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Abstract

Let g\. Si. • • • . gn be a sequence of mutually independent, normally distributed, random vari-
ables with mathematical expectation zero and variance unity. In this work, we obtain the average
number of real zeros of the random algebraic equations Z]£=1 k" gk(w)t =C, where C is a
constant independent of t and not necessarily zero. This average is (1 jn)( 1 + \Z(2o + 1)) log n ,
when n is large and a is non-negative.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 05 A 17, 05 A 19.

1. Introduction

Let

where gx, g2,..., gn is a sequence of mutually independent, normally dis-
tributed, random variables with mathematical expectation zero and variance
unity. Let a > 0, C be a constant independent of t and N(a, b) be the
number of real zeros of the algebraic equation P(t) = C in the interval
(a, b) with the multiple zeros counted only once. Previously Kac (1943)
found that in the case of C = 0 and a = 0, the mathematical expecta-
tion of the number of real zeros, EN(-oo, oo) is asymptotic to (2/n) log n .

© 1990 Australian Mathematical Society 0263-6115/90 $A2.00 + 0.00

149

https://doi.org/10.1017/S1446788700030305 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700030305


150 N. N. Nayak and S. Bagh [2]

Again the particular case a — 0 of the above problem has been considered
by Farahmand (1986). In this work we prove the following.

THEOREM. If the coefficients of (1.1) are independent and non-identically
distributed random variables, then for any constant C, the mathematical ex-
pectation of the number of real zeros of the equation P(t) = C satisfies

1EN(-oo, oo) = — (1 + \[{2a + l))log« for large n.
n

In order to estimate the average number of real zeros of P(t) in (-00, oo),
it is enough to consider the interval (0, oo) as EN(-oo, oo) = 2EN(0, oo).
Now we divide them into two groups,

(i) those lying in the intervals (0, 1 - S), (1 - T/n, 1 + T/n), and (1 +
5, oo), and

(ii) those lying in the intervals (1-6,1- T/n) and (1 + T/n, 1 + S),
where 5 = exp(-(log«)1/3) and r = ( l o g n ) 1 / 2 .

The zeros (i), it so happens, are small in comparison to (ii). So those zeros
which make a significant contribution to the final result are of type (ii) and
their number is found by the method described below.

2. Proof of the theorem

Following the procedure of Kac (1959), we find

(2.1) EN(a,b)= f {X°Z°~Y^ dt,
Ja A

a

where

k=\ k=\

and

k=\

provided that (XaZa - Y*) > 0 in (a, b). We have

(2-2) XaZa -Yl = \±±(cd)2°(d - c
c=\ d=\

From (2.2), we get

(2.3) (X°Z°~Y{\ < n".
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Further, for all t > 0 , we have

Y ^ / i , 2a 2k (n\2a(Tpn t2k) , n,2a .n+\

A0 J2k=lt (£*=l' ) t +1

Again for all t > 1 + S , where (5 = exp(-(log«)1/2), we have

n t2n+2 .2
2 k ' '

and therefore, for fixed t,

( t2n+2 \limoix0/j-r) = \.

So

,2n+2

Xo ~ -j (as n —> oo for fixed t),

n /2n+l .2/1+1

So

i t 2 - I f

Yn ~ J - ^ ^—r 1 t2n+l (as « -» oo for fixed 0
0 \ ( / 2 l ) ( / 2 l ) 2 J

^—r 1
- l ) ( / 2 - l ) 2 J

and

n
2 2k-l

k=\

n2t2n (2n-l)t2n 2t2n 2t2 1
+ —*——r - -n - r +( r - l ) ( r - i ) ( ' - 0 C - l ) ( r - l )

So

„ f n2 ( 2 n - l ) 2 1 2« , . . . ,
Z n ~ < ̂ ; - ^ £ H — , = > t (as « —y oo for fixed / ) .

0 \ ( f 2 l ) ( / 2 l ) 2 ( ? 2 l ) 3 J
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Now

H(0) = ±o±2_

1/2

- 1) + (t2 - l)\

If we denote the integrand in (2.1) as H{a), then we get from (2.3) and (2.4)
that

H{a) < 4a+iH(0) (for all t > 1 + 8)

= 4°+l(t2 - I )"1 = p(a)(t2 - I ) " 1 ,

where p{a) = 4CT+1 and so p(a) is a constant depending on <r only. Hence
it follows from (2.1) that

(2.5) EN(l+3,oo) = O(logd).

By successive applications of the mean value theorem, we obtain

{k + if+2 _ 2k2a+2 + (k- l ) 2 a + 2 < (4ff + 2)\k + \)2°.

Hence
Za{\- t'ft2 < Xa{Aa + 2)2 for all* < 1 - 8,

that is,

X. t2{\-t2fa

Therefore it follows from (2.1) that

(2.6) EN(0, I - S) = O(logd).

Again, clearly H{a) < n for 1 - T/n <t<l + T/n, where T = ( log/i)1 / 2 .
So from (2.1), we get

(2.7) EN(l -T/n,l + T/n) = O{(\ogn)l/2).

3. The range (1 + T/n,1+8)

For t in the range {l + T/n, 1+3) we follow the procedure of Das (1969).
We replace the random variables gk by a set of independent and continuous
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functions ^ ( T ) (0 < T < 1) and denote the right hand side of equation
(1.1) by g(t,r). Put

f l if g(a,t)g(fi, r)<0,

h(r) = h(T,a,p)=l - if g(a, x)-g{fi, T) = 0 ,

[ 0 if g(a, T ) - g(fi, T) > 0 ,

and define N(T) = JV(T; a, fi) to be the number of zeros of g(t, r) in the
interval a < t < fi, reckoned according to their multiplicities except for
zeros at a and fi which are reckoned according to half their multiplicities.
Let y = n(fi - a). Then we have

LEMMA 1.

1 •> 1 /2

where K is an absolute constant.

PROOF. The proof follows from Lemmas 2, 3 and 4 of Das (1969), by
putting

and

)1 / 3Let A = exp{(log«)1/3}/«2 and define q0, qx, aq, Pq by

and

Let NQ(T), hq{x), yq be the functions N{x), h{x), y for the interval (aq, fiq)
so that

Now by Lemma 1, we obtain

>«=«o
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So

Now following the procedure of Das (1969) and using the estimate

» - .. n2at2n+1

k=\

we obtain

where

Therefore

Hence

(3.1)

2 _ l

(EL.

4. The range (1 - 5, 1 - T/n)

For / in the range (1 - 8, 1 - T/n), we have to follow the methods given
by Logan and Shepp (1968). The expected number of zeros of P(t) = C in
the interval (a, b) is given by the Kac-Rice formula:

(4.1) EN(a,b)= f fn{t)dt,
Ja

where

(4.2) fn{t)= l°° \y\p(0,y)dy
J—oo
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and p(x, y) is the probability density for

(4.3) (
\k=l

and

(4.4) P(t) =
k=\

The distribution of each coefficient gk has the characteristic function

exp(-Z2/2) for -oo < Z < oo.
If 0 ( z , w) is the joint characteristic function of x and y, then

<J>(z, u;) = E(exp(iP(t)z + iP'(t)w))
( i n 1

= exp<-^> (akz + b.w) -izC}
I k=\ )

where afc = k"tk and *fc = ka+itk~l. Thus the probability density p(x, y)
for />(*) = x and P'(f) = y is given (Cramer (1954), page 101) by the
Fourier inversion formula

p(x,y) = =• / / exp(-/xz- iyw)®(z, w)dzdw
(In)2 J-oo J-oo

1 f f
= r / / exx)(—i(xz + yw))

\^n) J—oo J—oo

( 1 " \

-•*^2(akz + bkw) -izC\dzdw.
Now

j /-OO rOO

p(0, y) = ——j / rfw / exp(-i>«7)
(2?r) J-OO J-OO

(4.5) / t „ x

x exp I —-x y ^ ( ^ z "*" ^ w ) ~ ' z ^ I ^z-
Then for e > 0, we have
(4.6)

oo
\y\e~eM Mr

[(2TT)2 J-C —00

X)K + bwfx exp f - ^ X)K^ + bkwf - izC J dz dy.
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Now
2-w2)Rl r \y\e~eMexp(-iyw)dy = ^ - ^

./-oo (e +

so (4.6) becomes

(4.7) f°° \y\e-eMp(0,y)dy
J — OO

Let A and B be arbitrary nonzero constants. If we take ak and bk

(k = 1, 2 , . . . , « ) to be any constants independent of t, then the probability
density p(x, y) corresponding t o x = J2ak8k = Ax a n ( i ^ = 52bkgk = 5 ^
is zero. Further, given A and B, the constants afc and bk can be so chosen
that the X and y are normally distributed with variance unity. Thus (4.7)
becomes

1 r°° (E
2 -w

2) r°

(4.8) 0 = 4 / ; 2 2/2 dw /

Subtracting (4.8) from (4.7), we obtain

r />o

4
w

-exp T- i

Let e —> 0 , so that we have

f°° 1 f°° dw
/ \y\p(0, y) dy =—j —j
J-oo Tl J-oo W

~ exP ( -5 £ (

where we put z = uw and use FruUani's theorem (Williamson (1955), page
155) to integrate with respect to w . So

(4.9) r \y\p(0, y)dy = ^-2 f
J-oo 2n J- (Au-B)

du.
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Choose A and B so that A2 = J2l=\ al a n d AB = £*=i akbk • T h e n a f t e r

simplification (4.9) becomes

<4,0, f W,(0. y)dy - ' f
y-oo 2ntJ-o

where

j a n d

Put a=\ -5, b = 1 - r / w , / = exp(-t/2«) and M = nw/r. So we have

(4.11)
rl-T/n

EN(l-S,l-T/n)= fn(t)dt
Ji-s

A2h r y B\22j(r)v+j2()J

S°dx
I loe I .,

y-2j{x)v+j\x)
where TQ = -2«log(l - T/n) and d0 = -21og(l - d),

and

Let x = nr\ and we have

(4.12) n e + (l — e ) l
\k=\ J k=\

By the mean value theorem, the last expression is equal to

k=\

for some 6 with 0 < 6 < 1. Again

[i/2]

1 te-»i/2 _ e-"1\
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where Co is a constant depending on v only. Thus

E L , <•-
Again

1 - e~
n = n + O(t]2) as n -+ 0.

It can be seen that £ L i <?"*"(& - 0)"~l lies between e~" E L i

and Y%=i e~ nkv~i, which are nearly equal. Now dividing equality (4.11) by
Z)jt=i k"~le~ n and making use of the above relations, we get

= i/ + O(ie~T/2) (T -» oo).

Putting v = 2CT + 1, we find

Similarly we estimate

h{t) = (2a + 2)(2<T + 1) + O(xe~T/2) for ^(log«)1/2 < T < nSQ.

Now To = -2«log(l - £) ~ i ( log«)1 / 2 , so 7(0 ~ (2<7 + 1) and h{t)
+ l ) . Now

; , f t ,
v2 - 2jv + j ) J

\ (M2 - 2jM + j2) (M2 + 2jM + j2)

I / log [ {M ' 2jM + j2) {Af2 + 2jM + h)

\ (M2 - 2jM + h) {M2 + 2M + j2)

JM \ (v2 + h)2 - 4 /V

Now

nS°dT [ j (v2

(4.13) -^ I — / l o g < - ^ -1-1 ^-^- > rfu = 0 — log«

rt
2ir0 W M >M B\(w2-27(0«+/(0)J VM 6 ;
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Hence
(4.14)

_L r° n
An2 JT0 * J-

( ( ^ - 2 ^ + y ) | dvl o g ( y |
M *\ (v2 - 2j(t)v + J2(t)) j

= J_ [+ rfr r* f (^2-2(2(TH)t; + (2a + l)(2a + 2))) ^
4n2JT0 * J-M \ ( V 2 - 2 ( 2 1) ( 2 1 ) 2 ) J

where |£| < elogn and e is infinitesimally small. Taking M large, we
obtain, from (4.11), (4.13) and (4.14), that

(4.15) EN{1 -3, 1 - T/N) = K'logn + O(logn),

where

K'=-^r°iog(i+ 2 g + i Adv
47i2J-oo \ (v-2a-l)2j

1 f°° i (t 2a + 1\ , 1 1/2
= —i / log I 1 H 5— I dv = iz-(2a + 1) .

4n J-oo \ v J m

Hence from (2.1), (2.5), (2.6), (2.7), (3.1) and (4.15), we obtain

EN{-oo,oo) = 2EN{Q,oo)

= 2{EN{0, 1-3) + EN(1 -8,1- T/n)

+ EN(l-T/n, 1 + T/n)

+ EN(l + T/n, l+S) + EN(l+8,oo)}
J 1 /T 1 II

— — log«{l + (2a
n
1
n
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