# Spectral approximation theorems for bounded linear operators 

W.S. Lo


#### Abstract

In this paper we present some approximation theorems for the eigenvalue problem of a compact linear operator defined on a Banach space. In particular we examine: criteria for the existence and convergence of approximate eigenvectors and generalized eigenvectors; relations between the dimensions of the eigenmanifolds and generalized eigenmanifolds of the operator and those of the approximate operators.


## 1. Introduction

Let $X$ be a real or complex Banach space and [ $X$ ] the space of bounded linear operators on $X$ into $X$. For $A$ in $[X]$ let $\|A\|$ denote the usual operator norm $\|A\|=\sup _{\|x\| \leq 1}\|A x\|$, and $n(A)$ denote the null space of $A$. Let $\sigma(A)$ denote the spectrum of $A$, that is, the set of numbers $\lambda$ for which $\lambda I-A$ fails to have an inverse in [X].

In numerical solutions for the eigenvalue problem for an operator equation

$$
T x=\lambda x,
$$

often we are led to solve corresponding approximate equations

$$
T_{n} x_{n}=\lambda_{n} x_{n},
$$

where $T, T_{n}$ belong to $[X]$ and $\left\|T_{n}-T\right\| \rightarrow 0$. It is of interest to know:
Received 23 November 1972. This paper was part of the author's PhD thesis, and he expresses his sincere appreciation to his major professor, Dr Philip Anselone, for guiding his research.
(a) for an arbitrary eigenvalue $\lambda$ of $T$, is there a sequence of eigenvalues $\lambda_{n}$ of $T_{n}$ such that $\lambda_{n} \rightarrow \lambda$ ?
(b) for an arbitrary eigenvector $x$ of $T$, is there a sequence of eigenvectors $x_{n}$ of $T_{n}$ such that $x_{n} \rightarrow x$ ?

The first question was answered by Putnam [9] under very general conditions. As for the second question, Pol'skii [8] showed by way of an example that for $x$ in $\eta(\mu-T)$ there need not exist $x_{n}$ in $\eta\left(\mu_{n}-T_{n}\right)$ such that $x_{n} \rightarrow x$ even when $T$ and $T_{n}, n \geq 1$, are compact. Andrew and Elton [2] established a necessary and sufficient condition for which (b) holds when $X$ is a Hilbert space and $T, T_{n}, n \geq 1$, are compact. This paper offers improvements and generalizations of their main result. As a generalization it establishes, for an arbitrary but fixed generalized eigenvector of a compact operator $T$ on a Banach space, a necessary and sufficient condition for the existence and convergence of generalized eigenvectors of the approximate operators $T_{n}$. Other results compare the dimensions of eigenmanifolds and generalized eigenmanifolds of $T$ with those of $T_{n}$.

## 2. Eigenvectors and eigenmanifolds.

The following theorem is essential for obtaining the later results.
THEOREM 1. Assione $T, T_{n} \in[X]$ and $\left\|T_{n}-T\right\| \rightarrow 0$. Let $\mu_{n}$ in $\sigma\left(T_{n}\right)$ be such that $\mu_{n} \rightarrow \mu$. Then $\mu$ beZongs to $\sigma(T)$. Now asswe $T$ is compact, $-\mu \neq 0, x_{n} \in \eta\left(\mu_{n}-T_{n}\right)$ and $\left\|x_{n}\right\|=1$. Then there exist sequences $\left\{T{ }_{n_{i}}\right\},\left\{x_{n_{i}}\right\}$ and $x$ in $X$ such that $x_{n_{i}} \rightarrow x \in n(\mu-T)$ as $i \rightarrow \infty$. For $n$ sufficiently large we have

$$
\operatorname{dim}\left(\mu_{n}-T n\right) \leq \operatorname{dim} \eta(\mu-T)
$$

Let $M \subset \eta(\mu-T)$ and $M_{n} \subset \eta\left(\mu_{n}-T_{n}\right)$ be subspaces such that $x_{n} \in M_{n}$, $x_{n} \rightarrow x$ implies $x \in M$. Then $\operatorname{dim}_{n} \leq \operatorname{dim} M$ eventually.

Proof. The first part is well known and can be proved
contrapositively as follows: if $\mu k \sigma(T)$ then $\lambda-T_{n}=I-(\mu-T)^{-1}\left(T_{n}-T+\mu-\lambda\right)$, and hence $\left(\lambda-T_{n}\right)^{-1} \in[X]$ whenever

$$
\left\|T-T_{n}+\mu-\lambda\right\| \leq \frac{1}{\left\|(\mu-T)^{-1}\right\|}
$$

To prove the second part, let us consider the sequence $\left\{T x_{n}\right\}$. Now $T$ is compact implies there exists a subsequence $\left\{T x_{n_{i}}\right\}$ and a vector $x$ in $X$ such that $T x_{n_{i}} \rightarrow \mu x$ as $i \rightarrow \infty$. Since $T_{n_{i}} x_{n_{i}}=\mu_{n_{i}} x_{n_{i}}$ we have

$$
\left\|\mu_{n_{i}} x_{n_{i}}-\mu x\right\| \leq\left\|T n_{i}-T\right\|\left\|x_{n_{i}}\right\|+\left\|T x_{n_{i}}-\mu x\right\|
$$

Hence $\left\|\mu_{n_{i}}{ }^{x_{n}}{ }_{i}-\mu x\right\| \rightarrow 0$ as $i \rightarrow \infty$. Now $\mu_{n_{i}} \neq 0$ eventually and

$$
\left\|x_{n_{i}}-x\right\|=\left\|\frac{1}{\mu_{n_{i}}}\left[\mu_{n_{i}} x_{n_{i}}-\mu x-x\left(\mu_{n_{i}}-\mu\right)\right]\right\|
$$

implies $\left\|x_{n_{i}}{ }^{-x \|}\right\| \rightarrow 0$ as $i \rightarrow \infty$. It follows that

$$
\|T x-\mu x\| \leq\left\|T x-T n_{i}{ }^{x}\right\|+\left\|T n_{i}{ }^{x-T} n_{i}{ }^{x} n_{i}\right\|+\left\|T n_{i}{ }^{x} n_{i}-\mu_{n_{i}} x_{n_{i}}\right\|+\left\|\mu_{n_{i}}{ }^{x} n_{i}-\mu x\right\|
$$

But each term on the right hand side of the inequality tends to zero, so $T x=\mu x$ and $x$ is an eigenvector of $T$ corresponding to $\mu$.

Note that special cases of $M$ and $M_{n}$ are $M=\eta(\mu-T)$, $M_{n}=\eta\left(\mu_{n}-T_{n}\right)$. It remains to prove that $\operatorname{dim} M_{n} \leq \operatorname{dim} M$ for $n$ sufficiently large. Suppose that $\operatorname{dim} M_{n} \geq m$ for all $n$ in an infinite set $J$. Then there exists $x_{n k}$ in $M_{n}$ such that

$$
\left\|x_{n k}\right\|=1, \quad\left\|x_{n k}-\sum_{j=1}^{k-1} c_{j} x_{n j}\right\| \geq 1
$$

for $n$ in $J, k=1, \ldots, m$, and all choices of $c_{j}$. Hence by the hypotheses on $M$ and $M_{n}$ and the part of the theorem already proved there
exists $\left\{T n_{i}\right\},\left\{x_{n_{i} k}\right\}$, and $x_{k}, k=1, \ldots, m$, in $M$ with $x_{n_{i}} \rightarrow x_{k}$ as $i \rightarrow \infty, n$ in. $J$. Therefore $\left\|x_{k}\right\|=1$ and $\left\|x_{k}-\sum_{i=1}^{k-1} c_{i} x_{i}\right\| \geq 1$ for $k=1, \ldots, m$, and all choices of $c_{j}$, so that $\operatorname{dim} M \geq m$. Contrapositively, if $\operatorname{dim} M<m$ then $\operatorname{dim} M_{n}<m$ for $n$ sufficiently large.

LEMMA 1. Let $M$ and $M_{n}, n=1,2, \ldots$, be subspaces of $X$, and $\operatorname{dim} M<\infty$. If for every $x$ in $M$ there exists $x_{n}$ in $M_{n}$ such that $\left\|x_{n}-x\right\| \rightarrow 0$ then there exists an integer $N$ such that $\operatorname{dim} M_{n} \geq \operatorname{dim} M$ for alz $n \geq N$.

## Proof. Without loss of generality assume $\operatorname{dim} M=m$. Let

$\left\{x_{i}: i=1, \ldots, m\right\}$ be a basis for $M$. Suppose for each $i=1, \ldots, m$ there exists $x_{n i}$ in $M_{n}$ such that $\left\|x_{n i}-x_{i}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Let $E^{m}=\left\{\left(c_{1}, \ldots, c_{m}\right): c_{i}\right.$ is a scalar for $\left.1 \leq i \leq m\right\}$. Define the compact set $D \subset E^{m}$ by $D=\left\{\left(c_{1}, \ldots, c_{m}\right): \max \left|c_{i}\right|=1\right\}$. Define functions $f$ and $f_{n}$ on $D$ :

$$
f\left(c_{1}, \ldots, c_{m}\right)=\left\|\sum_{i=1}^{m} c_{i} x_{i}\right\|
$$

and

$$
f_{n}\left(c_{1}, \ldots, c_{m}\right)=\left\|\sum_{i=1}^{m} c_{i} x_{n i}\right\|
$$

Note that $f$ is continuous and, by the triangle inequality, $f_{n} \rightarrow f$
uniformly on $D$. Now it follows from the linear independence of $\left\{x_{i}: i=1, \ldots, m\right\}$ that $\underset{D}{\min } f>0$. Therefore there exists an integer $N$ such that $\left\{x_{n i}: i=1, \ldots, m\right\}$ is linearly independent and $\operatorname{dim} M_{n} \geq \operatorname{dim} M$ for all $n \geq N$.

The next theorem gives a necessary and sufficient condition for the
existence of $x_{n}$ in $\eta\left(\mu_{n}-T{ }_{n}\right), n=1,2, \ldots$, such that $x_{n}$ converges to an arbitrary but fixed element $x$ in $n(\mu-T)$. Pol'skiy [8] showed by way of an example that when $\operatorname{dimn}\left(\mu-T^{\prime}\right)>1$ there may be vectors in $\eta(\mu-T)$ which can not be obtained as the limit of any sequence of eigenvectors of $T_{n}$, even with $T_{n}$ compact for $n=1,2, \ldots$.

THEOREM 2. Let $T, T_{n} \in[X], T$ compact, and $\left\|T_{n}-T\right\| \rightarrow 0$. Let $\mu \neq 0$ be an eigenvalue of $T$, and let $\mu_{n}$ be eigervalues of $T_{n}$ such that $\mu_{n} \rightarrow \mu$. Then the following are equivalent:
(a) $\operatorname{dimn}\left(\mu_{n}-T{ }_{n}\right)=\operatorname{dimn}(\mu-T)$ eventually;
(b) for every $x$ in $\eta(\mu-T),\|x\|=1$, there is a sequence $\left\{x_{n}\right\}$ such that $x_{n} \in \eta\left(\mu_{n}-T_{n}\right)$ and $x_{n}+x$.

Proof. We note that, in the complex case, the existence of $\mu_{n}$ such that $\mu_{n} \rightarrow \mu$ was proved by Putnam [9].

To show ( $a$ ) implies ( $b$ ), first note that $T$ is compact implies that $\operatorname{dimn}(\mu-T)=m<\infty$. Suppose ( $a$ ) does not imply (b). Then there exist a vector $x$ in $\eta(\mu-T)$, a strictly increasing sequence of positive integers $S$, and a number $d>0$ such that $\left\|x_{n}-x\right\|>d$ for all $n$ in $S$, and for all $x_{n}$ in $n\left(\mu_{n}-T_{n}\right)$ such that $\left\|x_{n}\right\|=1$. By ( $a$ ) for each $n$ sufficiently large, $n$ in $S$, there exists $\psi_{n i},\left\|\psi_{n i}-\sum_{j=1}^{i-1} c_{j} \psi_{n j}\right\| \geq 1$ for $1 \leq i \leq m$, and for any choices of $c_{j}$. By Theorem 1 there exists a subsequence of positive integers $S_{0} \subset S$ and $\psi_{i}$ in $n(\mu-T)$ with $\psi_{n i} \rightarrow \psi_{i}$ as $n \rightarrow \infty$, for $1 \leq i \leq m, n \in S_{0}$. It follows that $\left\|\psi_{i}\right\|=1$ for $1 \leq i \leq m$ and

$$
\left\|\psi_{i}-\sum_{j=1}^{i-1} c_{j} \psi_{j}\right\| \geq 1
$$

for any choices of $c_{j}$. Therefore $\psi_{1}, \ldots, \psi_{m}$ are linearly independent, and $n(\mu-T)=\operatorname{span}\left\{\psi_{i}, \ldots, \psi_{m}\right\}$. Hence there exist $a_{i}, 1 \leq i \leq m$,
such that $x=\sum_{i=1}^{m} a_{i} \psi_{i}$. Let $x_{n}=\sum_{i=1}^{m} a_{i} \psi_{n i}$ for $n$ in $s_{0}$. Then $x_{n} \in \eta\left(\mu_{n}-T_{n}\right)$ and $\left\|x_{n}-x\right\| \rightarrow 0$ as $n \rightarrow \infty, n$ in $S_{0}$ which is a contradiction.
(b) implies (a) follows from Theorem 1 and Lemma 1.

REMARKS. 1. Theorem 2 is a generalization and an improvement of a theorem proved by Andrew and Elton [2]. In addition to the hypothesis in Theorem 2, they assumed that $X$ is a Hilbert space and the operators $T_{n}$, $n=1,2, \ldots$, are compact. As a consequence they obtained a dimensional inequality $\operatorname{dimn}\left(\mu_{n}-T n\right) \geq \operatorname{dimn}(\mu-T)$ in ( $\alpha$ ) instead of the dimensional equality $\operatorname{dimn}\left(\mu_{n}-T n\right)=\operatorname{dim} \eta(\mu-T)$ for $n$ sufficiently large.
2. If in Theorem 2 we assume in addition that $X$ is a complex Banach space, then results in [6] state that for $x$ in $\eta(\mu-T),\|x\|=1$, there exist $x_{n}$ in $\eta\left(\mu_{n}-T_{n}\right)$ such that $x_{n} \rightarrow x$, and some sort of error estimate is also given there. Andrew [1] proved the same result by assuming, in addition to the assumptions in Theorem 2, that $X$ is a real or complex Hilbert space, $T_{n}$ is compact for each $n$, and $\mu$ is a simple eigenvalue of $T$ (that is, $\operatorname{dimn}(\mu-T)=1)$.

## 3. Generalized eigenvectors and generalized eigenmanifolds

Assume $T$ is compact, and $\mu$ is a non-zero eigenvalue of $T$. Let $D(\mu, \varepsilon)$ be a disc (or interval in the real case) centered at $\mu$ with radius $\varepsilon$. Choose $\varepsilon$ so small that $D(\mu, \varepsilon) \cap D\left(\mu^{\prime}, \varepsilon\right)=\varnothing$ for $\mu^{\prime}$ any eigenvalue of $T$ other than $\mu$. For $k_{n}<\infty$, let $\mu_{n j}$ in $D(\mu, \varepsilon)$, for $j=1, \ldots, k_{n}$, be eigenvalues of $T_{n}$. We note that for a fixed $n$ there may be an infinite number of eigenvalues of $T_{n}$ in $D(\mu, \varepsilon)$. It is shown in [6] that when $X$ is a complex Banach space and for $n$ sufficiently large, the set of eigenvalues of $T_{n}$ in $D(\mu, \varepsilon)$ is a non-empty finite set, $\left\{\mu_{n j}: j=1, \ldots, k_{n}\right\}$, such that $\max _{l \leq j \leq k_{n}}\left|\mu-\mu_{n j}\right| \rightarrow 0$.

The following theorem compares the dimensions of the generalized eigenmanifolds of $T$ with those of $T_{n}$.

LEMMA 2. Let $T, T_{n} \in[X], n=1,2, \ldots$ Asswme $\left\|T_{n}-T\right\| \rightarrow 0$, $T$ compact, and $\mu$ a non-zero eigenvalue of $T$. Suppose for each $n$, $\mu_{n k}$ is an eigenvalue of $T_{n}$ for $k=1, \ldots, k_{n}$, and
$\max _{1 \leq k \leq k_{n}}\left|\mu_{n k}-\mu\right| \rightarrow 0$. Choose any non-negative integers $\gamma$ and $\gamma_{n k}$,
$k=1, \ldots, k_{n}$, such that $\sum_{k=1}^{k_{n}} \gamma_{n k} \leq \gamma$. Then for all $n$ sufficiently large $\sum_{k=1}^{k_{n}} \operatorname{dimn}\left[\left(\mu_{n k}-T_{n}\right)^{\gamma_{n k}}\right] \leq \operatorname{dimn}\left[(\mu-T)^{\gamma}\right]$.

Proof. Without loss of generality, $\sum_{k=1}^{k_{n}} \gamma_{n k}=\gamma$ for all $n$. It follows from [10, p. 317] that
and

$$
\operatorname{dimn}\left[\prod_{k=1}^{k}\left(\mu_{n k}-T_{n}\right)^{\gamma} n k\right]=\sum_{k=1}^{n} \operatorname{dimn}\left[\left(\mu_{n k}-T_{n}\right)^{\gamma_{n k}}\right]
$$

Define $\mu_{n}, \tilde{T}_{n}$ and $\tilde{T}$ by

$$
\prod_{k=1}^{k_{n}}\left(\mu_{n k}-T_{n}\right)^{\gamma_{n k}}=\mu_{n}-\tilde{T}_{n}, \mu_{n}=\prod_{k=1}^{k_{n}}\left(\mu_{n k}\right)^{\gamma_{n k}}, \quad(\mu-T)^{\gamma}=\mu^{\gamma}-\tilde{T} .
$$

Then $\tilde{T}_{n} \rightarrow \tilde{T}$ and $\mu_{n} \rightarrow \mu^{Y}$. Since $\tilde{T}$ is compact, Lemma 1 implies that $\operatorname{dimn}\left(\mu_{n}-\tilde{T}_{n}\right) \leq \operatorname{dimn}\left(\mu^{\Upsilon}-\tilde{T}\right)$ eventually. The assertion Bllows.

An immediate consequence of Theorem 2 and Lemma 2 is the following generalized version of Theorem 2 .

THEOREM 3. Let $T, T_{n} \in[X], n=1,2, \ldots$ Assume $\left\|T_{n}-T\right\| \rightarrow 0$, $T$ compact and $\mu$ a non-zero eigenvalue of $T$. For $k=1, \ldots, k_{n}$, let $\mu_{n k}$ be eigenvalues of $T_{n}$ such that $\max _{1 \leq k \leq k_{n}}\left|\mu_{n k}-\mu\right| \rightarrow 0$. Choose any non-negative integers $\gamma$ and $\gamma_{n k}, k=1, \ldots, k_{n}$ satisfying $\sum_{k=1}^{k_{n}^{n}} \gamma_{n k} \leq \gamma$. Then the following are equivalent:
(a) $\sum_{k=1}^{k} \operatorname{dimn}\left(\mu_{n k}-T{ }_{n}\right)^{\gamma} n k=\operatorname{dimn}(\mu-T)^{\gamma}$ eventually;
(b) for every $x$ in $n(\mu-T)^{\gamma},\|x\|=1$, there exists a sequence $\left\{x_{n}\right\}$ such that $x_{n}$ in $\eta\left[\prod_{k=1}^{k}\left(\mu_{n k}-T\right)^{\gamma_{n k}}\right]$ and $x_{n} \rightarrow x$.
Applying Theorem 3 to the case in which $\mu_{n} \rightarrow \mu, T_{n} x_{n}=\mu_{n} x_{n}$ and $T x=\mu x$ with $\mu \neq 0$. We then obtain a necessary and sufficient condition for the existence of a sequence of generalized eigenvectors $\left\{x_{n}\right\}$ of $\left\{T_{n}\right\}$ converging to an arbitrary but fixed generalized eigenvector $x$ of $T$.

COROLLARY. Let $\mu$ and $\mu_{n}, n=1,2, \ldots$, be eigenvalues of $T$ and $T_{n}$ respectively, such that $\mu \neq 0$ and $\mu_{n} \rightarrow \mu$. Then for any positive integer $\gamma$ the following are equivalent:
(a) $\operatorname{dimn}\left(\mu_{n}-T_{n}\right)^{\gamma}=\operatorname{dimn}(\mu-T)^{\gamma}$ eventually;
(b) for every $x$ in $\eta(\mu-T)^{\gamma},\|x\|=1$, there exists a sequence $\left\{x_{n}\right\}$ such that $x_{n} \in \eta\left[\left(\mu_{n}-T_{n}\right)^{\gamma}\right]$ and $x_{n} \rightarrow x$.

## References

[1] A.L. Andrew, "Convergence of approximate operator methods for eigenvectors", Bull. Austral. Math. Soc. 3 (1970), 199-205.
[2] A.L. Andrew and G.C. Elton, "Computation of eigenvectors corresponding to multiple eigenvalues", Bull. Austral. Math. Soc. 4 (1971), 419-422.
[3] P.M. Anselone, Collectively compact operator approximation theory and applications to integral equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).
[4] P.M. Anselone and T.W. Palmer, "Spectral analysis of collectively compact, strongly convergent sequences", Pacific J. Math. 25 (1968), 423-431.
[5] Nelson Dunford and Jacob T. Schwartz, Linear operators, Part I (Interscience [John Wiley \& Sons], New York, London, 1958).
[6] W.S. Lo, "Spectral approximation theory for bounded linear operators", PhD thesis, Oregon State University, Corvallis, Oregon, 1973.
[7] J.D. Newburgh, "The variation of spectra", Duke Math. J. 18 (1951), 165-176.
[8] H.И. Польсннй [N.I. Pol'skiY], "О содимости неноторых прнбмиженных іетодов анализа" [On the convergence of certain approximate methods of analysis], Ukrain. Mat. Z. 7 (1955), 56-70.
[9] C.R. Putnam, "Perturbations of bounded operators", Nievw Arch. Wisk. (3) 15 (1967), 146-152.
[10] Angus E. Taylor, Introduction to functional analysis (John Wiley, New York; Chapman \& Hall, London; 1958).

## Department of Mathematics,

Oregon State University,
Corvallis,
Oregon,
USA.

