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Abstract. It is proven that if k ≥ 2 is an integer and d is a positive integer such
that the product of any two distinct elements of the set

{k − 1, k + 1, 16k3 − 4k, d}

increased by 1 is a perfect square, then d = 4k or d = 64k5 − 48k3 + 8k. Together
with a recent result of Fujita, this shows that all Diophantine quadruples of the form
{k − 1, k + 1, c, d} are regular.

2000 Mathematics Subject Classification. 11D09, 11D25, 11J86, 11Y50.

1. Introduction. A Diophantine m-tuple is a set of m positive integers such that
the product of any two of them increased by 1 gives a perfect square. Diophantus
himself studied sets of positive rationals with the same property, while the first
Diophantine quadruple, namely the set {1, 3, 8, 120}, was found by Fermat ([4, 5, 13]).
In 1969, Baker and Davenport [1] proved that the Fermat set cannot be extended
to a Diophantine quintuple. There are several generalizations of the result of Baker
and Davenport. In 1997, Dujella [6] proved that the Diophantine triples of the form
{k − 1, k + 1, 4k}, for k ≥ 2, cannot be extended to a Diophantine quintuple (k = 2
gives the Baker–Davenport result), while in 1998, Dujella and Pethö [9] proved that
the Diophantine pair {1, 3} cannot be extended to a Diophantine quintuple. Recently,
Fujita [12] obtained a result which is common generalization of the results from [6]
and [9]. Namely, he proved that the Diophantine pairs of the form {k − 1, k + 1}, for
k ≥ 2 cannot be extended to a Diophantine quintuple.

A folklore conjecture is that there does not exist a Diophantine quintuple. An
important progress towards its resolution was done in 2004 by Dujella [8], who proved
that there are only finitely many Diophantine quintuples. The stronger version of this
conjecture states that if {a, b, c, d} is a Diophantine quadruple and d > max{a, b, c},
then d = a + b + c + 2abc + 2

√
(ab + 1)(ac + 1)(bc + 1). Diophantine quadruples of
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this form are called regular. Equivalently, a Diophantine quadruple {a, b, c, d} is regular
if and only if (a + b − c − d)2 = 4(ab + 1)(cd + 1) (see [10, 11]).

If {k − 1, k + 1, c} is a Diophantine triple, then c = cν for some ν ≥ 1, where

cν = 1
2(k2 − 1)

{(k +
√

k2 − 1)2ν+1 + (k −
√

k2 − 1)2ν+1 − 2k}

(see [6, 12]). As already noticed, in [12], Fujita proved that the Diophantine pair
{k − 1, k + 1} cannot be extended to a Diophantine quintuple. In particular, he proved
that if {k − 1, k + 1, cν, d} is a Diophantine quadruple and ν �= 2, then d = cν−1, or
d = cν+1, or d = c2. In the present paper, we prove that this statement is valid also for
ν = 2.

THEOREM 1. If k ≥ 2 is an integer and d is a positive integer such that the product
of any two distinct elements of the set

{k − 1, k + 1, 16k3 − 4k, d}

increased by 1 is a perfect square, then d = 4k or d = 64k5 − 48k3 + 8k.

It follows from Theorem 1 that all Diophantine quadruples of the form {k − 1, k +
1, c, d} are regular.

The difficulty with the case ν = 2 is that the gap between k + 1 and c2 =
16k3 − 4k is too small for the applications of results on simultaneous Diophantine
approximations (theorem of Bennett [3] and its modification by Fujita [12]). Let us
mention that Fujita was able to handle this case for k > 5 · 1020 (see [12, Remark 20]).
Our improvements come from two directions. We improved lower bounds for the
solutions by more delicate application of the congruence method. Roughly, we
improved the bound log d > 4k log k to log d > 4k1.5 log k (assuming that d �= c1 = 4k
and d �= c3 = 64k5 − 48k3 + 8k).

Another improvement comes from the application of the best available result on
linear forms in three logarithms of algebraic numbers, due to Mignotte [15] (instead
of the theorem of Baker and Wüstholz [2]). This leads to the proof of our result for
k > 5.4 · 108, so that the number of remaining cases is not too large, and can be handled
by computers.

Let us mention that the case k = 2 was solved by Dujella and Pethö [9]. Thus,
we may assume that k ≥ 3. Moreover, using results of Fujita [12], it is easy to handle
the cases with, say, k ≤ 1000 (we will give the details in the last section). Therefore, to
simplify some technical details, we will assume that k > 1000.

2. Preliminaries. We will use some general results on extendability of
Diophantine triples from [7, 8]. Let {a, b, c} be a Diophantine triple with a < b < c.
Furthermore, let positive integers r, s, t be defined by ab + 1 = r2, ac + 1 = s2, bc + 1 =
t2. In order to extend {a, b, c} to a Diophantine quadruple {a, b, c, d}, we have to solve
the system

ad + 1 = x2, bd + 1 = y2, cd + 1 = z2, (1)
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with positive integers x, y, z. Eliminating d from (1) we get the following system of
Pellian equations

az2 − cx2 = a − c, (2)

bz2 − cy2 = b − c. (3)

By [7, Lemma 1], all solutions of (2) are given by z = v
(i)
m , where

v
(i)
0 = z(i)

0 , v
(i)
1 = sz(i)

0 + cx(i)
0 , v

(i)
m+2 = 2sv(i)

m+1 − v(i)
m ,

and |z(i)
0 | <

√
c
√

c
2
√

a . Similarly, all solutions of (3) are given by z = w
(j)
n , where

w
(j)
0 = z(j)

1 , w
(j)
1 = tz(j)

1 + cy(j)
1 , w

(j)
n+2 = 2tw(j)

n+1 − w(j)
n .

and |z(j)
1 | <

√
c
√

c
2
√

b
.

The initial terms z(i)
0 and z(j)

1 are almost completely determined in the following
lemma (see [8, Lemma 8]).

LEMMA 1. (i) If the equation v2m = w2n has a solution, then z0 = z1. Furthermore,
|z0| = 1 or |z0| = cr − st or |z0| < min{0.869 a−5/14c9/14, 0.972 b−0.3c0.7}.

(ii) If the equation v2m+1 = w2n has a solution, then |z0| = t, |z1| = cr − st and
z0z1 < 0.

(iii) If the equation v2m = w2n+1 has a solution, then |z0| = cr − st, |z1| = s and
z0z1 < 0.

(iv) If the equation v2m+1 = w2n+1 has a solution, then |z0| = t, |z1| = s and
z0z1 > 0.

(We have omitted the superscripts (i) and (j), and we will continue to do so.)
In our case, we have a = k − 1, b = k + 1, c = c2 = 16k3 − 4k, r = k, s = 4k2 −

2k − 1 and t = 4k2 + 2k − 1. Therefore, cr − st = 8k2 − 1, and we can easily check

that |z0| ≤
√

c
√

c
2
√

a < k2
√

32
√

k√
k−1

< 8k2 − 1 and |z1| < k2
√

32 < 8k2 − 1. Furthermore,
the third possibility in (i) appears only if there is a positive integer d0 < c such that
{a, b, c, d0} is an irregular Diophantine quadruple. But this is not possible in our case,
since d0 = c1 = 4k, and the quadruple {a, b, c1, c2} is regular.

Hence, the only possibilities which may occur in our case are (i) with |z0| = 1 and
(iv).

The exponential equation vm = wn can be in standard way transformed into a
logarithmic inequality.

Let us denote α1 = s + √
ac, α2 = t + √

ac, α3 =
√

b(
√

c±√
a)√

a(
√

c±√
b)

, α4 =
√

b(k
√

c±t
√

a)√
a(k

√
c±s

√
b)

. We

recall the following result from [12] (see also [7, Lemma 5]).

LEMMA 2 ([12, Lemma 8]). (i) If vm = wn has a solution with m ≡ n ≡ 0 (mod 2),
m ≥ 2 and z0 = z1 = ±1, then we have

0 < m log α1 − n log α2 + log α3 < 1.2α1
−2m.
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(ii) If vm = wn has a solution with m ≡ n ≡ 1 (mod 2), m ≥ 1 and z0 = ±t, z1 = ±s
(z0z1 > 0), then we have

0 < m log α1 − n log α2 + log α4 < 4.1k2α1
−2m.

LEMMA 3. Assume that vm = wn with n �= 0. Then

0 ≤ m − n <
0.51n
k log k

.

Proof. Since m and n have the same parity, [8, Lemma 3] implies that m ≥ n. On
the other hand, since α3, α4 > 1, from Lemma 2, we find that

m log α1 − n log α2 < 0.065 · k−2.

Hence,

m − n
n

<
log(α2/α1)

log α1
+ 0.065

nk2 log α1

<
log

( 8k2+4k−1
8k2−4k−2

)
log(8k2 − 4k − 2)

+ 0.065
nk2 log(8k2 − 4k − 2)

<
8k + 1

(8k2 − 4k − 2) log(8k2 − 4k − 2)
+ 0.033

nk2 log k
<

0.51
k log k

,

since k > 1000. �

3. Even indices. In this section, we are studying the equation

v2m = w2n,

under the assumption that |z0| = 1. We intend to show that if n �= 0, then m and n are
large compared with k. By [12, Lemma 10], we have m ≡ 0 or ±1 (mod 2k). This gives
the lower bound m ≥ 2k − 1 for m. In what follows, we will improve this bound.

Our starting point is the following congruence relation which follows from [7,
Lemma 4]:

±am2 + sm ≡ ±bn2 + tn (mod 4c). (4)

In our case, the congruence (4) becomes

±(k − 1)m2 + (4k2 − 2k − 1)m ≡ ±(k + 1)n2 + (4k2 + 2k − 1)n (mod 64k3 − 16k)

or

±k(m2 − n2) − (4k2 − 1)(m − n) + 2k(m + n)

≡ ±(m2 + n2) (mod 64k3 − 16k). (5)

Assume that n < 5.6k1.5. Then both sides in congruence (5) are (in absolute value)
less than 63k3. Indeed, by Lemma 3, we have (m2 + n2) ≤ 2.001n2 < 63k3, k(m2 −
n2) = k(m − n)(m + n) < k · 0.51n

k log k · 2.001n < 0.148n2 < 5k3, (4k2 − 1)(m − n)< 4k2 · 0.51n
k log k

< 0.3kn < 0.06k3, 2k(m + n) ≤ 2.001kn < 0.36k3. Hence, we have an equality in (5).
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Let m = n + α. Then

0 ≤ α <
2.856

√
k

log k
, (6)

by Lemma 3. Furthermore, the congruence (5) implies

α2 − 2mα + 2m2 ≡ ±α (mod k). (7)

If we now insert m ≡ 0,±1 in (7), then by (6) we obtain equalities instead of
congruences in (7) in all three cases. This gives α2 = ±α and α2 ∓ 2α + 2 = ±α,
respectively. And this implies α ∈ {0, 1, 2}.

This can be now inserted in (the equality) (5). We easily obtain contradictions in
all cases except for α = 0 and z0 = z1 = −1, when the only nontrivial case is m = n =
2k, and for α = 2 and z0 = z1 = 1 when the case m = 2k + 1, n = 2k − 1 has to be
considered. Let us look closer at these remaining cases.

In the first case, by Lemma 2, we have

log α3 > 2n
(

log
t + √

bc
s + √

ac

)
≥ 1.8n

k
= 3.6,

and α3 > 36. But, on the other hand,

α3 =
√

b√
a

·
√

c − √
a√

c − √
b

≤
(

1 + 2
k

)(
1 + 1

3k2

)
< 1 + 3

k
< 2.

Assume now that m = 2k + 1 and n = 2k − 1. Then Lemma 2 implies

(2n + 4) log(s + √
ac) − 2n log(t +

√
bc) < 0.001.

We obtain 4 log(7k2) < 1.8n
k + 1 < 4, a contradiction.

Hence, we obtain the following result.

PROPOSITION 1. If v2m = w2n with n �= 0, then m ≥ n ≥ 5.6k1.5.

4. Odd indices. In this section, we consider the equation

v2m+1 = w2n+1,

with z0 = ±t, z1 = ±s, under the assumption that n �= 0. By [12, Lemma 10], we have
m ≡ 0,−1 (mod k).

From [7, Lemma 4], we have the following congruence

±(am(m + 1) − bn(n + 1)) ≡ rst(n − m) (mod 8k3 − 2k).

Since rst mod (8k3 − 2k) = −k, we obtain

k(m − n)(m + n + 1) − m(m + 1)

≡ n(n + 1) ± k(n − m) (mod 8k3 − 2k). (8)
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Assume that n < 2.45k1.5. Note that by Lemma 3 we have m ≤ 1.0001n.
We have the following estimates for the terms in (8): k(m − n)(m + n + 1) ≤ k ·
( 0.51(n+ 1

2 )
k log k ) · 2.002n < 0.15n2 < k3, m(m + 1) < 1.002n2 < 6.1k3, n(n + 1) < 1.001n2 <

6.1k3, k(m − n) < kn < k3. Hence, we have an equality in (8).
Let us proceed as in the case of even indices by writing m = n + α, and inserting

it in (8). We obtain

α2 − (2m + 1)α + 2m(m + 1) ≡ 0 (mod k),

which, by m ≡ 0,−1 (mod k), implies α ∈ {0, 1,−1}. By Lemma 3, we have α ≥ 0.
Thus, the case α = −1 can be omitted. From m = n we obtain 2n(n + 1) = 0 and n = 0.
For m = n + 1, we have that k(2n + 2 ± 1) = (n + 1)(2n + 2) which implies n = 0.

Hence, we have proved the following result.

PROPOSITION 2. If v2m+1 = w2n+1 with n �= 0, then m ≥ n ≥ 2.45k1.5.

From Propositions 1 and 2 we get the following corollary.

COROLLARY 1. If vm = wn with n ≥ 2, then m ≥ n > 4.9k1.5.

5. Linear forms in logarithms. We intend to apply a recent result due to Mignotte
[15] to the linear forms from Lemma 2. However, in order to check the conditions
of Mignotte’s theorem, we will use information obtained by the application of the
following result of Matveev.

LEMMA 4 ([14, Theorem 2.1]). Let � be a linear form in logarithms of l
multiplicatively independent totally real algebraic numbers α1, . . . , αl with rational
integer coefficients b1, . . . , bl (bl �= 0). Let h(αj) denote the absolute logarithmic height
of αj , 1 ≤ j ≤ l. Define the numbers D, Aj, 1 ≤ j ≤ l, and B by D = [�(α1, . . . , αl) : �],
Aj = max{D h(αj), | log αj|}, B = max{1, max{ |bj |Aj

Al
: 1 ≤ j ≤ l}}. Then

log � > −C(l)C0W0D2�, (9)

where C(l) = 8
(l−1)! (l + 2)(2l + 3)(4e(l + 1))l+1, C0 = log(e4.4l+7l5.5D2 log(eD)), W0 =

log(1.5eBD log(eD)), � = A1 · · · Al.

We apply Lemma 4 to the forms from Lemma 2. We have l = 3 and D =
4. Furthermore, A1 = 2 log α1 < 2 log 2s < 4.1 log k, A2 = 2 log α2 < 4.1 log k. Also,
A1 > 4 log k and A2 > 4 log k. Estimating the conjugates of α3, resp. α4, we find that

A3 ≤ log

(
a2(c − b)2 b

a
· c − a

c − b
·
√

b(k
√

c + t
√

a)√
a(k

√
c − s

√
b)

)
< 2 log(2bck) < 11 log k

and A3 ≥ 2 log(b(c − a)) > 8 log k. Hence, we conclude that B < 0.52m. Finally,
log � < log 4.2k2α1

−2m < −0.9m log c < −2.7m log k. Putting all these estimates in (9),
we obtain

2.7m log k < 6.45 · 108 · 29.89 · log(21m) · 184.91 · log3 k.
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Taking into account the inequality m > 4.9k1.5 from Corollary 1, we obtain

m
log(21m) log2 m

< 5.92 · 1011,

which implies m < 3.6 · 1016 and, finally,

k < 3.8 · 1010.

We will further reduce this upper bound for k, using following result due to
Mignotte on linear forms in three logarithms:

LEMMA 5 [15]. We consider three non-zero algebraic numbers α1, α2 and α3, which
are either all real and > 1 or all complex of modulus one and all �= 1. Moreover, we
assume that either the three numbers α1, α2 and α3 are multiplicatively independent, or
two of these numbers are multiplicatively independent and the third one is a root of unity.
Put

D = [�(α1, α2, α3) : �]/[�(α1, α2, α3) : �].

We also consider three coprime positive rational integers b1, b2, b3, and the linear form

� = b2 log α2 − b1 log α1 − b3 log α3,

where the logarithms of the αi are arbitrary determinations of the logarithm, but which
are all real or all purely imaginary. And we assume also that

b2| log α2| = b1| log α1| + b3| log α3| ± |�|.
We put

d1 = gcd(b1, b2), d2 = gcd(b3, b2), b2 = d1b′
2 = d2b′′

2, b1 = d1b′
1, b3 = d2b′′

3.

Let a1, a2 and a3 be real numbers such that

ai ≥ max{4, 5.296�i − log |αi| + 2Dh(αi)}, where �i = | log αi|, i = 1, 2, 3

and

� = a1a2a3 ≥ 100.

Put

b′ =
(

b′
1

a2
+ b′

2

a1

)(
b′′

3

a2
+ b′′

2

a3

)

and

logB = max{0.882 + log b′, 10/D}.
Then either

log � > −790.95 · � · D2 log2 B > −307187 · D5 log2 B ·
3∏

i=1

max{0.55, hi, �i/D},
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or the following condition holds:
– either there exist two non-zero rational numbers r0 and s0 such that

r0b2 = s0b1

with

|r0| ≤ 5.61(D logB)1/3a2 and |s0| ≤ 5.61(D logB)1/3a1,

– or there exist rational integers r1, s1, t1 and t2, with r1s1 �= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy

|r1s1| ≤ δ · 5.61(D logB)1/3a3, |s1t1| ≤ δ · 5.61(D logB)1/3a1,

|r1s2| ≤ δ · 5.61(D logB)1/3a2,

where

δ = gcd(r1, s1).

Moreover, when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.

Let α1 = s + √
ac, α2 = t + √

ac, α3 =
√

b(
√

c±√
a)√

a(
√

c±√
b)

, α4 =
√

b(k
√

c±t
√

a)√
a(k

√
c±s

√
b)

. Recall that in

Section 2 we have shown that the only possibilities for the initial values x0, z0, y1, z1

are x0 = y1 = 1, z0 = z1 = ±1 and x0 = y1 = r, z0 = ±t, z1 = ±s. We may apply
Lemma 5 to the numbers α1, α2, α3, resp. α1, α2, α4. Indeed, these numbers are real
and > 1. Moreover, they are multiplicatively independent, since the relation

(s + √
ac)i1 (t + √

ac)i2 =
(√

b(x0
√

c ± z0
√

a)√
a(y1

√
c ± z1

√
b)

)i3

implies

(s − √
ac)i1 (t − √

ac)i2 =
(√

b(x0
√

c ∓ z0
√

a)√
a(y1

√
c ∓ z1

√
b)

)i3

,

and by multiplying these two relations we obtain ( b(c−a)
a(c−b) )

i3 = 1 and a = b, a
contradiction.

We will assume that k ≥ 2 · 107. Note that this assumption implies that m ≤ k3,
since otherwise we have k < (3.6 · 1016)1/3 < 331000.

For the quantities appearing in Lemma 5, we may take a1 = 8.296 log α1,
a2 = 8.296 log α2, a3 = 4.296 + 21 log k < 21.3 log k, b′ ≤ 2m

a1
· 1.001n

a3
, logB = 0.882 +

log b′ ≤ log(0.018 · m2

log2 k
).

We now check that the two exceptional cases from Lemma 5 cannot appear in our
situation (under our assumptions).
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(i) r0n = s0m
We have

|r0| ≤ 5.61(D logB)1/3a2 ≤ 5.61
(

4 log
(

0.018
m2

log2 k

))1/3

· 8.296 log(2t)

≤ 531 log1/3 m log k,

|s0| ≤ 5.61(D logB)1/3a1 ≤ 531 log1/3 m log k.

From Lemma 3, we obtain

0 ≤ r0 − s0 ≤ 0.51s0

k log k
. (10)

(a) Assume r0 = s0. This implies m = n.
We have

m log
t + √

bc
s + √

ac
< log

√
b(x0

√
c ± z0

√
a)√

a(y1
√

c ± z1

√
b)

< 0.92.

On the other hand,

m log
t + √

bc
s + √

ac
> m log

8k2 + 4k − 2
8k2 − 4k − 1

>
m
2

· 8k − 1
8k2 − 4k − 1

> 0.4 · m
k

.

Hence, we obtained that m
k < 2.3, a contradiction.

(b) If r0 �= s0, then (10) implies

1 ≤ 0.51s0

k log k
<

0.51 · 531 log1/3 m
k

,

and therefore k < 271 log1/3 m < 391 log1/3 k, contradicting our assump-
tion that k ≥ 2 · 107.

(ii) r1, s1, t1, t2 ∈ �, r1s1 �= 0 such that

(t1m + r1)s1 = r1t2n. (11)

Furthermore,

|r1s1| ≤ gcd(r1, s1) · 5.61(D logB)1/3a3,

which implies r1, s1 ≤ 239 log1/3 m log k. Similarly, we find that t1, t2 ≤
531 log1/3 m log k.

Assume that t1 = 0. Then r1 = 1 and s1 = t2n. We obtain n ≤ s1 ≤
239 log1/3 m log k ≤ 240 log1/3 n log k. Hence,

k <
k1.5

log k1.5
≤ n

log n
≤ 240 log k,

a contradiction.
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From

0 ≤ m − n ≤ 0.51n
k log k

and (11), for t1 �= 0, it follows that

r1s1

n
≤ r1t2 − s1t1 ≤ 0.51s1t1

k log k
(12)

or

r1s1

n
≥ r1t2 − s1t1 ≥ 0.51s1t1

k log k
. (13)

Let us consider the case r1t2 = s1t1. Then r1 = s1, t1 = t2, t1(m − n) = −r1, and
m ≤ |r1| ≤ 239 log1/3 m log k. Hence, k3/2 < 345 log4/3 k, which implies k < 300.

Assuming that r1t2 �= s1t1, from (12) and (13), we obtain that |r1s1|
n ≥1 or 0.51|s1t1|

k log k ≥1.

For 1 ≤ |r1s1|
n ≤ 2392·log2/3 m log2 k

n , we obtain n ≤ 60000 log2/3 n log2 k and k ≤
60000 log2 k, which implies k < 2 · 107.

If 0.51|s1t1|
k log k ≥ 1, then 0.51 · 239 · 531 · log2/3 m log2 k ≥ k log k. We obtain k <

134631 log5/3 k and k < 2 · 107.
We have shown that if k ≥ 2 · 107, then the two exceptional cases from Lemma 5

cannot appear. Therefore, Lemma 5 will give us an inequality for log �.
We obtain

2.7m log k < 790.95 · 7095.17 · log3 k · 16 · log2
(

0.018 · m2

log2 k

)
< 3.492 · 108 log3 k log2 m,

and

m
log4 m

< 5.92 · 107.

This implies

m < 6 · 1013.

Applying Propositions 1 and 2, we find that
� if v2m = w2n with n �= 0, then k < 3.1 · 108,
� if v2m+1 = w2n+1 with n �= 0, then k < 5.4 · 108.

6. Baker-Davenport reduction. It remains to consider the following cases:
(i) z0 = z1 = 1, 3 ≤ k ≤ 310000000;

(ii) z0 = z1 = −1, 3 ≤ k ≤ 310000000;
(iii) z0 = t, z1 = s, 3 ≤ k ≤ 540000000;
(iv) z0 = −t, z1 = −s, 3 ≤ k ≤ 540000000.

We will apply a version of the reduction procedure due to Baker and Davenport
[1], given in the following lemma.

https://doi.org/10.1017/S0017089507003564 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003564


THE FAMILY OF DIOPHANTINE TRIPLES 343

LEMMA 6 ([9, Lemma 5]). Suppose that M is a positive integer. Let p/q be a
convergent of the continued fraction expansion of κ such that q > 10M and let ε =
‖µq‖ − M · ‖κq‖, where ‖ · ‖ denotes the distance from the nearest integer

(a) If ε > 0, then there is no solution of the inequality

0 < mκ − n + µ < AB−m (14)

in integers m and n with

log(Aq/ε)
log B

≤ m ≤ M.

(b) Let r = �µq + 1
2�. If p − q + r = 0, then there is no solution of inequality (14)

in integers m and n with

max
(

log(3Aq)
log B

, 1
)

< m ≤ M.

We apply Lemma 6 to inequalities from Lemma 2, with M = 3.6 · 1016, obtained
by the applications of Lemma 4. Note that Lemma 2 is valid also for k ≤ 1000, while
in that case we use the value M = 1021 (see [12, Remark 20]). If the first convergent
such that q > 10M does not satisfy the conditions (a) or (b) of Lemma 6, then we use
the next convergent.

We performed all needed computations on the computers of Laboratory for
Advanced Computations, Department of Mathematics, University of Zagreb. The
computations were carried on a Dual AMD Athlons MP 1800+ with 1Gb RAM
memory, under Debian 3.1 (Sarge) operating system with 2.4.19 SMP kernel and
running PARI/GP programs written by the authors. Here we summarize the results
obtained by the computations.

Case (i): The use of the second convergent was necessary in 3283278 cases
(1.06 %), the third convergent was used in 79279 cases (0.03 %), etc., the tenth
convergent was needed only in one case (for k = 145384228). In all cases we obtained
m ≤ 6. Moreover, m ≤ 2 for k ≥ 25; m ≤ 1 for k ≥ 344. Running time was 78 hours.

Case (ii): The use of the second convergent was necessary in 32831823 cases
(1.06 %), the third convergent was used in 79249 cases (0.03 %), etc., the tenth
convergent was needed only in one case (for k = 145384228). In all cases we obtained
m ≤ 6. Moreover, m ≤ 2 for k ≥ 25; m ≤ 1 for k ≥ 328. Running time was 78 hours.

Case (iii): The use of the second convergent was necessary only in 21 cases. Actually,
for all k > 1000, the condition (b) of Lemma 6 was satisfied. This is not surprising.
Namely, in this case we have log α1 − log α2 + log α4 = 1

128 k−7 + O(k−9), and hence

|p − q + r| ≈ | q
log α2

(log α1 − log α2 + log α4)| ≈ q
256k7 log k < 1 for k � 7

√
q

256 . In all cases

we obtained m ≤ 6. Moreover, m ≤ 2 for k ≥ 64; m ≤ 1 for k > 1000. Running time
was 134 hours.

Case (iv): The use of the second convergent was necessary in 6819 cases, the third
convergent was used in 182 cases, etc., the ninth convergent was needed only in one case
(for k = 154441). For all k > 68546778, the condition (b) of Lemma 6 was satisfied. In
all cases we obtained m ≤ 6. Moreover, m ≤ 2 for k ≥ 82; m ≤ 1 for k > 1000. Running
time was 135 hours.

https://doi.org/10.1017/S0017089507003564 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003564


344 Y. BUGEAUD, A. DUJELLA AND M. MIGNOTTE

Combining these experimental results, with the lower bounds from Proposi-
tions 1 and 2, we conclude that for all k ≥ 3 we have m = n = 0. Now, v0 = w0 = 1
gives the trivial extension d = 0. For (z0, z1) = (t, s), v1 = w1 = 32k4 − 16k2 + 1
gives d = 64k5 − 48k3 + 8k = c3, while for (z0, z1) = (−t,−s), v1 = w1 = 8k2 − 1 gives
d = 4k = c1. This completes the proof of Theorem 1.
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