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A NEW VERSION OF a-TIGHT CLOSURE

ADELA VRACIU

Abstract. Hara and Yoshida introduced a notion of a-tight closure in 2003,
and they proved that the test ideals given by this operation correspond to mul-
tiplier ideals. However, their operation is not a true closure. The alternative
operation introduced here is a true closure. Moreover, we define a joint Hilbert-
Kunz multiplicity that can be used to test for membership in this closure. We
study the connections between the Hara-Yoshida operation and the one intro-
duced here, primarily from the point of view of test ideals. We also consider
variants with positive real exponents.

81. Introduction

In [HY], Hara and Yoshida introduced a notion of a-tight closure, which
generalizes the “classical” tight closure of Hochster and Huneke introduced
in [HH1]. The main motivation for their work is the connection between the
test ideals given by this operation and multiplier ideals, which generalizes
previous results of Hara ([H2]) and Smith ([S2]). The advantage of this
version of test ideal is that it allows them to study multiplier ideals for
pairs, not only the multiplier ideal of a variety.

However, the Hara-Yoshida a-tight closure is not a true closure opera-
tion, since it gets (potentially) larger when iterated. The version introduced
in this paper is a true closure, and it is always contained in the Hara-Yoshida
a-tight closure. We establish several other connections between these oper-
ations. We prove that for a Gorenstein graded algebra of dimension at least
2, the test ideals given by these two operations are the same (Theorem 4.3).
The Hara-Yoshida a-tight closure of an ideal I is denoted I*%, while the new
version introduced here will be denoted *I*.

We define a joint Hilbert-Kunz multiplicity associated to two m-primary
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ideals a and I, and we prove that this multiplicity can be used to test for
membership in our version of a-tight closure. This is similar to the way
in which the Hilbert-Samuel multiplicity is used to test for membership in
the integral closure, and the Hilbert-Kunz multiplicity is used to test for
membership in tight closure.

There are versions of both closures, as well as of the joint multiplicity, in
which positive real numbers are allowed as exponents. For fixed ideals I and
a, we study the question of how [ *a' and 9 I* vary with ¢. This question
is related to the notion of jumping exponents (in characteristic zero), or
F-thresholds (in positive characteristic).

In this paper, R will denote a Noetherian ring of positive characteristic
p > 0 and Krull dimension d > 0, and ¢ = p® will always denote a power of
the characteristic. Most of the time, R will be assumed to be either local
or graded. R is the set of elements in R that are not in any minimal prime
of R. If I C R is an ideal, I'9 denotes the ideal generated by all %, when
1€ 1.

§2. Definitions and elementary properties

DEFINITION 2.1. ([HY]) Let a, I be ideals in R, and =z € R. We say
that z € I*® if there exists ¢ € R? such that ca?z? C 119 for all ¢ = p¢ > 0.

DEFINITION 2.2. Let a, I be ideals in R, and x € R. We say that
x € “T* if there exists ¢ € RY such that ca?z? C a?]l9 for all ¢ = p© > 0.

In the case when a = R, both of the above definitions coincide with
the definition of the usual tight closure of Hochster and Huneke ([HH1]),
which is denoted I*. Some elementary properties of these operations are
summarized below.

OBSERVATION 2.3. (1) For all a and I, we have I* C ¢I* C [*°.

(2) If a = (f) is a principal ideal, then I** = I* : f. In particular,
() £ 14U when (R, m) is local, T is m-primary, and f € m\ I*.

(3) If a = (f) is a principal ideal, and f is a non-zerodivisor on R, then
arf=1rr.

(4) For all a and I, *(*I*)* = *I*. In other words, *I* is a true closure

operation.
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Proof. (1), (2) and (3) are trivial.
(4) Let « € #(*I*)*. Then there exists ¢ € R® such that ca%z? C
a?(°1*)ld) for all ¢ = p°. Also, there exists ¢ € R° such that ¢/a?(°I*)l4) C

a?J19, Combining these two inclusions, we get ¢c’adzd C a4719), 0

The notion of test element for tight closure was defined in [HH1], and it
was proved that test elements (for tight closure) exist in very general classes
of rings.

DEFINITION 2.4. An element ¢ € R° is called a test element for tight
closure if we have cx € I for every ideal I and every z € I*.

PROPOSITION 2.5. Assume that R has test elements for the usual tight
closure. Then for any ideals a and I, with I of positive height and aNR° # (),
we have *I* C I.

___ Proof. By the usual determinant trick, cx?a? C a9l [4) implies ca? €
Ild C Ta C (I197"*tY* where n is the minimal number of generators of
1. The last inclusion is by the tight closure version of the Briancon-Skoda
theorem ([HH1], Theorem 5.4). Let d € R° be a test element, and f €
I" 1N R° a fixed element. Then we have cdfz? € I9 for all ¢ = p¢, which
shows that z € T. []

Versions in which positive real numbers occur as exponents can be de-
fined for both operations:

DEeFINITION 2.6. Let a, I C R beideals, and let ¢ > 0 be a real number.
Let € R. For any real number r, [r] denotes the smallest integer greater
than or equal to r.

(1) We say that = € I*%" if there exists ¢ € R® such that cz%al®! C 74

for all ¢ = p°.
(2) We say that z € 9 I* if there exists ¢ € R° such that czaltd] C qlta] ld]
for all ¢ = p°.

Each of these operations gives rise to a test ideal as follows:

DEFINITION 2.7. Let a C R be an ideal, and let t > 0 be a real number.
We define

T(a) = (") To=(\I: 1),

where each intersection ranges over all the ideals I C R.
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Part (1) of the next observation was noted in [HT], where it was used
to prove Skoda’s theorem for test ideals. Part (2) is an analogue for the
new a-tight closure.

OBSERVATION 2.8. Let a, I C R be ideals, and t > v(a) a real number,
where v(a) denotes the minimal number of generators of a. Then:

(1) ' = (1" ") a
(2) I = (" '(a)*) : a.

Proof. (1) The proof of this statement can be found as part of the
proof of Theorem 4.1 in [HT].

(2) Note that we have a” = alla™ ¢ for all r > v(a)g. We have
z e I* & cxtaltl C altdl[ld) & c(ax)ldaltal=a C qltal=9(q1)@) and the
conclusion follows since [tq] — ¢ = [(t — 1)q]. U

We establish two connections between the two versions of a-tight clo-
sure. The first result, Proposition 2.9, shows that for elements of large
enough degree in a graded ring, membership in one of these closures is
equivalent to membership in the other. The second result, Proposition 2.12
shows that, under certain assumptions, every element in the Hara-Yoshida
a-tight closure must satisfy a stronger condition, which bridges the gap
between the Hara-Yoshida definition and the one introduced in this paper.

We establish the following notation, which will be in effect throughout
this paper when graded rings are considered.

NoTATION. If R is a finitely generated graded algebra over a field,
R =@,~¢ Rn, we will denote R, := &, ., R, the unique maximal homo-
geneous ideal of R. We will let y1,...,ys be algebra generators for R, and
let f1,...,03s be their degrees. Set 8 = max(3;), ' = min(3;).

We say that R is standard graded if 8; = 1 for all 1.

PROPOSITION 2.9. Let R be a finitely generated graded algebra over a
field and let a C R be a homogeneous R, -primary ideal, so that R:“_ CacC
Rl+ for some integers | < k. Let I = (f1,..., fn) be a homogeneous ideal,
and x € Ry with N > Bk — 'l + max(deg(f;)). Then x € I** < x € °I*.

Proof. Assume that z € I** and deg(z) > Bk — [l + max(deg(f:)).
For each homogeneous h € a?, we have deg(h) > ('lg. We can write cx?h =
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Sor i aifi with ¢ € R° a; € R homogeneous elements, so that deg(a;) =
deg(c) + g deg(z) + deg(h) — g deg(f;) > Bkq for each i. Thus, a; € R>grq C
Riq C a? (the first inclusion follows because any element in R> g, can be
written as a linear combination of monomials yll'1 ooyl with i 8 + - +
isfs > Bkq, which implies that i1 + -+ +i5 > kq). 0

OBSERVATION 2.10. If R is standard graded, so 3 = (3, a = R, and
all the generators of I have the same degree, then we have *I* = I** N R>p,
where N denotes the common degree of the generators of I.

Proof. Let x € ®I*, so there exists ¢ € R° (which can be assumed
homogeneous) such that cz?a? C a?l [4]. Taking degrees of both sides yields
deg(c) + qdeg(z) + gr > qr + gN, so that deg(x) > N. This shows that
“I* C I** N R>pn. The other inclusion is contained in Proposition 2.9. O

This observation might suggest that *I* = I** N T for m-primary ideals
I. This is in fact not true (however, ®I* C I** N T is always true), as seen
in the following example.

EXAMPLE 2.11. Let R = k[z,y], I = (2%,4%), a = (2,%)3. Then we
have I** = I + (xy?,y3) = I : (z,y)%, I"* NI = I + (zy?), and °I* =
T4 () =1+ (,9)

Proof. If i +j > 3q, we have i > q or j > 2q. In either case we have
iy xiy?d € (2%9,4*), and thus zy? € I**. Similarly, if i + j > 3¢ we have
i > 2q or j > ¢; in either case, 2'y7y3? € (ac2q,y4q), and thus y3 € I*®. Also
note (zy?)? € I?, so xy? € I. However, y> ¢ I (one can see this from the
Newton polygon, for instance).

To see that xy? ¢ °I*, we prove the stronger fact that zy? ¢ (@9)" 1* for
any n > 3. This will suffice to prove the last statement, since all the ideals
under consideration are monomial. Assume the contrary, so that there exists
¢ € R° such that cz’y/z%% € (x,y)"I9 for all i, j with i + j = ng, for
some n.

Choose i = [4], j = (n—1)g+[4]. We obtain cal34/21y(n=3)a+la/2]q4q —
ax? + by* with a,b € (x,y)". This is clearly impossible since the degree
of x[34/21y(n=3)a+1a/2] is (n — 1)q, and the degree of ¢ is a constant. 0

PROPOSITION 2.12. Let (R,m) be an excellent normal domain such
that its completion is a domain. Let I, a C R be ideals, and assume that
a is not a principal ideal. Then there exists a Qo = p® and a ¢ € R° such
that for all x € I** we have cx%a? C m¥/Qo [l for all ¢ > 0.
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Note that if a is m-primary, then we can replace m?/@Qo0 by a?/@o by
choosing a possibly larger Q.

Proof. First note that there is no loss of generality in assuming that

~

is *-independent, i.e. I = (f1,..., fn) with fi & (f1,..., fiy..., fn)* for all
i. That is because one can find a *-independent Iy C I with I = I* (by
omitting generators of I that are redundant up to tight closure), and it is
easy to see that I = I implies I® = I*°.

Let a = (a1,...,as), with s = v(a) > 2, and I = (f1,...,fn). The
x-independence assumption implies that there exists ¢; such that

(ff,...jﬂj,,.,fﬂ) : f C ml/al

for all ¢ and all 7 (cf. Proposition 2.4 in [Ab]).

Since R is normal, we have a; ¢ @ for any 1 < k #1 < s, and we can
choose gz > 0 such that a; ¢ (ag, m92/%). Also choose g2 > s. In particular,
a; ¢ (a, m?/9)* and thus we can choose gy such that (az,m[q”/ql}) af C
m9/9 (using Proposition 2.4 in [Ab] again).

We have cz792q2%2 C J19%] for a fixed ¢ € R and all ¢. Fix an element
al' - als € a9% and write 2cx9%2a}! - - - als = by 192+ .- +b, 19, The choice
of g2 guarantees that ix > g for some k. Choose an index [ # k and consider

the element ai'---a¥® € a%% with jp = ip — ¢, ji = i + ¢, and j, = i,
for all other 7 = 1,...,s. We have cx%2a?' ---al® = V) f{? +--- + bl fi®.
Multiplying the first equation by a? and the second equation by az yields
(bia] — blal) € ( qu,...,fqu,...,fqu) o f142 C mlaaz/al and therefore
b; € (az,m[q”/qﬂ) caf C m?/%. This holds for all i = 1,...,n, and for
any choice of the multi-index (i1,...,75). We get the desired conclusion by
choosing Qo = ¢24o- 0

§3. Joint Hilbert-Kunz multiplicities

The idea of associating a multiplicity to a pair or more ideals (the
so-called mixed multiplicity) first appeared in [Bt], and the notion was ex-
tensively studied by many other authors, including B. Tessier, D. Rees and
I. Swanson. The idea of a multiplicity coming from length functions in-
volving both ordinary and Frobenius powers can be found in work of Hanes
([Hn]). The joint Hilbert-Kunz multiplicity introduced here bares a resem-
blance to each of these previous multiplicities, but is different from them.
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Assume that (R, m) is local with Krull dimension d > 1, let I, a C R be
m-primary ideals, M a finitely generated R-module, and ¢ > 0 a fixed real
number.

We study the function

M
bula) = )‘<afqt1[[q]M>’

where ¢ = p°. Note that a/?! is an ordinary power where the exponent is
obtained by taking the least integer which is greater than or equal to tq,
while 19 is a Frobenius power. We will write £(q) for £r(q).

THEOREM 3.1. Let R, I, a, M, t be as above, and let d be the Krull
dimension of R. Then there is a ¢ > 0 such that

((q) = cg® + O(¢" ).

If M = R, we call ¢ the joint Hilbert-Kunz multiplicity of the pair
(at,I) and we denote it egx(al,I). Note that the usual Hilbert-Samuel
and Hilbert-Kunz multiplicities can be recovered as special cases of joint
Hilbert-Kunz multiplicity: egx(a, R) = e(a) and egg (R, 1) = egx ().

The proof of the Theorem follows essentially the same steps as in Mon-
sky’s paper ([Mo]). We will follow closely the outline of his paper.

LEMMA 3.2. Assume that there is an h € R° such that hM = 0. Then
there exists a > 0 such that £y;(q) < ag®!.

Proof. Let n be the number of generators of I. Then we have I14 D 174,
Also, [t]q > [tq], so al®dl D altl9, and it follows that

h(q) < A<m>

which is a Hilbert-Samuel function over the ring R/h, a ring of Krull di-
mension at most d — 1, and thus it is bounded by ag?~! for some a > 0. []

LEMMA 3.3. Let M, N be finitely generated R-modules such that M,, =
N,, for every minimal prime p; of R. Then |€x(q) — fn(q)] < O(¢%1).
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Proof. Let S = R\ Upi. We have S™'M = S~IN. Since
S~1Homp(M,N) = Homg-1z(S71M,S7IN), we have a homomorphism
¢ : M — N such that S™1¢ is bijective. Unlocalizing, we get an element
h € S such that h annihilates the cokernel C' of ¢. Consider the exact

sequence
M N C

ata AN gl [N altd [ldC
Lemma 3.2 gives

— 0

In(q) — lar(q) < le(q) < ag®™

for some a > 0. Now repeat the argument with the roles of M, N reversed
in order to get

() = On(q) < bg?™!
for some b > 0. 0
DEFINITION 3.4. Let M(.) be M viewed as an R-module via the Frobe-

nius map F°: R — R. Note that ) is an exact functor, and, if we assume
that the residue field of R is perfect, we have

M
by (@) = A ( (alta]) T TTap°] M) '

The following is the one essential ingredient we need in addition to
Monsky’s ideas:

OBSERVATION 3.5. Let R, a, I, t be as above, e > 0 a fixed integer. By
prime avoidance, we can choose generators fi,..., fn of a that are in R°.
Let f := f1-++ fn. Assume that e > 0 so that n < p®. Then:

a. alter’l C (altahlr] . pp°,
b. Assume that the residue field of R is perfect. Then |€M(e)(q) —
tr(pea)l < O™ ).

Proof. a. The generators of alt“l are of the form F = f{“peHl o
famP i where 0 < iy, < p¢ — 1 for all k, and

(a1 + - +an)p®+i1 + -+ in = [tqp®] > ([tq] — 1)p°,

with all ag, i, € Z. It follows that ay +---4+a, > [tg] —1 —n+n/p®. Since
ay, € Z for all k, it must be that a;+- - -+a, > [tq|—n and thus (a;+1)+-- -+
(an + 1) Z ’th~|7 and SO f{? -, f717? _Z"F = ( 1a’1+1 e fgn‘f’l)pe c (a{tq1)[pe}_
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b. We have

. altar®1 rlar®] pp
gM(e) (Q) - gM(p q) =\ < (al—tq‘l )[pe}l—[qpe]M>

(altal) P flarpg . fp° M
= A( (altal)Pel Tlape] pp > - A((a(tﬂ)[pe]_f[qpe}]\/j + (fpe)M>'

The inequality above follows from part a. The second equality follows
from the general fact that for any m-primary ideal J C R, and any element

g € R, we have
JM : g M
A =AM ———
(i) = (Ggm)

applied to J = (alh)lPI[ler) and g = fP°. (Proof of the general fact:
consider the short exact sequence
M M M
— — —
JM : g JM JM + ()M

0 — 0

where the first map is multiplication by ¢.) Lemma 3.2 now gives the desired
conclusion, since

A((aﬁftﬂ )[pE]I[qpi\fM 4 (fpe)M>
is a joint Hilbert-Kunz function over the d — 1 dimensional ring R/(f?°). [
LEMMA 3.6. Assume that the residue field of R is perfect. Let
0— M — M-—M"—0
be a short exact sequence of finitely generated R-modules. Then we have
() = £arr(q) + arn(g) + O(g™ ).

Proof. Case 1: Assume that R is reduced. For each minimal prime p;
of R, R, is a field and it follows that M, = (M’ & M"),,. The conclusion
follows from Lemma 3.3.

Case 2: Let n denote the nilradical of R, and choose e such that
n?l = 0. Note that M,y is annihilated by n for every module M. We get
a short exact sequence of R/n modules:

0 — Mgy — M) — Mig) —0,

and now we can apply the result from case 1 in conjunction with Obs. 3.5.

O
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LEMMA 3.7. Assume that R is a domain with perfect residue field.
Then there exists ¢ > 0 such that

0(q) = cq* + O(¢" ).

Proof. 1t is known that the rank of Ry as an R-module is p?.
Apply Lemma 3.3 to the R-modules R}y and R, We get

R .
‘A<W) —Pdf(Q)‘ = |lr,,(q) = p"(q) < d'q™

for some a’ > 0, and by Obs. 3.5 it follows that

16(pq) — p“r(q)| < ag®™*

for some a. Thus, we have

‘ﬁ(pq) )| . a
d” 4| S,
(pa)*  q piq
It follows that L
‘E(CJ’Q) Ug)|_ al-y
G N

thus {£(g)/q?} is a Cauchy sequence. Let ¢ := lim,_, £(q)/q%. If we keep
q fixed and let ¢’ — oo, we get

/

a

10(q)/q" — ¢ < —

q

for some o' and all ¢, and thus |/(q) — c¢?| < /¢!, or in other words

U(q) = cq® 4+ O(¢41). 0
Now we are ready to prove the general case of Theorem 3.1.

Proof. Since every finitely generated module M has a filtration (0) =
My C My C -+ C M, = M with quotients M;,1/M; = R/P;, with P; prime
ideals, the general case follows from Lemma 3.7 by repeated application of
Lemma 3.6.

In order to remove the assumption that the residue field is perfect,
note that length is preserved by faithfully flat base change. Thus, we can
pass to completion, so that R is a quotient of a formal power series ring
K[[Xy,...,X,]], and we can replace R by R ®x F, where F is an algebraic
closure of K. []
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LEMMA 3.8. Leta C R be an m-primary ideal and t > 0 a real number.

Then i ( )
e(a
qlggo A <a[tQ1 > /q

Proof. First note that there exists a sequence of rational numbers
{kn/qn} with denominators of the form ¢, = p®" such that k,/q, < t <
(kn, +1)/qn, and ¢, < g¢n+1, so that ¢t = lim,,_,« ¢, /k,. For instance, take
qn = D", kn = [tp"].

For n fixed and g = p® > 0, we have kznq [tq] < (kn + 1) , and

d d
A(W)/q FRICRAILT A

d d
)\<aknq/qn>/q - ()W*'O(qdl),

so for all n we have

(k) o (ko + 1)d
< -~ - 7
and the desired result follows by taking the limit when n — oc. U

THEOREM 3.9. Ifa, I are fived m-primary ideals, then egx(at,I) is a
continuous function of t.

Proof. Let t < t' be positive real numbers. Then

, M altal rlal /4qlt'al rld]
enr(a, 1) —egr(a’,I) = lim (@ éa )
q—00 q
Let I = (f1,..., fn). Then we have a composition series
alt'alfla ¢ glt'al lal f{laﬁfﬂ C...Cqltdlfld (8 fDa [tq]

C...C qltalld,

Fori=1,...,n,let K; = alt'dl[ld + (f1,. ..,fiq_l)a[m. Then we have

[tq] rla] n K + altdl £a
a ita i
A<aﬁe7qmq]> - Zl A( K; >
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Note that we have a surjective map given by multiplication by f:

altal altal 8 K+ altal f7
(K;: fHnatl — Kynaltelfd K,

It is clear that alt'?l C K; [, so that the length of this term is bounded
above by the length of altel /al*'dl, Thus,

AR/alt'aly — X(R/altal)
d

eHK(at/, I) — eHK(at, I) S n lim
q—0 q

= ne(a)(t'? — t%)
where the last equality is from Lemma 3.8. 0

We now show how the joint Hilbert-Kunz multiplicity is related to tight
closure, integral closure, and a-tight closure. The result pertaining to a-tight
closure, Proposition 3.11 is an analog of testing tight closure via Hilbert-
Kunz multiplicities (cf. [HH1]|, Theorem 8.17), and testing for integral clo-
sure via Hilbert-Samuel multiplicities (cf. [NR]).

PROPOSITION 3.10. IfI C J C I* and a C b C @, then egg(at,I) =
ek (bt J) for all t > 0.

Proof. The hypothesis implies that there exists h € R°, such that
holtal jla C gltal pld] (if b= (b1,...,by), for each b; there exists h; € R° such
that h;b}' € a™ for all n; bltal is generated by bil1 coobin with iy 4 4, =
[tq], and choosing h' = hy --- h,, we have Wb ---bin € a’t ... a'n = altdl)
It follows that

pltal yldl altal rldl . p, R
M—r- <M ———+— ) =\ ——7— |,
<aﬁfq1[[q] ) < altd] ld] ) <(afttﬂ[[q], h))
which is a joint Hilbert-Kunz function over R/h, and thus bounded by
O(q* ). i

PRrROPOSITION 3.11.  Assume that R is analytically unramified and for-
mally equidimensional, and has test elements for the usual tight closure.
Let a, I, J be m-primary ideals in R and let t > 0. Assume I C J. Then
J C 9I* if and only if enr(at, 1) =egx(al,J).
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Proof. Assume that J C o'y *, so that caltdl jla C qltal 119 for some
c € R°. Then

altal jldl altal fldl . R
M—) <M —/—— ) =2\ ——7 |,
<aﬁfq11[q} ) < altdl ld] > <(c, aﬁtﬂ[[tﬂ))
which is a joint Hilbert-Kunz function over the d — 1 dimensional ring R/c,
and therefore it is bounded by O(¢?1). This shows that eyx(a’,I) =
CeHK (Clt, J ) .

Conversely, assume that eg(al,I) = ey (al,J). Fix an element z €
J. We want to show x € * I*,

Fix qo = p®, and fix generators gi,...,gm for alt®l. Let f denote
the product of a minimal set of generators for a, chosen in R°. Note that
[tqoq] < [tqo]q, and thus we have alta0ld C glta0dl C (gltaol)ld . f9 (the last
inclusion is Observation 3.5 (a.)).

For each g;, we have

[taoq] rlaod] 4ltaoq] pq0q

altaod] Jlaod]

o (a(tqolﬂ][qoﬂ’ggxqoq) . R
= altaoq] Jlgod] — 7\ altqoq] [laoq] - glaa0a

< R > _ )\((a(tqd][%}, fgixqo)[q] )
altao] [‘ﬂ[[qoq} : (fgiwa0)a (aﬁqd [[qo})[q]

> A

On the other hand, our assumption implies that

[tgogq] lgod] ¢ltaoql .q0q [tqqo] 7lago]
A((a 0¢1 11909} gltqo 900)>S <a ol J 0)

altaodq] Jlaod] altaqo] Jlaqo]

is bounded above by O(¢?~1). Since qq is fixed, Theorem 8.17 in [HH1]
implies fg;x? C (aﬁ%]][%})*_

Since g; ranges through the generators of al*®! we have falt9lzo C
(altaol rleo]y*  But this is true for all go; if we let ¢ € R° be a test element
for R, we get

cfaltdlya C qltal fldl

for all ¢ > 0. Since f € R, this gives the desired conclusion. 0

We end this section with some formulas relating the joint Hilbert-Kunz
multiplicity to the usual Hilbert-Kunz multiplicity and Hilbert-Samuel mul-
tiplicity.
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THEOREM 3.12.  Assume that dim(R) > 1. Let a, I C R be m-primary
tdeals.

a. For all t > 0 we have
le(a)td
d

where £ denotes the x-spread of I, i.e. the minimal number of generators of
an ideal J minimal with respect to the condition J* DO I.

(1) eHK(at,I) < BHK(I)+

b. If we assume that R is excellent and analytically irreducible then
there exists a tg > 0 such that the inequality in part a. is equality for all
0<t<t.

C.

. eHK(at,I) . e(a)
tliglo td d

In particular, if £ > 1 then the inequality in part a. is strict for t > 0.

Proof. First note that we can replace I by any ideal J with J C I C J*
without affecting the result. Thus, we may assume that I = (fi,..., fo),
where f1,..., fr are x-independent, i.e. none of them is in the tight closure
of the ideal generated by the others. We can also choose all f; € R° by
prime avoidance.

We have a filtration

altal 7ld (aftﬂ[[q}’flq) C...C (aftﬂ[[Q]’flq’ L fl)C 7l

and therefore we have

4

1ld] R
(2) A(W) :;)‘<(a[tq1[[q],f{1,..., iql):f@-q)

Since the denominator in each term in the right hand sum contains altd!,
the inequality follows by Lemma 3.8.

The second statement follows from Theorem 3.5 (a) in [Vr].

In order to see the last statement, it is enough to restrict to integer
exponents t. Note that the denominators appearing in the terms on the
right hand side of Equation (2) contain (a’¢, f{,..., f ), and thus

7ldl ¢ R
M —— ) < A
(wfq[[q}) _zzl ((atq’ff’___’ zq1)>
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Consider 7 > 1. We have

R
lim A
i (@

>/qd <enr((a, f1,..., fi-1))

e ) I

(the last inequality follows by taking a filtration of R/(a’, f1,..., fi_1) with
quotients equal to R/m; also see Lemma 4.2 in [WY]). As a function of ¢,
)\(R/(at, fi,---, fi_l)) is a Hilbert-Samuel function over the ring R/(f1,. ..,
fi—1), which has Krull dimension less than d, and therefore dividing by t?
and taking the limit when ¢ — oo yields a limit equal to zero for each of the
terms corresponding to i > 1 in Equation (2).

Thus we have

tI)— I
lim sup e (e, zd crx(l) = limsup lim )\<tql+fq>/tdqd
a s fi

t—o00 t—oo 47

< Jim A5 ) et = 5

T tg—ooo \ ald d -

On the other hand, we have a*Il9 C o', and thus eyx(af,I) > tde(a)/d.
This proves the equality in part c. 0

The following provides a concrete example where part b. in Theo-
rem 3.12 works with g = 1.

EXAMPLE 3.13. Assume (R, m) is a Cohen-Macaulay ring, and let a =
I = (x1,...,24) be generated by a regular sequence. If 0 <t <1, then

tde(a)
d—1)

eHK(at,I) = +e(a).

More generally, assume that (R, m) is excellent equidimensional reduced
local ring, and z1,...,z4 is a system of parameters. If a = I = (z1,...,24),
and 0 <t <1, then

tde(a)

=1 + e(a). !

eHK(at,I) =

We are grateful to the referee for pointing out this more general statement.
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Proof. For this choice of a and I, each term in the sum on the right
hand side of Equation (2) for 0 < ¢ < 1 is equal to A(R/al*1), and therefore

R R R
)‘<aftq1[[q}> = dA(W) * A(m)-

To prove the general case, note that the ¢th term in the sum on the right
hand side of Equation (2) is

) 71

big = (altl 2 27 z! C altal 4 (zf,... 2] ) af
Caltdl 4 (29, 2% )" Caltl 4 (a9)*

by the colon capturing property of systems of parameters.

Let ¢ be a test element for R. By the Artin-Rees Lemma, there exists
an s > 0 such that c¢(a?)* C (¢) N a? C (¢)a?"*, and therefore (a?)* C a?7%.
We have altd] Cbiy C altal 4 qa—s,

If t < 1, then for ¢ > 0 we have a?~° C al%l and we get b; , = al®! for
all . If t = 1, then

A(R/a?) _ A(R/big) _ A(R/aT"?)
d < d , < d :
q q q
The limit of each of the outer terms in the inequality above when ¢ — oo is
equal to e(a)/d!, and the result follows. U

84. Test ideals

The main result of this section, Theorem 4.3 shows that the test ideal
for the new version of a-tight closure coincides with the test ideal for the
Hara-Yoshida a-tight closure for R, -primary ideals a in a graded Gorenstein
ring.

For the first lemma below, we recall that a local ring R is approximately
Gorenstein if there exists a sequence of m-primary irreducible ideals {I;},
such that for every k there exists ¢ with mF C I,. This is a relatively
weak condition; for instance normal rings are approximately Gorenstein.
Approximately Gorenstein rings were studied in [Ho].

LEMMA 4.1. Let (R,m) be a local approximately Gorenstein ring of
characteristic p > 0. Let {I;} be a sequence of m-primary irreducible ideals,
such that for every k there exists t with m* C I;.

Then 1(a) = (), (I¢ : I7%) and Tq = (), (L : °IF).
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Proof. We'll prove the second statement (the proof for the first one
is slightly easier). The inclusion T, C (I : ¢I}) is clear by definition.
Consider ¢ € ((I; : *I}). First we show that ¢(*I*) C I, where [ is an
arbitrary m-primary ideal. The assumption guarantees that there exists ¢
such that I; C I, and since I; is irreducible, we can write I = I; : K for some
ideal K. Let z € “T*. Then there exists d € R° such that dz%a? C a47l9.
Thus, dztKa? C a9(KI)4 C ant[q], which shows that K C *(I;)*. We
have cx K C I; by the choice of ¢, and thus cx € I; : K = 1.

Now consider I an arbitrary ideal. We can write I = (), (/ +m"), an
intersection of m-primary ideals. Let x € “I*. We need to show that cx € I.
Note that = € (I +m"™)* for all n, and therefore cx € I +m" for all n since
we have already proved this for m-primary ideals. Intersecting over all n
yields the desired conclusion. 0

Throughout the rest of this section, R will be assumed to be a Goren-
stein positively graded algebra over a field of Krull dimension d and a-
invariant a. We let x1,...,24 be a system of parameters with deg(x;) = «
for all i, and I, := (2}, ..., 2). Let u denote a homogeneous socle generator
for (xq,...,2q), le. u € (x1,...,24) : R, \ (®1,...,24), and let 0 := deg(u).
Note that § = ad + a, since the a-invariant may be defined as the degree of

{m} € H§+ (R).

Note that It[q] = I,, and its socle is generated by (71 ---x4)" tu. We will

use J; to denote the degree of the socle generator for I;. More precisely, §; =

deg((z1 -+ 2q)""'u) = (t — 1)ad + 6. Note that we have &y = qd; — (¢ — 1)a.
Fix the notation established before Proposition 2.9.

LEMMA 4.2. With notations as above, we have
I : RN C I+ Ros_(v_1)p-
Moreover, if R is standard graded, then we have equality.

Proof. We prove the claim by induction on N. For the case N = 1,
Ii - R, = (I, (wq -+ zq)"7 u) C I; + R>s, by the definition of d;.

To see that the other inclusion holds in the standard graded case, note
that every homogeneous element not in I; must have a multiple in the socle
of I, and thus must have degree < 6.
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Assume the claim is true for N — 1. Note that I; : Riv = (L : Rivfl) :
R_ . By the induction hypothesis, we can write I; : Riv_l = (It,v1,...,0p)
with deg(v;) > 0, — (N —2)f for alli. If v € (I : Riv) \I; : R, , then we have
vy; = a1v1 + -+ + a;vp (mod Ip) for some 1 < j <'s, where a; € R can be
assumed homogeneous and not all zero. Thus, deg(v) + deg(y;) > deg(v;)
for some 7, and the desired inclusion follows.

For the other inclusion in the standard graded case: if x € Rz(gt_( N-1)s
then for all y € R, we have 2y € Rss,_(n_2) C I; : (RJF)N_1 by the
induction hypothesis. 0

THEOREM 4.3. Let R be a Gorenstein finitely generated graded algebra
over a field of positive characteristic. Assume that the Krull dimension d

of R is at least 2. Let a be a homogeneous ideal which is primary to R, .
Then (a) = T,.

NoOTE 4.4. The statement of the theorem is not true if the Krull di-
mension is d = 1, since then we can take a = (f) to be a principal ideal, and
we have *I* = [* and I*® = I* : f for every ideal I. It follows that T, = 7,

and 7(a) =, (L: (I*: f)=N,T: T :7f))=N;I,7f) =7f, where the

intersection is taken over all parameter ideals I (see Lemma 4.1).

Proof. Fix ¢ € R° a homogeneous element such that for all ideals I C R
we have z € I** = cz%a? C J19. Such a ¢ is called a test element for a-tight
closure, and the existence of such an element is guaranteed by Theorem 1.7
in [HY]. Fix k > [ integers such that R]fr CaC Ri.

Due to Lemma 4.1, it is enough to prove that I}* = °I; for all ¢t > 0.
Since both I;® and *I; are homogeneous ideals, Proposition 2.9 implies that
it is enough to show that x € I'* = deg(z) > kB — I3’ 4+ ta when ¢ > 0.

Since Rﬁ C a, we have z € I}* = cR’iqxq - It[‘ﬂ. Thus, it follows that
cr? € Iy : R’iq.

Applying Lemma 4.2, we see that x € I;* implies that for all ¢ = p® we
have either cx? € It[q], or else deg(c) +gdeg(x) > d(tg—1)a+4d — (kg—1)5.
If cx? € It[q] for all ¢ = p® > 0, then x € I} C *(I;)*. Otherwise, it follows
that deg(z) > dta — k. Since d > 1, when we choose ¢ > 0 we have
dto — k8 > ta+ kB — 13, and thus Proposition 2.9 can be applied to show
that x € *I}. 0

We end this section with explicit an computation of test ideals for a =
R, when R is a Gorenstein graded ring. We note that our result is similar
to that in Proposition 5.8 in [HY], but under different assumptions.
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PROPOSITION 4.5. Let R be a standard graded Gorenstein algebra over
a field. With notations as above, we have

T

*R * a T
I, * =1 +1: R+
for allr > 0. Thus, T(R:) =7(R) N RalerJ_

In particular, if R is F-rational, we have 7(R) = R, and thus 7(R" ) =
R [J. This also follows from Proposition 5.8 in [HY], where R is not nec-
essarily graded (instead, F-rationality of the Rees ring R[R_ ] is required).

Also, the results of [HS| and [H1] imply that when R is obtained from
a characteristic zero ring by reduction to positive characteristic p > 0, we

have 7(R) = R‘f‘l, and thus 7(R) = RT‘H‘M also holds.

R’V‘
Proof. Let x € I: * be a homogeneous element, so that cwqRﬁq] C
It[q] = I;; for some homogeneous ¢ € R°. Then cx? € I : R[:"‘ﬂ = Iiq +
R>5,,—rq1+1 be Lemma 4.2. Thus we either have cz? € It[q] for all ¢ > 0,
in which case z € I}, or else we have deg(c) + gdeg(x) > 6y — [rq] +1 =
qd: — (¢ — 1)a — [rq] + 1 for infinitely many values of ¢ = p€. Dividing each
side by ¢ and taking the limits when ¢ — oo yields deg(x) > & —a — r,
and since deg(z) is an integer, this means deg(x) > §; — a — |r]. For every
homogeneous element y € R, 14|,|, we have xy € R>5,+1 C I;. This proves
*R"
I, © CIf + I : RAFIFL
Conversely, consider z € I; : RTFHL”J = It + Rsg,—q_|r- 2 €
there is nothing to prove. Otherwise, we have deg(x?) > qd; — aq — |[r]q >
¢t —aq—[rq]. Choosing ¢ € R>q41 yields deg(cz?) > §44— [rq]+1, so that
*R”
quREf‘ﬂ C R>g,,41 C It[q], and thus z € I, *. We note that this inclusion
can also be obtained as a Corollary of Theorem 2.7 in [HY]. [

§5. Jumping numbers

The results of this section address the following question:

QUESTION. Given ideals a, I C R, and a fixed ty > 0, does there exist
an € > 0 such that I*%" = 1% and ® I* = 9O I* for all ¢ € [to, to + €]?

This question is somewhat related to the notion of jumping numbers
for test ideals. The jumping numbers are defined to be the positive real
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numbers ¢ such that 7(a®) # 7(a ) for any € > 0 (a similar notion for
multiplier ideals has been introduced in [ELSV]). These have been studied
extensively in recent research ([MTW], [BMS]). In our context, if for a given
to an € can be found that does not depend on the ideal I, it follows that there
are no jumping numbers between ¢y and tg + €. We give positive answers to
our question in several particular cases. A positive answer implies that for
a given I, I*® and ®I* are constant on intervals of the form [to,t1). We
will call ¢, a jumping number for the ideal I if I*%° = [*** for all t € [to,t1)
for some to < t1, but I*@° £ [*¢" (or @ [* = &' [* hut @0 1% £ a1 [¥),

The following observation shows that it will be enough to check only
one inclusion in order to answer the above question in the affirmative.

OBSERVATION 5.1. Let I, a C R be fized ideals, and 0 < t < t' real
numbers. Then I*%' C I*“t/, and ' T* - atll*.

However, note that it is not always true that a C b = ®T* C °I* while
the corresponding statement is trivially true for the Hara-Yoshida version.

Proof. The statement for the Hara-Yoshida version is trivial, since
alt'al C qgltal,

Consider z € *I*, so that czdal®l C qltal 7l Multiplying each side by
arbitrary elements in al*'41-1%] yields the desired conclusion.

For the claim in the last paragraph, take for example a = (f), with f €
(b) == (z,y)?, I = (22,y?), in the ring R = k[z,y]. Then °I* = (22,42, zy),
while *I* = TI. 0

PROPOSITION 5.2.  Assume that (R, m) is an excellent reduced equidi-
mensional local ring, and a, I are m-primary ideals. Then for every tg > 0,
there exists € > 0 such that ® T* = *°T* for all t € [to,to + €.

Proof. First note that for each 2 ¢ *°I*, there exists € > 0 such that
x ¢ 'O 1+ This follows from Theorem 3.9, and Proposition 3.11, applied
to the ideals I and J = (I, ).

Construct a sequence t1 > to > -+ > t, > --- > tg recursively as
follows: Choose z; ¢ “°I*, and let t; > to such that z; ¢ *'I* (the
existence of such a t; is guaranteed by the previous claim). If ¢y, ..., t; have
been constructed, then we either have al0px —alv g *, in which case the proof
is complete (take € =t —tg), or else we can choose an x4 € a'k rx \ a’0 I,

and, by the previous claim, there exists t;gﬂ > tg such that z;1 ¢ a’kt1 pr
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(note that we must have t; > t;11 by Observation 5.1). Thus, we have a
chain of ideals ®° I* Cc ... C a’n Cc ... C a’2 px C a'l 1*  Note that the
construction of t; shows that the inclusions are strict unless the recursive
process stops. This contradicts the fact that a’0 rx g m-primary. 0

The next result deals with the case when a = (f) is a principal ideal,
with f € R°. Note that in this case we only need to consider the Hara-
Yoshida version, since % I* = I* for all t. It turns out that a positive
answer to the question considered here is related to the existence of test
exponents. We review the definition.

DEFINITION 5.3. Let I C R be an ideal, and ¢ € R° a test element for
the usual tight closure. We say that ¢y = p is a test exponent for the pair
(I,¢) if cx? € 119 for any one choice of ¢ > qo implies z € I*.

Test exponents were introduced in [HH2|, where it is shown that their
existence is closely related to the localization problem for tight closure.

LEMMA 5.4. Assume a = (f) is a principal ideal, with f € R°. Assume
that R has test elements for the usual tight closure. Then x € J LIPS
x4 fItal e (1ldy* for all .

In particular, if there exists ¢ such that tq1 € Z, then x € J AL
quftm c ([[th])*.

Proof. Note that the following inequalities hold for all ¢:
[tq] — 1 < tq < [tq] <tq+ 1.

It follows that
a1 [tee] — a1 < [tqige] < a1[tga] + 1.

Assume that x € 1 *C‘t, and let ¢ = g1¢2. Then there exists ¢ € R° such that
cxt@ fltmae] ¢ rloe] which implies ¢fz0% flte2la ¢ [lne] Since ¢f € RO,
this shows that 292 fl*e2l e (1le2])* for all gy.

Conversely, assume that 29 ft2] ¢ (I [qQ])* for some ¢o, and let ¢ € R°
be a test element for the usual tight closure. Then cz®® fltelar ¢ flarae]
which implies ca®® fltael+a ¢ rlae] for all ¢;. Fix ¢ and allow ¢ to
vary cf@zdfltal e 19 for all ¢ > 0. Since ¢f? € R°, this shows that
r e I, []
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PROPOSITION 5.5. Let a = (f) with f € R°, I C R an arbitrary ideal,
and tog > 0. Assume that there exists q1 such that toqr is an integer, and
assume that ¢ € R° is a test element for the closure such that there exists a
test exponent qg for the ideal 1'% and the test element cf'.

Then we have I** = I**° for all t € [to, to + 1/qo).

Proof. Lett =ty+1/qo. Let ¢ = q1qo so that tq = tpg+q is an integer.
Assume that z € I*“t; by Lemma 5.4, this implies that 29 f%9f% ¢ (I[Q])*.
Since c¢ is a test element, we have cf® (z@ flod)do ¢ (Jlnl)laol  Since go
is a test exponent, this implies z9 ff9 ¢ (Il)* and thus z € ¥ by
Lemma 5.4. []

COROLLARY 5.6. If (R, m) is a regular local ring, a = (f) is a principal
ideal, and tg > 0 is such that toq1 € Z for some q1 = p®', and qo is such
that f1 ¢ mlo! | then there are no jumping numbers for the test ideals T(a?)
in the interval [to,to + 1/qo].

Proof. Since I'* = I for every ideal I, we can take ¢ = 1, and note that
a qo with the property that f9 ¢ ml%l is a test exponent for (Il f91) for
any ideal I. Indeed, if = ¢ Ilal and fogo e o] = fo g Jlagol ;g0 —
(1la) : glao) € mlool | contradicting the choice of gp. 0

Note that if tg = 0, then the converse of Proposition 5.5 holds, in the
sense that a positive answer to the question discussed here implies existence
of test exponents for the usual tight closure. Recall that 1 a® — [*R — [* ig
the usual tight closure.

PROPOSITION 5.7. Let a = (f) with f € R° a test element for tight
closure, I C R an arbitrary ideal.

1/q9 - J*

Assume that qg = p is such that I*® Then qo is a test

exponent for the pair (I, f).

Proof. Let z € R be such that fz9 e I9 for some q; > go. Then for
all ¢ > ¢1 we have f9/92% € J9, and therefore f4/%z7 ¢ [ which shows
that z € I*¢/* = * by assumption. 0

In the next result, I and a are arbitrary ideals, but we restrict attention
to tg = 0.
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PROPOSITION 5.8.  Assume that (R, m) is an excellent analytically ir-
reducible local domain. Let I, a C R be ideals, a # 0. Let x ¢ I*. Then
there exists qo = p®® such that = ¢ rratlio

Note that our result is not quite sufficient to give an affirmative answer
to the question raised in the beginning of the section for this case, since qq
is allowed to depend on z.

Proof. By Proposition 2.4 in [Ab], there exists ¢; such that Il9 : 29 C
ml?/a] for all ¢ > ¢;. Assume by contradiction that z € I wal/0 gor every
go. This means that cz?a?/% c I for all ¢ > 0, so that ca?/% C 1ld .
27 C mlY/al Let ¢ = g1 Q. Then we obtain ca?® C ml©@!, which implies
a? C (ml%l)*, Since ¢; is fixed, this is false for gg > 0.

At the other end of the spectrum, we ask the following question.

QUESTION. If I, a are fixed ideals, and N is such that o “N,I*
for all N' > N (note that such an N exists by the Noetherian property)
describe ®" I*.

We will use ** I* to denote *" I* when N is as above. Note that a similar
definition for the Hara-Yoshida version of a-tight closure would yield the
whole ring when I is an m-primary ideal, since for N > 0 we have a C I,
and a/N#/¥1 C 14 where k is the number of generators of a. When a = (f)
is a principal ideal with f a non-zerodivisor, we have ¢~ I* = I* for every
ideal I.

We always have " I* C I. Observation 2.10 implies that when R is
standard graded, a = R: for some r > 0, and [ is homogeneous with all
generators of the same degree, we have *%” I* = I. However, Example 2.11
shows that for R = k[z,y], I = (22,y%), and a = (z,y) we have " I* # 1.
In fact in this example it is easy to check that ™ I* = (22, y*, 29°). More
generally, we note the following;:

PROPOSITION 5.9. Let R be a two-dimensional standard graded nor-
mal domain, let I = (f1, f2) be a homogeneous parameter ideal. Let d =

max(deg(f1),deg(f2)). Then =1+ R>g4.

Proof. Say that d = deg(f1).
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Let z € ¥ I*, so x € "5 I* for some n. Assume that deg(z) < d. For
some homogeneous ¢ € R°, and for all y among a minimal set of generators
of R" we have cxly = arf{ + asfd with ay,a2 € RM. It deg(z) < d, it
follows by comparing degrees thatcz?y = asfq, so that cRMz? C R f3.

But this implies that = € (f2) = (f2).

Conversely, assume that deg(x) > d. For n > 0 we have z € T R so
that there exists ¢ € R? such that for all y € R, caly = a1 f{ + az fd with
a1,az € R. Comparing degrees, we see that a1,a € R 0
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