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Abstract. Let g be a finite dimensional complex semi-simple Lie algebra with
Weyl group W and simple reflections S. For I ⊆ S let gI be the corresponding semi-
simple subalgebra of g. Denote by WI the Weyl group of gI and let w◦ and wI

◦ be the
longest elements of W and WI , respectively. In this paper we show that the answer
to Kostant’s problem, i.e. whether the universal enveloping algebra surjects onto the
space of all ad-finite linear transformations of a given module, is the same for the
simple highest weight gI -module LI (x) of highest weight x · 0, x ∈ WI , as the answer
for the simple highest weight g-module L(xwI

◦w◦) of highest weight xwI
◦w◦ · 0. We also

give a new description of the unique quasi-simple quotient of the Verma module �(e)
with the same annihilator as L(y), y ∈ W .

1. Introduction. Let g = n− ⊕ h ⊕ n be a finite dimensional complex semi-simple
Lie algebra with a chosen triangular decomposition, and let U(g) be its universal
enveloping algebra. For two g-modules M and N, the space Hom�(M, N) of linear
maps from M to N has a U(g)-bimodule structure in the natural way (see for
example [12, Kapitel 6]), and hence a g-module structure via the adjoint action. The
g-submodule of Hom�(M, N) consisting of all locally finite elements is in fact a U(g)-
sub-bimodule, which we denote by L(M, N). As U(g) itself is locally finite under the
adjoint action, we have a natural homomorphism of U(g) into L(M, M) for every
g-module M, whose kernel is the annihilator Ann M of M in U(g). The question raised
by Kostant (see for example [4, 6.10], [15]) is: for which g-modules M is the natural
inclusion

U(g)/ Ann M ↪→ L(M, M)

a surjection.
This is in general a difficult question, and the answer is not even known for simple

highest weight modules. It is known to have a positive answer for Verma modules ([4,
6.9] for simple Verma modules, generalised in [15, 6.4] for the general case) and for all
quotients of dominant Verma modules [12, 6.9]. For semi-simple Lie algebras having
roots of different length, examples of simple highest weight modules where the answer
is negative were found early (see for example [5, 6.5], [15, 9.5]). More recently, many
examples have also been found in type A (see [19, 28]). The answer to Kostant’s problem
is a valuable tool for example when determining Goldie rank ratios (see [16–18]), and
in the study of generalised Verma modules (see [21, 27, 29]).

In this note, we investigate how the answer to this question for certain simple
highest weight g-modules relates to the answer for modules of semi-simple subalgebras
of g. More precisely, let W be the Weyl group of g, with simple reflections S, determined
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by the triangular decomposition. For a subset I ⊆ S, let WI denote the parabolic
subgroup of W generated by I , denote by gI the corresponding semi-simple subalgebra
of g, and let w◦ and wI

◦ denote the longest elements of W and WI . For x ∈ W , let L(x)
denote the simple highest weight g-module with highest weight x · 0 (see next section
for precise definition), and similarly, for x ∈ WI , let LI (x) denote the simple highest
weight gI -module with highest weight x · 0. The main result of this paper is the following
theorem.

THEOREM 1.1. Let x ∈ WI . Then Kostant’s problem has a positive answer for LI (x)
if and only if Kostant’s problem has a positive answer for L(xwI

◦w◦).

Since Kostant’s problem trivially has a positive answer for LI (e), as well as for LI (x)
for any simple reflection x (see [26, Proposition 7] or [19, Corollary 18]), this generalises
previous results by Conze-Berline and Duflo [5, 2.12 and 6.3], later generalised by
Gabber and Joseph [8, 4.4] (the case when x = e), and Mazorchuk [26, Theorem 1] (the
case when x is a simple reflection).

The idea of the proof is as follows. For each x ∈ WI , there is a unique quotient D
of the dominant Verma module �I (e) satisfying Ann D = Ann LI (x). Since Kostant’s
problem has a positive answer for D, as it is a quotient of a dominant Verma module,
we see that Kostant’s problem has a positive answer for LI (x) if and only if

LI (D, D) ∼= LI (LI (x), LI (x)) (1)

(where the index I is used to emphasise that objects are defined with respect to gI as
opposed to g). We show that we can ‘lift’ this situation by parabolic induction, i.e.
there exists a g-module D′ for which the answer to Kostant’s problem is positive, and
such that

L(D′, D′) ∼= L(L(xwI
◦w◦), L(xwI

◦w◦))

holds if and only if (1) holds.
In Section 5, we give an alternative description of the so-called quasi-simple

quotients the dominant Verma module, originally described in [14, Section 5], which
are used as an important tool in the proof of Theorem 1.1. Finally, in Section 6
we apply Theorem 1.1 to get some new answers to Kostant’s problem for the Lie
algebra sl6.

2. Notation and preliminaries. The subset I of S determines a parabolic
subalgebra pI of g, containing gI . The triangular decomposition of g induces a
triangular decomposition gI = n

−
I ⊕ hI ⊕ nI . Let uI be the nilradical of pI , and let

zI be the orthogonal complement of hI in h with respect to the Killing form. We thus
have the following decompositions:

h = hI ⊕ zI , and pI = gI ⊕ zI ⊕ uI .

The Weyl group W of g acts on h∗ in the natural way wλ, but in this setting it is
more convenient to consider the so-called ‘dot action’, given by

w · λ := w(λ + ρ) − ρ,
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where ρ is the half sum of the positive roots. Similarly, we have both the standard
action and dot action of WI on h∗

I .
Let O denote the Bernstein-Gelfand-Gelfand (BGG) category (see for example [3,

10]), and letO0 denote the principal block ofO, i.e. the full subcategory ofO consisting
of modules that are annihilated by some power of the maximal ideal of the centre of
U(g) which annihilates the trivial module. The simple modules of O0 are the simple
highest weight modules L(w) of highest weight w · 0, where w runs over W . We denote
the Verma module with simple head L(w) by �(w), and the projective cover of L(w)
by P(w). Finally, for w ∈ W we denote by θw the indecomposable projective functor
on O0 (see [2]) satisfying

θw�(e) = P(w).

The corresponding objects for gI are denoted OI , LI (w), LI , etc.
For a subalgebra a of g (here a will be either hI or zI ), a module M ∈ O, and

λ ∈ a∗, let

Mλ := { m ∈ M | xm = λ(x)m for all x ∈ a },
and define the support of M with respect to a as

Suppa M := { λ ∈ a∗ | Mλ �= 0 }.

3. Parabolic induction. For λ ∈ z∗
I , we define the induction functor from OI to O

by

Indλ M := U(g) ⊗U(pI ) Mλ

for M ∈ OI , where Mλ is the pI -module obtained from M by letting zI act by λ, and
uI act by 0. We also define the restriction functor from O to OI by

Resλ N := Nλ

for N ∈ O, where the action is restricted to gI .

LEMMA 3.1. If AnnU(gI ) M = AnnU(gI ) N for two gI -modules M and N, then
AnnU(g) Indλ M = AnnU(g) Indλ N for any λ ∈ z∗

I .

Proof. We have

AnnU(pI ) Mλ = (
AnnU(gI ) M

) ⊗ U(zI ) ⊗ U(uI ) + U(gI ) ⊗ ker λ ⊗ U(uI )

+U(gI ) ⊗ U(zI ) ⊗ U(uI )>0,

where U(uI )>0 denotes the elements of U(uI ) of degree at least 1. Hence AnnU(pI ) Mλ =
AnnU(pI ) Nλ, so the result follows from [6, Proposition 5.1.7(ii)]. �

Let RI be the simple roots corresponding to I . The fundamental weights of h∗

orthogonal to RI define a basis BI of z∗
I , which in turn define a partial order on z∗

I by
ν � λ for ν, λ ∈ z∗

I if λ − ν is in the non-negative span of BI . For λ ∈ z∗
I and M ∈ O,

let M ��λ be the submodule of M generated by all Mν , ν �� λ, and define

M�λ := M/M ��λ.
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Generalising the situation when tensoring Verma modules with finite dimensional
modules, we get the following.

LEMMA 3.2. For a finite dimensional g-module V, M ∈ OI , and λ ∈ z∗
I , the module

V ⊗ Indλ M has a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk = V ⊗ Indλ M

with

Mi/Mi−1
∼= Indλ+μi ((Resμi V ) ⊗ M),

where μ1 > μ2 > · · · > μk ∈ z∗
I and SuppzI

V = {μ1, . . . , μk}.
Proof. Let μ1, . . . , μk ∈ z∗

I be as in the lemma, let B1, . . . , Bk be bases of
Resμ1 V , . . . , Resμk V , and let B be a basis of M. Now define

Mi :=
∑

1≤j≤i

U(g)(Bj ⊗ (1 ⊗U(pI ) B)).

As in the ‘standard’ case (se for instance [12, Satz 2.2]) we find that each Mi isU(u−
I )-free

over ⋃
1≤j≤i

Bj ⊗ (1 ⊗U(pI ) B).

In particular, as U(u−
I )-modules we have that

Mi/Mi−1
∼= U(u−

I )(Bi ⊗ (1 ⊗U(pI ) B)).

Furthermore, it is straightforward to see that, as U(gI )-modules,

U(gI )(Bi ⊗ (1 ⊗U(pI ) B)) ∼= (Resμi V ) ⊗ M,

from which the statement follows. �
COROLLARY 3.3. For any λ,μ ∈ z∗

I , finite dimensional g-module V, and M ∈ OI , we
have

Resμ(V ⊗ Indλ M)�μ ∼= (Resμ−λ V ) ⊗ M.

Proof. If μ − λ /∈ SuppzI
V the result is immediate as both modules are zero. On

the other hand, if μ − λ ∈ SuppzI
V , then by Lemma 3.2 the module (V ⊗ Indλ M)�μ

has a submodule M′ isomorphic to

Indμ((Resμ−λ V ) ⊗ M),

and

SuppzI
((V ⊗ Indλ M)�μ/M′) < μ,

from which the statement follows. �
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We now fix ξ ∈ z∗
I to be the restriction of w◦ · 0 to zI , and let Oξ be the full

subcategory of O of modules satisfying SuppzI
M � ξ . By [26, Proposition 11], Indξ

and Resξ induce mutually inverse equivalences between Oξ

0 and OI
0, identifying LI (x)

with L(xwI
◦w◦) and �I (x) with �(xwI

◦w◦). Let pr0 and prI
0 denote the projection

functors from O to O0 and OI to OI
0, respectively.

LEMMA 3.4. For any M ∈ Oξ we have

Resξ ◦ pr0(M) ∼= prI
0 ◦ Resξ (M).

Proof. Let λ ∈ h∗ with λ|zI ≤ ξ . If λ|zI < ξ then

Resξ ◦ pr0(L(λ)) = prI
0 ◦ Resξ (L(λ)) = 0,

so assume λ|zI = ξ . We then have that

Resξ L(λ) ∼= LI (λ|hI ).

Furthermore, since λ|zI = (w◦ · 0)|zI , we have that

pr0 L(λ) ∼=
{

L(λ) if λ ∈ WIw◦ · 0, or equivalently, λ|hI ∈ WI · 0,

0 otherwise.

Hence the statement follows for simple modules since

prI
0 LI (λ|hI ) =

{
LI (λ|hI ) if λ|hI ∈ WI · 0,

0 otherwise.

For M ∈ Oξ , let M0 = pr0 M and let M1 ∈ Oξ be such that

M ∼= M0 ⊕ M1.

By definition, we have

Resξ ◦ pr0 M ∼= Resξ M0. (2)

Let L(λ) be a composition factor of M1. If λ|zI < ξ then Resξ L(λ) = 0, and if λ|zI = ξ

we must have λ|zI /∈ WI · 0, so prI
0 ◦ Resξ L(λ) = 0. Since both restriction and projection

are exact it follows that

prI
0 ◦ Resξ M1 = 0.

On the other hand, since M0 ∈ Oξ

0 we have Resξ M0 ∈ OI
0, so

prI
0 ◦ Resξ M0

∼= Resξ M0.

Since both restriction and projection are additive, it follows that

prI
0 ◦ Resξ M ∼= Resξ M0.

Comparing with equation (2) yields the result. �

https://doi.org/10.1017/S0017089509990127 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990127


24 JOHAN KÅHRSTRÖM

4. Proof of Theorem 1.1. We start by proving the building blocks used in the
proof of Theorem 1.1. We retain the notation from Section 3. In particular, we have
fixed ξ ∈ z∗

I to be the restriction of w◦ · 0 to zI .

PROPOSITION 4.1. For each finite dimensional g-module V and M, N ∈ OI
0, we have

Homg(V ⊗ Indξ M, Indξ N) ∼= HomgI (Res0 V ⊗ M, N).

Proof. We have that

Homg(V ⊗ Indξ M, Indξ N) ∼= Homg(pr0(V ⊗ Indξ M)�ξ , Indξ N)
∼= HomgI (Resξ ◦ pr0(V ⊗ Indξ M)�ξ , N)
∼= HomgI (prI

0 ◦ Resξ (V ⊗ Indξ M)�ξ , N)
∼= HomgI (Resξ (V ⊗ Indξ M)�ξ , N)
∼= HomgI (Res0 V ⊗ M, N),

where the first isomorphism follows from the fact that Indξ N ∈ Oξ

0 , the second by
the adjointness of Resξ and Indξ , the third by Lemma 3.4, the fourth by the fact that
N ∈ OI

0, and the fifth by Corollary 3.3. �
COROLLARY 4.2. For M, N ∈ OI

0 we have

HomgI (V,LI (M, M)) ∼= HomgI (V,LI (N, N))

for all finite dimensional gI -modules V if and only if

Homg(V ′,L(Indξ M, Indξ M)) ∼= Homg(V ′,L(Indξ N, Indξ N))

for all finite dimensional g-modules V ′.

Proof. For the ‘only if ’ part, by Proposition 4.1 and [12, 6.8 (3)] we have

Homg(V ′,L(Indξ M, Indξ M)) ∼= Homg(V ′ ⊗ Indξ M, Indξ M)
∼= HomgI (Res0 V ′ ⊗ M, M)
∼= HomgI (Res0 V ′,L(M, M))
∼= HomgI (Res0 V ′,L(N, N))
∼= HomgI (Res0 V ′ ⊗ N, N)
∼= Homg(V ′ ⊗ Indξ N, Indξ N)
∼= Homg(V ′,L(Indξ N, Indξ N))

for all finite dimensional g-modules V ′. Similarly, for the ‘if ’ part, we find that

HomgI (Res0 V ′,LI (M, M)) ∼= HomgI (Res0 V ′,LI (N, N))

for all finite dimensional g-modules V ′. We need to show that this covers all relevant
finite dimensional gI -modules. We first note that

HomgI (V ⊗ M, M) �= 0
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only if V0 �= {0}, where V0 denotes the hI -invariant subspace of V . This follows from
the fact that

SupphI
(V ⊗ M) ⊆ SupphI

V + SupphI
M

and, since M ∈ OI ,

SupphI
M ⊂ �RI ,

while, if V0 = {0},

SupphI
V ∩ �RI = ∅.

On the other hand, extending the highest weights of V from gI to g and using the
classification of finite dimensional g-modules (see [6, Theorem 7.2.6]) we have that if
V0 �= {0} then there is a finite dimensional g-module V ′ such that V is a direct summand
of Res0 V ′. Now the result follows by induction on the dimension of V . �

We need the following crucial observation made by V. Mazorchuk.

PROPOSITION 4.3. Kostant’s problem has a positive answer for any quotient of
�(wI

◦w◦).

Proof. Consider a short exact sequence

0 → X → �
(
wI

◦w◦
) → Y → 0.

By [26, Proposition 5], we need to show that

Ext1
O

(
�

(
wI

◦w◦
)
, θxX

) = 0

for all x ∈ W . Let Cx and Tx denote the completion functor and the twisting functor
associated with x ∈ W , respectively, and let RCx and LTx denote the corresponding
right and left derived functors. They satisfy

Cx�(w◦) ∼= �(x−1w◦), and Tx�(x−1w◦) ∼= �(w◦),

they form mutually inverse equivalences of the bounded derived category Db(O), and
they commute with projective functors (all this can be found in [1, 22]). Hence we have

Ext1
O

(
�

(
wI

◦w◦
)
, θxX

) ∼= HomDb(O)
(
�

(
wI

◦w◦
)
[−1], θxX

)
∼= HomDb(O)

(
RCwI◦�(w◦)[−1], θxX

)
∼= HomDb(O)

(
θx−1�(w◦)[−1],LTwI◦ X

)
.

To study LTwI◦ X , we note that X ∈ Oξ

0 , and take a projective resolution

P• � X : 0 → Pk → · · · → P1 → P0 → X → 0,

of X in this category.
In Db(O) we now have X ∼= P•. Since Oξ

0 is equivalent to OI
0, since all projective

modules in OI
0 have Verma flags, and since the equivalence maps Verma modules to

https://doi.org/10.1017/S0017089509990127 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990127


26 JOHAN KÅHRSTRÖM

Verma modules, the modules in P• have Verma flags. Since TwI◦ is acyclic on such
modules we have LTwI◦ P• = TwI◦ P•, and hence we have

HomDb(O)
(
θx−1�(w◦)[−1],LTwI◦ X

) ∼= HomDb(O)
(
θx−1�(w◦)[−1], TwI◦ P•).

For x ∈ WI , let P̃(xwI
◦w◦) denote the projective cover of the simple module L(xwI

◦w◦)
in O�λ

0 . We have that

�
(
wI

◦w◦
) = P̃

(
wI

◦w◦
)
,

and, analogous to O0, for each x ∈ WI there is a projective functor θ̃x such that

P̃
(
xwI

◦w◦
) ∼= θ̃x�

(
wI

◦w◦
)
.

Since twisting functors commute with projective functors we have

TwI◦ P̃
(
xwI

◦w◦
) ∼= TwI◦ θ̃x�

(
wI

◦w◦
) ∼= θ̃xTwI◦�

(
wI

◦w◦
) ∼= θ̃x�(w◦).

Since �(w◦) is a tilting module, and projective functors take tilting modules to tilting
modules, we have that TwI◦ P̃(xwI

◦w◦) is a tilting module for all x ∈ WI . In particular,
TwI◦ P• is a complex of tilting modules. Similarly, θx−1�(w◦) is a tilting module, and
hence we have

HomDb(O)
(
θx−1�(w◦)[−1], TwI◦ P•) ∼= HomKb(O)

(
θx−1�(w◦)[−1], TwI◦ P•),

by [9, Chapter III(2), Lemma 2.1], where Kb(O) is the bounded homotopy category.
Since θx−1�(w◦)[−1] is concentrated in position 1, and LTwI◦ P• lies between position 0
and −k, this last Hom-space must be zero. �

We can now put the above results together to prove Theorem 1.1.

Proof of Theorem 1.1. By [16, Lemma 3.3], there is a (unique) quotient D of �I (e)
satisfying Ann LI (x) = Ann D, and Kostant’s problem has a positive answer for D,
since D is a quotient of the dominant Verma module (see for example [11, 6.9]). Hence
we have

LI (D, D) ∼= U(gI )/ Ann D ∼= U(gI )/ Ann LI (x) ↪→ LI (LI (x), LI (x)). (3)

Furthermore, since L(xwI
◦w◦) ∼= Indξ LI (x) we have

Ann L
(
xwI

◦w◦
) = Ann Indξ D

by Lemma 3.1. Since Indξ D is a quotient of Indξ �I (wI
◦) ∼= �(wI

◦w◦), Kostant’s
problem has a positive answer for Indξ D by Proposition 4.3. As above, we have

L(Indξ D, Indξ D) ↪→ L
(
L

(
xwI

◦w◦
)
, L

(
xwI

◦w◦
))

. (4)

If Kostant’s problem has a positive answer for L(x) then the injection (3) is a
bijection, so by Corollary 4.2 we have

Homg(V,L(Indξ D, Indξ D)) ∼= Homg

(
V,L

(
L

(
xwI

◦w◦
)
, L

(
xwI

◦w◦
)))
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for all finite dimensional g-modules V . Hence the injection (4) is a bijection, and
Kostant’s problem has the positive answer for L(xwI

◦w◦). The proof of the converse is
completely analogous. �

5. Alternative description of D. The module D used in the proof of Theorem 1.1
can be described as follows. If we set J = Ann L(x), then by [16, Lemma 3.3], J�(e) is
the unique submodule of �(e) satisfying

Ann(�(e)/J�(e)) = Ann L(x).

In particular, D := �(e)/J�(e) is the unique quotient of �(e) satisfying Ann D =
Ann L(x). Furthermore, the category O is equivalent to a certain category of Harish-
Chandra bimodules, and under this equivalence the module D corresponds to the
bimodule

U(g)/Ann L(x),

called a primitive quotient of U(g). A classical problem, which has not yet been solved
completely, is to determine the simple composition factors (with multiplicities) of
primitive quotients.

When beginning this work, the author used a more direct approach to find the
module D, inspired by ideas in [19]. Although not necessary for the current exposition,
the following proposition is interesting in its own right. It has close resemblance to the
description of D given in [7], which in our setting gives D as the image of a map

�(e) → Cx−1∇(x). (5)

PROPOSITION 5.1. Let x ∈ W. The unique quotient D of �(e) satisfying Ann D =
Ann L(x) is isomorphic to the image of a non-zero homomorphism

�(e) → θxL(x−1).

We first note that this image is uniquely defined, since

dim Homg(�(e), θxL(x−1)) = dim Homg(θx−1�(e), L(x−1))

= dim Homg(P(x−1), L(x−1))

= 1.

To prove Proposition 5.1 we need to recall some further theory.
The category O0 has a �-graded version O�

0 , in which the modules L(x), �(x) and
P(x), for x ∈ W , all have standard graded lifts (where their heads are concentrated
in degree zero). Furthermore, the projective functors θx, x ∈ W , also have graded
lifts (see [30]). For M ∈ O�

0 and i ∈ �, let M〈i〉 denote the graded module defined by
M〈i〉j := Mj−i.

The Grothendieck group of O�
0 is isomorphic to the Hecke algebra H of W,

i.e. the free �[v, v−1]-module over the basis { Hx | x ∈ W }, where multiplication is
given by HxHy = Hxy if 	(xy) = 	(x) + 	(y), and HsHs = He + (v−1 − v)Hs for simple
reflections s ∈ S. The Kazhdan–Lusztig basis is a basis of the Hecke algebra, whose
elements we denote by Hx, which are self dual under the duality H �→ H on H given
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by Hx = (Hx−1 )−1 and v = v−1. We also have the dual Kazhdan–Lusztig basis, whose
elements we denote by Ĥx, which is dual to the Kazhdan–Lusztig basis with respect
to the symmetrising trace. We then have

[�(x)] = Hx,

[P(x)] = Hx,

[L(x)] = Ĥx,

[θx ] = right multiplication by Hx, and

[ 〈i〉] = multiplication by v−i.

For a review of this theory, see [27], in particular Section 3.
For x, y ∈ W and H ∈ H let kH

x,y ∈ �[v, v−1] be such that

HxH =
∑
y∈W

kH
x,yHy.

The right preorder on W is defined by x �R y if there exists an H ∈ H with kH
x,y �= 0.

Dually, if k̂H
x,y ∈ �[v, v−1] is such that

ĤxH =
∑
y∈W

k̂H
x,yĤy,

then x �R y if and only if there exists a H ∈ H with k̂H
x,y �= 0 (see [23, 5.1.16]). The

left preorder is defined by x �L y if and only if x−1 �R y−1. By [13, 20] we have the
important fact that

x �L y if and only if Ann L(x) ⊇ Ann L(y).

The equivalence classes of �R and �L are called right and left cells, respectively.
For x, y ∈ W , let hx,y ∈ �[v, v−1] with

Hy =
∑
x∈W

hx,yHx,

and for x, y, z ∈ W , let kx,y,z ∈ �[v, v−1] with

HxHy =
∑
z∈W

kx,y,zHz.

Note in particular that kx,y,z = kx,y,z. Now Lusztig’s a-function on W (see [24]) can be
defined as

a(x) := max
y,z∈W

deg ky,z,x.

It is constant on right cells, and in general we have (see [25, 1.3(1)])

a(x) ≤ mindeg he,x,

where, for f ∈ �[v, v−1], mindeg f is the minimal degree of f , i.e. the minimal element
i ∈ � such that the coefficient of vi in f is non-zero. The Duflo set D (sometimes called
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the set of distinguished involutions) is defined as the set of elements d ∈ W satisfying

a(d) = mindeg he,d .

By [25, Proposition 1.4, Theorem 1.10], each right cell contains precisely one Duflo
involution. Note that, by the BGG reciprocity, we have

[�(e)] =
∑
x∈W

he,x[L(x)].

Hence, given a right cell R of W , all composition factors in the form L(x), x ∈ R of
�(e) occur in degree at least a(x), and there is precisely one such factor which occur in
degree a(x), namely the one corresponding to the Duflo involution in R.

Proof of Proposition 5.1. Fix x ∈ W and denote the image of a non-zero
homomorphism from �(e) to θxL(x−1) by D̄. Since θx is exact, applying it to

P(x−1) � L(x−1)

gives

θxP(x−1) � θxL(x−1). (6)

First, we have, for some k̂x−1,x,z ∈ �[v, v−1],

[θxL(x−1)] = Ĥx−1 Hx =
∑
z∈W

k̂x−1,x,zĤz =
∑
z∈W

k̂x−1,x,z[L(z)],

and k̂x−1,x,z �= 0 implies z �R x−1 so all composition factors of θxL(x−1) are in the form
L(y), where y �R x−1. On the other hand, we have

[θxP(x−1)] = Hx−1 Hx =
∑
z∈W

kx−1,x,zHz =
∑
z∈W

kx−1,x,z[P(z)],

and kx−1,x,z �= 0 implies z �R x−1. Hence the head of θxP(x−1) has only simple factors
in the form L(y), y �R x−1. From equation (6) it follows that θxL(x−1) has minimal
degree greater than or equal to −a(x−1), and that the head of θxL(x−1) has only simple
factors in the form L(y), y ∼R x−1. Furthermore, since θxL(x−1) is self-dual, θxL(x−1)
has maximal degree smaller than or equal to a(x−1), and all its simple submodules are
in the form L(y), y ∼R x−1.

In particular, the maximal degree of D̄ is bounded by a(x−1), and all simple
submodules of D̄ are in the form L(y), y ∼R x−1. But the only such submodule
occurring on degree a(x−1) or smaller in �(e) is L(d), where d is the unique Duflo
involution in the same right cell as x−1, occurring precisely once in degree a(x−1). Hence
D̄ has L(d) as its unique simple submodule, and all other simple composition factors are
in the form L(y), y <R d. By [15, Proposition 6.2 (ii)] it follows that Ann D̄ = Ann L(d),
and Ann L(d) = Ann L(x) as d ∼L x. Since D is the unique quotient of �(e) with this
property, we must have D̄ = D. �

In [31] Stroppel shows that the map (5) has a graded lift, which allows her to give
an upper bound on the multiplicities of simple composition factors of the primitive
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quotient U(g)/ Ann L(x) as (here written in the setting of O0)

[D : L(y)] ≤
∑
i∈�

max
{
[�(e) : L(y)〈i〉], [Cx−1∇(x) : L(y)〈i〉]}. (7)

Similarly, from Proposition 5.1 we obtain the following upper bound:

[D : L(y)] ≤
∑
i∈�

max
{
[�(e) : L(y)〈i〉], [θxL(x−1) : L(y)〈i〉]}. (8)

For Lie algebras of small rank, the bound (8) is finer than the bound (7), but we
have not been able to show this in general. However, in [31] Stroppel greatly refines the
bound (7) by using the the Duflo–Zhelobenko four step exact sequence

0 → Cx−1∇(sx) → C(sx)−1∇(sx)
fsx,x−−→ Cx−1∇(x) → C(sx)−1∇(x) → 0.

It does not seem to be possible to find a similar refinement of our bound.

6. Kostant’s problem for sl6. In [19], the answer to Kostant’s problem was given
for all simple modules in O0 for sln, n ≤ 5, and partial results were obtained for sl6.
In type A the answer to Kostant’s problem is a left cell invariant by [27, Theorem 60].
Furthermore, since in type A there is a unique involution in each left cell, it suffices to
solve Kostant’s problem for involutions. The Weyl group for sl6 is S6, which contains
76 involutions. For 45 of these Kostant’s problem were shown to have a positive answer,
for 17 the answer was negative, and for 11 it remained unknown.

We expected that Theorem 1.1 would answer many of these 11 unknown cases, but
it actually turned out to answer only two. The involution s1s2s1s5 is in the same left cell
as the element

s1s4 · wI
◦w◦,

where I = {s1, s2, s3, s4}. By [19, Corollary 21], Kostant’s problem has a positive answer
for the sl5-module L(s1s4), and hence by Theorem 1.1 Kostant’s problem has a positive
answer for the sl6-module L(s1s2s1s5). By symmetry of the Coxeter diagram, Kostant’s
problem also has a positive answer for L(s1s4s5s4). Hence answer to Kostant’s problem
is still open for the modules

L(s2s3s4s3s2), L(s2s1s4s3s2s5s4), L(s1s3s2s4s3s2s1s5s4s3),
L(s2s1s3s4s3s2), L(s1s2s3s2s4s3s2s1), L(s2s1s3s2s1s4s5s4s3s2),
L(s2s4s3s2s5s4), L(s2s3s2s4s5s4s3s2), L(s2s1s3s2s4s3s2s1s5s4s3s2).

ACKNOWLEDGEMENTS. The author thanks V. Mazorchuck for fruitful comments,
suggestions and discussions.

REFERENCES

1. H. H. Andersen and C. Stroppel, Twisting functors on O, Represent. Theory 7 (2003),
681–699.

https://doi.org/10.1017/S0017089509990127 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990127


KOSTANT’S PROBLEM AND PARABOLIC SUBGROUPS 31
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