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ON LIE ALGEBRAS OF VECTOR FIELDS WITH

INVARIANT SUBMANIFOLDS

AKIRA KORIYAMA

§ 0. Introduction.

It is known (Pursell and Shanks [9]) that an isomorphism between
Lie algebras of infinitesimal automorphisms of C°° structures with compact
support on manifolds M and Mr yields an isomorphism between C°°
structures of M and M\

Omori [5] proved that this is still true for some other structures on
manifolds. More precisely, let M and M' be Hausdorff and finite dimen-
sional manifolds without boundary. Let a be one of the following
structures:

(1) C°°-structures, {a = φ)

(2) SL-structure, i.e. a volume element (positive n-ίorm) with a

non-zero constant multiplicative factor, (a = dV)

(3) Sp-(symplectic) structure, i.e. symplectic 2-form with a non-zero

constant multiplicative factor, (a = Ω)

(4) Contact structure, i.e. contact 1-form with a non-zero C°°-func-
tion as a multiplicative factor, (a = ω)

(5) Fibring with compact fibre, (a — &)

Let a (resp. of) be one of the above structures on M (resp. M'). Let
Γa(TM) be the Lie algebra of all C°°, α-preserving infinitesimal transfor-
mations with compact support. We denote by @a(M) the group of all
C°°, ^-preserving diffeomorphisms on M with compact support, that is,
identity outside a compact subset. Then we have the following theorem

THEOREM (Omori [5]). Γa(TM) is algebraically isomorphic to Γa>(TM,)>
if and only if (M,a) is isomorphic to (M',a'). Especially, @a(M) is iso-
morphic to 3ιa,(M').
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92 AKIRA KORIYAMA

Omori [6,7,8] defined the notion of I.L.H.-Lie group and proved that
the group @a(M) stated above is an I.L.H.-Lie group. As a matter of
fact, @a(M) is a (strong) I.L.H.-Lie group with the Lie algebra Γa(TM).
So we can say that the I.L.H.-Lie group @a(M) is determined by its Lie
algebra.

Let (M,N) be a pair of paracompact C°° manifolds such that N is
a closed submanifold of M (may be dimiV = 0). We denote by ΓN(TM)
the Lie algebra of all C°% iV-preserving, i.e. tangent to N, infinitesimal
transformations with compact support. By @(M, N) we denote the group
of all C°°, iV-preserving diffeomorphisms on M with compact support.
The purpose of this paper is to prove the following theorem.

THEOREM. ΓN(TM) is algebraically isomorphic to ΓNΌFM,), if and
only if there exists a C°° diffeomorphism φ\ M —> Mf such that φ(N) — N'.
Especially @(M,N) is isomorphic to

If M is compact, then 2(M,N) becomes an I.L.H.-Lie subgroup of
2{M) with the Lie algebra ΓN(TM) (Ebin and Marsden [2]). So in this
case we can say that @(M9N) is determined as an I.L.H.-Lie group by
its Lie algebra.

The proof of our theorem is parallel to that of Pursell and Shanks.
Main parts of our proof are §2 and §3. We denote by Γ0(TM) instead
of ΓN(TM) for the case N = {p0}, where poeM is an arbitrary but fixed
point. Since the structure of Γ0(TM) is different from that of ΓN{TM)
for dim N 2> 1, we will investigate Γ0(TM) and ΓN{TM) separately, that
is, in §2 we will study maximal ideals of Γ0(TM) and in §3 that of
ΓN(TM).

The author would like to express his gratitude to Prof. H. Omori
for suggesting the problem and also for his helpfull advice.

§ 1. Preliminaries.

Let Rn x Re be the euclidean space with coordinates {x\ , xn, y1,
. . . , y*}. Let & = C°°(Rn x If) be the set of all C°° functions on Rn x If.
Let & = C°°(Rn x 0) = C°°(Rn) be the set of all C°° functions on Rn. &
is naturally identified with the subset of C°°(Rn X R£) by the projection
Rn x If -* Rn. Let J be the ideal of & of functions vanishing on
Rn x 0, i.e.
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VECTOR FIELDS 93

Clearly xι e& (i = 1, , n) and f e / (a = 1, , 4).

LEMMA 1.1. For any fs& there exist goe& and fa e & (1 ̂  a <; 4)

such that f=go + y1fi+ + VeU

Proof. Easy computation, (see, for example, [1])

COROLLARY 1.2. If fe S, then g0 = 0.

Let M be a C°° manifold of dimension m, and N be a closed sub-

manifold of dimension n such that n ^ 0. We set 4 = m — n.

LEMMA 1.3. Γ&e subset ΓN(TM) of Γ(TM) is a Lie subalgebra of

Γ(TM).

Proof. Let (J7 α1, , # n , y\ , I/O be a coordinate system at p e JV

such that U Π JV - {y1 = - . = y* = 0}. Let Z = f'O/Sa?') + ξa(d/dya) and

Y = rfidjdx1) + ηa{dldy«) be in ΓN(TM). Then by Corollary 1.2 fα and ?α

are written as

fa — yιξi - ) . . . . - (- /̂̂ « and ηa = yληl + + y'ηf (a = 1, , 4) ,

where ξ°, η% e C°°(M) (s = 1, -, 4). We have then

[X, Y] =

Hence [Z, Y] 6 JVIV).

LEMMA 1.4. For each XeΓN(TM) r^(X) denotes the restriction of

X to N. Then r^ is a Lie algebra homomorphism of ΓN(TM) onto Γ(TN),

that is, r*[X,Y] = [r*X,r*Y].

Proof. Easy computation.

LEMMA 1.5. Let XeΓN(TM) such that X(p) ψ 0 at peM. Then

there is a local coordinate system (U x\ , xn, y\ , yέ) such that X =

d/dx1 on U and if peN and dim N^l then U Π N = {y1 = = y* = 0}.

Proof. Easy computation.

§2. Characterization of maximal ideals of Γ0(TM).

We denote by Γ(TM) the Lie algebra of all C°° vector fields on M

with compact support, and Γ0(TM) = {X e Γ(TM) \ X(pQ) = 0} is a Lie sub-

algebra of Γ(TM), where p0 e M is an arbitrary but fixed point. We set
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Π(TM) = {Xe Γ0(TM) I f (X)(Po) = 0 for all r ^ k},

where f (X)(j>0) is the r-jet of X at p0.

LEMMA 2.1. // XeΓQ(TM) does not vanish at peM (p Φ p0), then

for any ZeΓ0(TM) there are a neighborhood U of p in M and a vector

field Y 6 Γ0(TM) such that [X, Y] = Z on U.

Proof. By Lemma 1.5 there exists a local coordinate system (V;

x\ . , xm) at p such that X = d/da;1 on 7. For any Z = ζKdjdx*) e JVΪV),

i.e. ZeΓQ(TM) such that Z | F = ζKd/dx*), we consider the differential

equations

These equations have solutions on some neighborhood UaV of p. Set

Y = nfO/dx*), then Y is a C°° vector field on U and satisfies the equation

[Xy Y] = Z on C7. Here we may assume that U is relatively compact in

V and dose not contain p0. Then an appropriate extension of Y is con-

tained in ΓQ(TM).

LEMMA 2.2. Let gϊ(m) ί>e ίfeβ Lie algebra of all m x m reαϊ matrices.

Then we have the following results.

( i ) s^(m) = {Ae gl(m) | trace A — 0} is an ideal of gί(m).

(ii) The center of QΪ(m) is 3 = {λl\l is the unit matrix and λ is a

real number.}, and 3 is an ideal of gί(m).

(iii) // m >̂ 2, then gϊ(m) = %®s£(m) {direct sum), i.e. 3 Π s£(m) = 0.

If m — 1, then gί(m) = 3.

(iv) // m ̂  2, ffoew s^(m) is a simple Lie algebra, that is, s£(m)

does not admit any non-trivial ideals.

(v) 3 and s£(m) are maximal ideals of gϊ(m).

Proof. These results are well known, and we omit the proofs, (see,

for example, [3])

L E M M A 2.3. For each point peM such that p=£pQ we denote by

Jv the subset {X e Γ0(TM) | X(p) = 0 and f (X)(p) = 0 for all r ^ 1} 0/

Γ0(TM). Then for each peM, Jv is an ideal of Γ0(TM).

Proof. The proof is direct computation.
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LEMMA 2.4. Let p e M be a given point such that p Φ p0. If J is

a proper ideal of Γ0(TM), i.e. J £ Γ0(TM), such that X(p) = 0 for all Z e / ,

Then JCSP.

Proof. Since p Φ p0, there is a local coordinate system ([/; x\ ,

xm) at p such that U$p0. Hence appropriate extensions of d/dxj (j — 1,

•• ,m) are contained in Γ0(TM). We also denote the extended vector

fields by the same letters. For any X = ξ^d/dx1) e / w e have [d/dxj,X]

= dξt/dxi d/dx1 for all j = 1, . ,m. Since ./ is an ideal, [d/dxj,X] e J'.

From the assumption for y,(dξi/dxj)(p) = 0 for all i,j = 1, ,m. By

induction on r, we have \r(X)(p) = 0 for all r ^ 1. Therefore J a. Jv.

LEMMA 2.5. Let A be an arbitrary Lie algebra. If a and 6 are

ideals of A such that αZ)b. Then (A/B)/(α/B) ^A/a.

Proof. The result is well known, and we omit the proof.

LEMMA 2.6. The subset Γ\{TM) = {X e 7V7V) | \\X)(pQ) = 0} is α

proper ideal of Γ0(TM).

Proof. Easy computation.

LEMMA 2.7. Let π: Γ0(TM) -* Γ0(TM)/Γl(TM) ^ gl(m) 6e ίfee natural

projection. We define J\ and JH by Jh — π~\$) cmd Jse — π~ι(s£(m)).

Then both ./, and Jtt are proper ideals of Γ0(TM).

Proof. Since π: Γ0(TM) —» gΓ(m) is an onto Lie algebra homomor-

phism, we have the desired result.

PROPOSITION 2.8. // m is a maximal of ideal Γ0(TM) such that m D

ΓQ(TX), then m = St or Jse.

Proof. Let m Q ΓQ(TM) be a maximal ideal such that

Then by Lemma 2.5 m/Γ&TM) is a proper ideal of Γ0(TM)/Γl(TM). By

Lemma 2.2, Γ0(TM)/Γl(TM) ^ gl(ra) = %®s£(m) and both 3 and sβ(m) are

simple Lie algebras. Hence m/Γl(TM) should be equal to either 5 or s£(m).

Therefore we have m = π~\%) — Jh or m = ̂ "

LEMMA 2.9. // m is α maximal ideal of Γ0(TM) such that m D Γ^(TM)f

then for any point p Φ pQ, there exists an element X e 3K sttcfe ίfeαί X(p)

Φ 0, where

Γo(TM) = {XeΓ0(TM)\ΠX)(p0) = 0 /or αZZ r ^
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Proof. Assume that there exists a point p e M (p ΦpQ) such that
X(p) = 0 for all X em. By Lemma 2.4 m c j % . Since m is a maximal
ideal, m = Sp. On the other hand, since p Φ pQ9 there exists Y e ΓQ(TM)

such that Y(p) Φ 0. Hence m — JP3>Y, contradicting the condition

LEMMA 2.10. // m is a maximal ideal of Γ0(TM) such that m z> ΓQ(TM),

then WxnXPo) is a proper ideal of gί(m), where i\m)(p0) is the image of
m under the natural projection

π: Γ0(TM) -> Γ0(TM)/Π(TM) s βl(m) .

Proof. Assume fCmXPo) = gl(m). Then by Sternberg's linearization
theorem [4], there exist a vector field Xem and a smooth local coordi-
nate system (U; x\ >,xm) at p0 such that X\σ = 2]< ̂ Kdjdx1). On the
other hand, for any Z e Γ\(TU)9 there exists a sequence of neighborhoods
y D yx ID y2 D .. D yn D .. of p0 such that y c E7 and

_ on y ,

\|«12:2 ' / 'όX%

where φi(x) is a C°° function on U such that

on y i c y

outside some neighborhood of y ,
Σι«[^2^«(^) «̂ ^α is a power series which converges on V and ̂  is a Cw

vector field on M such that Z(p0) = 0 and f(iΓ)(p0) = 0 for all r ^ 1 (see
[4] p. 35). Now we consider the following power series

|α| — 1

This series converges on V and becomes a C°° vector field on V. Hence
a suitable extension Y of this vector field, i.e.

is contained in JΓJCΓ̂ ). Since Z e m and m is an ideal of Γ0(TM), we
obtain [X,Y]em. Furthermore we have [X, Y] = A3-d/dxj, where
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By the definition of φ{, we have

?ί- = 0 on 7^ for all multiple indices β with |fl| ^ 1 .
dxβ

Therefore the Taylor expansion of [X, Y] at p0 = the Taylor expansion of
(Z -.Z) at p0. Hence Z - Z - [X, Y] e Γ^(TM) c m. Then Z e m, hence
Γl(TM) c m. Therefore, by Proposition 2.8, m = c/8 or Ju. We have
then fίmXPo) £ £t(wθ, contradicting the assumption.

PROPOSITION 2.11. // m is a maximal ideal of ΓQ(TM) such that
m D Γo(TM)9 then m = / , or J2^.

Proof. By Lemma 2.10, fdnXpo) is a proper ideal of gl(m). By
Lemma 2.2, fOnXPo) should be equal to either g or s£(m). If î mXpo) = g
(resp. s^(m)), then m c y a (resp. m c Js^). By the maximality of m, m =
e/a (resp. m = Su).

LEMMA 2.12. // m is a maximal ideal of Γ0(TM) such that m φ
Γ?(TM), then iKm)(pJ - QΪ(m).

Proof. Assume WmXPo) be a proper ideal of gί(m). Then there
occur three cases. If fOnXPo) = {0}, then m c PJίΓ^), contradicting the
assumption. If fOnXPo) = 6 (resp. fOnXpo) = ̂ (m)), mD
(resp. m D ̂ f i 3 Γo(TM)), contradicting the assumption. Hence
should be equal to cjl(m).

LEMMA 2.13. Lei m be a maximal ideal of Γ0(TM) such that f

= QΪ(m). If for any peM with pΦp0 there exists Yem such that

Y(p) φ 0, then m D Γ?(TM).

Proof. We set S% = {Xe Γ^{TM) \ supp X 2 pQ}. First of all we prove

that / J o c m .
(Remark that the assumption J%^ c m has identical meaning with

that of Lemma 1 of Pursell and Shanks [9], but unfortunately their
proof contains a mistake about the argument of supports of the vector
fields denoted by JV*. A complete proof for Lemma 1 is given in [5], We
use here the method used in [5].)

Let X be an arbitrary element of f%^ From the assumption of
Lemma 2.13, for any pesupp X there are a vector field Γ e m and
a local coordinate system (V; x\ -,xm) such that Y\v = d/dx1. Since
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supp X is compact, there are 7 { 6m, Xt e J% and (7* x\, , xf), i =

1, , r, such that Γ£ |F< = 3/3a?}, X = X1 + + Z r , suppX* c 7< and

Xi = Σ * f *(β/dxt) on F,.
Hence if we want to prove that l e m , it suffices to prove that

X% e m for each i. Because the argument is local we may delete the

indices, that is, we may assume that there is a local coordinate system

(V; x\ 9x
m) such that X is written as X — Σ ξι(d/dx*) on V with

supp ξic.V for all ΐ = 1, ,m, and a suitable extension of d/dx1 is con-

tained in m. We use the same notation for the extended vector fields

because all argument here is local. Since d/dx1 e m and ild/dx1, (xψid/dx1)]

= a1θ/3aj1),α1(3/9&1)€m. For ξXdjdx1) we have the following formulae:

I ΎιCι I — I C1

L. UtΛS U%ΛJ J \ 9a;1 / dx1

and

dx1 dx11 \ dx1 ) dx1

Hence we have Kld/dz1, xψid/dx1)] - Wid/dx1), ξKd/dx1)]) = ξXd/dx1) e m.

On the other hand for ξi(j5/dxt), i ^ 2, we have the following formulae:

X1 dX

and

* 1 = (f
3a;* J \ em

dx1 dx1 J dx1 dx1

Hence we have

L 3

Therefore we have X = 2 ξXd/dx*) e m. Finally we obtain ./g0 c m. Now

we continue the proof of Lemma 2.13.

Since f(m)(p0) = gί(m), by the Sternberg's linearization theorem there

are a vector field l e n t and a local coordidate system (ϋ; x\ ,#m) at

p0 such that X ^ = x^d/dx*). For any Z e Γ?(TM) such that Z ̂  = ζ*(d/dx')

we consider the following system of differential equations on a neighbor-

hood of p0:
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By the polar coordinate system xι = rφiiθ1, , θm~ι) (i = 1, , m), above
equations are written as

where r2 = 2^ (x1)2. By r(dηj/dr) — ̂  = 0 we have 3/ = C(r)-r, where
C(r) is a function of r. So we have dC/dr = ζ^/r2. Since ζ̂  is flat at
r = 0,

Jo r2

Hence we have

Jo
\ —

o r 2

on some neighborhood WdU of p0. Clearly ^(0) = 0 0" = l» >^)
Therefore a suitable extension Y of yfO/dx*), i.e. Γ |^ = ifid/dx*), is con-
tained in Γ0(TM). Obviously [X, Y]\w = Z \w. On the other hand [X, Y] e m.
We set A = Z - [X, Y]. Then A e Γΐ(TM). Since supp A ^ 0 , A e / ξ o c m .
Then Z = A + [Z, Y], hence Z e m. Therefore Γ?(TM) c m.

PROPOSITION 2.14. // m is α maximal ideal of Γ0(TM) such that
m ίpΓ^(TM)9 then there exists a unique point p eM such that p Φp0 and
m = Sp.

Proof. By Lemma 2.12, \Km)(p0) = gϊ(m). By Lemma 2.13, there
exists a point peM such that p Φ p0 and X(p) = 0 for all Xe m. By
Lemma 2.4, m c y p . Since m is a maximal ideal, m = Jp. Further-
more the maximality of m implies the uniqueness of the point p.

THEOREM 2.15. Any maximal ideal of Γ0(TM) should be equal to one
of the following ideals;

a >: ideal with finite codimensίon and corresponding to p0,
(ϋ) Λj

(iii) Jv: ideal with infinite codimension and corresponding to p

(P Φ Po)
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Proof. The result is an immediate consequence of Propositions 2.11
and 2.14.

§ 3 . Characterization of maximal ideals of ΓN(TM) ( d i m i V ^ 1).

LEMMA 3.1. Let X e ΓN(TM) such that X(p) Φ 0 at p e M. Then for
any Z e ΓN(TM) there exist an element Y e ΓN(TM) and a neighborhood
U of p in M such that [X, Y] — Z on U.

Proof. The case p zN was already proved in Lemma 2.1. Let p
be a point in N. By Lemma 1.5 we can take a local coordinate system
(U; x\'"9x

n,y\ ,i/0 at p such that U Π N = {y1 = = y* = 0} and
X = d/dx1 on f7. For any Z = ζ\d/dxi) + ζa(d/dya) eΓN(TM) we consider
the following differetial equations.

f ζ C « , , )
dx1

i 2 l ζ« (α = l , . . . , ^ ) , where ζ'ίa?1, ,a?n,0, -,0) = 0 .
dX1

These equations have solutions on U:

S e t C a ( x 2 , - - , x n , O , - . . , 0 ) = 0 f o r a = 1 , • - - , £ .

Then τf(xx

9 , #n, 0, , 0) = 0. Let Y be an appropriate extension
of ηXd/dx*) + ηa(djdya). Then YeΓN(TM) and [X,Y] = Z on ϋ.

LEMMA 3.2. For any proper ideal J aΓN(TM) there exists a point
peM such that X(p) = 0 for all I e / .

Proof. The proof is done by the method which was used to prove
f%ι c m in Lemma 2.13, and omitted.

LEMMA 3.3. Let J Q ΓN(TM) be an ideal, and peM be a point such
that X(p) = 0 for all X e f.

(Case peN) Let (U; x1, -,xm) be a local coordinate system at p.
Then for any X = f*(3/3ίc*) e J we have

.(p) = 0 (1 ̂  i ^ m 1 <£ r) .
dXix - dXίr
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(Case peN) Let (U; x\ ,xn,y*- -,yι) be a local coordinate sys-

tem at p in M such that U Π N = {y1 = = y* = 0}.

Then for any X = ξKd/dx1) + ξa(d/dya) e J we have

- (p) •—• 0 and \P) == 0
dxu dxίr dxiχ dxir

(1 ^ i ^ n; 1 ^ a ^ £ 1 ^ r) .

Proof. The proof is all the same as that of Lemma 2.4.

LEMMA 3.4. Let J be a proper ideal of ΓN(TM) such that X(p) = 0

for all Xe J at a point peM. Then peN, if and only if J does not

contain Ker r^, where r^: ΓN(TM) —> Γ(TN) is the Lie algebra homomor-

phism.

Proof. Easy computation.

Let p be a point of M. We denote by Jv the ideal of ΓN(TM) con-

sisting of all element X such that X and its all derivatives vanish at

the point p. Clearly if peN, then Jv is a maximal ideal of ΓN(TM).

For a given point peN we denote by Jv the ideal of Γ(TN) con-

sisting of all element Y such that Y and its all derivatives vanish at

the point p. Jv is a maximal ideal of Γ(TN).

PROPOSITION 3.5. For any maximal ideal J of ΓN(TM), there exists

a unique point peM such that

P (i/ / does not contain Kerr*)

'x^v df J contains Kerr^) .

Proof. By Lemma 3.2 there is a point peM such that X(p) = 0

for all XeJ. If J does not contain Kerr^, then p is never contained

in N. Hence by Lemma 3.3 J is contained in the proper ideal Jv.

Since J is maximal, J = Jv. If J contains Ker r#, by Lemma 3.3

r^(J) c / p , By the maximality of f,r^{J) is also maximal in Γ(TN).

Hence r # ( ^ ) = Jv. Therefore J = r^Jv. Furthermore the maximality

of J implies the uniqueness of the point p.

LEMMA 3.6. ΓN(TM)IJV s R[[x\ , #m]] X X jBtfα;1, , xm]] and

ΓN(TM)lrιιJp s ΛEίa?1, , #n]] X - X R[[x\ ,a;w]] as Lie algebras,

where m = n + £ and R[[ •]] is the ring of formal power series.
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Proof. Let (U; x1, -,xm) be a local coordinate system at peM.

Then the formal Taylor expansion of XeΓN(TM) at p with respect to

this coordinate is a homomorphism of ΓN(TM) onto the product of the

rings of formal power series, and its kernel is exactly Jv.

For the case peN we consider the following commutative diagram:

ΓN{TM) T*—

i π

ΓN(TM)/r^Jp -^-> Γ(TN)/JP s R[[x\ , xn]] x . . . x R[[x\ , xn]] .

Since f# is an isomorphism, we have the desired result.

§ 4. Stone topology of maximal ideal sets.

(Case Γ0(TM)) Let M and ΛF be C°° manifolds and p0 (resp. 2>ί) be

an arbitrary but fixed point of M (resp. M'). We define Γ0(TM)f Γ0(TM,),

Γ&TM) and Γ\(TM,) as in §2.

LEMMA 4.1. // Φ: Γ0(TM) -* ΓQ(TM,) is a Lie algebra isomorphism,

then Φ(*f) = Jh,, Φ(^H) = JtV and Φ{JV) = ^ p / {if p φp0). Especially

Φ{Γ\{TM)) =

Proof. If m7 = Φ(m) is a maximal ideal, then Γ0(TM)/m is isomor-

phic to Γ0(TM,)/m'. Hence codim m in Γ0(TM) = codim m7 in ΓQ(TM,).

Since codim */a = ^2 — 1 and codim JH = 1, we have Φ(,/a) = •/,/ and

Φί,/^) = ,/ t r . On the other hand, since each ideal Jv which has infinite

codimension corresponds to a point p (p Φ p0) uniquely, Φ(<fp) = Jp. for

some unique point p' (p' Φ p'o). Moreover, since Γι

0(TM) = Jh (Ί J ŝ̂ ,

Φ(Γl(TM)) =

We denote by M* the set of all maximal ideals of Γ0(TM), that is,

M* = {>• I y c Γo(Γ^): maximal ideal} .

From now on, we denote both Jί

i and JPH simply SPo. Let σ: M* -• M

be the natural correspondence defined by a{J^) = p. (Note, σί,/^^ =

σ(Jh) = σ(S9i) = Po)

For any subset A c J ί we set A* = σ~\A) = {,/p e M* |p e A}. .

DEFINITION 4.2. (Stone topology of M*) For any subset of M* we

define a closure operator "%£" by the formulas:
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( 1 ) <€lφ = φ

(ii) If B Φ φ then <g£B = {m\m is a maximal ideal such that

nt 3 ΓUa ^}

DEFINITION 4.3. We call a subset B e l * is closed, if and only if

ViB = B.

LEMMA 4.4. For each A* = ^ ( A ) , <^(A*) = (3)*, where Ά is the

closure of A in M.

Proof. First, we prove " c " . For any m e ^ ( A * ) , since m is a

maximal ideal, there exists a unique point p e M such that m = Jv (may

be p = p0). Assume p g A.

(Case p Φp0) m = ./p D ΓUe* «̂ " On the other hand, since p g A,

there is X e U^e^*«^" such that X(p) Φ 0. Hence I g / P contradiction.

(Case p = Po) There are two cases, one is m = Jh D Π^e^* ^ a n d

other is m = y ^ D OseA* S. On the other hand there is Y e Γ0(TM) such

that jHTXPo) ^8 U s^(m) (set union). Let ψ:M-+R be a C°° function

such that

fl in some neighborhood U of p0 with U Π A = φ
Ψ ~ {

[0 outside some neighborhood of U.
Then X = ψYe Γ)seA* f and iK-ΏCPo) β 3 U s^(m), that is,

contradiction. Therefore p should be contained in A. So m e (A)*.

Next we prove " 3 " . For any */p e (A)* (may be p = p0), p e A. If

p e A , then clearly SpeΦ£(A*). So we may assume peA — A. For

any Y efl/Gi Λ Y = 0 on A. Since Y is a C°° vector field, Y(p) = 0

and \r(Y)(p) = 0 for all r ;> 1. Hence Y e / j , (may be p = p0). There-

fore Jv D Π^e^* ̂ > that is, •/, e ^ ( A * ) . This completes the proof of

Lemma 4.4.

LEMMA 4.5. The natural correspondence σ:M*—>M preserves the

concept of closed subsets defined by Definition 4.3, that is, A is a closed

subset of M, if and only if A* = σ~\A) is a closed subset of M*.

Proof. Let A be a closed subset of M. By Lemma 4.4,

(A)* = A*. Hence A* is closed.

Conversely, let A* = σ~\A) be a closed subset of M*f then by

Lemma 4.4, (A)* = <^(A*) = A*. Hence A = σ((A)*) = σ(A*) = A. So A

is closed.
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LEMMA 4.6. Let Φ: Γ0(TM) —• Γ0(TM,) be a Lie algebra isomorphism.

Then A* is a closed subset of M*, if and only if Φ{A*) is a closed sub-

set of (MO*, where Φ(A*) = {Φ(S) \ J e A*}.

Proof. Since Φ is an isomorphism, Φ: M* —> (MO* is a one to one,

onto correspondence. So we have

= n *o = n
Hence we have mDΠ/64*Λ if and only if ί(m) D Π/'6#(i )^ ' This
completes the proof of Lemma 4.6.

Now we define a map φ\M-*W by the following formula.

(φ(Po) = Po

1 φ(p) = 2>' , if p ^ Po and Φ(yp) = y p , .

PROPOSITION 4.7. Tfce natural map φ: M ->M' is an onto homeo-

morphism.

Proof. Clearly φ is a one to one and onto map. From the defini-

tion of φ9 we have the following commutative diagram.

M* - ! > (MO*

M — > M' ,
ψ

where σ< is the natural correspondence. Let B be an arbitrary closed

subset of M'. By Lemmas 4.5 and 4.6, (Φ~ι <> σ^XB) is a closed subset

of M*. Since σΐKφ'KB)) = (φ-^αJΓ1)^), we see by Lemma 4.5 that p-^B)

is a closed subset of M. Hence φ is a continuous map. By the same

way we can prove that φ~ι is also continuous. Hence φ is a homeomor-

phism.

Next we study the case ΓN(TM) with dim JV ^ 1. Let M and M' be

C00 manifolds and N (resp. NO be an arbitrary but fixed closed submani-

fold of M (resp. MO.

PROPOSITION 4.8. Let Φ: ΓN{TM) -> ΓN,(TM,) be an isomorphism. Let

J be the maximal ideal of ΓN(TM) corresponding to p, and «/' == Φ(*f)

be the maximal ideal of ΓN,(TM,) corresponding to p'. Then peN, if

and only if p'eN'.
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Proof. Since Φ: ΓN{TM) -> ΓN,(TM,) is an isomorphism, ΓN(TM)jJ

should be isomorphic to TNf(TMi)\Jf. By Lemma 3.6 this implies peN

LEMMA 4.9. Let Φ: ΓN(TM) -* ΓN,(TM,) be an isomorphism. Then

Φ (Ker r^) = Eer r*, that is, Φ induces an isomorphism Ψ: Γ(TN) —> Γ(TN,),

where r*: ΓN(TM) -» Γ(TN) (resp. r'* : ΓN,(TM,) -> Γ(TN,)) is the homomor-

phism induced by the restriction of vector fields on M (resp. Mf) to N

(resp. 2V7).

Proof. Obviously Ker r^ = Π {r^Jp \ p e N}. By Proposition 4.8,

Φ (Ker r*) = Π {Φir^Jp) \peN} = Π {^Jv \ q e W] - Ker r'*.

Let Φ: ΓN{TM) -> ΓN,(TM,) be an isomorphism. Let J be the maximal

ideal corresponding to peM. Then by Proposition 3.5 there exists a

unique point qeM' such that the maximal ideal J' = Φ(JQ corresponds

to q. We set ψ{p) = g. Now we define the Stone topology of M* —

{•/1J c ΓN(TM): maximal ideal} as in the case Γ0(TM). Then we have

the following proposition.

PROPOSITION 4.10. The natural correspondence φ: M -*M' is an onto

homeomorphism such that φ(N) = N'.

Proof. The proof for φ to be a homeomorphism is all the same as

that of the case ΓQ(TM). By Proposition 4.8, φ(N) = N'.

§ 5. Characterization of non-zero vector fields.

LEMMA 5.1. Let Jp be the maximal ideal of Γ0(TM) corresponding

to p (pΦ Po). For any XeΓQ(TM)9 X(p) Φ 0, if and only if [X,Γ0(TM)]

LEMMA 5.Γ. For any XeΓN(TM), X(p) Φ 0, if and only if

( i ) [X,ΓN(TM)] + yp = ΓN(TM) (for peN) or

(ii) [r^X, Γ(TN)] + JP = Γ(TN) (for p e N).

Proof. The proofs of these lemmas are all the same as that of Lem-

ma 3 of Pursell and Shanks [9] (see also Omori (5]), and omitted.

L E M M A 5.2. Let Φ: Γ0(TM) —> ΓQ(TM,) be a Lie algebra isomorphism

and ψ\M —• ikF be the induced homeomorphism. For any peM (p Φp0)

there are smooth local coordinate system (U; xι, -9x
m) at p and (V; y\

• ., ym) at <p(p) — pf such that for any
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Proof. Since p Φp09 there is a smooth local coordinate system (U;

x\ , #m) at p such that p0 £ U. Hence suitable extensions of d\dxι (i =

1, ,m) are contained in Γ0(TM). We also denote the extended vector

fields by the same letters. Set vt = Φid/dx1) (i = l , « ,m). Then

vteΓ0(TM.) for all i = l , « ,m. Since (d/dx^ip) ψ 0, by Lemma 5.1,

i^Q/) =£ 0, where p' = ^(p). Since Φ is a Lie algebra isomorphism, on

some neighborhood of p',[vi9Vj] = Φ([d/dxi,d/dxi]) = 0 for all i , ; = 1, ,

m. Hence there exists a smooth local coordinate system (V; y\ ,i/m)

at pf such that v t = djdy1 on 7. Let g be an arbitrary point in 17.

Now, for any X = ζKdjdx1) e Γ0(TM), a suitable extension of ξt(q)(β/dxi)

is contained in ΓQ(TM). We denote it by X*. Since (X - X*)(q) = 0, by

Lemma 5.1, Φ(X - Z*)(βO = 0. Hence Φ(X){q') = Φ(X*)(<?0 = ^ ( ί ) -

Therefore ΦiPO/dx*)) = (ξ* o <p~l)(dIdyι) on F.

COROLLARY 5.3. Γ/̂ β induced homeomorphism φ:M-*M' is linear

with respect to the local coordinate systems defined in Lemma 5.2, that

is, φί(x1

f , #m) = xι (ί = 1, , m), where φι •=. yι o φ.

Proof. We use the same notations for the extended vector fields

because all argument here is local. By Lemma 5.2, Φix^d/dxO) =

On the other hand we have [d/dyk

9(xίoψ-
1)(d/dyj)] =

and [d/dy\ (x'oφ-^)(9/3^)1 = Φ{{djdx\ ^(9/3^)1) =

δl(β/dyj)9 where δl is the Kronecker delta. So we have (d/dyk)(xioφ-1) —

δl. Hence xιoφ-1 = yί + c, where C is a constant of integration. Since

φ(0) = 0, C = 0. Therefore ^ o ^ - 1 = /̂̂  Since 9? is a homeomorphism,

j/* o p = (χi o φ~ι) o φ = χi.

PROPOSITION 5.4. Lei Φ: Γ0(TM)-*Γ0(TM,) be a Lie algebra isomor-

phism and ψ\ M -> M' be the induced homeomorphism. Then φ\Mo: Mo

—> MQ is a C°° diffeomorphίsm, where Mo = M — {p0} and M'o = M' — {p'o}.

Proof. Let / e C°°(M0) be an arbitrary C°° function of Mo and pf e M'o
be an arbitrary point, and set p' = φ(p). Let (J7; x\ ,xm) be a local

coordinate system at p in Mo. Since po<£U, a suitable extension of

f d/dx1 is contained in Γ0(TM). We denote the extended vector field by

the same letter. By Lemma 5.2, Φif d/dx1) = (f oφ^ d/dy1 on some

coordinate neighborhood 7 of pf eM'Q. Since Φ(f-d/dxι) is a C°° vector
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field, foφ'1 is a C°° function on V. Since pf and / are arbitrary, φ is

a diffeomorphism.

COROLLARY 5.5. Let φ:M->M' be the homeomorphism induced by

the isomorphism Φ. Then Φ = dψ on M — {p0}.

Proof. For each point p eM — {p0}, by Lemma 5.2 and Corollary

5.3 φiix1, , xm) = yioφ{χί

f . . . , χm) = χι in some neighborhood of p.

Hence for any X = ξKd/dx*) e ΓQ(TM) we have

On the other hand Φ(Z) = i^oφ-^djdy1. Hence dψ — Φ on M — {po}

§ 6. Proof of the theorem.

(Case Γ0(TM))

LEMMA 6.1. For any YeΓ0(TM,) and any geC°°(M') we have

Proof. For the case p Φ p0 we already proved in Lemma 5.2. Set

Z = gY - g(pθ Γ, where p'o = <p(p0). Clearly Z(p'o) = 0. Since Φ " 1 : Γ0(TM,)

-• JΌίΓjf) is an isomorphism, φ-χ(0) = 0. Hence Φ~KZ){pQ) = φ-^^ΓXPo)

= 0. Hence we have Φ~1(gY)(pQ) = g(pΌ)φ-ι(Y)(p0) =

LEMMA 6.2. Lei J?1 be the one dimensional Euclidean space with

the standard coordinate x. If f: R1 —> R is a continuous function such

that g(x) = x f(x) is a Cr+1 function, then fix) is a Cr function. More-

over if g is a C°° function, then f is also a C°° function.

Proof. It suffices to prove that / is a Cι function if g is a C2 function.

Clearly / is a C2 function except the origin 0. We take the Taylor ex-

pansion of g(x) at 0.

g(x) = 0(0) + g'ϋb) - x + ig"(βx) -x2 (0 < θ < 1) .

Since g(x) = «•/(&), ^(0) = 0. So x f(x) = g\ϋ)-x + \g"(βx)-x2, and we

have fix) = g\0) + \xg"iθx) for x Φ 0. Since fix) is continuous, /(0) =

^(0). Hence we have

https://doi.org/10.1017/S0027763000016238 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016238


108 AKIRA KORIYAMA

lim /(^) ~ /(0) = i i m l.g"(βx) = — g"(0) .
x-*0 X x^O 2 2

Therefore f(x) is differentiable at x = 0 and f'(x) is continuous on if1,

that is, fix) is a C1 function. By induction on r, /(#) becomes a C r

function.

COROLLARY 6.3. Let Rm he the Euclidean m-space with the standard

coordinate (a?1, ,xm). If f:Rm—>R is a continuous function such

that g(x) = x1-f(x) is a Cr+1 function, then f(x) is a Cr function.

Especially, if g(x) is a C°° function then f(x) is also a C°° function.

Proof. We regard x2, , xm as smooth parameters of g(x), and take

the Taylor expansion of g(x) at the origin 0eRm with respect to the

first coordinate x1. Then we can easily prove the differentiability of f(x).

THEOREM 6.4. Let Φ: Γ0(TM) -> Γ0(TM,) be a Lie algebra isomorphism,

and <p:M-±M' be the induced homeomorphίsm. Then ψ becomes a C°°

diffeomorphίsm.

Proof. By Proposition 5.4, ψ: M — {p0} —> Mf — {p'o} is a C°° diffeo-

morphism. So it suffices to prove the differentiability of ψ at poeM.

Let (£7; x\ -,xm) be a local coordinate at poeM. Then suitable ex-

tension of x^d/dx1 is contained in Γ0(TM). We denote the extended

vector field by X. Set Y = Φ(X), then YeΓ0(TM/). For any geC-W)

we set Y, = gY. Then YxeΓJiTM,). Hence X1 = φ-\Y1) is contained

in Γ0(TM). By Lemma 6.1,

Hence, on the neighborhood U, Xλ = (goφ) χ1(d/dx1). Since Xx is a C°°

vector field, (^o^).ίc1 e C°°(t7). By Proposition 4.7, #> is continuous. There-

fore the composition goφ is continuous and, by Corollary 6.3, ^ is C°°

differentiable at poeU c M.

COROLLARY 6.5. Let M and M' be compact manifolds without

boundaries. If Lie algebras of @(M,p0) and @(M',PQ) are isomorphic,

then @(M,PQ) = @(M',p§ as I.L.H.-Liβ groups.

Proof. Since Lie algebras of @(M,p0) and @(M',pΌ) are exactly

Γ0(TM) and Γ0(TM,), by Theorem 6.4,
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COROLLARY 6.6. Let φ: M —»M/ be the diffeomorphίsm induced by Φ.

Then we have dφ = Φ.

Proof. Since Φ: Γ0(TM) -* Γ0(TM,) is an isomorphism, for any

XeΓ0(TM), Φ(X)eΓ0(TM.). Since φ\M-*M' is a C°° diffeomorphism,

also we have dφ(X) eΓ0(TM,). By Corollary 5.5 dφ(X) = Φ(X) on M' -

{pj} as C°° vector fields. By continuity of the vector fields we have

dφ{X)(vΌ) = ί f f l W Hence dφ = Φ.

COROLLARY 6.7. Let N = {p19 ,ps} and N' = {p'19 ,p{} &β zero

dimensional manifolds consisting of finite number of points. If ΓN(TM)

is isomorphic to ΓN,(TM,), then s — t and there exists a C°° diffeomor-

phism ψ: M -> Mr such that <p(N) = N'.

Proof. The proof is easy, and omitted.

(Case ΓN(TM) with dim N^ΐ)

LEMMA 6.8. Let Φ: ΓN(TM) —> ΓN,{TM,)be a Lie algebra isomorphism.

We have then, for any feC°°(M) and XeΓN(TM), Φ(fX) = {foψ

Proof. The proof is all the same as that of Lemma 5.2, and omitted.

THEOREM 6.9. Let Φ: ΓN(TM) -> ΓN,{TM,) be an isomorphism and

<p:M-*M' be the induced homeomorphism. Then ψ is a C°° diffeomor-

phism such that φ(N) = N'.

Proof. Let g be an arbitrary function in (^(MO, and q = ψ{p) be

an arbitrarily fixed point. Let Y be any element of ΓN,(TM,) such that

Y(q) Φ 0. Actually we can take such Y, because of dim N' >̂ 1. We set

X = φ-\Y), Y1 = gY and Xx = Φ'KY^.

(Case peN) By Lemma 5.Γ, [Y,ΓN,(TM,)] + J'q = ΓN,(TM,)f where

J'q is the maximal ideal corresponding to q. Since Φ is a Lie algebra

isomorphism, by operating Φ~ι to the above equality we have [X, ΓN(TM)]

+ jrp = ΓN(TM). Hence X(p) Φ 0.

(Case p e IV) By Lemma 5.1', [rςY,Γ(2V)] + J\ = Γ(TN.). By

operating the isomorphism Ψ~ι: Γ(TN,) -> Γ(TN), we have (r^Z)^) Φ 0.

Hence Z(p) ^ 0.

So we may assume that X = d/dx1 on a some neighborhood U oί p.

On the other hand, Z x = φ-ι(Yλ) = Φ^faY) = (ffo^φ-^Y) = (goψ)X.
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Hence Xx = (goφXd/dx1) on U. This is an expression of the smooth

vector field Xx with respect to the local coordinate on U. Therefore g o ψ

is contained in C°°(M). So φ is a diffeomorphism.

COROLLARY 6.10. Let φ:M—>M' be the diffeomorphism induced by

Φ. Then we have dφ = Φ.

Proof. The proof is same as that of Corollary 6.6.
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