distortion of the profile of the ellipsoid in the shear plane (figure 12b). The
inclination of the capsule is measured by the angle β between the flow direction ex and the
direction of the major axis e1. Figure 12(c) represents the temporal evolution of β showing
that the inclination angle decreases from the first measurable value near π/4. Figure 12(d)
shows the evolution of the global surface expansion ratio λS = (S − S0)/S0.

Figure 12 globally shows that a steady deformed shape is reached. All the quantities tend
towards a plateau value which will be denoted with the symbol ∞ hereafter. It is interesting
to notice in figure 12(a) that the onset of damage (t = tc) is not visible on the Li curves. It is
only close to t = t1 that the curves slightly diverge from the case without damage. But only
small differences are observed on the principal lengths Li (figure 12a), D12 (figure 12b)
and β (figure 12c) hereafter. In this reference case, we find that damage has no significant
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Figure 11. Time evolution of different state quantities: elastic energy release rate Y (a–d), maximum principal
tension T1 (e–h), normal load q · n to visualize wrinkling (i–l) and negative part of principal tension T2 (m–p).
The results are shown in the shear plane (O, ex, ez) at the same instants as in figure 10, for Ca = 0.7, YD = 0.2
and YC = 2.0.
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Figure 12. Temporal evolution of (a) the lengths of the axes of the ellipsoid of inertia, (b) the Taylor parameter
D12, (c) the inclination angle β and (d) the global surface expansion λS. Computed for Ca = 0.7, YD = 0.2 and
YC = 2.0.
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Figure 13. Maximum damage value at steady state d∞
max with respect to Ca for YD = 0.2 and YC = 2. The

inserted images represent the map of damage in the shear plane at steady state for Ca = 0.6 (a), for Ca = 0.7 (b)
and at the instant of initiation of rupture t = t� for Ca = 0.8 (c). The colour map for d is saturated for values
of d larger than 0.2.

effects on the motion and deformation of the capsule, suggesting that damage will be very
difficult to detect experimentally. The geometrical parameter that is the most affected by
damage ends up being the global surface expansion ratio λS (figure 12d). Nevertheless, the
difference at steady state is only of a few per cent.

5.2. Effect of Ca
We now study the effect of Ca for the same values of parameters (YD = 0.2, YC = 2.0) as
in the reference case. The corresponding critical and limit capillary numbers are Cac =
0.37 and Ca� = 0.73. The maximum value of damage at steady state d∞

max is shown as a
function of the capillary number Ca in figure 13. For Ca > Cac, it increases almost linearly
with Ca until Ca ∼ 0.6. Above, d∞

max increases more rapidly with Ca until d∞
max = 0.4.

Around Ca = Ca�, it finally reaches the value of 1 at points P and P′ very sharply, with
a slope close to infinity. It is for this reason that it is classical in damage mechanics to
relax the criterion for rupture to d = 0.9 or even d = 0.8. Figure 13 indeed shows that
they provide the same value for Ca = Ca�.

The inserted images in figure 13 show that the damage maxima always lie at points P
and P′. They also provide an indication of the extent of the damaged zone for increasing
values of Ca. Note that for Ca = 0.8 the damage distribution is given at the instant of
initiation of rupture t = t� and not at steady state, as it no longer exists. In these cases, the
capillary number influences mainly the values of damage in the vicinity of points P and P′
and marginally the damaged surface.

The capsule deformation and inclination at steady state are compared in figure 14 with
the non-damaged case for Ca ≤ Ca�. No results are shown above Ca�, since no steady
deformed shape exists any longer (D12 diverges to infinity). Despite the large effect of Ca
on d∞

max for Cac < Ca < Ca�, the D∞
12 and β∞ curves initially remain superimposed to the

non-damaged case, and it is only close to Ca� that small differences become visible. No
significant influence of damage is thus found on these global quantities. It is a consequence
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Figure 14. Evolution of the values (a) D∞
12 and (b) β∞, respectively the values of D12 and β at steady state, in

relation to Ca. Computed for YD = 0.2 and YC = 2.0.
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Figure 15. Influence of the parameters YC and YD on the evolution of the damage value d∞
max at points P and

P′ at steady state with Ca: (a) YC = 2.0 and YD = 0.1, 0.2, 0.3, (b) YC = 1.0, 2.0, 3.0 and YD = 0.2.

of the localization of damage around points P and P′ that occurs in the case of a shear flow.
Although the evolution curve of D12 with Ca does not provide information on when
damage is initiated (i.e. on the value of Cac), it directly provides the value of Ca�, which
corresponds to when D12 diverges to infinity (initiation of breakup).

5.3. Effect of YD and YC

We finally study the influence of the material parameters YD and YC on the damage of
the capsule. The evolution of d∞

max(Ca) is represented for different values of YD and YC in
figure 15. We observe the same trend as in the reference case (figure 13).

For a fixed value of YC, Cac and Ca� increase with YD (figure 15a). However, when YD
is fixed (figure 15b), increasing YC does not impact when damage initiates (constant Cac)
but delays when the capsule breaks up (increasing value of Ca�). This relates to the facts
that the criterion of initiation of damage is only a function of YD, whereas the criterion of
initiation of rupture is controlled by YD + YC, as already shown at the end of § 4.

The results are synthesized in figure 16, which provides a phase diagram of the capsule
states for a range of values of YD and YC. For a given YC, the curves Cac(YD) and
Ca�(YD; YC) delimit three domains in the parametric space (Ca, YD): undamaged for
Ca < Cac, damaged for Cac < Ca < Ca�, ruptured for Ca > Ca�. The only effect of
YC is to shift the Ca� delimiting curve to higher Ca values as the capsule is then
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Ca c
Ca�

(YC = 1.0)

Ca�
(YC = 2.0)

Ca�
(YC = 3.0)
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Figure 16. Evolution of the critical and limit capillary numbers Cac and Ca� with YD. The solid lines represent
the limit curves of Cac and Ca� for YC = 0.2. They delimit three domains corresponding to three states of the
capsule: undamaged, damaged and ruptured. We also show the limit curves of Ca� for YC = 1.0, 3.0 as dotted
lines to show how the three domains evolve with the parameters.

more resistant. This is what is shown by the dotted lines in figure 16, which complete
the base case (YC = 2.0).

6. Discussion and conclusion

In response to the current need for a damage model of microcapsules in flow, we have
developed the first FSI numerical model accounting for the degradation of the capsule
membrane until the onset of rupture, when it is deformed by hydrodynamic forces.
We have placed ourselves within the framework of continuum damage mechanics, and
simulated microdefect development by degrading the elastic material parameters through
the introduction of a damage variable d. We have used an isotropic brittle damage model,
in which the damage evolution of the membrane depends on the history of loading. We
have integrated it in a finite element method that solves for the membrane deformation,
which we have coupled to a boundary integral method to solve for the Stokes flows inside
and outside the capsule.

6.1. Interpretation of the damage evolution law
We have explained the physical meaning of the damage model in § 2, but propose to further
detail the interpretation of the damage evolution law (2.29). The capsule membrane being
assumed to have a quasi-brittle behaviour, damage evolution is driven by Ymax. As an
illustration, we propose to introduce a toy model (figure 17), consisting of a bundle of
parallel elastic fibres under uniaxial traction (Krajcinovic 1989; Lemaitre & Desmorat
2005). The RVE consists of N parallel elastic fibres initially unbroken and subjected to an
elongation ratio λ.
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λ/2

δS �

δSλ/2

φNH , Pf

nb = NδS – δS �
δS

 = Pf (λmax)N

N sound fibres nb broken fibres

Figure 17. The RVE consists of a bundle of elastic initially unbroken fibres of specific elastic energy φNH and
probability of rupture Pf (6.3). It is subjected to an elongation λ up to the maximum elongation ratio λmax. The
zone where the microdefects have appeared upon the rupture of the fibres are represented in grey.

Each fibre is associated with the specific elastic energy φNH and has a brittle behaviour
given by the classical energetic criterion of rupture

φNH(λmax) < φu ⇒ sound fibre,

φNH(λmax) = φu ⇒ broken fibre,

}
(6.1)

where φu is a specific energy at rupture and λmax is defined similarly to Ymax in (2.31).
The key ingredient of this model is to consider φu as a random variable with probability
density p(φu) given by the following band-limited and uniform probability density:

p(φu) =
⎧⎨
⎩

1
YC

, ∀φu ∈ [YD, YD + YC],

0, ∀φu /∈ [YD, YD + YC],
(6.2)

where YD and YC are the parameters of the damage model introduced in (2.28). Hence,
from (6.1) and (6.2), the probability of rupture of a fibre is given by

Pf (λ
max) =

∫ φNH(λmax)

0
p(φu) dφu. (6.3)

Consistent with (2.9), the damage variable d corresponds to the ratio nb/N, where nb is the
number of broken fibres. For a large number of fibres, we can postulate nb = Pf (λ

max)N,
and thus d = Pf (λ

max). From (6.3), we obtain

d =

⎧⎪⎪⎨
⎪⎪⎩

0, if φNH(λmax) ≤ YD,

φNH(λmax) − YD

YC
, if YD ≤ φNH(λmax) ≤ YD + YC,

1, if YD + YC ≤ φNH(λmax),

(6.4)

where φNH(λmax) = Ymax (see (2.19)2). We thus retrieve the damage evolution law (2.29).
This toy model thus shows that the damage evolution law (2.29) is dictated by local

phenomena: each fibre has a binary state broken/unbroken (6.1), for which the transition is
randomly triggered. By integrating the function of rupture probability over all the fibres,
we obtain a deterministic damage model for the RVE, where d ranges from 0 (all the
fibres are unbroken) to 1 (all the fibres are broken). Equation (6.2) shows that the model
parameters YD and YC delimit the range of dispersion of the specific energy at rupture in
the microstructure.
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6.2. Capsule inflation test
We have first applied the model to a capsule under isotropic inflation, a case for which we
derived an analytical solution. This has allowed us to validate the numerical simulations
and to show the consequences of damage on the pressure difference p between the internal
and external fluids. The main findings are that a given capsule remains sound up to a
critical value of the inflation ratio αc, at which damage initiates. As the capsule further
inflates above this critical value, the isotropic tension first increases with the isotropic
strain, reaches a maximum and then decreases: this corresponds to what is generally
defined as a softening behaviour. As damage builds up, the pressure difference decreases,
as the global stiffness of the capsule is proportional to the local effective surface shear
modulus (1 − d)Gs. The pressure difference finally returns to p = 0, which occurs when
the damage variable reaches d = 1: it corresponds to the moment when the membrane
ruptures. A given capsule is thus characterized by a limit inflation ratio α� at which it
breaks up.

The inflation capsule test has shown how excellent the agreement is between the
theoretical solution and the one obtained with the FSI damage model. If the problem
had been solved in displacement (imposed pressure) as classically done in finite element
numerical codes, the material softening behaviour resulting from damage would have
induced a loss of stability of the uniform solution at the beginning of the regime of strain
localization (Rice 1976; Benallal, Billardon & Geymonat 1993). In this regime, a small
perturbation from the uniform solution would have localized damage and strain in a band
of width of one element: the solution would have been strongly mesh dependent. To solve
this issue, classical solid solvers require additional methods, called localization limiters, to
obtain more objective solutions (Bažant & Pijaudier-Cabot 1988; Simo, Oliver & Armero
1993). However, it is interesting to notice that even for the case of a capsule in simple
shear flow discussed below, where the solution is non-uniform, we did not observe the
effect of strain localization by changing the mesh size (results not shown). This shows how
advantageous it is to implement the damage model within an explicit FSI solver, where
the node displacements are imposed by the fluid and the corresponding external loads
exerted by the fluids on the membrane are solved for in the solid problem. Furthermore, the
present FSI scheme is particularly robust and stable, thanks to the fact that the quantities
are integrated over the surface in both the fluid and solid solvers.

6.3. Capsule under simple shear flow
We have then considered a capsule under simple shear flow and similarly seen that there
exists a critical value of the capillary number Cac, at which damage initiates, and a limit
capillary number Ca�, at which capsule rupture occurs. In the model, we have chosen to
base the criterion for damage on the elastic energy release rate Y of the membrane and
to use the evolution law developed by Marigo (1981) for quasi-brittle materials, in which
damage evolves when Y = YD + YCd. The initiation of damage is then solely dictated by
the threshold modulus YD, to which Cac is proportional. As for the hardening modulus YC,
it governs the rate at which damage occurs: the lower YC, the faster rupture occurs. The
initiation of rupture (d = 1) and the corresponding limit capillary number Ca� are thus
controlled by YC + YD.

For Cac < Ca < Ca�, irreversible damage appears on the flanks of the capsule at the
points P and P′ located on the flow vorticity axis: it is at these locations that the internal
membrane tension is the highest. As the capsule tank treads, the two damaged zones grow
around these points, but remain confined in their vicinity, the maximum values remaining
at P and P′. The most striking results in this range of capillary numbers are that the capsule
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still reaches a steady deformed shape like in the case without damage, and that the effect
of damage remains non-visible on the capsule deformed shape, inclination and dynamics.
Indeed, damage concentrates around the capsule poles P and P′ in the case of a simple
shear flow, without propagating to the entire capsule. Note that such would not be the
case under other flows conditions with three-dimensional vorticity effects, as the capsule
rotation would lead to an isotropic distribution of damage all over the capsule membrane.
Still, at present, differences in shape and inclination with the no-damage case start to be
visible, when Ca gets close to Ca�. At Ca = Ca�, rupture finally occurs at points P and P′,
and no steady deformed shape exists thereafter for the capsule.

6.4. Comparison with experiments of capsule damage
Damage models are phenomenological and require confrontation with experimental data
to assess the relevance of choice of damage evolution law. It is interesting to observe that
the present findings corroborate well the results of the few experimental studies present
in the literature, which showed that rupture is initiated at the points of maximum elastic
tension (Husmann et al. 2005; Abkarian et al. 2008; Koleva & Rehage 2012; Unverfehrt,
Koleva & Rehage 2015; Le Goff et al. 2017). The damage model assumptions are thus
relevant to study the dynamics of microcapsules in flow.

Comparing the results of the model with experiments also serves the purpose of
identifying the values of the model parameters, namely YD and YC in the present model.
We propose to look more closely at the results obtained by Professor H. Rehage’s group
on thin polysiloxane microcapsules subjected to a simple shear flow until breakup in a
counter-rotating rheometer cell (Koleva & Rehage 2012; Unverfehrt et al. 2015). They
followed a given capsule under increasing values of shear rate and found that wrinkles
form on the capsule membrane (figure 18b) similarly to what was predicted by numerical
models (Lac et al. 2004; Walter et al. 2010). Polysiloxane being very brittle and resistant to
deformation, only a small increase in capsule deformation was observed as Ca increased
(figure 18a), and rupture occurred at only 3 % of deformation. The crack formed in the
region near the vorticity axis (figure 18c), in agreement with the prediction given by
our model. Similarly to what we have shown in § 5.2, no influence of damage effects
could be observed on the Taylor parameter curve (figure 18a). But, even though simple
shear flow experiments do not allow us to identify the value of Cac (and thus YD), Ca�

is easily identified from the point of divergence of the Taylor parameter curve. Note
that in Koleva & Rehage (2012) the capillary number is based on the surface Young’s
modulus instead of the surface shear modulus as in the present study. However, for the
capsules of figure 18, the authors estimated that the two moduli had practically the same
values, indicating that the Poisson ratio of the membrane was negative. The polysiloxane
capsules of figure 18 are thus found to have a limit capillary number Ca�(YD, YC) =
0.01, which provides an implicit relationship between YD and YC. Since we know from
figure 16 that the damaged domain is delimited by the curves Ca = Cac and Ca = 0.01,
we deduce that YD ∈ [0; 1 × 10−3] and YC ∈ [0; 4.6 × 10−3]. We have run simulations
assuming YD/Gs = 5 × 10−4 and YC/Gs = 3.1 × 10−3, for which Ca�(YD, YC) = 0.01,
and found a good fit between the numerical predictions (figure 18e–g) and the experimental
results (figure 18b–d). For Ca ≥ Ca�, we have continued the simulations after the critical
instant t = t� where rupture initiates, and found that the totally damaged state d = 1 of
the membrane propagates in the plane perpendicular to the major axis (O, e1) and that
the capsule elongates indefinitely along its major axis (figure 18g). The divergence of the
capsule shape in the simulations (figure 18g) is similar to what is observed experimentally
(figure 18d).
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Figure 18. Experimental results obtained by Koleva & Rehage (2012) on polysiloxane microcapsules:
(a) evolution of the Taylor parameter D12 with the capillary number Ca, (b) formation of wrinkles at
Ca = 0.0042, (c) formation of a crack at Ca = 0.01, (d) divergence of the capsule shape for Ca larger
than Ca = 0.01. Numerical predictions given by the present damage FSI model for YD/Gs = 5 × 10−4 and
YC/Gs = 3.1 × 10−3: (e) at Ca = 0.005, 3-D rendering showing the presence of wrinkles. ( f ) At Ca = 0.01,
map of damage at t = t� when rupture initiates (d = 1). (g) At Ca = 0.012, map of damage at an instant of time
after t = t� while the capsule shape diverges due to infinite elongation, this is a case where damage initiates at
the points on the vorticity axis but not rupture, which occurs in the nearby region. Panels (a–d) are reproduced
from Koleva & Rehage (2012) with permission of The Royal Society of Chemistry.

In retrospect, it is surprising that the experiments by Chang & Olbricht (1993) did not
fit those by Professor Rehage’s group. Chang & Olbricht (1993), who were the first to
study the rupture of polyamide capsules using a counter-rotating rheometer cell, found that
rupture initiated at the apex of the major axis, where the capsule is the thinnest. Although
these results contradict what all the other studies of the literature have found, it could
be interesting to use the damage FSI model to investigate for which damage threshold
function (2.27) the model would predict an initiation of rupture at that location.

This study, based on an associated damage model with three ingredients (table 1), could
be generalized to include other dissipative phenomena, such as irreversible strains. These
have for instance been taken into account by Ghaemi et al. (2016), in the case of a capsule
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under compression. The model, however, does not include the gradual degradation of the
membrane and information on rupture is obtained by post-processing the stress–strain
results. The modularity of the framework that we are proposing represents a real advantage
if one wants to generalize the use of the damage FSI model for crack nucleation prediction
and damage property identification. Predicting crack propagation is, however, outside the
scope of the model, as it would require the use of another approach. The extended finite
element method (Sukumar et al. 2000; Moës & Belytschko 2002) could then be one option
among others to provide answers on the subsequent events following crack nucleation.
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