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Abstract

Let B, S, and T be subsets of a (left) near-ring R with B and T nonempty. We say B
i s ( 5 , T)-distributive i f s{bx + b2)t = s b { t + s b 2 t , f o r e a c h s e S , b i , b 2 e B , t e T . B a s i c
properties for this type of 'localized distributivity' condition are developed, examples are given,
and applications are made in determining the structure of minimal ideals. Theorem. If / is
a minimal ideal of R and / is ( /m, /")-distributive for some k, n > 1, m > 0, then
either I2 = 0 or / is a simple, nonnilpotent ring with every element of / distributive in R .
Theorem. Let Rk be {Rm, /j")-distributive, for some k, n > 1, m > 0; if R is semiprime
or is a subdirect product of simple near-rings, then R is a ring. Connections are established
with near-rings which satisfy a permutation identity and with weakly distributive near-rings. If
R —• A —<• 0 is an exact sequence of near-rings, then conditions on A are given which will
impose conditions on the minimal ideals of R .

1991 Mathematics subject classification (Amer. Math. Soc.): 16 A 76.

A minimal ideal of a ring (and hence the heart of a subdirectly irreducible
ring) is either square zero or a simple ring [11, p. 135]. It is easy to find
near-rings which have a minimal ideal which is neither square zero nor a
simple near-ring. Zero symmetric examples are more difficult to locate, but
Kaarli has exhibited one which is also finite and abelian [15]. The quest to
characterize minimal ideals in near-rings has proved to be a difficult one, even
in the zero symmetric and distributive^ generated cases. Significant results
have been attained in this classification problem by Scott [19] and Kaarli
[14, 16]. This paper continues the investigation of the problem begun in [3,
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4] and most recently carried out in [7]. Of equal importance herein is the
introduction of localized distributivity conditions. We develop some basic
properties of what we call ' (S, r)-distributive' (which is such a condition),
and use this condition to investigate the structure of minimal ideals. This
proves especially useful in conjunction with a general permutation identity
condition, where a structure theorem for near-rings with descending chain
conditions on ideals is given (Proposition 3.2). We also develop conditions
under which a minimal ideal of a near-ring is a ring. (A tour through the zoo
of standard near-ring examples reveals this often happens). Several examples
are discussed in detail to illustrate that the localized distributivity conditions
discussed do occur in some natural examples (for example, in certain near-
rings of mappings). These examples illustrate and also show some of the
limits to the theory developed.

Herein 'near-ring' will always mean 'left near-ring'. Except where noted,
the notation and terminology is that in [17]. Let A and B be nonempty
subsets of a near-ring R. Then (A)R is the ideal in R generated by A . We
use (0 : A)R = {b e R: Ab = 0 } , the right annihilator of A in R. Define
[A, B] = {ab - ba: a e A, b e B} . We will be particularly interested in
the ideal ([A, B])R, which will be denoted by (A, B)R . We use 2{R) for
the set of all distributive elements in R. In all of the above notation, if
no ambiguity will arise we suppress the subscript R. As is standard we use
A• B = {ab: a e A, b e B}. The additive subgroup of R will be denoted by
R+ or (R, +) as seems convenient. We use i?(m) for the w-th commutator
subgroup of R+ and let Rw = R1.

A near-ring R is said to satisfy a permutation identity if there exists a
non-identity permutation a on n letters such that for each a{,... , an e R,

Ilaj — nao(j)' J'' = *' • • • ' n • ^ a(n) ^ n ' w e s ay "^ s a t i s n e s a permuta-
tion identity which moves the last place". Such permutation identities play
an important role herein. (For more on rings or near-rings which satisfy a
permutation identity see [3, 5, 6], where inter alia, a substantial bibliography
on the subject can be found.)

1. Localized distributivity

In this section R will always denote a near-ring.
DEFINITION 1.1. Let B,S, and T be subsets of R with B and T

nonempty. We say B is (S, T)-distributive if

s{bx + b2)t = sb^ + sb2t

for all b{, b2e B, s e S, and t e T. (If S is empty, delete the correspond-
ing factor in the above equation). Note that if T is the largest subset of R
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for which B is (S, r)-distributive and if BT c B, then T is semigroup.
Observe that a distributive near-ring D is ( 0 , Z))-distributive and in a

pseudo-distributive near-ring A", see [13], K2 is (0 , ^-distributive. Any
near-ring R is ( 0 , ^(/?))-distributive. In the sequel we often make use
of nonempty sets T for which Tn is (Tm, Tk^distributive, where k,m,
and n will always be integers such that m > 0, k, n>\. Here we define
T° = 0 . For example, if Rn C 2{R) then i? is (0,1?"^distributive; if
(Rn , •) is a commutative semigroup, then R is (R"~l, /?")-distributive. If
B is ( 0 , 7>distributive, then 5 is (S, 7>distributive for any S c R.
Also, if Bk is (5" , ^-distributive and S C B, then 5 is (Sn+k~l, T)-
distributive.

LEMMA 1.2. Let S be a subsemigroup of (R, •) and B a nonempty subset
of R such that SB cS.IfS satisfies a permutation identity a of length n
with a(n) = k < n, then:

(1) S"[B,B] = 0.
(2) If either B or S is a subsemigroup of R+, then B is (Sk, S"~k)-

distributive.

PROOF. (1) This can be proved using the proof of the lemma in [19] with
the obvious modifications.

(2) Let sl, s2, ... , sn € 5 and x, y e B. Consider

= So(l)So(2) ' "So{n-l)(SkX) + Sa(l)Sa(2) ' ' ' •**(»!-1)(V)

= (s{ • • • skxsM • • • sn) + (5 , • • • skysk+1 ...sn).

Hence B is (Sk, 5"~A:)-distributive.

EXAMPLE 1.3. Let R be a near-ring which satisfies a permutation iden-
tity a of length n, where a(n) = k < n. By a proof similar to that
of Lemma 1.2(2), R is (Rk~l, i?"~fc)-distributive. In particular if R is
right permutable (that is, abc = acb for a, b, c e R), then R is (R, R)-
distributive.

Many examples of right permutable near-rings which are not distributive
are given in [2], including ones which are abelian. A method for constructing
right permutable, distributively generated near-rings which are not distribu-
tive is given in [3, Example 4.9]. Note that if R is a nilpotent near-ring of
index n, then R satisfies every permutation identity of length at least n ;
hence R is (Rk~l, i?"~* distributive for all 1 <k<n.
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In contrast, a left permutable near-ring R (that is, abc = bac for all
a,b,c e R) need not be {Rm, -R")-distributive for any m, n. For ex-
ample, near-ring number 36 on 53 in [10] is left permutable, distributively
generated, and is not (Rm, /?")-distributive for any allowable m, n .

There are many near-rings among those given via Cayley tables or Clay
representations which are (S, ^-distributive, and for which T is not made
up entirely of distributive elements. But rather than display a plethora of
these somewhat artificial examples, we feel the following very natural exam-
ples will suffice.

EXAMPLE 1.4. Let H and K be nonzero subgroups of a nonabelian group
(G,+), with K C H. Let E(G, H) be the subgroup of M0(G) generated by
the set of all homomorphisms from G into H, Hom(G, H), and let R be
the subgroup of M0(G) generated by all the elements of Hom(G, H) which
fix K setwise. Observe that E(G, H) and R are distributively generated
near-rings; and if K is a fully invariant subgroup of H, then R — E(G, H).
Let 5 = {a € R: Go c K} and let T be all elements of S that are endo-
morphisms when restricted to K. Then R is (S, r)-distributive and S is a
two-sided i?-subgroup of R. If K is abelian, then S = T and S is a ring.
If K is normal in H, then S is an ideal of R. Thus if K is a fully invari-
ant, abelian subgroup of H, then R = E(G, H), R is (T, 7>distributive,
and T is a ring and an ideal of R. Recall that if H is solvable, then such
a non-trivial, fully invariant, abelian subgroup of H will exist.

We next give a special case of this construction.
EXAMPLE 1.5. Let (B, +) be a solvable group of length « + l , with n pos-

itive. Let G = B(n) e B, H = {(0, b): b•'€ B} , and K = {(0, c): c e B{n)} .
Then K is a fully invariant, abelian subgroup of H. Using the notation of
Example 1.4 we see that R = E(G, H) is a distributively generated near-
ring which is (T, r)-distributive, and T is an ideal of R. In general,
T £ 2{R), as can be seen from the specific example where B = S3, B1 = A3,
and G = B' © B . Define y/l and y/2 on G as follows: {a, b)y/x = (0, a)
and (a, b)i//2 = (0, b). Then a, y/2e R and j8, y/{ e T, where a = vl + y/2

and p = y/{ + 2y/2 . Note that (a + y/2)0 / aj8 + y/2fi, ft3 = J?, and y\ = 0.
Hence T contains a nonzero idempotent element, a nonzero nilpotent ele-
ment, but T%2{R).

EXAMPLE 1.6. Let A and B be nonempty subsets of a near-ring R such
that R = A + B = {a + b: a e A, b e B}, AmB = 0,A is {Am, An)-
distributive for some n, m > 1, and RB C B. Then R is (Am, R")-
distributive. There are many examples of this where R is both (A, R)-
distributive and (B, /^-distributive, but R is neither distributively gener-
ated nor is it {Rm, i?")-distributive for any m,n>\.
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Concrete examples of this phenomenon are near-rings number 24 and 27
on S3 in [2], where A = {0, a} and B = {0, x, y} . These near-rings are
zero symmetric, and subdirectly irreducible with heart B.

A special case of Example 1.6 occurs where A and B are ideals of R, R =
A@B, and A is (A, ^-distributive, which yields R is (A, .^-distributive.

The following lemmas are somewhat technical, but they lead to our main
theorem of this section. This theorem is used repeatedly in the sequel to
obtain various characterizations of minimal ideals.

L E M M A 1.7. Let B be a (S, T)-distributive subset of R with a,b e B ,
s eS, and x,yeT.

(1) If T is closed under addition, then sbx + say = say + sbx.
(2) If x eT implies x + x e T, then sbx + sax = sax + sbx.
(3) IfOeB, then 0T = 0. If also OTR = 0, then R is zero symmetric.
(4) 7/0 and -B are in B, then s(-b)x = -(sbx) and s(a - b)x =

sax - sbx.
(5) If B is a subgroup of R+ and T satisfies the condition that x e T

implies x + JC e T, then S(B')T = 0.
(6) / / G is a subgroup of R+ and BGQB, then sb(£ £,-)•* = E sb8ix >

where gt e G, i = I,..., n.

PROOF. The following arguments will also work for S = 0 by deleting the
factor s.

(1) Consider s(a+b)(x+y) = s(a+b)x+s(a+b)y = sax+sbx+say+sby.
Also s(a + b)(x+y) = sa(x+y)+sb(x+y) — sax + say+sbx+sby.
By cancellation, sbx + say = say + sbx.

(2) Proceed as in part (1) with x = y.
(3) Observe Ox = 5(0 + 0)x = Ox + Ox. Thus Ox = 0.
(4) Consider 0 = sOx = s(b - b)x = s(b + (-b))x = sbx + s(-b)x.

Hence s(-b)x = -(sbx). Consequently s(a - b)x = sax - sbx.
(5) This follows from the previous parts.
(6) The proof is by induction on n . The key induction step is given by:

sb{gl + ••• + gn)x = s[b(g{ + --- + gH_l) + bgjx

= sb(gl +--- + gH_l)x + sbgnx.

LEMMA 1.8. Let I be a two-sided R-subgroup such that Ik is (Im, / " ) -
distributive, where k, n > 1 and m>0. Then:

(1) R is zero symmetric;
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(2)if0?YCR such that ik+mYIn = 0, then Ik+m{Y)Rl" = 0.

PROOF. (1) From Lemma 1.7 (3), 0/" = 0 and in particular 0 • • • Ot = 0,
for each t £ I; hence, 0/ = 0. Since l"R C / , Lemma 1.7 (3) yields R is
zero symmetric.

(2) Let a, , a2, a3 € R, s e Im, v e Ik, t e I", and y e Y. First
observe that

0 = sv[al + {-ax)]t — s[vax + v(-al)]t = sva{t + sv(-al)t;

so sv(-a{)t = -(sva^). Then using Lemma 1.7 (6), we have that each
of the terms svyt, sv(al + y - ax)t, and sv[(y + a2)a3 - a2a3]t is zero.
Consequently, Ik+m{Y)RIn = 0.

LEMMA 1.9. Let B and S be subsemigroups of (R, •) such that S satisfies
a permutation identity and B is (Sm, S")-distributive for integers m>0 and
n>\.

(1) IfO and —B are contained in B and BS and SB are in S, then
there exists a positive integer h such that Sh[B, B]Sh = 0.

(2) If B = R and S is a semigroup ideal of (R, •)» then there exists a
positive integer j such that SJ{R, R)Sj = 0, and R is zero symmet-
ric.

PROOF. (1) There exists a smallest positive integer q such that for all
u,v e S" and all x, y e S, we have uxyv = uyxv [18, Theorem 1]. Let
k = max{m, n, q) . Then B is (Sk, 5fe)-distributive. Let s{, s2, s3, s4 e
Sk and a,b e 5 . Consider

sl(s2a){bs3)s4 = s^bsjs^asj = 51(52*)1s3(as4) = sls3(s2ba)s4 = sxs2bas3s4.

Let h = 2k. Using Lemma 1.7 (4), Sh[B, B]Sh = 0 .
(2) This follows from part (1) and a proof similar to that of Lemma 1.8.

T h e distributor set o f R is : A(R) - {(a + b)c - be - ac: a,b, c e R} .
The ideal {A(R))R is called the distributor ideal of R. If no ambiguity will
result we will write A for A(R) and (A) for (A)^ . (The notation for the
distributor set and the distributor ideal are not standard in the literature.
The concept was introduced by Frohlich [12] in the setting of distributively
generated near-rings, and has been used in classifying near algebras by Brown
[8, 9]). Note that R is distributive if and only if A(R) = 0. An ideal I of R
contains A(R) if and only if R/I is distributive; so (A(R)) C (R, R). If R
is distributively generated, then R/R' is a ring; so in this case (A(R)) c R'.
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For near-rings in general this need not hold, even if R1 = 0. The next
lemma presents some useful, albeit obvious, connections between (A), (R1),
and (R,R).

LEMMA 1.10. Let R be a near-ring.
(1) (A)C(R,R).
(2) 0 • R C (A).
(3) (R')2 C (A) and if R2 = R then (R1) c (A).
(4) / / R is distributively generated, then (A) c (R1) = R'.

(5) / / R is distributively generated and R = R2, then (A) = R1.

THEOREM 1.11. Let I be a two-sided R-subgroup such that Ik is (Im, / " ) -
distributive, where k, n > 1 and m>0, a, b e R and t,wel.

(1) Ik+m(R')RIn = 0 = ( / n (R')R)k+m+n+i.

(2) Ih+m{A)RIn = 0 = (/ n (A)R)k+m+n+l.
(3) If I contains no nonzero nilpotent two-sided R-subgroups, then I is

a ring and I c 3f(R). Furthermore (t + w)b = tb + wb, at + bt =
bt + at, and ta + tb = tb + ta.

(4) If I is also an ideal of R and satisfies a permutation identity then
(I, R)R is nilpotent.

PROOF. Let a, b € R, v e Ik, s e Im, x e / " , and Y be a subgroup
of R. N o t e t h a t if y = yxy2•••yj, w h e r e y t € Y t h e n y + y = yxy2 • • •

i

(1) Note -Ik c /* . From Lemma 1.7 parts (2), (4) and (6) we have
sv(a + b - a - b)x = 0 . Applying Lemma 1.8 yields the desired
result.

(2) From Lemma 1.7 (6), sv[(a + b)c-be-ac]x = 0. Applying Lemma
1.8 yields the result.

(3) The conclusions of this part are immediate consequences of parts (1)
and (2) and the assumption.

(4) Observe (/, R)R C / . Using the proof of Lemma 1.9 and letting
I = S,aeI, and b eR will yield this part.

Note that if R satisfies a permutation identity given by a permutation a
of length n and a{n) = k < n, then R is (Rk~l, /?""*distributive and
(R1), (A(JR)> , and (R, R) are nilpotent.

For a ring A, if I is an ideal of A and B an ideal of / , then (B)\ c B,
the Andrunakievic Lemma [11, p. 107] or [1]. This lemma has proved useful
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in the study of minimal ideals, subdirectly irreducible rings, and radicals for
rings. An immediate consequence of this lemma is that a minimal ideal of
A is either a simple nonnilpotent ring or it is square zero. Like many such
useful and elementary results in ring theory, the strict near-ring analogue
of Andrunakievic's Lemma is false. An example given by Kaarli for other
purposes shows this even in the case of a finite, abelian, zero symmetric
near-ring [15, pp. 77-78]. For in this near-ring, called N, there is a unique
minimal ideal S, which is not nilpotent, and the near-ring S has a nonzero
ideal U which is square zero. Thus no power of S can be contained in U.

We are able to preserve some essence of the Andrunakievic Lemma.

PROPOSITION 1.12. Let I be an ideal of a zero symmetric near-ring R
such that Ik is (Im, In)-distributive for some k, n > 1, m > 0. If B is
any nonzero ideal of the near-ring I, then ((B)R)j c ImIk(B)RIn C B, where

PROOF. This follows from Lemma 1.7 (6) and a straightforward calcula-
tion.

Note in the above proposition if / is a minimal ideal, then IJ c B.

2. Minimal ideals

In this section all near-rings are zero symmetric. We note some properties
of minimal ideals in general and give sharper results where certain localized
distributivity conditions hold. Necessary and sufficient conditions are given
for a minimal ideal to be a ring.

PROPOSITION 2.1. Let I be a minimal ideal of a near-ring R with I2 ^ 0.
Then (0 : /) is a prime ideal of R and either.

(1) (0 : /) = 0 and R is subdirectly irreducible with heart I; or
(2) R = R/(0 : /) is subdirectly irreducible with heart 7, the isomorphic

image of I under the natural homomorphism R -* R.

PROOF. First note that, by the assumption in this section, R is zero sym-
metric, and so (0 : /) is an ideal. Observe that if X is any ideal of R such
that / n X = 0, then X c (0 : / ) . Consider ideals A, B of R such that
ABC (0:1). If neither A nor B is a subset of (0 : / ) , then IDA and InB
are each different from zero and hence / is contained in A and in B. So
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/ 2 c ^ f i c ( O : / ) ; this is a contradiction since 72 c 7 and / n (0 : /) = 0.
Thus (0 : /) is a prime ideal of R.

If (0 : /) = 0, then for each nonzero ideal X of R we have / n X ^ 0
and consequently I C X, yielding R is subdirectly irreducible with heart / .

Next take (0 : /) ^ 0. Suppose 7 contains a nonzero ideal of R. Then
this ideal has the form T, where T is an ideal of R and (0 : /) C T. Since
/ n T = 0 implies T c (0 : /) and hence T is zero, we have / n T jt 0,
and consequently 7 = T; so / is a minimal ideal of R. Then / maps onto
the minimal ideal 7 under the natural homomorphism R —> R, and since
/ n (0 : /) = 0 we need / and 7 are isomorphic near-rings. If 7 = r + (0 : /)
in R satisfies Ir = 0, then Ir c (0 : / ) . But Ir c / , so Ir = 0 and hence
r — 0 . Thus R is subdirectly irreducible with heart 7 .

THEOREM 2.2. Le* I be a minimal ideal in a near-ring R. Then I is
(Im, In)-distributive, for some k,n>l, m > 0 if and only if either I2 = 0
or I is a simple nonnilpotent ring with I C 2{R). In particular, if R or I
is a distributive near-ring, then I2 = 0 or I is a nonnilpotent simple ring.

PROOF. If / is nilpotent of index q > 2, then / = (Iq~l)R. Write a
general element y e / in the format of an element of (7*~1)/{. Then a
routine calculation shows xy = 0 for each x e / , yielding I2 = 0. Assume
I2 ^ 0 . By Theorem 1.11, / C 2{R). Furtermore assume, without loss
of generality (Proposition 2.1), that R is subdirectly irreducible with / as
its heart. If either R.' or A(R) is nonzero then, by Theorem 1.11, / is
nilpotent. Hence R is a ring. The converse is obvious.

COROLLARY 2.3. Let I be a minimal ideal of a near-ring R, with I2 / 0.
Then exactly one of the following holds:

(1) / is a simple ring, I c 31 {R), and R/(0 : I) is a subdirectly irre-
ducible prime ring;

(2) / = (A(I))R c (A(R))R and I+ is solvable of length n, for some n;
(3) / = (A{I))R = (IW)R C (A(R))R n (R{n))R, for each n.

PROOF. If A(7) = 0, then I is a distributive near-ring and Theorem 2.2
yields / is a simple ring. This allows us to use Theorem 1.11 (1) and (2)
to get I n (R1) and / n (A(R)) are zero, and hence (R1) and {A(R)) are
contained in ( 0 : 7 ) . This and Proposition 2.1 yield that R/(0 : I) is a
subdirectly irreducible prime ring. So take A(7) ^ 0. Then / = (A(I))R c
(A(R))R. If I+ is not solvable, then 7(fl) / 0 for each n and hence (3)
follows immediately.
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If in the above corollary we assume R is distributively generated, then case
(2) cannot occur, for we have shown that in this situation / + is either abelian
(and hence / is a simple ring) or / + is a perfect group [7, Proposition 10].
If furthermore either R1 or (A(7?)) are multiplicatively nilpotent, then only
case (1) remains possible. This nilpotency of R' will occur if R+ is a solvable
group [17, Corollary 9.49] or if R is weakly distributive [17, Corollary 9.55].
We immediately have:

COROLLARY 2.4. Let R be a subdirectly irreducible nonring. If either.

(1) R is distributively generated and R+ is solvable, or
(2) R is weakly distributive,

then the heart of R is square zero.

PROPOSITION 2.5. Let I be a minimal ideal in a near-ring R, with I2 ^ 0.
If I satisfies a permutation identity a of length j and if either.

(1) Ik is (Im, In)-distributive for some k , n > \ , m > 0 ; or
(2) a does not leave j fixed;

then I is afield, R = I e (0 : / ) , and I c 3{R).

PROOF. Recall from Example 1.3 that (2) implies (1). By Theorem 2.2, /
is a simple ring which satisfies a permutation identity. Such a ring is either a
field or square zero [6]. Let e be the identity element for the field / . Then
using the Peirce decomposition for this idempotent yields: R = (0 : e)R+eR.
Note that (0 : e)R = (0 : /) and eR = I to obtain R = (0 : 7)e7 = 7e(0 : 7).

This proposition extends a result of Wiegandt [20] in the case where R
is subdirectly irreducible. Furthermore, it answers, in the affirmative, the
question raised in [3] as to whether a minimal ideal in a right permutable
near-ring must be either nilpotent or a simple near-ring.

PROPOSITION 2.6. Let i i - * B - t 0 be an exact sequence of near-rings,
where R -* B has kernel K. If B is distributively generated, then every
minimal ideal of R which is not contained in K is either square zero or is a
subdirectly irreducible near-ring.

PROOF. Let 7 be a minimal ideal of 7? with I <£ K and 72 ^ 0. Then
7 n K = 0 and hence K C (0 : 7). Observe that B maps homomorphically
onto # = 7?/(0 : 7) under the natural homomorphism induced on 5 w R/K
by the ideal (0 :1)/K . So ^ is distributively generated. Using Proposition
2.1 we have / « / and 7 is a minimal ideal of ~R. Kaarli [16] has shown
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that a minimal ideal in a distributive^ generated near-ring is either square
zero or is a subdirectly irreducible near-ring.

PROPOSITION 2.7. Let R —• B -* 0 be an exact sequence of near-rings,
where R -» B has kernel K. If B has descending chain condition on right
B-subgroups and is either distributive^ generated or has unity, then every
minimal ideal of R which is not contained in K is either square zero or is a
simple near-ring.

PROOF. The proof is similar to that of Proposition 2.6, using a result due
to Kaarli [14] which says that under the appropriate descending chain condi-
tion a near-ring which is either distributively generated or has unity has the
property that every minimal ideal is square zero or is a simple near-ring.

PROPOSITION 2.8. Let R -» B —> 0 be an exact sequence of near-rings,
where R —> B has kernel K. Assume B satisfies a permutation identity a
of length j . If either.

(1) B k is (Bm, B")-distributive for some k , n > \ , m>0; or
(2) a does not leave j fixed;

then every minimal ideal of R which is not contained in K is either square
zero or is afield.

PROOF. Recall (2) implies (1). The proof is then similar to that of Propo-

sition 2.6, using R is (Rm, !R")-distributive and using Proposition 2.5.

Note that in Propositions 2.6, 2.7 and 2.8 if B and R -> B can be found
so that K is nilpotent, then the classification of minimal ideals in R is
substantially advanced.

3. Miscellaneous applications

In this section we make use of "localized distributivity" in some contexts
other than that of minimal ideals and make use of some of the results of
sections 1 and 2. All near-rings in this section are zero symmetric.

PROPOSITION 3.1. Let R be a near-ring with Rk being {Rm,Rn)-distributive
for some k, n> 1, w > 0.

(1) If R is simple, then either R2 — 0 or R is a ring.
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(2) If R has no nilpotent, nonzero ideals, then R is a semiprime ring. If
also R has descending chain condition on right (left) ideals, then R
is a finite direct sum of full matrix rings over skewfields.

(3) If R is a subdirect product of simple near-rings, then R is distributive,
and the nonnilpotent subdirect product components are rings.

PROOF. AS an immediate consequence of Theorem 2.2, using / = R we get
(1). From Theorem 1.11, if R has no nilpotent ideals, then A(R) — R' = 0
and hence I? is a ring. Invoking the descending chain condition on right
(left) ideals and using the Artin-Wedderburn Theorem gives the rest of (2).
In part (3), Theorem 2.2 yields R is distributive.

Observe that in (2) we have that R will have no nonzero nilpotent right
or left ideals; however there are zero symmetric near-rings with no nonzero
nilpotent ideals which do have nonzero nilpotent left ideals [10, Number 10
on K4].

PROPOSITION 3.2. Let R be a near-ring with descending chain condition
on ideals and let S — soci?. Assume S satisfies a permutation identity a of
length j . If either.

(i) Sk is (Sm, Sn)-distributive for some k,n>l,m>0; or
(ii) a does not leave fixed;

then R = AeB, where R'uA(R)\J[R,R]Q A, (socA)2 ^0, B isafinite
direct sum of minimal ideals of R each of which is afield, and B c 3>(R).

PROOF. Use Proposition 2.5 repeatedly to obtain R = At © (/,©•••© It),
where R' n A(R) U [R, R] C At and each It is a minimal ideal of R and
is a field. The chain Ax 3 A2D ... must terminate, finitely, and hence the
process stops, yielding the desired decomposition.

Note that if to the hypothesis of Proposition 3.2 we add the condition:

(iii) S contains no nonzero nilpotent ideals;

then the conclusion becomes: R is a finite direct sum of fields.

PROPOSITION 3.3. Let R be a near-ring with Rk being (Rm, R")-
distributive for some k, n > 1, m > 0. If M is a maximal ideal of R,
then either.

(1) R C. M and M is maximal as a normal subgroup of R+ ; or
(2) (Rr) U (A(/?)) C M and M is maximal as a two-sided R-subgroup.
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PROOF. The homomorphic image T = R/M has Tk being (Tm, Tn)-
distributive. Then either T2 — 0 and T* is a simple group, or T is a
simple ring. Results (1) and (2) follow immediately.

Note that in Proposition 3.3, if R also satisfies a permutation identity
then, in part (2), (R,R)CM.
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