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UNFAITHFUL MINIMAL HEILBRONN CHARACTERS OF L2(q)

HY GINSBERG∗
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Abstract When a minimal Heilbronn character θ is unfaithful on a Sylow p-subgroup P of a finite
group G, we know that G is quasi-simple, p is odd, P is cyclic, NG(P ) is maximal and either NG(P ) is
the unique maximal subgroup containing Ω1(P ) or G/Z(G) ∼= L2(q) for q an odd prime with p dividing
q − 1. In this paper we examine the exceptional case, where G/Z(G) ∼= L2(q), explicitly constructing
unfaithful minimal Heilbronn characters from the non-principal irreducible characters of G.
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1. Introduction

Call a virtual character θ of a finite group G a Heilbronn character if its inner product
with every monomial character of G is non-negative. If, moreover, θ restricts to a char-
acter of every proper subgroup and quotient of G (where we define the restriction of θ to
G/N as the sum of the constituents of θ whose kernels contain N), but is not a charac-
ter of G itself, then θ is said to be minimal. Heilbronn characters arise naturally in the
study of Artin’s Conjecture on the holomorphy of L-series, where a hypothetical minimal
counterexample engenders a corresponding minimal Heilbronn character of the associated
Galois group. Although motivated originally by this number theoretic application, the
study of Heilbronn characters is of independent interest to both group theory and repre-
sentation theory. Moreover, the analysis of fusion and strongly closed subgroups figures
prominently among the techniques involved in this research, underscoring the relevance
of these results to others in this special issue of the journal.

A natural subclass of Heilbronn characters to classify are those that are both minimal
and unfaithful, where θ is said to be unfaithful if the set {g ∈ G | θ(g) = θ(1)} is non-
trivial. (It is important to note that this ‘kernel’, although a union of conjugacy classes, is
not generally a subgroup of G; however, for any proper subgroup H of G, its intersection
with H, denoted ker θ|H , is not only a normal subgroup of H, but also strongly closed
with respect to G.) It is easy to see that if a minimal Heilbronn character θ of a group G

is unfaithful, then θ restricts to an unfaithful character of some Sylow p-subgroup P of G
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58 H. Ginsberg

(if θ(g) = θ(1), then θ is constant on the proper subgroup 〈g〉, hence unfaithful on a Sylow
subgroup for every prime dividing |g|). Foote proved in [2] that in this case p is necessarily
odd, and Ginsberg proved in [3] that, moreover, P is cyclic and NG(P ) is in general the
unique maximal subgroup of G containing Ω1(P ) (where Ω1(P ) = 〈x ∈ P | |x| = p〉). An
exception to this last condition occurs precisely when G/Z(G) ∼= L2(q), q � 5 is prime,
and p divides q − 1. In this case, Ω1(P ) is contained in two maximal subgroups, NG(P )
and a Borel subgroup NG(Q) for some equi-characteristic Sylow subgroup Q of G (and
θ is unfaithful on both P and Q).

The groups L2(q) with q prime are unique among the groups of Lie type in that
their equi-characteristic Sylow subgroups are cyclic, and it is precisely this property
that distinguishes them in the context of unfaithful minimal Heilbronn characters. We
consider herein the construction of unfaithful minimal Heilbronn characters from non-
principal irreducible characters of L2(q), in both the exceptional and the general cases.
Our main theorem is the following.

Theorem 1.1 (main theorem). Let G ∼= L2(q), where q = ra � 5 and r is a prime.
Let p > 5 be a prime dividing the order of G, and suppose that one of the following
holds:

(i) p divides q + 1 but p does not divide rb ± 1 for any proper divisor b of a;

(ii) p = q = r is an odd prime; or

(iii) p divides q − 1 and q = r is an odd prime.

Let P be a Sylow p-subgroup of G, let P1 be any non-trivial subgroup of P and let
N = NG(P ) = P � H. For x ∈ P , h ∈ H, define ϕ : N → N by ϕ(xh) = x|P1|h. Then if
π is any non-principal irreducible character of G, the map θ : G → C, given by

θ(g) =

⎧⎪⎨
⎪⎩

π(ϕ(n)) if g is conjugate to n ∈ N,

π(1) if case (iii) applies and |g| = q = r,

π(g) otherwise,

(1.1)

is a minimal Heilbronn character of G with ker θ|P = P1. When case (iii) applies, θ is
unfaithful as well on a Sylow r-subgroup of G.

In § 2 we establish some preliminary lemmas and fix notation for the character tables
of L2(q). We prove Theorem 1.1 in § 3, and in § 4 we calculate the norms of the unfaithful
minimal Heilbronn characters of Theorem 1.1, proving the following.

Theorem 1.2. In the notation of Theorem 1.1, Tables 2–4 and Lemma 2.8 (which
defines α and β), the norm of θ is as specified in Table 1, with

δ =

⎧⎪⎨
⎪⎩

1 if π = ψi and iβ ≡ 0 mod 1
4 (2, q)(q + 1),

1 if π = χj and jα ≡ 0 mod 1
4 (q − 1),

0 otherwise.
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Table 1. Norms of unfaithful minimal Heilbronn characters of L2(q)

π ‖θ‖2 case (i) ‖θ‖2 case (ii) ‖θ‖2 case (iii)

ηi
1
4 (q − 3)(|P1| − 1) + 1 1

2 (q + 1) 1
4 (q − 1)(|P1| + 1) + 1

ξi
1
4 (q + 1)(|P1| − 1) + 1 1

2 (q + 3) 1
4 (q + 3)(|P1| + 1)

ψi
1

(2, q)
(q − 3)(|P1| − 1) + 1 + δ 2q − 3 (q − 1)(|P1| − 1) + 2q − 3

σ
1

(2, q)
(q − 1)(|P1| − 1) + 1 2q + 1 (q + 1)(|P1| − 1) + 2q + 1

χj
1

(2, q)
(q + 1)(|P1| − 1) + 1 2q + 5 (q + 3)(|P1| − 1) + 2q + 5 + δ

2. Preliminary lemmas and character tables

The complex character tables of the groups L2(q) are given in Tables 2–4, which are
derived from [1, Chapter 38].

The hypotheses of Theorem 1.1 reflect the translation of the necessary conditions for
the existence of an unfaithful minimal Heilbronn character of an arbitrary finite group,
given in the main theorem of [3] and reprised at the outset of this paper, to the special
case G ∼= L2(q). The next lemma clarifies the equivalence of these different phrasings.

Lemma 2.1. Let G ∼= L2(q), where q = ra � 5 and r is a prime. Let P be a Sylow
p-subgroup of G for p an odd prime dividing the order of G. The following are equivalent.

(1) Either NG(P ) is the unique maximal subgroup of G containing Ω1(P ), or Ω1(P ) is
contained in both NG(P ) and a Borel subgroup NG(Q) for some equi-characteristic
Sylow subgroup Q of G.

(2) p > 5 and one of the following holds:

(i) p divides q + 1 but p does not divide rb ± 1 for any proper divisor b of a;

(ii) p = q = r; or

(iii) p divides q − 1 and q = r is an odd prime.

Proof. The subgroups of L2(q) are well known, and are documented in [4, Theorem
6.5.1] (attributed to Dickson, Burnside, Moore and Wiman). Since

|G| = 1
2q(q + 1)(q − 1)(2, q),

p divides q, q + 1 or q − 1. If p = 3 or 5, then P is contained in a subgroup isomorphic to
A4 or A5, respectively. The conditions in (i) ensure that p does not divide the order of
any proper subgroup PGL2(rb) or PSL2(rb), and these subgroups do not occur in cases
(ii) and (iii). Since NG(P ) is maximal, the result follows. �
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Table 2. Characters of L2(q), q ≡ 1 mod 4

class: 1 t al bm c d

size: 1 1
2q(q + 1) q(q + 1) q(q − 1) 1

2 (q2 − 1) 1
2 (q2 − 1)

1G 1 1 1 1 1 1
ξ1

1
2 (q + 1) (−1)(q−1)/4 (−1)l 0 − 1

2 (1 +
√−q) − 1

2 (1 − √−q)

ξ2
1
2 (q + 1) (−1)(q−1)/4 (−1)l 0 − 1

2 (1 − √−q) − 1
2 (1 +

√−q)

ψi q − 1 0 0 −(ζim + ζ−im) −1 −1
σ q 1 1 −1 0 0
χj q + 1 2(−1)j ρjl + ρ−jl 0 1 1

|t| = 2, |a| = 1
2 (q − 1), |b| = 1

2 (q + 1), |c| = |d| = q,

1 � i, m � 1
4 (q − 1), 1 � j, l � 1

4 (q − 5),

ρ(q−1)/2 = ζ(q+1)/2 = 1, primitive roots of unity in C.

Table 3. Characters of L2(q), q ≡ 3 mod 4

class: 1 t al bm c d

size: 1 1
2q(q − 1) q(q + 1) q(q − 1) 1

2 (q2 − 1) 1
2 (q2 − 1)

1G 1 1 1 1 1 1
η1

1
2 (q − 1) (−1)(q+5)/4 0 (−1)m+1 − 1

2 (1 − √−q) − 1
2 (1 +

√−q)

η2
1
2 (q − 1) (−1)(q+5)/4 0 (−1)m+1 − 1

2 (1 +
√−q) − 1

2 (1 − √−q)

ψi q − 1 2(−1)i+1 0 −(ζim + ζ−im) −1 −1
σ q −1 1 −1 0 0
χj q + 1 0 ρjl + ρ−jl 0 1 1

|t| = 2, |a| = 1
2 (q − 1), |b| = 1

2 (q + 1), |c| = |d| = q,

1 � i, j, l, m � 1
4 (q − 3),

ρ(q−1)/2 = ζ(q+1)/2 = 1, primitive roots of unity in C.

Lemma 2.2. Suppose N = P � H, where P is an abelian p-group for some prime p.
Then for any t ∈ Z, the map ϕ : N → N defined by

ϕ(n) = xth, where n = xh, x ∈ P, h ∈ H,

is a homomorphism with ker ϕ = {x ∈ P | xt = 1}.

Proof. Let n1, n2 ∈ N with n1 = x1h1, n2 = x2h2, xi ∈ P and hi ∈ H for each
i = 1, 2. Since n1n2 = x1(h1x2h

−1
1 )h1h2,

ϕ(n1n2) = (x1(h1x2h
−1
1 ))th1h2 = xt

1(h1x
t
2h

−1
1 )h1h2 = ϕ(n1)ϕ(n2).
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Table 4. Characters of L2(q), q even

class: 1 al bm c

size: 1 q(q + 1) q(q − 1) q2 − 1

1G 1 1 1 1
ψi q − 1 0 −(ζim + ζ−im) −1
σ q 1 −1 0
χj q + 1 ρjl + ρ−jl 0 1

|a| = q − 1, |b| = q + 1, |c| = q,

1 � j, l � 1
2 (q − 2), 1 � i, m � 1

2q,

ρq−1 = ζq+1 = 1, primitive roots of unity in C.

Hence, ϕ is a homomorphism. It is clear from the definition that kerϕ � P , and the
result follows. �

Lemma 2.3. If P is a cyclic p-group and h is a p′-element normalizing but not
centralizing P , then every element of P is a simple commutator of the form [x, h] for
some x ∈ P .

Proof. The map x �→ [x, h] is injective from P into the subset of simple commutators
in P ; hence, this subset must be all of P . �

Lemma 2.4. Let ζ be a primitive nth root of unity, and fix a positive integer s. Let
K be the greatest integer strictly less than 1

2n. Then

K∑
k=1

(ζsk + ζ−sk) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if s �≡ 0 mod n and n is odd,

−1 + (−1)s+1 if s �≡ 0 mod n and n is even,

n − 1 if s ≡ 0 mod n and n is odd,

n − 2 if s ≡ 0 mod n and n is even.

Proof. Since ζsn = 1, ζ−sk = ζs(n−k). Thus, we may write

K∑
k=1

ζ−sk =
K∑

k=1

ζs(n−k) =
n−1∑

k=n−K

ζsk.

Observing that n − K is K + 1 when n is odd and K + 2 when n is even,

K∑
k=1

(ζsk + ζ−sk) =
n−1∑
k=1

ζsk −
{

0 if n is odd,

ζs(K+1) if n is even.

If s �≡ 0 mod n, then ζs is a non-trivial nth root of unity, so
∑n−1

k=1 ζsk = −1. Since
K + 1 = 1

2n when n is even, ζK+1 = −1, proving the first two cases. If, instead, s ≡
0 mod n, then

∑n−1
k=1 ζsk = n − 1 and ζs(K+1) = 1, completing the proof. �
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Remark 2.5. By inspection of Tables 2–4, it is easily seen that the number of conju-
gacy classes [al] (respectively, [bm]) is the greatest integer strictly less than 1

2 |a| (respec-
tively, 1

2 |b|). We may therefore apply Lemma 2.4 to sums of the values of the characters
χj and ψi on the classes [al] and [bm], respectively, as these values involve |a|th and |b|th
roots of unity.

Corollary 2.6. Let G ∼= L2(q), and assume the notation of the appropriate complex
character table (Table 2, 3 or 4). Then, if π is any non-principal irreducible character
of G,

A∑
l=1

π(al) � 2 and
B∑

m=1

π(bm) � 2,

where A and B are the number of conjugacy classes [al] and [bm], respectively.

Proof. The result follows from Lemma 2.4 and inspection of the character tables. �

Lemma 2.7. Assume the notation of Theorem 1.1 and Tables 2–4. Let N denote the
set of elements of G on which θ is not by definition equal to π. Then

• N is the set of classes [bm] in case (i),

• N is the set of classes [c] and [d] in case (ii), and

• N is the set of classes [al], [c] and [d] in case (iii).

Proof. Aside from the class [t], these are the classes involved in N , along with the
classes corresponding to the characteristic prime in case (iii). The class [t] is not contained
in N since any involution in N is G-conjugate to an involution in H, and ϕ is the identity
on H. �

Lemma 2.8. In the notation of Theorem 1.1 and Tables 2–4, there exist α, β ∈ N

such that ϕ(bm) = bβm (in case (i)) and ϕ(al) = aαl (in case (iii)).

Proof. The dihedral group N has a characteristic cyclic subgroup C generated by b

in case (i) and by a in case (iii). In either case ϕ maps C into C; hence, ϕ(b) = bβ for
some constant β, and similarly ϕ(a) = aα. The result follows. �

In fact, the constants α and β are easily computed. In case (i), observe that 〈b〉 = P ×C

for some cyclic subgroup C of H, so we may write b = xh for x ∈ P and h ∈ C. Then

ϕ(b) = x|P1|h = bβ = xβhβ

as in Lemma 2.8. Observing that |P | and |C| are coprime, we may choose

β ≡ |P1| mod |P | and β ≡ 1 mod |C|

by the Chinese Remainder Theorem. The computation of α in case (iii) is identical.

Lemma 2.9. In the notation of Theorem 1.1, P1 contains representatives of precisely
1
2 (|P1| − 1) distinct non-trivial G-conjugacy classes.
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Proof. By a basic result due to Burnside, x, y ∈ P1 are G-conjugate precisely when
they are conjugate in N . Since N is dihedral and P1 is contained in the characteristic
cyclic subgroup of N , this occurs if and only if x = y or an element of order 2 in N

conjugates x into y, if and only if x = y or x = y−1. Hence, there are exactly two
elements of P1 in each non-trivial conjugacy class, yielding 1

2 (|P1| − 1) such classes. �

3. Proof of Theorem 1.1

Let Π : G → GL(V ) be an irreducible representation of G affording the character π. Then,
by Theorem 2.2, Θ = Π|N ◦ϕ is a representation of N into GL(V ) with kerΘ = P1. The
map θ defined in (1.1) extends the character of N afforded by Θ to a class function on
G. We proceed to show that θ is a minimal Heilbronn character of G with ker θ|P = P1.

Let M be a maximal subgroup of G. We argue that θ|M is a character of M . If M

is conjugate to N , then θ|M is precisely the character afforded by the representation Θ.
Suppose then that M is not conjugate to N , and suppose further that N is the unique
maximal subgroup of G containing Ω1(P ). In this case we argue that θ|M = π|M . Let
m ∈ M . If m is not conjugate to any element of N , then θ(m) = π(m). Otherwise,
replacing M by a conjugate (which is permissible since θ is a class function on G), we
may assume m ∈ N . Write m = xh for x ∈ P , h ∈ H.

Suppose that x and h commute. Since ϕ is the identity on H,

θ(h) = π(h) for any h ∈ H. (3.1)

Hence, if x = 1, then m ∈ H and θ(m) = π(m). Otherwise p divides the order of m, so
Ω1(P ) � M : a contradiction.

Thus, if x �= 1, then [x, h] �= 1. Then [x, h−1] �= 1 as well, so x = [y, h−1] for some
y ∈ P by Lemma 2.3. Thus,

x = [y, h−1] = y−1hyh−1,

which implies xh = y−1hy, i.e. xh is conjugate to h in N . Since θ and π are class functions
on N , it follows that θ(xh) = θ(h), which is π(h) = π(xh) by (3.1). Hence, θ|M = π|M is
a character of M .

It remains to consider the case where M is a Borel subgroup of G containing Ω1(P )
and M is not conjugate to N (so case (iii) of the theorem applies). Here M is a Frobenius
group Q � C for some equi-characteristic Sylow subgroup Q of G, and, replacing M by
a conjugate if necessary, C = M ∩ N is cyclic of order 1

2 (q − 1) (see [4, Theorem 6.5.1]).
By hypothesis, q = r is prime, so |m| = q for all non-trivial m ∈ Q, and in particular θ is
constant on Q. Since we have established that θ|N is a character of N , θ|C is a character
of C � N . Thus, θ|M is a character of the Frobenius complement with the Frobenius
kernel in its kernel, and is therefore a character of M .

We have shown that θ|M is a character for every maximal subgroup M of G. It follows
that θ restricts to a character of every elementary subgroup of G and, since θ is a G-
class function, θ is a virtual character of G by Brauer’s characterization of characters.
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Moreover, θ is not a character of G since otherwise 1 �= P1 � ker θ � G: a contradiction
(G is simple).

It remains to show that 〈θ, µ〉 � 0 for every monomial character µ of G (i.e. θ is a
Heilbronn character). Let µ be a monomial character of G. If µ is induced from a linear
character of a proper subgroup H of G, then since θ|H is a character, 〈θ, µ〉 � 0 by
Frobenius reciprocity. Otherwise, µ is the principal character 1G of G. We complete the
proof by showing that 〈θ, 1G〉 � 0.

Let N be the set of elements of G on which θ is not by definition equal to π (see
Lemma 2.7). Then

〈θ, 1G〉 =
1

|G|

( ∑
g∈N

θ(g) +
∑
g/∈N

π(g)
)

= 〈π, 1G〉 +
1

|G|

( ∑
g∈N

θ(g) −
∑
g∈N

π(g)
)

=
1

|G|
∑
g∈N

(θ(g) − π(g)).

Since 〈θ, 1G〉 is integral, 〈θ, 1G〉 � 0 if and only if 〈θ, 1G〉 > −1; hence, it suffices to
prove that ∑

g∈N
(π(g) − θ(g)) < |G|. (3.2)

Referring to the complex character tables for L2(q) (Tables 2–4), we proceed by cases.

Case 1 (p divides q + 1). Here N is the set of conjugacy classes [bm]. Let B denote
the number of such classes. Since each has size q(q − 1),

∑
g∈N

(π(g) − θ(g)) = q(q − 1)
( B∑

m=1

π(bm) −
B∑

m=1

θ(bm)
)

� q(q − 1)
(

2 −
B∑

m=1

θ(bm)
)

,

by Corollary 2.6. Since |θ(bm)| � 2 for all values of m such that bm /∈ P1, and bm ∈ P1

for at least one value of m,∑
g∈N

(π(g) − θ(g)) � q(q − 1)(2 − π(1) + 2B).

Observing that 2 − π(1) < 0, we obtain

∑
g∈N

(π(g) − θ(g)) < q(q − 1)(2B)
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and, since B � 1
2 |G|(q − 1)(q + 1),∑

g∈N
(π(g) − θ(g)) <

q

q + 1
|G|.

This establishes (3.2) in case 1.

Case 2 (p = q = r is an odd prime). Here N consists only of the classes [c] and
[d], both of size q2 − 1. These classes are in the kernel of θ (since P1 = P ); hence,∑

g∈N
(π(g) − θ(g)) = (q2 − 1)(π(c) − π(1)) + (q2 − 1)(π(d) − π(1)).

Since π(1) > π(c) and π(1) > π(d) for all non-principal π ∈ Irr(G), the sum above is
negative and (3.2) follows.

Case 3 (p divides q − 1 and q = r is an odd prime). Here N is comprised of
the conjugacy classes [al] as well as the classes [c] and [d]. Reasoning as in case 1, the
sum over the classes [al] is less than |G|, and we have seen that the sum over the classes
[c] and [d] is negative. Hence, (3.2) holds in this case as well, completing the proof.

4. Proof of Theorem 1.2

Let N denote the set of elements of G on which θ is not by definition equal to π (see
Lemma 2.7). Then

‖θ‖2 =
1

|G|

( ∑
g∈N

|θ(g)|2 +
∑
g/∈N

|π(g)|2
)

= ‖π‖2 +
1

|G|
∑
g∈N

(|θ(g)|2 − |π(g)|2)

= 1 +
1

|G|
∑
g∈N

(|θ(g)|2 − |π(g)|2). (4.1)

We proceed by cases.

Case 1 (p divides q + 1). Here N is the set of classes [bm], each of size q(q − 1).
By Lemma 2.9, θ(bm) = π(1) for 1

2 (|P1| − 1) such classes. Writing b as the product
of commuting p- and p′-elements x and y, respectively, ϕ(bm) is an element of order 2
precisely when x ∈ P1 and |y| = 2. If |b| is odd, or, equivalently, if q ≡ 0, 1 mod 4, then
there is no such element. Otherwise, q ≡ 3 mod 4 and there are 1

2 (|P1| − 1) classes with
θ(bm) = π(t).

Suppose first that π is not one of the characters ψi, so π is constant in absolute value
on the classes [bm]. In particular, if ϕ(bm) �= 1 and ϕ(bm) /∈ [t], then |θ(bm)| = |π(bm)|.
Thus, if q ≡ 0, 1 mod 4,

‖θ‖2 = 1 +
q(q − 1)

|G|

(
|P1| − 1

2

)
(|π(1)|2 − |π(bm)|2).
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If q ≡ 3 mod 4, then

‖θ‖2 = 1 +
q(q − 1)

|G|

(
|P1| − 1

2

)
(|π(1)|2 + |π(t)|2 − 2|π(bm)|2).

Observing that
q(q − 1)

|G|

(
|P1| − 1

2

)
=

1
(q, 2)

(
|P1| − 1
q + 1

)
,

the values for π �= ψi in Table 1 now follow by direct substitution.
Suppose next that π is one of the characters ψi, and choose β according to Lemma 2.8.

Summing over conjugacy classes, (4.1) becomes

‖θ‖2 = 1 +
q(q − 1)

|G|

( B∑
m=1

|ψi(bβm)|2 −
B∑

m=1

|ψi(bm)|2
)

, (4.2)

where B is the number of classes [bm]. Since |ψi(bm)|2 = 2 + ζ2im + ζ−2im,

B∑
m=1

|ψi(bm)|2 = 2B +
B∑

m=1

(ζ2im + ζ−2im)

= 2B +

{
−1 if q ≡ 0, 1 mod 4,

−2 if q ≡ 3 mod 4,
(4.3)

by Lemma 2.4 (since the bounds on i ensure 2i �≡ 0 mod B, and |b| is even precisely when
q ≡ 3 mod 4).

We consider the remaining sum in (4.2):

B∑
m=1

|ψi(bβm)|2 =
∑

bβm=1

|ψi(bβm)|2 +
∑

bβm∈[t]

|ψi(bβm)|2 +
∑

|bβm|>2

|ψi(bβm)|2.

Here we have divided the classes [bm] into those in the kernel of ϕ, those that ϕ maps to
an involution and those that are mapped by ϕ to other classes [bm]. Since ψi(1) = q − 1,

∑
bβm=1

|ψi(bβm)|2 =
(

|P1| − 1
2

)
(q − 1)2. (4.4)

Similarly, ∑
bβm∈[t]

|ψi(bβm)|2 =

{
0 if q ≡ 0, 1 mod 4,

2(|P1| − 1) if q ≡ 3 mod 4,
(4.5)

since these classes only arise when q ≡ 3 mod 4, in which case |ψi(t)| = 2.
The sum over the remaining conjugacy classes of |ψi(bβm)|2 can be calculated by

summing 2 + ζ2iβm + ζ−2iβm over all of the classes [bm] and then subtracting that
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expression summed over the classes already considered. Thus,

∑
|bβm|>2

|ψi(bβm)|2 =
B∑

m=1

(2 + ζ2iβm + ζ−2iβm)

−
( ∑

bβm=1

(2 + ζ2iβm + ζ−2iβm) +
∑

bβm∈[t]

(2 + ζ2iβm + ζ−2iβm)
)

.

Observe that ζ2βm = 1 whenever bβm = 1 or bβm ∈ [t]. Hence, by Lemma 2.4 and
previous arguments,

∑
|bβm|>2

|ψi(bβm)|2 = 2B +

⎧⎪⎨
⎪⎩

−1 if 2iβ �≡ 0 mod |b| and q ≡ 0, 1 mod 4

−2 if 2iβ �≡ 0 mod |b| and q ≡ 3 mod 4

2B if 2iβ ≡ 0 mod |b|

− 2(|P1| − 1) −
{

0 if q ≡ 0, 1, mod 4,

2(|P1| − 1) if q ≡ 3 mod 4.
(4.6)

Substituting from (4.3)–(4.6) into (4.2) (and after the obvious cancellations),

‖θ‖2 = 1 +
q(q − 1)

|G|

×

⎡
⎢⎣

(
|P1| − 1

2

)
(q − 1)2 +

⎧⎪⎨
⎪⎩

−1 if 2iβ �≡ 0 mod |b| and q ≡ 0, 1 mod 4

−2 if 2iβ �≡ 0 mod |b| and q ≡ 3 mod 4

2B if 2iβ ≡ 0 mod |b|

− 2(|P1| − 1) +

{
1 if q ≡ 0, 1 mod 4

2 if q ≡ 3 mod 4

⎤
⎥⎦ .

(4.7)

If 2iβ �≡ 0 mod |b|, then the sum of the two piecewise-defined components in (4.7) is zero.
Otherwise, observing that

(q, 2)
2

(q + 1) =

{
2B + 1 if q ≡ 0, 1 mod 4,

2B + 2 if q ≡ 3 mod 4,

and
q(q − 1)

|G| =
1

(2, q)
2

q + 1
,

the right-hand side of (4.7) becomes

1 +
1

(2, q)
2

q + 1

⎡
⎣(

|P1| − 1
2

)
((q − 1)2 − 4) +

⎧⎨
⎩

0 if 2iβ �≡ 0 mod |b|
(q, 2)

2
(q + 1) if 2iβ ≡ 0 mod |b|

⎤
⎦ .
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Simplifying, we obtain

‖θ‖2 = 1 +
1

(2, q)
(|P1| − 1)(q − 3) +

{
0 if 2iβ �≡ 0 mod |b|,
1 if 2iβ ≡ 0 mod |b|,

which is the value given in Table 1.

Case 2 (p = q = r is an odd prime). Here q is odd, N consists only of the classes
[c] and [d] (of sizes 1

2 (q2 − 1)), and P1 = P . From (4.1),

‖θ‖2 = 1 +
q2 − 1
2|G| (2|π(1)|2 − |π(c)|2 − |π(d)|2)

= 1 +
1
q
(2|π(1)|2 − |π(c)|2 − |π(d)|2),

and the values in Table 1 follow.

Case 3 (p divides q −1 and q = r is an odd prime). Here N is the set of classes
[al], each of size q(q+1), along with the classes [c] and [d], and ϕ maps 1

2 (|P1|−1) classes
[al] into the class of involutions precisely when q ≡ 1 mod 4. Recognizing that the norm
of θ in case (ii) is a component of the calculation in this case, let ‖θ(ii)‖2 denote the case
(ii) norm of θ.

If π is not one of the characters χj , then π is constant in absolute value on the classes
[al]. Thus, from (4.1), if q ≡ 1 mod 4, then

‖θ‖2 =
q(q + 1)

|G|

(
|P1| − 1

2

)
(|π(1)|2 + |π(t)|2 − 2|π(al)|2) + ‖θ(ii)‖2.

If q ≡ 3 mod 4, then

‖θ‖2 =
q(q + 1)

|G|

(
|P1| − 1

2

)
(|π(1)|2 − |π(al)|2) + ‖θ(ii)‖2.

Observing that

q(q + 1)
|G|

(
|P1| − 1

2

)
=

|P1| − 1
q − 1

,

the values for π �= χj in Table 1 now follow by direct substitution.
If instead π is one of the characters χj , then, proceeding as for ψi in case 1,

‖θ‖2 =
q(q + 1)

|G|

( A∑
l=1

|χj(aαl)|2 −
A∑

l=1

|χj(al)|2
)

+ ‖θ(ii)‖2,
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where A is the number of classes [al]. After an analogous argument we obtain

‖θ‖2 =
q(q + 1)

|G|

⎡
⎢⎣

(
|P1| − 1

2

)
(q + 1)2 +

⎧⎪⎨
⎪⎩

−1 if 2jα �≡ 0 mod |a| and q ≡ 3 mod 4

−2 if 2jα �≡ 0 mod |a| and q ≡ 1 mod 4

2A if 2jα ≡ 0 mod |a|

− 2(|P1| − 1) +

{
1 if q ≡ 3 mod 4

2 if q ≡ 1 mod 4

⎤
⎥⎦ + ‖θ(ii)‖2.

(4.8)

Observing that
q − 1

2
=

{
2A + 1 if q ≡ 3 mod 4,

2A + 2 if q ≡ 1 mod 4,

(4.8) simplifies as before to the value given in Table 1. This completes the proof.
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