
JFP 15 (3): 403–430, 2005. c© 2005 Cambridge University Press

doi:10.1017/S0956796805005502 Printed in the United Kingdom

403

VoDKA: Developing a Video-on-Demand
Server using Distributed Functional

Programming�

VICTOR M. GULIAS, MIGUEL BARREIRO

and JOSE L. FREIRE

MADS Group - LFCIA, Department of Computer Science, University of Corunna, Spain

(e-mail: {gulias,enano,freire}@lfcia.org)

Abstract

In this paper, we present some experience of using the concurrent functional language Erlang

to implement a distributed video-on-demand server. For performance reasons, the server is

deployed in a cheap cluster made from off-the-shelf components. The demanding system

requirements, in addition to the complex and ever-changing domain, suggested a highly

flexible and scalable architecture as well as a quite sophisticated control software. Functional

programming played a key role in the development, allowing us to identify functional

abstractions throughout the system. Using these building blocks, large configurations can

be defined using functional and process composition, reducing the effort spent on adapting

the system to the frequent changes in requirements. The server evolved from a prototype that

was the result of a project supported by a regional cable company, and it is currently being

used to provide services for real-world users. Despite our initial concerns, efficiency has not

been a major issue.

1 Introduction

As high speed networks and processors have become commodity hardware, af-

fordable and reasonably efficient clusters are flourishing everywhere. Also, while

still expensive, more traditional clustered systems are steadily getting somewhat

cheaper. The result is that clusters are no longer very specific, very restricted

access systems with completely unique requirements. However, the programming of

such systems is still a difficult task. The combination of imperative languages (C,

C++, Fortran,...) with message-passing libraries (PVM, MPI,...) originates distributed

applications which are both difficult to understand and to reason about. Lack of

abstraction, explicit handling of data, dangerous side-effect computing, or explicit

memory management are some of the sources of program errors, quite difficult to

debug.

On the other hand, the combined use of design patterns and distributed functional

programming has been pointed out as a key factor to quickly produce correct
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distributed systems running on a cluster of computers, with a high degree of

adaptability, fault tolerance and scalability. With these ideas in mind, a large suc-

cessful system has been developed: VoDKA (Video-on-Demand Kernel Architecture,

http://vodka.lfcia.org), an extremely scalable clustered video-on-demand server

providing cost-efficient storage, location and transport of media objects. In this paper,

we introduce some of our experience in designing and implementing such a system.

Its main novelty is that it has been developed almost entirely using a declarative

language, the concurrent functional language Erlang (Armstrong et al., 1996).

The VoDKA server has evolved from a prototype that was the result of a

project supported by the Galician regional cable company in an attempt to provide

streaming services to about one hundred thousand potential users. The scope and

requirements for such a service were not clearly specified at the beginning of the

project. The demanding system requirements, in addition to the complex and ever-

changing domain, suggested a highly flexible and scalable architecture: a distributed

control software based on components and deployed in a cheap cluster made from

off-the-shelf elements. In the project, functional programming played a key role in

the development, allowing us to identify recurrent functional abstractions or patterns

in the distributed system. After defining these building blocks, large configurations

can be conceived using both functional and concurrent composition, thus reducing

the effort spent on adapting the system to the frequent changes of requirements,

hardware details, network topology, streaming protocols, scheduling algorithms, etc.

Moreover, despite our initial concerns, the resulting system is efficient enough to

successfully address this real-world problem.

This paper is structured as follows: First, a general overview of VoDKA is

shown, introducing the main aspects of the video-on-demand domain as well as the

design decisions undertaken in the project. Section 3 briefly introduces the functional

language Erlang, its strengths and weaknesses, focusing on its support for concurrent

and distributed programming. Section 4 presents some abstractions or patterns that

have simplified issues such as device heterogeneity or multi-protocol data movement.

After some performance remarks, we finally conclude.

2 The VoDKA project

In 2000, a project partially supported by the cable operator R Cable y Comunica-

ciones de Galicia S.A. was started to provide video-on-demand services to its clients,

mainly broadband-quality contents. This company had been studying different

options but they realized that most of them were expensive, closed, non-scalable

and non-adaptable solutions. Thus, the proposed goal of the project was to build

an extremely scalable, fault tolerant, multiprotocol, adaptable (both to the network

topology and to end-user protocols) streaming server: The VoDKA server.

The industrialization of the early prototype has motivated the creation of a spin-off

company (LambdaStream, http://www.lambdastream.com) devoted to continuing

the development. Currently, VoDKA deployments are in use in many locations such

as cable operators, railroad stations, bank offices, and so on.
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2.1 A glimpse of video-on-demand servers

A Video-on-Demand server is a system that provides video services to several clients

simultaneously. A user can request a particular video at any time, with no pre-

established temporal constraints. Video streaming is a particular case of media

streaming and both terms are used indifferently in our presentation. A video-on-

demand server must satisfy some critical requirements, including:

• Large storage capacity: large number of on-line or near-line videos; each video

may be large (hundreds of megabytes to tens of gigabytes).

• Many concurrent users: thousands of concurrent sessions while attending to

new requests. Quality of service is relevant: It is admissible to reject a new

request if the system cannot guarantee the required resources; however, once

a streaming session starts, it should continue until completion.

• High bandwidth: high aggregate bandwidth to serve all the concurrent users

receiving high bitrate media. There are many potential bottlenecks in such a

system: network, disks, CPU, etc.

• Reliability: considering video-on-demand service time, reliability is a must

(think, for instance, of a two-hour movie show). That forces us to ship error-

free code, to recover gracefully from hardware or software errors, and to

provide mechanisms to incorporate new features without stopping the system.

• Scalability: both upwards and also downwards scalability. A simple configur-

ation can be enough to attend only a few clients, but it should be possible to

increase system resources as soon as new potential users arise.

• Adaptability: the system should adapt to the underlying topology, making

efficient use of the available network resources.

• Low cost: our goal is to reduce the costs involved in the whole system –

hardware, software and network usage.

In recent years many companies have been developing video-on-demand related

solutions. Some of them are well suited for low-bandwidth streaming (possibly over

the Internet), like the popular RealNetworks RealVideo Server (now Helix), Apple

Darwin Streaming Server (Apple Computer Inc., 2004), or the proprietary Microsoft

Windows Media Server (Microsoft, 2004). Other solutions are more focused to high

bandwidth LAN streaming, like IBM DB2 Digital Library Video Charger (Wilkinson

et al., 1999; IBM, 2004) or Kasenna MediaBase. Other systems are optimized for

the digital TV VoD environment, like MidStream MVS, SeaChange MediaCluster,

Concurrent MediaHawk, or nCube n4x.

2.2 The design of VoDKA

Clusters built from cheap off-the-shelf components (Barreiro & Gulias, 1999)

represent an affordable solution for a large variety of applications that demand

huge amounts of resources. Linux is our preferred operating system option due to its

excellent performance and the possibility of low-level tuning of important perform-

ance parameters. However, the main problem is how to design and implement the

distributed application to control the cluster, achieving the demanding requirements
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Tape loaders, jukeboxes...

Cluster nodes with
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Cluster heads

Output streams

Streaming level
(buffering and protocol adaptation)
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(massive storage)

Cache level
(aggregated throughput)

Fig. 1. The initial hierarchical structure.

of a video-on-demand system. It should be as flexible as possible to quickly adapt to

the ever-changing domain (target clients, communication protocols, types of storage,

...). Moreover, developers are scarce resources in the project, thus we have to be very

productive to succeed —a good challenge for functional programming.

2.2.1 Initial approach: storage hierarchy

As first approach, cluster resources are organized as a hierarchical storage system

as proposed in Chan & Tobagi (1997). Figure 1 shows three levels in the hierarchy:

• Repository level : It stores all the available media using different technologies:

tape loaders, DVD jukeboxes, disk arrays, etc. It has large capacity which

usually means high latency and low throughput to be cost-effective.

• Cache level : Cluster nodes in charge of storing videos read from the tertiary

level, before being streamed. It provides a large aggregate throughput that

alleviates the usual deficiencies of the repository level.

• Streaming level : Collection of nodes in charge of protocol adaptation and

media streaming to the client using the appropriate format. It isolates several

details, such as buffering or bitrate variability, from the client.

2.2.2 VoDKA web of traders: chain of responsibility approach

For practical reasons, the original three-level approach results inadequate: it is

unnecessary for small installations while even more flexibility is required to cope with

complex topologies. Thus, the hierarchical approach was replaced by a more general
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Fig. 2. Sample deployment of a VoDKA configuration.

architecture composed of traders. Traders are software processes (Erlang servers, as

presented later) responsible of creating a path from one of the video sources to

the client. To make this possible, traders cooperate using a communication chain

that connects them, defining a particular configuration. This interaction resembles

the well-known design pattern chain of responsibility (Gamma et al., 1995). Each

trader can (potentially) be deployed in a different physical node. The sample shown

in Figure 2 presents the interactions when a client request is submitted.

1. The request is received by a frontend trader that interacts with the client using

a particular streaming protocol. In this case, for example, the rtsp_frontend

defines an RTSP adaptation. The frontend requests the media to the next

trader in the chain of responsibility using a uniform internal protocol.

2. The request is received by a bandwidth constraint trader (bw_constraint)

to model the network limitation of 10Mbps with clients. If there is enough

available bandwidth, the request is delegated to the next trader in the chain;

otherwise, it is rejected.

In general, a constraint trader manages only one particular resource (disk

concurrent accesses, network bandwidth, number of connections, CPU, etc.)

3. The request is received by a distributed cache controller (cache_group). This

trader submits the request to all the available cache chains in parallel. For

each cache chain, the interaction is the following:

(a) The request is received by a disk constraint trader (disk_constraint). It

models the specific disk behaviour for the node. The request is delegated

to the next trader if there is enough disk bandwidth.

(b) The request is received by a local cache controller (cache_file) which

handles a disk cache; the request can be attended if media is available.

If some of the cache traders can solve the request (cache hit), the controller

chooses the best option according to a particular cost-based policy. Otherwise

(cache miss), the request is propagated to the next trader in the chain. This

will load the media in the most suitable cache from a cost point of view.

4. The request is received by a connection constraint trader (conn_constraint).

It limits the number of concurrent streaming sessions.
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Fig. 3. Configuration of the server on a complex network topology.

5. The request is received by a storage composite (storage_group), which groups

trader chains. Following a given policy, the request is propagated through

different chains (all in parallel, sequentially with a given priority, etc.)

6. The request is received by a storage controller, in this case a tape controller

(tape_driver). If media is available, the request can be successfully attended.

When a path is established, a group of processes are created at each node to move

the media from the source (storage or local cache) to its destination (local cache or

client). This is commented in section 4.4 when introducing the pipe abstraction.

Using this compositional approach, simpler configurations can be defined by

removing components such as cache-related or unnecesary constraint traders. More-

over, complex configurations can be designed to adapt the service to particularly

difficult underlying topologies. For example, Figure 3 outlines the usual setup for a

cable network provider. In this case, storage is distributed (mirrored) at two different

points and a two-level cache is deployed throughout the provider network. Hence,

media can be moved closer to end users, optimizing network usage and improving

availability.

3 The development platform: Erlang/OTP

After choosing commodity hardware clusters for the underlying hardware architec-

ture, concurrent functional programming was selected for implementing the design

presented in section 2. The identification of patterns that appear recurrently seemed

to be a key factor in developing distributed applications and, not surprisingly, the

concurrent functional paradigm offers a good framework to abstract these building

blocks out.

https://doi.org/10.1017/S0956796805005502 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796805005502


Developing a VoD Server using Distributed Functional Programming 409

3.1 Why Erlang?

In the past, we explored the connection between concurrency/distribution and

functional programming using languages such as ML or Haskell (Gulias, 1999).

However, we chose Erlang (Armstrong et al., 1996), a distributed and concurrent

functional programming language developed by Ericsson AB for telecommunication

applications. Erlang is a notable successful exception of a functional language applied

to real-world problems (Wadler, 1998). There were many reasons that supported this

decision:

• Nature: The target system is inherently concurrent and Erlang has been

designed with concurrency and distribution in mind.

• Experience: There are successful examples of large distributed Erlang applic-

ations in 24 × 7 conditions.

• Libraries: Erlang offers a powerful collection of libraries, the Open Telecom

Platform (OTP), that eases the development of distributed applications. OTP

includes a distributed database, graphical interfaces, an ASN.1 compiler, a

CORBA object request broker, COM and Java interfaces, among others.

• Interface: Erlang has a clean interface with low-level languages (C, for

example), crucial for dealing with devices or for performance critical modules.

• Efficiency: Erlang is surprisingly efficient, in particular when it handles a large

number of concurrent processes. Even input/output libraries are fast enough

for our purposes, in many cases. If necessary, it also has a native-code compiler,

Hipe (Johansson et al., 2000).

• Soft realtime behaviour: Erlang runtime system has been designed to implement

soft realtime applications. In particular, each process has a separate heap, the

garbage collector does not block all the processes, and context-switching is

cheap (especially if most of the processes are waiting for I/O). This is important

in order to maintain low response time and meet timing requirements of

streaming, even when the workload is high.

There were, however, three major inconveniences with Erlang that became more

obvious during the project:

• No static type checker: Type errors are not immediately caught at compile time.

This is a problem when changing a type definition or when using higher-order

communications (sending/receiving functional values). Just an optional simple

type checker could have saved hours of debugging. Some approaches have

been tempted in the past (Marlow & Wadler, 1997).

To reduce this problem, a small runtime type checker was included as part

of our servers to check the parameters of each service. Each server stores

metainformation about (a) services available, and (b) type templates for each

service parameter. Before dispatching a request, the server dynamically checks

the type of a parameter against the expected type.

• Module system: This is twofold. First, related with the type system issue,

an interface/implementation module definition is desirable: it is not possible

to check if a module satisfies a required interface. Second, modules have a
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primitive flat namespace. Fortunately, a hierarchical module system has been

included in the latest releases of Erlang (Carlsson, 2003).

• Coverage: As with most of functional languages, we need more programmers,

more books, more patterns, more experience...

3.2 Erlang as a sequential functional language

Erlang has no construct inducing side-effects with the exception of communications

among processes. It evaluates expressions eagerly as other strict functional languages

such as ML.

Values in Erlang (i.e. non-reducible expressions) range from numbers and atoms

(symbolic constants, lower-case in Erlang syntax) to complex data structures (lists,

tuples) and functional values, which are treated as first-class citizens. A function

is defined by a set of equations, each stating a different set of constraints based

primarily on the structure of the arguments (pattern-matching). Identifiers bound

during pattern matching, variables, are upper-case in Erlang syntax. Iterative control

flow is carried out by using function recursion. Lists are written [a,b,c] with []

being the empty list, and a list whose first element is X and whose rest is Xs is

denoted [X|Xs]. Thus, a function that tests for membership in a list is defined as:

member(X,[]) -> false;

member(X,[X|Xs]) -> true;

member(X,[Y|Ys]) -> member(X,Ys).

Functions are grouped into modules, and a subset of those functions can be

exported, declaring both function name and arity, to be used in other modules.

-module(example).

-export([member/2]).

Hence, example:member(3, [1,2,3]) evaluates to the atom true, while the

expression example:member(5, [1,2,3]) reduces to false. The language lacks a

static type system present in other modern functional languages; lists can contain

values with different types such as [a, [], 1]. Besides lists, Erlang programmers

also can use tuples which are constructed in arbitrary but finite length by writing

{A,B,...,C}. Lists and tuples can hold any valid Erlang value, from numbers and

atoms to lists, tuples and even functional values. Records are also provided as useful

syntactic sugar for accessing tuples by name instead of by position. For instance,

P#point.x denotes the field x of value P, according to a previously declared record

template point.

Erlang also offers a sequential operator: E1,E2 which evaluates E1 (perhaps

performing communications or binding variables using pattern matching), discards

the computed value and then it computes E2 with the variables bound in E1. Thus,

an expression X=E1,E2 is similar to ML’s let x=E1 in E2.

As in other functional languages, many additional features are available such as

higher-order functions, list comprehensions ([f(S) || S <- Gen, p(S)]), anonym-

ous function definitions (fun (Pat) -> Expr end), etc.
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3.3 Support for concurrency and distribution

What makes Erlang different from other functional languages is its support for

concurrency and distribution. With Erlang’s primitives for concurrency, it resembles

formal calculi such as Milner’s CCS (Milner et al., 1992) or Hoare’s CSP (Hoare,

1985). Because of the absence of side-effects, limited to explicit inter-process

communications, concurrent programming is far simpler in a functional than in

an imperative language.

A new process is created by using the built-in primitive spawn. The expres-

sion spawn(M,F,[A1,A2,. . .,AN]) starts a new computation thread to evaluate

M : F(A1, A2, . . . , An), and it returns the process identifier (Pid) of the newly spawned

process.

The final result of a process computation is just discarded. Hence, explicit

communications are necessary to define coordination among processes. A couple

of asynchronous message passing primitives are available in the language for such

purpose:

• Asynchronous send :

Pid ! Msg

Msg is sent to process Pid without blocking the sending process. If Pid exists,

the message is stored in Pid’s mailbox, a sequential collection of incoming

messages for Pid. Any valid Erlang value can be sent to other process,

including complex data structures containing lists, tuples, functions, process

identifiers, etc.

• Mailbox pattern matching:

receive

Pat1 -> Expr1;

...

PatM -> ExprM
end

The process mailbox is sequentially searched for a message that matches one

of the patterns Pat1, . . . , PatM . If no such message is found, the process blocks

until received. If a message matches Pati, the evaluation of the whole receive

expression will be the evaluation of Expri with the bindings produced by

matching Pati.

An Erlang virtual machine (node, in Erlang terminology) hosts several Erlang

processes running concurrently. Usually, an Erlang node is mapped to an operating

system process; an Erlang process is, in fact, a lightweight user-level thread with

very little creation and context-switching overheads.

A distributed Erlang application consists of processes running in several nodes,

possibly at different computers. Even though the initialization and management of

each node is platform dependant, the nice feature is that communication among

remote processes is semantically equivalent in a distributed framework – though

remote communications are less efficient, of course. It is possible to explicitly create
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a process on a remote node Node, by using spawn(Node,M, F, Args), while spawn/3

just creates a process in the current node.

4 The role of functional programming in VoDKA

The use of a functional language, in particular the identification of functional

patterns, has been a key factor to simplify the development. Like classical abstrac-

tions such as map or foldr, the identified patterns use higher-order functions to

abstract particularities as functional parameters. Considering that an abstraction is

specialized with different but related functions, two approaches have been used:

• To define a data structure that collects the required functional parameters.

• To use a module, a container of functions, as a parameter.

As samples of abstractions defined to solve recurrent problems found in VoDKA,

the following sections will show some of the patterns used.

4.1 The basic server pattern

A server is an abstraction found in almost every concurrent and distributed

application. A server behaves iteratively in the following way: (a) it receives a

request from a client; (b) a response is computed based upon both the request

information and the internal state of the server; (c) the response is sent back to the

client; and (d) server state is updated for subsequent iterations. A simple model of

this behaviour is a tail-recursive definition that supplies explicitly the server state

as a parameter. For instance, the following code defines the behaviour of a memory

allocator server.

-module(allocator).

-export([loop/1]).

loop(HeapPointer) ->

receive

{request, From, {alloc, N}} ->

From ! {reply, HeapPointer},

loop(HeapPointer+N)

end.

Here, a request is represented as a 3-tuple {request, From, {alloc, N}},
where request is the atom that identifies a client request, From is the identity of

the client process that should receive the response back, and {alloc, N} is the

actual request. The expression spawn(allocator, loop, [16]) creates a server

with initial state HeapPointer=16. The client API is defined as:

call(Server, Request) ->

Server ! {request, self(), Request},

receive

{reply, Reply} -> Reply

end.
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Behaviour
Function

to clientfrom client

state
higher-order loop process

state i

request response

state i+1

Fig. 4. Server behaviour.

where Server is the identity of the server process, and self/0 is a built-in primitive

that returns the current process Pid. If PidS is bound to the server Pid whose

state is 100, then call(PidS, {alloc, 10}) returns 100, changing server state to

110.

Higher-order functions can be used to generalize the basic server pattern, avoiding

the repetition of the same structure at different places. As shown in Figure 4, a

function Behaviour : Request × State → Response × State is used to model the

computation of the response and also the state for the next iteration from the

request and the current state. While the behaviour is a side-effect-free function, the

higher-order recursive definition, loop, deals with client-server interaction. As seen,

request resolution and server state changes are inherently serialized.

-module(server).

-export([start/2, loop/2]).

start(Behaviour, State) ->

spawn(server, loop, [Behaviour, State]).

loop(Behaviour, State) ->

receive

{request, From, Request} ->

{Response, NewState} = Behaviour(Request, State),

From ! {reply, Response},

loop(Behaviour, NewState)

end.

The abstraction can be specialized to build the original memory allocator server. In

this case, an anonymous function is used to model the behaviour:

Allocator = server:start(fun ({alloc, N}, HeapPointer) ->

{HeapPointer, HeapPointer+N}

end, 16)

4.2 Guarded suspension pattern

Sometimes, the simple approach of the basic server pattern is not enough for

modeling more complex situations. Occasionally, a request must be suspended until
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the server reaches a given state or leaves an exceptional state. The guarded suspension

pattern (Grand, 1999; Lea, 1997) deals with the suspension of a synchronized service

call until a precondition is satisfied.

Consider the implementation of a global queue. This queue can be the glue in a

producer-consumer interaction. In VoDKA, for example, this structure is used for

gathering packets coming from a cache node before being processed by a frontend

streamer.

The queue is modeled using a server process with two services: push and pull.

The state of the server is an immutable data structure implementing a queue using

a pair of lists (Okasaki, 1996). Using the server pattern presented in section 4.1, the

queue implementation looks like:

-module(queue).

-export([new/0, push/2, pull/1, queue/2]).

new() -> server:start(fun queue/2, {[],[]}).

push(Queue, X) -> server:call(Queue, {push, X}).

pull(Queue) -> server:call(Queue, pull).

queue(pull, {[H | Hs], Tail}) -> {H, {Hs, Tail}};

queue(pull, {[], Tail}) -> queue(pull, {reverse(Tail), []});

queue({push, X}, {Head, Tail}) -> {ok, {Head, [X | Tail]}}.

To use the abstraction, a queue is instantiated using the new function, as shown:

MyQueue = queue:new(),

...

queue:push(MyQueue, 5)

The serialization of both services (push and pull), inherent to the generic server

definition, guarantees correct concurrent access to the queue. However, there is a

possible deadlock situation when a client demands a pull service with an empty

queue: the server gets locked because of an infinite loop when both Head and Tail

lists are empty. No more requests are going to be attended, even if there are processes

trying to push values into the queue. The guard condition can be considered as a

special case, but the definition of the basic server forces us to compute the response

before attending to further requests.

queue(pull, {[], []}) -> %%% MUST SUSPEND REQUEST!!!!!!!

;

queue(...) -> ...

As a solution, the server pattern is extended to support guarded suspensions. Now,

a request can be temporarily suspended until a precondition holds. Figure 5 shows

a producer-consumer scenario showing the desired behaviour.

This pattern applies when (a) the services of a server must synchronize to access

a critical section one process at a time because they update the server state, and (b)
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RESUMING SUSPENDED REQUEST

[ ]
{reply, Y}

Fig. 5. A producer-consumer scenario using a global queue.

the actual state of the server makes it impossible for one of its services to execute

to completion, and a call to one of the other synchronized services is the only mean

to leave that state.

An extension of the basic server pattern defines as state all the suspended requests

(Suspended) and, in addition to the Behaviour function, it includes two extra

functional parameters:

• Guard : State×Req → Boolean, that checks whether a server state is valid for

attending to the request, and

• Resume : State × [{Client, Req}] → none | {ok, {Client, Req}, [{Client, Req}]},
which checks whether one of the suspended request can be resumed.

The implementation of this new abstraction is:

-module(guardeds).

-export([start/4, loop/5]).

start(Behaviour, Guard, Resume, InitialState) ->

spawn(guardeds, loop, [Behaviour, Guard, Resume, InitialState, []]).

loop(Behaviour, Guard, Resume, State, Suspended) ->

receive

{request, Client, Req} ->

{NewState, NewSuspended} = dispatch(Behaviour, Guard, Resume,

State, Suspended, Client, Req),

loop(Behaviour, Guard, Resume, NewState, NewSuspended)

end.
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dispatch(Behaviour, Guard, Resume, State, Suspended, Client, Req) ->

case Guard(State, Req) of

true ->

{Reply, NewState} = Behaviour(Req, State),

Client ! {reply, Reply},

case Resume(NewState, Suspended) of

none -> {NewState, Suspended};

{ok, {AnotherClient, AnotherReq}, NewSuspended} ->

dispatch(Behaviour, Guard, Resume,

NewState, NewSuspended, AnotherClient, AnotherReq)

end;

false ->

{State, [{Client, Req} | Suspended]}

end.

With this abstraction, a queue with guarded suspension is implemented as:

-module(queue).

-export([new/0, push/2, pull/1, queue/2]).

new() ->

guardeds:start(fun queue/2, fun pull_on_non_empty/2,

fun resume/2, {[],[]}).

%% GUARD is true when pulling from a non empty Queue

pull_on_non_empty(pull, {[],[]}) -> false;

pull_on_non_empty(_,_) -> true.

resume({_, []}, _) -> none;

resume(_, [ {Client, Request} | MoreSuspended]) ->

{ok, {Client, Request}, MoreSuspended}.

4.3 Resource scheduler pattern

In the guarded suspension pattern, if multiple threads are suspended, the pattern

does not establish beforehand the order in which each process is resumed. In the

particular implementation presented, the last request suspended is the first resumed.

The scheduler pattern (Lea, 1997) is proposed to deal with exclusive access to a

resource shared among several processes. Each process must wait until the resource

is available and assigned to it following a specific policy. For example, this pattern

is found in VoDKA code that controls the loading of a tape into a tape drive.

The pattern is applied when (a) different calls must be synchronized to access a

shared resource by one process exclusively, and (b) there is a particular policy on

how to sequence accesses when several processes wait to seize the resource.

Figure 6 summarizes typical interactions. When a process needs a resource, it

requests access invoking the enter method of a scheduler. This call will not return

until the scheduler decides to grant access to the process. The process will hold the

resource exclusively until it invokes scheduler’s done service; at this moment the

scheduler will choose among all the waiting processes.

The scheduler is implemented as a guarded suspension server with two services

(enter and done). It is configured with a function Policy : [{Client, Req}] −→
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p3:Processor p2:Processor p1:Processor s:Schedulerr:Resource

{enter,D1}

{enter,D2}

{enter, D3}

done

use
use

use

use

use

use

LOCK(p1)

UNLOCK
LOCK(p3)ok

ok

Fig. 6. Using a scheduler to access a shared resource.

{{Client, Req}, [{Client, Req}]} for selecting the next process to be resumed. In

addition to the policy, the state of the scheduler includes information about lock

status (busy or available).

-module(scheduler).

-export([new/1, enter/2, done/1]).

-export([handle/2, must_suspend/2, resume/2]).

new(Policy) -> guardeds:start(fun handle/2, fun can_access/2,

fun resume/2, {Policy, available}).

enter(Scheduler, Data) -> server:call(Scheduler, {enter, Data}).

done(Scheduler) -> server:call(Scheduler, done).

handle({enter, Data}, {Policy, available}) -> {ok, {Policy,busy}};

handle(done, {Policy, busy}) -> {ok, {Policy,available}}.

can_access({enter, Data}, {Policy, busy}) -> false;

can_access(_,_) -> true.

resume({Policy, available}, Suspended) ->

{Request, MoreSuspended} = Policy(Suspended),

{ok, Request, MoreSuspended};

resume(_, _) -> none.

Some policies can be defined as follows:

-module(policy).

-export([fifo/1, lifo/1, priority/1]).

lifo([X|Xs]) -> {X,Xs}.

fifo(Suspended) -> {last(Suspended), firsts(Suspended)}.

Or if Data, an integer, is the priority:

priority([ASuspended | MoreSuspended]) ->

lists:foldl(fun (Req, {MaxReq, RestRequests}) ->

case higher_prio(Req, MaxReq) of
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true -> {Req, [MaxReq|RestRequests]};

false -> {MaxReq, [Req|RestRequests]}

end,

end, {ASuspended, []}, MoreSuspended).

higher_prio({_, {_, D1}}, {_, {_, D2}}) -> D1 > D2.

Once a scheduler is defined, a convenient API to access the resource can be

defined as follows:

-module(myresource).

-export([start/1, doit/1]).

start(Policy) ->

Scheduler = scheduler:start(fun (X) -> policy:fifo(X) end),

ResourceID = ... % some resource initialization

{Scheduler, ResourceID}.

doit({Scheduler, ResourceID}) ->

scheduler:enter(Scheduler),

... work on ResourceID ...

scheduler:done(Scheduler).

4.4 Data movement pattern

One of the most recurring tasks in VoDKA is media movement. For instance, videos

are moved from storage to cache (to take advantage of the cache aggregate band-

width) or from cache to a frontend node (as being sent to the user). Heterogeneity

is an important problem as sources and destinations can be rather different: file

systems, TCP connections, UDP flows, direct memory transfers, etc. Moreover, the

movement of data involves some accounting that is, in essence, independent of the

nature of sources and destinations. An abstraction, a pipe, is introduced to unify

data movement from a data source to a data destination. Source and destination are

both determined by a module and its particular initialization data.

The data source module exports, among others, the following functions:

• init(DS_initparam) -> {ok, DS_info, DS_state} | {error, Reason}

It initializes the source with some initialization parameter. It returns a tuple

with the atom ok, information about the data source such as name, size,

MIME type, and so on (DS info record), and the explicit state to read from

the source (DS state). If something goes wrong, it delivers an error.

• read(DS_State) -> {ok, Data, DS_state} | {done, DS_doneparam}

| {error, Reason}

It reads the next chunk of data from the data source, returning ok, the actual

data read (Data, a binary value), and the state for the next iteration. If all
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data in the source has been consumed, it delivers done and the state required

for closing the data source; if something goes wrong, it delivers an error.

• done(DS_doneparam) -> ok | {error, Reason}

It cleans up the data source after all its data has been consumed.

Main functionality of the destination module is:

• init(DS_info, DD_initparam) -> {ok, DD_state} | {error, Reason}

It initializes the destination with some initialization parameter and information

about the data source initialization. It returns a tuple with the atom ok, and

the explicit state to write to the destination (DD state). If something goes

wrong, it delivers an error.

• write(Data, DD_State) -> {ok, DD_state} | {error, Reason}

It writes the next chunk of data to the data destination, returning ok and the

state for the next iteration. If something goes wrong, it returns an error.

• done(DD_state) -> ok | {error, Reason}

It closes the data destination.

Now, we present a simplified implementation of the pipe abstraction used in

VoDKA; actual pipes perform additional duties such as error handling, transmission

rate control, logging, etc. A new pipe is created using start/2, which spawns a new

process to perform the data movement. The transfer, modeled with transfer/2,

initializes data source and destination and then it moves all the packets between

them (pipe_while/4). After that, both data source and destination are closed.

-module(pipe).

-export([start/2, transfer/2]).

start(DS, DD) -> spawn(pipe, transfer, [DS, DD]).

transfer({DS_module,DS_initparam}, {DD_module,DD_initparam}) ->

{ok, DS_info, DS_st0} = DS_module:init(DS_initparam),

{ok, DD_st0} = DD_module:init(DS_info, DD_initparam),

{DS_stf, DD_stf} = pipe_while(DS_module, DS_st0, DD_module, DD_st0),

ok = DS_module:done(DS_stf),

ok = DD_module:done(DD_stf).

The tail-recursive function pipe_while/4 reads packets from the source and

writes them down to the destination until data source is depleted.

pipe_while(DS_module, DS_state, DD_module, DD_state) ->

case DS_module:read(DS_state) of

{ok, Data, DS_statenext} ->
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{ok, DD_statenext} = DD_module:write(Data, DD_state),

pipe_while(DS_module, DS_statenext, DD_module, DD_statenext);

{done, DS_statef} ->

{DS_statef, DD_state}

end.

For example, a data source that reads packets from a file is defined:

-module(read_file).

-export([init/1, read/1, done/1]).

init(Filename) -> case file:open(Filename, [read, raw, binary]) of

{ok, IoDevice} ->

PreRead = file:read(IoDevice, 64*1024),

{ok, [{name, Filename}], {IoDevice, PreRead}};

{error, Reason} ->

{error, Reason}

end.

read({IoDevice, eof}) -> {done, IoDevice};

read({IoDevice, {error, Reason}}) -> {error, Reason};

read({IoDevice, {ok, Data}}) ->

{ok, Data, {IoDevice, file:read(IoDevice, 64*1024)}}.

done(IoDevice) ->

file:close(IoDevice).

The module uses the file module to open, read, and close a file. Similarly, a data

destination that dumps all the packets to a file is defined:

-module(write_file).

-export([init/2, write/2, done/1]).

init(_, Filename) -> file:open(Filename, [write, raw, binary]).

write(Data, IoDevice) ->

case file:write(IoDevice, Data) of

ok -> {ok, IoDevice};

Error -> Error

end.

done(IoDevice) -> file:close(IoDevice).

A file copy is implemented with a pipe that uses read_file and write_file:

pipe:start({read_file, "oldfile.dat"}, {write_file, "newfile.dat"})

Figure 7 shows the chaining of pipes for a streaming session. In this case, a

particular media is being moved from a tape (tape_read) to a cache (cache_write)

and, simultaneously, from cache (cache_read) to the final client using a specific

streaming protocol (rtsp_send). Inter-node transferences are done using TCP

sockets (tcp_send and tcp_recv). Both the chain and inter-node communication

protocols are configured as the result of the trader negotiation presented in

section 2.2.2.
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Fig. 7. Chaining of pipes in a transmision.

4.5 Process composition pattern

In VoDKA, videos are stored in several storage devices (hard disks, DVD, CD, other

servers, etc.). Each type of storage has its own specific controller. Clients send their

requests to the appropriate trader process to get the required video. To simplify

this search, a special storage trader, a storage group, is defined as a composition

of several storages. Hence, a tree of storages can be defined while clients keep the

illusion of accessing a simple storage. This homogeneous treatment of leaves and

groups is the essence of the composite pattern (Gamma et al., 1995).

Declarative programming style is quite valuable when dealing with concurrent

behaviour such as the storage composition. For example, a synchronous (sequential)

delegation on each of the children of a given group can be implemented using list

comprehension. In this case, if call(Pid,M) sends the message M to the process

Pid and then it waits for a response, the following behaviour performs a sequential

delegation on all the child processes:

composite_behaviour(Request, State) ->

Combine([ call(S, Request) || S <- State#composite_state.children ]).

The composite process implements the Request service as a sequential delegation

of the same service on all its children, and then it combines the results using the

function Combine([Response]) → Response. Observe that the state of the server,

State, is represented as a composite_state record, with a field named children.

Using this abstraction, it is possible to define a lookup service to find the best

location of a media object:

sequential_storage_behaviour({lookup, MO}, State) ->

MinCost = State#group_state.min_cost,

MinCost([call(S, {lookup, MO}) || S <- State#group_state.children]).

In the example, the function min_cost, stored as part of the group state, is used

as a functional strategy to choose the best answer from all the children. This allows

to change the cost selection algorithm used by the storage group at runtime.

There are many different possible types of interaction between the composite and

its children. Figure 8 shows two sequence diagrams describing the sequential and
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Fig. 8. Sequential and parallel interaction between composite and children.

parallel interactions. In the parallel composition, the composite sends the request

to all the children in parallel, and then it receives the responses back. This parallel

delegation of a composite process is defined as follows:
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group_behaviour(Request, State) ->

Combine([ async_recv(Token)

|| Token <- [ async_call(S, Request)

|| S <- State#composite_state.children]]).

In the example, async call(Pid, M) → Token sends the message M to process

Pid and returns immediately a token which can be used later to get the response

using async recv(Token) → Response. All the requests are sent asynchronously

and, after that, the responses are received. Finally, all the responses are combined

using the Combine function to produce the response for the composite.

5 Performance considerations

At the beginning of the project, we decided that the distributed control system

would be developed in Erlang, but time-sensitive I/O operations should be carried

out by low-level C modules for performance reasons. To speed up development, some

Erlang modules carrying out the basic input/output operations were implemented;

they would be replaced by native counterparts only if efficiency goals were not

achieved: our estimates showed Erlang/OTP input/output performance to be two

to three times worse than raw C code.

A quick and correct implementation, very short development time, ease of

adaptation to changing requirements and all the commented advantages of the

Erlang/OTP platform soon offset the preconceived reasons to reimplement these

input/output modules in C.

5.1 Measuring performance in a single computer

In order to evaluate an Erlang based system with heavy I/O, a minimalistic config-

uration with a streamer (http_frontend) and a storage controller (file_driver)

was defined. Both components were running in different Erlang virtual machines in a

single low-end computer (Pentium II/350 384MB 2*4.5GB SCSI). Another computer

was connected over 1000Base-T ethernet to the cluster switch to simulate dummy

clients performing media requests over a TCP based protocol (progressive HTTP ).

Figure 9 shows measurements performed on the system. Serving 100 concurrent

512 Kbps video streams, the system behaved smoothly with a CPU usage of about

50% and reasonable response times. Requesting 200 concurrent streams of the same

bandwidth, 99% of server CPU time was busy, and a few requests were delayed.

With 150 concurrent requests, performance was quite similar, the CPU occupation

was about 95% and response times were kept within limits tolerable by clients.

Trying with different rates, the server was able to attend 100 concurrent requests at

1Mbps, and about 50 concurrent at 2Mbps.

Much to our surprise, we found that while we were not achieving the maximum

possible throughput for our hardware, performance for these Erlang modules was

more than adequate for production use. In fact, we only need to deploy a very

small number of native modules for extremely timing-sensitive operations or to
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Fig. 9. Maximum number of streams and CPU usage for each of the servers.

interface certain hardware when Erlang does not provide the needed support.

When performance goals are not met or surpassed, hardware cost is a low enough

percentage of the total budget that adding a small number of physical nodes to the
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streaming cluster to increase the available capacity is not a problem, plus it improves

redundancy (Erlang built-in support helps developers define failover procedures to

move services among nodes for system availability).

5.2 Performance in a cluster of nodes

The coarse nature of parallelism in our service – multiple streaming requests can

always be mapped to different streaming servers, with a small coherence overhead –

makes meeting performance goals much easier than in other development fields.

To show how easily the aggregate client-server throughput scales by adding

frontend nodes, we configured a cluster of five frontend nodes, each with its

own cache and sharing a common storage, and a redirector frontend to balance

load. The whole system is deployed on identical nodes (IBM xSeries 200 with a

Pentium-III 1GHz processor, 512MB RAM, single 18GB SCSI-160 disk, Broadcom

5700 1000Base-T interface, running Linux 2.4.19) over Gigabit Ethernet. Streaming

frontends were restricted to 75 Mbps of client bandwidth. A simple client simulator

was developed that requested a 3.8 Mbps MPEG stream and measured throughput,

latency and packet loss. This was used as our test tool, creating a new request

every five seconds. Figure 10 shows an average of total throughput, scaling linearly

as the number of concurrent connections grows. This is to be expected, as the

configured bandwidth is far below current hardware capacity (in this benchmark,

over 115Mbps for each node). When more connections are requested, these are

simply rejected. Figure 11 shows the effect of crossing node boundaries. For each

request the redirector finds a suitable frontend node, where the client is redirected to.

The chosen frontend then creates the needed pipes and starts a long-lived transfer.

When the first request arrives at a certain node it has to load the media into cache

and, after buffer is filled, it starts streaming. When another request comes, it finds

the media already in cache and start latency is lower.

It may come as a surprise that load is not evenly distributed among nodes. While

this behaviour is tunable (the redirector actually receives a functional parameter

that decides how to choose a frontend) it is deliberate and intended to reuse cached

media as much as possible. In real use scenarios, the capacity limiting factor is often

the number of videos that can reside in cache simultaneously, as we lock space for

the whole media.

5.3 Achieving higher throughput

Although in most occasions I/O performance has proven to be more than adequate,

we have studied possible cases where current system throughput would not be

enough and anticipated some alternative design for low-level I/O. The initial design

of a low-level I/O server in C still posed a few problems such as integration

and robustness guarantees. As an alternative, the idea was raised to extend the

Erlang/OTP run-time to interface directly to the OS kernel sendfile() system call.

This is a somewhat less general, but more integrated approach to high-throughput

data moving from Erlang.
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Fig. 10. (a) Aggregate bandwidth in a cluster. (b) Latency when starting connections

in a cluster.

The sendfile() system call or a similar interface is present in all recent versions

of the Linux, Solaris and AIX operating systems, among others. The OS kernel

receives a source and a destination file descriptor, plus source offset and byte count,

and directly copies the data from source to destination. Thus, two buffer copies from
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(a)

Fig. 11(a). Throughput comparison using different interfaces.

kernel to user space and vice versa are avoided, plus cache behaviour is improved;

it was originally intended as a performance aid for web and file server workloads,

where a large amount of processor time is spent copying data between user and

kernel space. Additionally, we save the whole overhead of the Erlang memory

management. The runtime does not move any data itself; it merely instructs the

kernel to do it.

We exposed the sendfile semantics directly to the Erlang user code and compared

the raw streaming performance of the previous hardware configuration in three

scenarios: the server performing read()/send() cycles, using the sendfile()

interface and this latter case when all the required buffers are in RAM; this was

necessary as the disks ended up becoming our bottleneck.

Due to limitations in the network switch, 1500 byte frames were used; streams

sent to clients do not tend to benefit much of 9KB jumbo frames, but inter-node

transfers do, including cache loads. As an optimization, the kernel send and receive

buffers were increased to 256KB from its defaults of 64KB. Values are the mean of

8 runs. 1GB was transferred in 4KB chunks in all cases. Tests were repeated with 2

to 8 concurrent transfers to ensure consistency.
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(b)

Fig. 11(b). CPU usage comparison with different interfaces.

From an initial result of about 55Mbps reading and sending data with the original

Erlang I/O libraries, we got a speedup to 115Mbps just by using the developed

sendfile() interface, which meant a trivial modification to our server code. In

this case, the disk system was the limiting factor. Finally, the same test suite was

modified to repeatedly send a subset of 256MB of data such that it would fit into

RAM, and pages were locked into memory; this way disk I/O was eliminated for

benchmarking purposes. The result of 410Mbps throughput over TCP is expected

to be close to the maximum achievable on this hardware.

Certainly the Erlang I/O code developed using this interface will be in a rather

imperative style; however so is the common Erlang file and network interface.

6 Conclusions

Some experience of using the concurrent functional language Erlang to implement

a distributed video-on-demand server has been presented. VoDKA server is a real-

world application that is currently in use successfully at different locations.

Clusters built from cheap off-the-shelf components represent an affordable solu-

tion for a large variety of applications that demand huge amounts of resources. The
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nature of the video-on-demand service, based upon multiple streaming sessions, fits

extraordinarily well because of the independence between requests and the inherent

geographic distribution of clients.

We consider that using a functional language has been a key success factor.

The use of abstractions and compositionality help reducing the programming effort

to adapt the system to the ever-changing domain. Erlang/OTP, in particular, has

demonstrated to be a mature programming environment. The built-in concurrency

constructs have simplified the design and implementation of the distributed control

system. The runtime system seems to behave quite smoothly when dealing with

thousands of concurrent processes with soft realtime requirements. Erlang design

principles, tools and libraries have also proved to be quite valuable.

Regarding efficiency, our initial concerns were clearly unjustified. Even though

we are aware that we are not achieving the maximum possible throughput for our

hardware, Erlang input/output operations are efficient enough for prototyping the

entire system and, in some cases, even for production use. Here, the abstraction

of the communication transfers also helps us to identify which modules should be

candidates for a low-level implementation: in production systems we have only a

very small number of native modules for extremely timing-sensitive operations or to

interface certain hardware. Moreover, the use of clusters encourages this idea, being

cheaper to add new processing elements than the programming effort to optimize

for a simple hardware. In addition, the whole system benefits of the increase in

redundancy.

Among the criticisms to the language, we pointed out the lack of a static

type checker and a structured module system that complicates the development

at large. Even though these problems were known before starting the project, they

became more pronounced as the server evolved. However, in spite of these notable

deficiencies, the advantages overcome the problems.
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