BULL. AUSTRAL. MATH. SOC. VOL. 8 (1973), 279-287.

Spectral approximation theorems for bounded linear operators

W.S. Lo

In this paper we present some approximation theorems for the eigenvalue problem of a compact linear operator defined on a Banach space. In particular we examine: criteria for the existence and convergence of approximate eigenvectors and generalized eigenvectors; relations between the dimensions of the eigenmanifolds and generalized eigenmanifolds of the operator and those of the approximate operators.

1. Introduction

Let X be a real or complex Banach space and [X] the space of bounded linear operators on X into X. For A in [X] let ||A||denote the usual operator norm $||A|| = \sup_{\|X\| \le 1} ||Ax||$, and $\eta(A)$ denote the $||x|| \le 1$ null space of A. Let $\sigma(A)$ denote the spectrum of A, that is, the set of numbers λ for which $\lambda I - A$ fails to have an inverse in [X].

In numerical solutions for the eigenvalue problem for an operator equation

 $Tx = \lambda x ,$

often we are led to solve corresponding approximate equations

$$T_n x_n = \lambda_n x_n$$
,

where T, T_n belong to [X] and $||T_n - T|| \neq 0$. It is of interest to know:

Received 23 November 1972. This paper was part of the author's PhD thesis, and he expresses his sincere appreciation to his major professor, Dr Philip Anselone, for guiding his research.

- (a) for an arbitrary eigenvalue λ of T, is there a sequence of eigenvalues λ_n of T_n such that $\lambda_n \neq \lambda$?
- (b) for an arbitrary eigenvector x of T, is there a sequence of eigenvectors x_n of T_n such that $x_n \rightarrow x$?

The first question was answered by Putnam [9] under very general conditions. As for the second question, Pol'skii [8] showed by way of an example that for x in $\eta(\mu - T)$ there need not exist x_n in $\eta(\mu_n - T_n)$ such that $x_n \to x$ even when T and T_n , $n \ge 1$, are compact. And rew and Elton [2] established a necessary and sufficient condition for which (b) holds when X is a Hilbert space and T, T_n , $n \ge 1$, are compact. This paper offers improvements and generalizations of their main result. As a generalization it establishes, for an arbitrary but fixed generalized eigenvector of a compact operator T on a Banach space, a necessary and sufficient condition for the existence and convergence of generalized eigenvectors of the approximate operators T_n . Other results compare the dimensions of eigenmanifolds and generalized eigenmanifolds of T with those of T_n .

2. Eigenvectors and eigenmanifolds.

The following theorem is essential for obtaining the later results.

THEOREM 1. Assume $T, T_n \in [X]$ and $||T_n - T|| \to 0$. Let μ_n in $\sigma(T_n)$ be such that $\mu_n \to \mu$. Then μ belongs to $\sigma(T)$. Now assume T is compact, $\mu \neq 0$, $x_n \in n(\mu_n - T_n)$ and $||x_n|| = 1$. Then there exist sequences $\{T_{n_i}^{(n)}\}, \{x_{n_i}\}$ and x in X such that $x_{n_i} \to x \in n(\mu - T)$ as $i \to \infty$. For n sufficiently large we have

$$\dim(\mu_n - T_n) \leq \dim(\mu - T) .$$

Let $M \subset \eta(\mu-T)$ and $M_n \subset \eta(\mu_n-T_n)$ be subspaces such that $x_n \in M_n$, $x_n \to x$ implies $x \in M$. Then $\dim M_n \leq \dim M$ eventually.

Proof. The first part is well known and can be proved

contrapositively as follows: if $\mu \notin \sigma(T)$ then $\lambda - T_n = I - (\mu - T)^{-1} (T_n - T + \mu - \lambda)$, and hence $(\lambda - T_n)^{-1} \in [X]$ whenever

$$||T-T_n+\mu-\lambda|| \leq \frac{1}{||(\mu-T)^{-1}||}$$

To prove the second part, let us consider the sequence $\{Tx_n\}$. Now T is compact implies there exists a subsequence $\{Tx_{n_i}\}$ and a vector xin X such that $Tx_{n_i} \neq \mu x$ as $i \neq \infty$. Since $T_{n_i} x_{n_i} = \mu_{n_i} x_{n_i}$ we have $\|\mu_{n_i} x_{n_i} - \mu x\| \leq \|T_{n_i} - T\| \|x_{n_i}\| + \|Tx_{n_i} - \mu x\|$. Hence $\|\mu_{n_i} x_{n_i} - \mu x\| \neq 0$ as $i \neq \infty$. Now $\mu_{n_i} \neq 0$ eventually and $\|x_{n_i} - x\| = \|\frac{1}{\mu_{n_i}} [\mu_{n_i} x_{n_i} - \mu x - x(\mu_{n_i} - \mu)]\|$

implies $\|x_{n_i} - x\| \to 0$ as $i \to \infty$. It follows that

$$\|Tx-\mu x\| \leq \|Tx-T_{n_i}x\| + \|T_{n_i}x-T_{n_i}x_{n_i}\| + \|T_{n_i}x_{n_i}-\mu_{n_i}x_{n_i}\| + \|\mu_{n_i}x_{n_i}-\mu x\|.$$

But each term on the right hand side of the inequality tends to zero, so $Tx = \mu x$ and x is an eigenvector of T corresponding to μ .

Note that special cases of M and M_n are $M = \eta(\mu - T)$, $M_n = \eta(\mu_n - T_n)$. It remains to prove that $\dim M_n \leq \dim M$ for nsufficiently large. Suppose that $\dim M_n \geq m$ for all n in an infinite set J. Then there exists x_{nk} in M_n such that

$$||x_{nk}|| = 1$$
, $||x_{nk} - \sum_{j=1}^{k-1} c_j x_{nj}|| \ge 1$

for n in J, k = 1, ..., m, and all choices of c_j . Hence by the hypotheses on M and M_n and the part of the theorem already proved there

exists $\{T_{n_i}\}, \{x_{n_ik}\}$, and x_k , k = 1, ..., m, in M with $x_{n_ik} \neq x_k$ as $i \neq \infty$, n in J. Therefore $||x_k|| = 1$ and $||x_k - \sum_{i=1}^{k-1} c_i x_i|| \ge 1$ for k = 1, ..., m, and all choices of c_j , so that dim $M \ge m$. Contrapositively, if dimM < m then dim $M_n < m$ for n sufficiently large.

LEMMA 1. Let M and M_n , n = 1, 2, ..., be subspaces of X, and $\dim M < \infty$. If for every x in M there exists x_n in M_n such that $||x_n - x|| + 0$ then there exists an integer N such that $\dim M_n \ge \dim M$ for all $n \ge N$.

Proof. Without loss of generality assume dimM = m. Let $\{x_i : i = 1, ..., m\}$ be a basis for M. Suppose for each i = 1, ..., m there exists x_{ni} in M_n such that $||x_{ni}-x_i|| \neq 0$ as $n \neq \infty$. Let $E^m = \{(c_1, ..., c_m) : c_i \text{ is a scalar for } 1 \leq i \leq m\}$. Define the compact set $D \subset E^m$ by $D = \{(c_1, ..., c_m) : \max |c_i| = 1\}$. Define functions f and f_n on D:

$$f(c_1, \ldots, c_m) = \left\| \sum_{i=1}^m c_i x_i \right\|,$$

and

$$f_n(c_1, \ldots, c_m) = \left\| \sum_{i=1}^m c_i x_{ni} \right\|$$

Note that f is continuous and, by the triangle inequality, $f_n \neq f$ uniformly on D. Now it follows from the linear independence of $\{x_i : i = 1, \ldots, m\}$ that $\min_{i} f \ge 0$. Therefore there exists an integer DN such that $\{x_{ni} : i = 1, \ldots, m\}$ is linearly independent and $\dim_n \ge \dim M$ for all $n \ge N$.

The next theorem gives a necessary and sufficient condition for the

existence of x_n in $\eta(\mu_n - T_n)$, n = 1, 2, ..., such that x_n converges to an arbitrary but fixed element x in $\eta(\mu - T)$. Pol'skiĭ [δ] showed by way of an example that when dim $\eta(\mu - T) > 1$ there may be vectors in $\eta(\mu - T)$ which can not be obtained as the limit of any sequence of eigenvectors of T_n , even with T_n compact for n = 1, 2, ...

THEOREM 2. Let $T, T_n \in [X]$, T compact, and $||T_n - T|| \neq 0$. Let $\mu \neq 0$ be an eigenvalue of T, and let μ_n be eigenvalues of T_n such that $\mu_n \neq \mu$. Then the following are equivalent:

- (a) $\dim(\mu_n T_n) = \dim(\mu T)$ eventually;
- (b) for every x in $\eta(\mu-T)$, ||x|| = 1, there is a sequence $\{x_n\}$ such that $x_n \in \eta(\mu_n T_n)$ and $x_n \neq x$.

Proof. We note that, in the complex case, the existence of μ_n such that $\mu_n \rightarrow \mu$ was proved by Putnam [9].

To show (a) implies (b), first note that T is compact implies that $\dim(\mu - T) = m < \infty$. Suppose (a) does not imply (b). Then there exist a vector x in $\eta(\mu - T)$, a strictly increasing sequence of positive integers S, and a number d > 0 such that $||x_n - x|| > d$ for all n in S, and for all x_n in $\eta(\mu_n - T_n)$ such that $||x_n|| = 1$. By (a) for each n

sufficiently large, n in S, there exists ψ_{ni} , $\left\| \psi_{ni} - \sum_{j=1}^{i-1} c_j \psi_{nj} \right\| \ge 1$ for $1 \le i \le m$, and for any choices of c_j . By Theorem 1 there exists a subsequence of positive integers $S_0 \subset S$ and ψ_i in $\eta(\mu - T)$ with $\psi_{ni} \neq \psi_i$ as $n \neq \infty$, for $1 \le i \le m$, $n \in S_0$. It follows that $\|\psi_i\| = 1$ for $1 \le i \le m$ and

$$\psi_i - \sum_{j=1}^{i-1} c_j \psi_j \ge 1$$

for any choices of c_j . Therefore ψ_1, \ldots, ψ_m are linearly independent, and $\eta(\mu-T) = \operatorname{span}\{\psi_i, \ldots, \psi_m\}$. Hence there exist a_i , $1 \le i \le m$, such that $x = \sum_{i=1}^{m} a_i \psi_i$. Let $x_n = \sum_{i=1}^{m} a_i \psi_{ni}$ for n in S_0 . Then $x_n \in \eta(\mu_n - T_n)$ and $||x_n - x|| \to 0$ as $n \to \infty$, n in S_0 which is a contradiction.

(b) implies (a) follows from Theorem 1 and Lemma 1.

REMARKS. 1. Theorem 2 is a generalization and an improvement of a theorem proved by Andrew and Elton [2]. In addition to the hypothesis in Theorem 2, they assumed that X is a Hilbert space and the operators T_n , $n = 1, 2, \ldots$, are compact. As a consequence they obtained a dimensional inequality $\dim (\mu_n - T_n) \ge \dim (\mu - T)$ in (a) instead of the dimensional equality $\dim (\mu_n - T_n) = \dim (\mu - T)$ for n sufficiently large.

2. If in Theorem 2 we assume in addition that X is a complex Banach space, then results in [6] state that for x in $\eta(\mu - T)$, ||x|| = 1, there exist x_n in $\eta(\mu_n - T_n)$ such that $x_n \to x$, and some sort of error estimate is also given there. Andrew [1] proved the same result by assuming, in addition to the assumptions in Theorem 2, that X is a real or complex Hilbert space, T_n is compact for each n, and μ is a simple eigenvalue of T (that is, $\dim \eta(\mu - T) = 1$).

3. Generalized eigenvectors and generalized eigenmanifolds

Assume T is compact, and μ is a non-zero eigenvalue of T. Let $D(\mu, \varepsilon)$ be a disc (or interval in the real case) centered at μ with radius ε . Choose ε so small that $D(\mu, \varepsilon) \cap D(\mu', \varepsilon) = \emptyset$ for μ' any eigenvalue of T other than μ . For $k_n < \infty$, let μ_{nj} in $D(\mu, \varepsilon)$, for $j = 1, \ldots, k_n$, be eigenvalues of T_n . We note that for a fixed n there may be an infinite number of eigenvalues of T_n in $D(\mu, \varepsilon)$. It is shown in [6] that when X is a complex Banach space and for n sufficiently large, the set of eigenvalues of T_n in $D(\mu, \varepsilon)$ is a non-empty finite set, $\{\mu_{nj}: j = 1, \ldots, k_n\}$, such that $\max_{1 \le j \le k_n} |\mu - \mu_{nj}| \neq 0$.

The following theorem compares the dimensions of the generalized eigenmanifolds of T with those of T_n .

LEMMA 2. Let $T, T_n \in [X]$, n = 1, 2, ... Assume $||T_n - T|| \neq 0$, T compact, and μ a non-zero eigenvalue of T. Suppose for each n, μ_{nk} is an eigenvalue of T_n for $k = 1, ..., k_n$, and $\max_{1 \leq k \leq k_n} |\mu_{nk} - \mu| \neq 0$. Choose any non-negative integers γ and γ_{nk} ,

 $k = 1, \ldots, k_n, \text{ such that } \sum_{k=1}^{k_n} \gamma_{nk} \leq \gamma \text{ . Then for all } n \text{ sufficiently}$ $large \sum_{k=1}^{k_n} \dim \left[\left(\mu_{nk} - T_n \right)^{\gamma_{nk}} \right] \leq \dim \left[\left(\mu - T \right)^{\gamma} \right] \text{ .}$

Proof. Without loss of generality, $\sum_{k=1}^{n} \gamma_{nk} = \gamma$ for all n. It follows from [10, p. 317] that

$$\eta \begin{bmatrix} k_n & & \\ k_{n-1} & (\mu_{nk} - T_n)^{\gamma_{nk}} \end{bmatrix} = \bigoplus_{k=1}^k \eta \left[(\mu_{nk} - T_n)^{\gamma_{nk}} \right] ,$$

and

$$\dim \left[\prod_{k=1}^{k} (\mu_{nk} - T_n)^{\gamma_{nk}} \right] = \sum_{k=1}^{k} \dim \left[(\mu_{nk} - T_n)^{\gamma_{nk}} \right].$$

Define μ_n, \tilde{T}_n and \tilde{T} by

$$\frac{k_n}{\prod_{k=1}^{k}} \left(\mu_{nk} - T_n \right)^{\gamma_{nk}} = \mu_n - \tilde{T}_n, \quad \mu_n = \frac{k_n}{\prod_{k=1}^{k}} \left(\mu_{nk} \right)^{\gamma_{nk}}, \quad (\mu - T)^{\gamma} = \mu^{\gamma} - \tilde{T}.$$

Then $\tilde{T}_n \to \tilde{T}$ and $\mu_n \to \mu^{\gamma}$. Since \tilde{T} is compact, Lemma 1 implies that $\dim \eta \left(\mu_n - \tilde{T}_n\right) \leq \dim \eta \left(\mu^{\gamma} - \tilde{T}\right)$ eventually. The assertion follows.

An immediate consequence of Theorem 2 and Lemma 2 is the following generalized version of Theorem 2.

THEOREM 3. Let $T, T_n \in [X]$, n = 1, 2, ... Assume $||T_n - T|| \neq 0$, T compact and μ a non-zero eigenvalue of T. For $k = 1, ..., k_n$, let μ_{nk} be eigenvalues of T_n such that $\max_{1 \leq k \leq k_n} |\mu_{nk} - \mu| \neq 0$. Choose any $1 \leq k \leq k_n$ non-negative integers γ and γ_{nk} , $k = 1, ..., k_n$ satisfying $k_n \sum_{k=1}^{n} \gamma_{nk} \leq \gamma$. Then the following are equivalent: (a) $\sum_{k=1}^{k} \dim (\mu_{nk} - T_n)^{\gamma_{nk}} = \dim (\mu - T)^{\gamma}$ eventually; (b) for every x in $\eta(\mu - T)^{\gamma}$, ||x|| = 1, there exists a sequence $\{x_n\}$ such that x_n in $\eta \left[\prod_{k=1}^{k_n} (\mu_{nk} - T_n)^{\gamma_{nk}} \right]$ and $x_n \neq x$. Applying Theorem 3 to the case in which $\mu_n \neq \mu$, $T_n x_n = \mu_n x_n$ and $Tx = \mu x$ with $\mu \neq 0$. We then obtain a necessary and sufficient condition for the existence of a sequence of generalized eigenvectors $\{x_n\}$ of $\{T_n\}$ converging to an arbitrary but fixed generalized eigenvector x of T.

COROLLARY. Let μ and μ_n , n = 1, 2, ..., be eigenvalues of T and T_n respectively, such that $\mu \neq 0$ and $\mu_n \neq \mu$. Then for any positive integer γ the following are equivalent:

(a)
$$\dim (\mu_n - T_n)^{\Upsilon} = \dim (\mu - T)^{\Upsilon}$$
 eventually;

(b) for every x in $\eta(\mu - T)^{\gamma}$, ||x|| = 1, there exists a sequence $\{x_n\}$ such that $x_n \in \eta \left[(\mu_n - T_n)^{\gamma} \right]$ and $x_n \to x$.

References

 [1] A.L. Andrew, "Convergence of approximate operator methods for eigenvectors", Bull. Austral. Math. Soc. 3 (1970), 199-205.

- [2] A.L. Andrew and G.C. Elton, "Computation of eigenvectors corresponding to multiple eigenvalues", Bull. Austral. Math. Soc. 4 (1971), 419-422.
- [3] P.M. Anselone, Collectively compact operator approximation theory and applications to integral equations (Prentice-Hall, Englewood Cliffs, New Jersey, 1971).
- [4] P.M. Anselone and T.W. Palmer, "Spectral analysis of collectively compact, strongly convergent sequences", *Pacific J. Math.* 25 (1968), 423-431.
- [5] Nelson Dunford and Jacob T. Schwartz, Linear operators, Part I (Interscience [John Wiley & Sons], New York, London, 1958).
- [6] W.S. Lo, "Spectral approximation theory for bounded linear operators", PhD thesis, Oregon State University, Corvallis, Oregon, 1973.
- [7] J.D. Newburgh, "The variation of spectra", Duke Math. J. 18 (1951), 165-176.
- [8] Н.И. Польский [N.I. Pol'skiĭ], "О содимости некоторых прибмиженных методов анализа" [On the convergence of certain approximate methods of analysis], Ukrain. Mat. Ž. 7 (1955), 56-70.
- [9] C.R. Putnam, "Perturbations of bounded operators", Nieuw Arch. Wisk.
 (3) 15 (1967), 146-152.
- [10] Angus E. Taylor, Introduction to functional analysis (John Wiley, New York; Chapman & Hall, London; 1958).

Department of Mathematics, Oregon State University, Corvallis, Oregon, USA.