Loose Bernoullicity is preserved under exponentiation by integrable functions

MAURICE H. RAHE AND DANIEL J. RUDOLPH

Department of Mathematics, Texas A&M University, College Station, TX 77843, USA; Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA

(Received 23 November 1985)

Abstract. It is known that if Ω is a Lebesgue space, $T: \Omega \rightarrow \Omega$ is a loosely Bernoulli transformation, and L is a fixed non-zero integer, then the transformation $S = T^L$ will again be loosely Bernoulli on each ergodic component. In this note, the above stated result is extended to include the case where L is an arbitrary integrable integer-valued function on Ω .

Let $(\Omega, \mathcal{F}, \mu)$ be a Lebesgue space and $T: \Omega \to \Omega$ an invertible, ergodic, measurepreserving transformation. For L an integrable integer-valued function on Ω , we consider the transformation $U(\omega) = T^{L(\omega)}(\omega)$. In general, U will not be invertible and will not preserve μ . Moreover, not every point $\omega \in \Omega$ will belong to a bilateral U-orbit, i.e. a set $S = \{\omega_i: i \in \mathbb{Z}\}$ where $U(\omega_i) = \omega_{i+1}$.

On the other hand, it was shown in [1] that with the above hypothesis there exists a set Ω_1 of full measure (of points satisfying a certain finiteness condition) and the set $A \subseteq \Omega_1$ of points which also belong to a bilateral U-orbit has strictly positive measure. Moreover, the transformation $U = T^L$ restricted to A is invertible and preserves μ_A , but may not be ergodic. In this article we note that the behavior of U on almost all ergodic components can be explicitly described.

More precisely, we claim that there exists a U-invariant set $B \subseteq A$ with $\mu_A(B) = 1$ such that there are finitely many (possibly zero) sets C with $\mu(C) > 0$ and U restricted to C aperiodic ergodic; and all other ergodic components of U in B are finite rotations. To see this, note that if there exists $C \subseteq A$ with $\mu(C) > 0$ and U(C) = C, then by ergodicity μ -a.e. T-orbit contains points in C and hence a complete U-orbit lying in C. However, by [1, Theorem 2(b)] there can be at most finitely many aperiodic U-orbits (cardinality of orbit not finite) on a T-orbit. The number m of aperiodic U-orbits on a T-orbit is an upper bound for the number of such sets C. Thus the set B consists of a union of all periodic U-orbits and a finite number of such C, where U restricted to C is aperiodic.

We now describe the behavior of U on the aperiodic components of B. For any U-invariant $C \subseteq B$ with $\mu(C) > 0$ for which U restricted to C is aperiodic ergodic, let $L': C \to \mathbb{Z}$ be the integer-valued function such that $U|_C = (T_C)^{L'}$, where $U|_C$ is the restriction and T_C is the induced transformation. Clearly $|L'| \le |L|$. Moreover, it follows from aperiodicity that the values $\sum_{i=1}^{n} L'(U^i\omega)$, n = 1, 2, ..., are disjoint

for μ_C -a.e. ω , hence

$$\limsup_{n\to\infty}\frac{1}{n}\left|\sum_{i=1}^n L'(U^i\omega)\right|\geq \frac{1}{2}.$$

By the ergodic theorem, we must therefore have $|\int L' d\mu_C| \neq 0$. Assume $\int L' d\mu_C > 0$, the other case being similar.

By ergodicity we can choose a set D with $\mu_C(D) > \frac{1}{2}$ and a positive integer N such that for $n \ge N$ we have

$$\frac{1}{n}\sum_{i=1}^{n}L'(U^{i}\omega) > \frac{1}{2}\int L' d\mu_{C} > 0 \quad \text{for } \omega \in D.$$

Now choose $E \subseteq D$, $\mu_C(E) > 0$, so that for $\omega \in E$ we have $\inf \{i > 0: U^i \omega \in E\} \ge N$. Then the function $\overline{L}: E \to \mathbb{Z}$ such that $(U|_C)_E = U_E = (T_E)^{\overline{L}}$ satisfies $\overline{L} > 0$ and $\int \overline{L} d\mu_E = \int L' d\mu_C$.

We now observe that T_E is a factor of a tower transformation over U_E . Let \hat{E} be the subset of $E \times \{0, 1, 2, ...\}$ below the graph of \overline{L} . Let $\hat{\mu}$ be defined as

$$\hat{\mu}(F) = \sum_{i=0}^{\infty} \mu_E(F_i) \left(\int \bar{L} d\mu_E \right)^{-1}$$

where F_j denotes the section of F at j. Let $\hat{U}: \hat{E} \to \hat{E}$ be defined by $\hat{U}(\omega, i) = (\omega, i+1)$ if $0 \le i < \bar{L}(\omega) - 1$, while $\hat{U}(\omega, \bar{L}(\omega) - 1) = (U_E(\omega), 0)$. Then it is well known that \hat{U} is an ergodic transformation on \hat{E} which preserves $\hat{\mu}$, and

$$\hat{\mu}(E \times \{0\}) = \left(\int \bar{L} d\mu_E\right)^{-1} = \left(\int L' d\mu_C\right)^{-1}.$$

Define $\Phi: \hat{E} \to E$ to be the map taking (ω, i) to $(T_E)^i \omega$. Note that $T_E \circ \Phi = \Phi \circ \hat{U}$, so \hat{U} is a skew product over T_E . As mentioned earlier, the number *m* of aperiodic U_E -suborbits on a T_E -orbit is finite and, by ergodicity, constant almost everywhere. Since $\bar{L} > 0$ and U_E is ergodic, it is easy to see that $m = \int \bar{L} d\mu_E$. (Hence $\int L' d\mu_C$ must be a positive integer. See also [2; Proposition 10].) Moreover \hat{U} is an *m*-point extension of T_E , i.e. \hat{U} is a skew product of T_E with the symmetric group on the integers $\{1, 2, \ldots, m\}$. Since one can write each *m*-point extension of T_E as the transformation induced on the set $E \times \{1, 2, \ldots, m\}$ by an *m*-point extension of *T* (where the skewing on $\Omega - E$ is the identity), we see that $U|_C$ is Kakutani equivalent to a finite extension of *T*. In particular, let $(\hat{T}, \hat{\Omega})$ denote the *m*-point extension of *T*. We have that $U|_C$ induces U_E , where *E* has relative measure $\mu(E)/\mu(C)$ in *C*. Moreover, \hat{T} induces \hat{U} , which in turn induces U_E , where *E* has relative measure $\mu(E)/m$ in $\hat{\Omega}$. Then if m > 1 or $\mu(E) < 1$, we have that \hat{T} induces $U|_C$ from [3, lemma 1.3]. If m = 1 and $\mu(E) = 1$, then $U|_C \approx T$, so trivially $U|_C$ is induced by an *m*-point extension of *T*. We summarize these results in the following theorem.

THEOREM. Let $(\Omega, \mathcal{F}, \mu)$ be a Lebesgue space and $T: \Omega \to \Omega$ an invertible ergodic measure-preserving transformation. Let L be an integrable integer-valued function. Then for $U(\omega) = T^{L(\omega)}(\omega)$, there is a maximal U-invariant set $A \subseteq \Omega$, with $\mu(A) > 0$, on which U is invertible and preserves μ_A . Moreover, there is a set $B \subseteq A$ with $\mu_A(B) = 1$ such that there are at most finitely many sets $C \subseteq B$ with $\mu(C) > 0$ and $U|_C$ aperiodic

264

ergodic. On each of these, $U|_C$ is induced by a finite extension of T. For all other $C \subseteq B$ with $U|_C$ ergodic, $U|_C$ is a finite rotation.

COROLLARY. If T is loosely Bernoulli and L is an arbitrary integrable function, T^{L} is loosely Bernoulli on each ergodic component.

Proof. By [3, Lemma 6.6], loose Bernoullicity is preserved under inducing. By [4] and [3; Corollary 7.9], it is also preserved under finite extensions.

REFERENCES

- J. C. Kieffer & M. H. Rahe. The pointwise ergodic theorem for transformations whose orbits contain or are contained in the orbits of a measure-preserving transformation. *Canad. J. Math.* XXXIV, (No. 6) (1982), pp. 1303-1318.
- [2] J. Neveu. Temps d'arrêt d'un système dynamique. Z. Wahrscheinlichkeitstheorie verw. Geb. 13 (1969), pp. 81-94.
- [3] D. S. Ornstein, D. J. Rudolph & B. Weiss. Equivalence of Measure Preserving Transformations. Mem. Amer. Math. Soc. 262, 37 (1982).
- [4] D. J. Rudolph. If a finite extension of a Bernoulli shift has no finite rotation factors, it is Bernoulli. Israel J. Math. 30 (1978), pp. 193-206.