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Abstract. We present an analogy of the famous formula that the square of the Pfaffian is equal to
the determinant for an alternating matrix for the case where the entries are the generators of
the orthogonal Lie algebras. This identity clarifies the relation between the two sets of central
elements in the enveloping algebra of the orthogonal Lie algebras. We employ systematically
the exterior calculus for the proof.
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1. Introduction

For the universal enveloping algebra of the orthogonal Lie algebra realized as the
alternating matrices o, = {X € gl,; ‘X + X =0}, we have two types of central
elements which are explicitly expressed, respectively, by determinants and by
Pfaffians of the standard generators of o, (see [HU], [MN]). Recalling the
well-known relation that the square of the Pfaffian is equal to the determinant
for alternating matrices with commutative entries, we may as well expect that a
similar relation holds even for this noncommutative case of the orthogonal Lie
algebras. Such a relation was indeed obtained for n =4 in [O], but with all his
attempts for the general case, the verification of such relations has been left as
an open problem. The main purpose of the present paper is to settle this problem.
The explicit relation is given in our main result (Theorem 4) as follows.

THEOREM. We have a relation between the Pfaffian and the determinant of the
alternating matrix A = (A,;/)?_’;-“:l consisting of the generators of U(0y,):

Pf(A)? = det(4 + diagim — 1,m — 2, ..., —m)),

where A;j = Ej; — Ej; € 0y, are the standard generators of the orthogonal Lie algebra
made from the matrix units Ej;.

The precise definitions of the Pfaffian and the determinant for noncommutative
entries are given in Sections 1.1 and 1.2.
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Via the recent result of Molev and Nazarov [MN], our main theorem gives an
explicit connection between the two central elements of the universal enveloping
algebras U(p,) of the orthogonal Lie algebras, one expressed by column-determinant
in [HU] and the other expressed by the Sklyanin determinant in [M], whose defi-
nitions come from quite different origins. For this point and related study, see [I1].

Let us explain the main feature of our study. One key to start with is in the
formulation. Roughly speaking, our basic strategy to establish identities we need
is to use generating functions as in the papers [NUW], [U1-4]. In these papers,
the ring of formal variables is either the exterior algebra or the symmetric algebra,
and the number of formal variables is n, the same as the size of the matrix Lie algebra
gl,, or p,. Our new idea is to exploit the exterior algebra with doubled 2n variables, in
place of these algebras. With this formulation, we gain two advantages. First, it gives
a clear and unified treatment for basic facts on the central elements of U(gl,) and
U(o,). In particular, we see clearly the machanism that an element is central from
the invariance based on exterior calculus. Second, it provides us with an easier com-
mutation relations to handle, with which we can complete the computations. We
remark that even in our setting the calculations for our main theorem are by no
means obvious. One reason to introduce the doubled formal variables is to consider
both the covariant and contravariant variables at the same time. In this sense,
our approach has a resemblance with that taken in [O] where the Clifford algebra
is used. However, it may be fair to say that the commutation relations with the
formal variables from the Clifford algebra were not simple enough.

This paper is organized as follows. In Section 1, we prepare the general formal
setting in the exterior calculus, where a transparent treatment for the transformation
formulas concerning determinants and Pfaffians is given. In the last part of Section 1,
as the prototype of the proof of our main result, we give a simple proof of the classi-
cal relation that the square of the Pfaffian is equal to the determinant for the alter-
nating matrix with commutative entries. Concrete applications of our
formulation to basic facts on the central elements in U(gl,) and U(p,) are given
in Sections 2 and 3. The main part of this paper is developed in Section 4, where
the relation between the two central elements expressed by the Pfaffian and the deter-
minant is given. The calculations to demonstrate our main theorem are not as
straightforward as the classical case mentioned above, but have an interesting
relationship with the slp-triplet. Section 5 is a supplement to our main result, where
further explicit relations on the central elements in U(p,) are given. In the last
section, we make a brief remark on the similar relation between the central elements
expressed by Pfaffian and determinant for other realizations of the orthogonal Lie
algebra. This is another merit of our formulation.

1. Exterior Calculus for Pfaffians and Determinants

First we prepare some formal set-up in the exterior calculus, which is very useful for
the manipulation of Pfaffians and determinants of matrices with noncommutative
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entries. In the present paper we work over a fixed base field K of characteristic 0. The
exterior algebra A, is an associative algebra generated by the n elements ey, e, .. ., e,
subject to the relations e;e; + ¢je; = 0. For an associative algebra A, we form an
extended algebra A, ® A, in which the two subalgebras A, and A commute. The
elements e, ey, ...,e, in A, are thus considered to be formal (anti-commuting)
variables to make ‘generating functions’ with coefficients in A. The grading
An =@, A” of A, is naturally extended to that of A, ® A.

1.1. When we treat an alternating matrix of size n and consider its Pfaffian, we
always assume that n is even and consistently use the notation as n = 2m. For
an alternating matrix ® = (d)[j)?;“:l whose entries are in A, we define its Pfaffian
Pf(®) by the formula

1 .
PI(®) = o 2@: s181(0) P (1)5(2) Po(3)0(4) - - - Pom—1)a2m)
(S
1 .

a(2i—1)<a(2i)

The expression of the Pfaffian in terms of the exterior calculus is given as follows:

PROPOSITION 1.1. For the matrix ®, form an element @ = Og € A, A by

6= Z eiejfl)ij,

1<ij<n
and make its mth power. Then we have
O" =ejey...e, 2" mPf(D).
Proof. This is easily seen from the definition:

m — . . . . . . Py PR PEY
0" = E €1,€,€i,¢), . .. €;, €, Dj; Oppjy ... D; ;.

1< ijsigornim <n
1 <jpipedm <n

Z es(1)€o(2) - - - Co(n—1)Cs(n) Po(1)o(2) - - - Potn—1)s(n)

0'632,,,

> erer ... ensign(0)Po(1)o) - - - Potn1)o(n)

g€y,

=e16x...¢, 2m m!Pf((D).

1.2. For a noncommutative version of determinant, we use the following definition:

det(CD) = Z sign(a) (Dg(l)]q)a(z)z . q)a(n)n-

0eS,

Here ® = ((I)ij);szl is an n X n matrix whose entries are in the algebra .A. This should

https://doi.org/10.1023/A:1017571403369 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017571403369

336 MINORU ITOH AND TORU UMEDA

be called ‘column-determinant’ compared with the name ‘row-determinant’, which is
adopted in some literatures (cf. [MN, O]). We note that the row-determinant of @ is
expressed as det(‘®@), the column-determinant of the transposed matrix. Our deter-
minant is expressed in terms of the exterior calculus as follows. For @, form
n; € Ay ® A from the columns of ® by n; = > i, €i®;. Then we have

mny...N, =ee...e,det(d).

Suggested by the definition of the Pfaffian, we can define yet another kind of
determinant, a ‘double-determinant’ or symmetrized determinant (or mixed one),
so to speak. Let us put

1 . .
Det(®) = - > sign(0)sign(6) Do) Poir @) - - - Patmon)-

" (0,0)EG,xG,

To get an expression of this Det(®) in the framework of the exterior calculus, we now
need to double the anti-commuting variables. Let A,, be the exterior algebra gen-
erated by e,¢e; (i=1,...,n) which are anti-commutative. In the algebra
Ay, ® A, we form an element 5 = Z¢ by

— /
= E eiej(l)ij.

1<ij<n

Then as in the Pfaffian case, it is easy to see that its nth power gives Det(®):

F" = ejelere) . .. ey, n'Det(D)

n(n—
2

y
=ejey...e,€1¢y...¢,(—) 7 n!Det(D).

This expression of the double-determinant can be generalized to

~ )
E=(-)yzr Z e ... €€ ...e Det(®@py),
=|J1=r

where @y, is the submatrix @7y = (®;, );_ =1 made from @ corresponding to the index
sets I = {i;, i, ..., i}, J = {1, )2, - - -»Jr} C {1, 2,...,n} of cardinalities |/| = |J| =r.
In particular, we have the following for ®; = ®y;:

PROPOSITION 1.2. We have

" =erey...eneiey .. (=) T ri(n—r)! Z Det(®;),
iI=r

89|

where 7 is the element defined by 1 =Y";_, e;e;.

From the relation £ = Z};l n;¢;, we see det(®) = Det(®) if 7,’s anti-commute. In

particular, when the entries of ® are commutative, this is obviously true. While
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simple relations between the two determinants det(®) and Det(®) may not be
expected for noncommutative case in general, we will see as nice relations as com-
mutative case among these det(®), det('®) and Det(®) especially for A = U(gl,)
and A = U(o,).

1.3. Remark. When the entries ®; of the alternating matrix ® commute (or more
generally ®; and ®;; commute for {i, j} N {k, [} = ), the expression of the Pfaffian
is reduced to

Pf(®) = Z sign(o)Po(1)6(2) - - - Lo@m—1)s(2m)s

€S/ Bam

where By, is the centralizer of the cycle (12)(34)...(2m — 1 2m).
Similar reductions for Det(®) lead us to the obvious relations Det(®) =
det(®) = det(‘®) for commutative case.

1.4. Throughout the paper, we will keep working with the exterior algebra A,, gen-
erated by {e;, €/; 1 <i < n}. In the exterior algebra A,,, we denote by A, and A),
respectively the subalgebras generated by {e;; 1 <i<n} and {e}; 1 <i<n}. Let
o € GLy, = GLy,(K) be a linear transformation of the vector space K" spanned
by the standard basis {e;,e;; 1 <i<n}. Then « can be extended to an algebra
automorphism «, of A,, and hence of Ay, ® A.

Recall that we have a special central element t =), ,e€; € Ay, ® A. The
intrinsic meaning of t comes from the standard symplectic form B on the vector

space K*" defined by

B(e;, e}) =0;, Bleie)=0, Ble, e}) =0.
It is checked that « € GL,, belongs to the symplectic group Sp,, = Sp(K*, B) if and
only if a,(r) = 7. More generally we see that the group

{o € GLy, ; a4(1) = x(2)t for some y(a) € K*}

coincides with the group GSp,, = GSp(K*, B) of symplectic similitude and that
det(a) = y(a)".

Here are two types of these transformations that we use later. For g, g’ € GL,,, we
consider

: , 0
o = diag(g, g) = (‘g g/) € GLy,,

and o = o, ,1 € GLo,. Itis easy to see that o, € Sp,,. Note that det(x) = 1 and that
o, leaves the subalgebras A, and A, invariant. For an element # € GL,, we consider
the element & ® 1, € GL,, obtained by the embedding

a b aln bln
GLthZ(C d>l—>h®1n:(cln dl”)GGLG.
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Itis clear that 2 ® 1, € GSp,, and x(h ® 1,,) = det(h). A typical example of this type
is the involution 1 defined by i(e;) = ¢}, 1(¢}) = ¢;. We will simply write 1,.(¢) = ¢’
for ¢ € Ay, ® A. Observe then, for example, ' = —t and 5}, = Z¢ for an alternating
matrix O.

The following are obviously the relations expressing the determinant in the
exterior calculus:

LEMMA 1.4. The following formulas hold for the actions on the top-degree elements
in Ay @ Aand A, ® A:

() Letge Agznn) ® A. For o € GL,,, we have o..(¢) = det(a)@. In particular, when o is
of the form o, with g € GL,, we have a.(p) = ¢.
(2) Let @€ Aff) ® A For o4 € GLy, with g € GL,,, we have og.(¢@) = det(g)e.

1.5. For an n x n matrix ® = (®;);,_, with entries in A, we consider a linear
transformation of the following form:

n
Di— ghg’ = ( Z gip py giﬂ')i,j:l’

1<pg<n

where g = (g;;) and g’ = (g;) are taken from GL,. The effect of the transformation of
this type on the elements Z¢ = Z?J:l e,-e_;d),-j and Og =), eje;®;; is reduced to the
transformation on the formal variables:

n
ij=1

Eevg = (%g,0),(Eo), Oyt = 0g:(O0).
In particular, for any polynomial p(x) € K[x], we have
P(Egag) = (%), (P(Z0)), P(Og0g) = 0g(P(O0)).

Putting respectively p(x) = x" or p(x) = x™ in these formulas, we can deduce from
Lemma 1.4 the transformation formulas of the double-determinant and the Pfaffian

Det(gdg’) = det(g) det(g")Det(d), Pf(g®'g) = det(g)Pf(D),

which are valid even when the entries of ® are noncommutative. For the latter
formula, we of course assume the matrix ® to be alternating and the size to be
n=~2m.

In the case ¢ = g™, since o, 1 = o, leaves the element t invariant, we have

p(EgCDg*l ) = Ogx (P(Etb))

for any polynomial p(x)e K[z][x] with coefficients in K[t]. When this
P(Eo) € Ay ® Ais of degree 2n, it is seen to be invariant under the conjugation also
from Lemma 1.4:
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PROPOSITION 1.5. Let p(x) € K[z][x], and assume p(Eq) to be of degree 2n. Then we
have

p(EgCDgfl) = p(E(D)

1.6. To apply the discussion above, we take a typical situation that the
transformation of the matrix @ is caused by an algebra automorphism y of A.
We denote by y* the algebra automorphism of Ay, ® A naturally extending 7.

PROPOSITION 1.6. Suppose we have ann x nmatrix ® = (y);,_, with entries in A
such that the action of the automorphismy of Aon ® is written in a form y(®) = gbg™!
for some g € GL,. Then the following hold:

(1) For any ¢ written by a homogeneous polynomial of degree n in E¢ and t, we have
7 (@) = 0.

(2) Suppose further the matrix ® above is alternating of size n = 2mand g is orthogonal
in the sense that g=' ='g. Then y*(O4) = det(g)O4.

Proof. By definition we see that y*(Z¢) = Zgq-1 for (1) and y*(O9) = Oy for (2),
so that y*(Z¢) = te(Z9) and y*(O¢) = te(Og) from the discussion in the previous
section. Noting that both y* and o, are automorphisms of Ay, ® A, we see that
the assertions follow directly from Lemma 1.4. O

Remark. In the proposition above, if the matrix @ is the identity matrix 1,, then the
condition y(®) = gbg~! is automatically satisfied for any g € GL,,. This fact reflects
that the element of the form «, belongs to Sp,, and that a,.(7) = 1.

1.7. We now demonstrate how efficiently our formulation provides us with the proof
of the relation Pf(®)> = det(®) in case the entries of the alternating matrix ® are
commutative (cf. [JLW]). As introduced above, we consider the following three

elements @, O, = in A, ® A, where A is a commutative algebra:

’ /g ,
O= ) Py O'= ) g E= ) eedy

1<ij<n I<ij<n l<ij<n

[83]

Take here
1 -1
h= (1 1 ) (S GL2
and compute (4 ® 1,).(2):

h®1).E) = Y (ei+e)(—¢+e)b;=—-0+0"

1<ij<n
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Then by Lemma 1.4 (1) we have, on the one hand,

(h® 1,).(2") = det(h ® 1,)E" = det(h)"E" = 2"E".
On the other hand, from the calculation using the explicit form of (2 ® 1,),(5), we see

h®1,).E) =0+ = (")omem.

This is seen from the binomial theorem together with the fact that © = 0 = @'* for
k > m =n/2. Recalling the relations

1(n—1)
=n "2

F'=e...e.€) .. €, (=) T n!Det(®),
O" =e;..., 2" mPf(®), O =¢|...¢,2" mPf(D),

we immediately obtain the formula Pf(®)? = Det(®).

2. Application to U(gl,)

Before going on to our main object, the orthogonal Lie algebra o,, we first treat a
more basic case of gl,. The purpose of this section is to give a clear treatment
of the Capelli elements. This presents an application of our formulation of indepen-
dent interest.

Let Ej; be the standard basis of the Lie algebra gl, corresponding to the matrix
unit. In the universal enveloping algebra U(gl,) of gl,, we write E;(u)=
Ejj +ud; € U(gl,) with a scalar parameter u. We also form an n x n matrix
E = (Egj);szl. Let us consider the following elements in A, ® U(gl,):

n = ZeiEi'» nj(u) = n; + ue; = ZeiEi]-(u);
i=1 i=1
n n

=Y ek, i) =y +ue; =Y eiEii(u).
i=1 i=1

The basic commutation relations for these elements are given in the following:

LEMMA 2.1. For 1 <i,j < n, we have

() miu + D) + 1w+ D) = 0,
) i)+ 1) + @ (u+1) = 0.

In particular, we see

() mu+ D) =0, @), (u+1)=0.
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Proof. These can be verified by direct calculations. First we see

N (u) + n;(n ()
=" epeglEpit), Eyu)] = Y epeglEyi, Ey
p.q Pq

= Z epeq(Epjdig — Eqidjp)

I
== Z eiepkEpj — Z ejeqbyi
» q
= —ein; — en; = —ei;(u) — e (u).

This proves the formula (1). The formula (2) is deduced from (1) by applying the
anti-automorphism Ej; — Ej; of U(gl,). O

With these relations, for the matrices with the noncommutative entries from Ej;,
we see how the three types of determinants, i.e., column-, row- and double-
determinants are connected to each other. More precisely, we have the description
of the Capelli determinant in terms of the double-determinant (Proposition 2.2),
from which some of the basic properties of the Capelli determinants are naturally
deduced.

As before we consider the exterior algebra A,, generated by {e;,¢}; 1 <i<n}. In
the algebra A;, ® U(gl,), we consider the elements

[x]

[x]

n n

/ / L./

E= ) egEj=) ne=7) el
= =1

1<ij<n

189

(u

~

n n
= Zp() = Ep+ur =) 0w =) ew).
j=1 i=1
where

T= Zeie;, .= Z ¢ E;j, i) = Ze_;Eij(u).
i=1 Jj=1 J=1
We put
EDw) = Ew)Ew —1)...5u—n+1).
Also write § = diagln — 1,n —2,...,0) and * = diag(0, 1, ...,n — 1) for the diag-
onal shift. The following proposition explains the mechanism that the two

expressions, the one given by the column-determinant and the other by the
row-determinant, can be converted to each other for the Capelli element:
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PROPOSITION 2.2. We have
ENu+n—1)=Eu+n—DEu+n—-2)...5u)
=e...e,€) .. .e;(—)mnTmn!det(E+ b+ u)
=e...e€)...€, (—)WT?I) n!det("E + 1* + u).

From this, the following is immediate:

COROLLARY 2.3. The equality holds between the determinant of the matrix E with
the diagonal shift and that of transposed one with the reverse shift:

det(E + i + u) = det(E + * + ).

Proof of Proposition 2.2. Using the relation Z(u) = Z}’zl n;(ue; and Lemma 2.1
(1), we have on the one hand,

Ew+n—1)
= 2 emlutn—Dntn=2) e, ¢,

L< iy <11

=&Y Moy 1 — Doy (41 =2) . 1) (€} 11C000) - - €
e,

=¢ Z mu+n—Dnu+n—-2)...n,wmee...e,
e,

n(n—1)
2

=ej...e,€61¢y...e (=) 7 nldet(E + 1+ u).

Here ¢ = (—)@ is the signature coming from the transposition of 7;(u)’s and ¢;’s. On
the other hand, start from the relation Z(u) = >, e; }(u). Reversing the order of
the multiplication in Z(u) and using Lemma 2.1 (2), we get similarly

ENu4+n—1)=e...e.epe,. .. e;,(—)w n!det("E + 1* + u).

Thus proves our assertion. O

Remark. Proposition 2.2 is equivalent to the following expression of
det(E + t + u) by the double-determinant with parameters:

1 . o
det(E + 1 +u) = > sign(0)sign() Eayey(n — 1+ 1) . .. Eguyorn)(1).
" (0,6)€C, xS,

It is well known that the Capelli determinant is central in U(gl,,) and several proofs
are known (see, e.g., [Kz, HU, U3]). This fact is also deduced from the following
more general result together with the expression in Proposition 2.2:

PROPOSITION 2.4. Let ¢ be an element written by a homogeneous polynomial of
degree nin 5 andt. Then the coefficient of e ... eze] .. . €, in @ belongs to the invariant
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)GL,7

subalgebra U(gl, under the adjoint action of GL,,; hence central in U(gl,).

This is immediately seen from Proposition 1.6. The following lemma enables us to
apply Proposition 1.6 to the proof of Proposition 2.4.

LEMMA 2.5. The adjoint action of g€ GL, on the matrix E is written as
(Adg)E =gE'g™".

Proof. Let us denote by g;; and g” the entries of the matrices g and g~ ! respectively.
Then the lemma is shown by the direct calculation:

. n
(AdQE = Ejg Vo = (D subyg”), | =%EG O

1<a,p<n

Remark. From Proposition 2.4, we see that the following elements are central in
U(gl,):

Jo = Det(Ep), Ciw)=")_ det(E; + 1, +u),

|I|=r |I|=r

where g, is the diagonal shift §, = diag(r — 1, r — ., 0). In fact, J, and C,(u) are
respectively expressed as the coefficients of Z't"~" and EO@w +r—1)1"" as seen
in Proposition 1.2 and Proposition 2.6 below:

PROPOSITION 2.6. We have

E(")(u +r— D"

T -0 Y det(Ey + b, + u).

i=r

/ /
=ej...e€ ... (—

This is proved in a similar way as Proposition 1.2 by applying Proposition 2.2 to
submatrices E;.

We remark that C, = C,(0) is the rth Capelli element, and Jy, is the higher Casimir
element described in Section 63 of [Z]. Proposition 2.6 also gives the explicit relation
between these two series of central elements as follows:

PROPOSITION 2.7. We have

C_Z( yks: , Kl(n — k)J

K — )

where Sy is the Stirling number of the second kind connecting the factorial power
M = )(A=1)...(4 —r+ 1) with the usual power }*) = 3"_o SiJ*.
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3. Application to U(o,)

Similarly as for the case of gl,,, we give some basic properties of the central elements
of U(v,) expressed by Pfaffians and determinants.

We consider the orthogonal Lie algebra o, which is realized as the Lie subalgebra
of gl, consisting of the alternating matrices. We put 4; = E; — E; and arrange
a matrix A4 = (4y); ;-1 from these generators of v,. As before we write
Ajj(u) = A +ud; with a parameter u. As an analogue of the Capelli determinant,
it is shown in [HU] that the determinant det(4 + § + u) is central in U(o,), where
g =diag(n—1,n—2,...,0) (see also [U3]). We give here an alternative proof of
this fact as an application of our formulation in Section 1.6.

We put y; =Y e;d; € A, ® U(o,) and further y;(u) = Y7, eid;;(u) with the
parameter u. The basic commutation relations for these are given as follows:

LEMMA 3.1. For 1 <i,j < n, we have
i+ D (u) + ¢(u + Dy (u) = —96,;0,

where

0= Z epegdpy = —Z epy,.

1<pg<n P
Proof. This relation is verified by a direct calculation as Lemma 2.1:
Wi ) + Y0, (u) = epeg[Apiu). Agi(w)] =D epeq[Ayi. Ayl
p.q r.q
= Z epeq(Apibiq + Aig0pj — Apgdij — Aij0pq)
P
= ; epeidy + Xq: ejeqAig — 0jj qu: epeqApq

= —Ejlpj — ejlﬁi — 51]@
= —eal;(u) — e (1) — ;0.

This proves our formula. O

From this relation, as Proposition 2.2, we obtain the expression of the determinant
det(4 + § + u) in terms of the double-determinant. As before we define the elements
E =254 and E(u) = £4(u) in the algebra A,, ® U(o,) by

[x]

n n
A=) aqdy=) e Ea)=Eatur=y Y,
j=1 j=1

I<ij<n

with t = Y7 | eel.
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PROPOSITION 3.2. We have the relation
EOw4n—1)=er...e0e;...e (=) T nldet(d + 15+ u).

COROLLARY 3.3. For the determinant of the matrix A, the following holds:
det(d + f + u) = ()" det(4 — £* — u),

where f = diag(n — 1,n— 2,...,0) and t* = diag(0, 1,...,n—1).
In particular, we have det(4 + diag(v,v — 1, ..., —v)) = 0 when the sizen = 2v + 1
of the matrix is odd.

Proof of Proposition 3.2. This is parallel to that of Proposition 2.2. In fact, in the
following equality deduced from the product of the relation Z(u) = Z}’zl Yi(u)e;

EWwA4n—1)
= D elilutn—Dytn=2). @ e

1 <j1ojaseefn <01

the indices ji, j2, - -, Jjn rn’%)f”run over only the distinct ones because of the factor
¢, ...¢;. Here ¢ =(—) > Iis the signature coming from the transposition of
¥;(u)’s and ¢;’s. Then the commutation relation of ;(u)’s in Lemma 3.1 is the same
as that of 17;(u)’s as long as the indices are distinct. The rest of computation is parallel
to Proposition 2.2. O

Corollary 3.3 is a consequence of Proposition 3.2 and the equality

Eu+n—-DEu+n-2)...5(u)
=) "E(~u—n+DE(~u—n+2)...2(—u),

which holds as a special case of the following:
PROPOSITION 3.4. We have
Eu)...Eu)"™" = (=) E(—u1) ... E(—u)t"".

Here uy, ..., u, are scalar parameters.

Proof. Apply the involution ' =1, induced from the replacement e; <> ¢ to
@ =E(uy)...2(u,)t"", and note that v = —t and Z(u) = E(—u). Then we have
on the one hand

o =Ew)...Eu)""Y = E(~uy) ... E(—u)(—1)"".

On the other hand, since ¢ is of top-degree, we see ¢’ = (—)"¢ by Lemma 1.4. Thus
the proposition holds. ]
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Remarks. (1) Proposition 3.2 is equivalent to the following expression of
det(4 + §+ u):

1 . o
det(A +0+ H) = ﬁ Z 51gn(a)51gn(a )Aa(l)a/(l)(” -1+ H) - Aa(n)(,r(,,)(u).

" (0,06)ES, xS,

(2) As seen in the proof of Proposition 3.2, by using the doubled variables, we were
able to eliminate the effect of the term @ for i = j appeared in the right-hand side of
the commutation relation in Lemma 3.1. This is one of the most essential points
in our formulation. (Compare the proofs given in [U3] with Proposition 3.5 below
for the fact that the determinant det(A4 + f + u) is central.)

(3) Observe the similarity between Corollaries 2.3 and 3.3: if the matrix E in
Corollary 2.3 is replaced by 4, then it yields Corollary 3.3, because ‘4 = —A. This
is not a mere coincidence. We can actually show the expression of row-determinant

n(n—1)
ENu+n—1)=ej...epe)...e,(—)

n!det('d + £* + u)

in parallel to Proposition 3.2 by starting from the relation Z(u) = } 7, ¢;4/(u) with
Wi(u) = )i, €j4i(u). The commutation relation between these /(u) is seen by
applying the anti-automorphism A4; i— 4; to Lemma 3.1.

(4) Corollaries 2.3 and 3.3 are stated in the Remarks in the Appendix of [HU]

without proofs.

The determinant det(4 + § + u) and Pfaffian Pf(4) of the matrix 4 are central in
U(o,). As for Proposition 2.4, we can deduce these facts from Proposition 1.6
via Propositions 3.2 and 1.1 as follows.

PROPOSITION 3.5. Let ¢ be an element written by a homogeneous polynomial of
degree nin 5 andt. Then the coefficient of ey ... eye] .. . e, in @ belongs to the invariant
subalgebra U(v,)°" under the adjoint action of O,,; hence central in U(o,). In par-
ticular, we have det(4 + 4 + u) € U(0,)°".

PROPOSITION 3.6. Let the size n = 2m of the matrix space be even. The Pfaffian
Pf(A), which is expressed as the coefficient of e; . . . e, in O, belongs to the invariant
subalgebra U(0,)5°" under the adjoint action of SO, hence central in U(o,).

We see these two propositions respectively from Proposition 1.6 (1) and (2). The
following lemma assures that the adjoint action of O, on the matrix 4 satisfies

the assumption of Proposition 1.6:

LEMMA 3.7. The adjoint action of g € O, on the matrix A is written as (Adg)A =
Ay = gdg
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Proof. We know that (Adg)E =gE's™! by Lemma 2.5, so that (Adg)E =
(gE's™") = g7 VEg. For g € O,, the latter turns out to be ‘g’E ‘g~!. Then the assertion
is clear, because A = E — E. O

Remark. As in the gl, case, we see that the sums of column- or double-
determinants,

> Det(d), Y det(d; + b, + u)

\I|=k [=r

are central in U(p,). In fact, these are expressed as the coefficients of elements in
Agz,l”) ® A as seen in Proposition 1.2 and the following Proposition, which is parallel
to Proposition 2.6. The relation between these two will be given in Proposition 5.2.

PROPOSITION 3.8. We have

Eu4r— 1)
n(n—1)
=e...e€) ... (=)

A=) det(d; + o + ).

[|=r

By Propositions 3.5 and 3.6, we have now two types of central elements in hand
respectively expressed with determinant and Pfaffian. In the next section, we give
an explicit relation between them.

4. The Relation Between Pfaffian and Determinant

This section is devoted to our main goal:

THEOREM 4. The following relation holds between the Pfaffian and the determinant
of the alternating matrix A consisting of the generators of U(0yy,):

Pf(A)? = det(A4 + diagm — 1, m —2, ..., —m))
=det(4 4+ diagm,m — 1, ..., —m+1)).

The latter equality between the two determinants in the theorem is seen from

Corollary 3.3, so that it suffices to show the first equality. For the proof, we introduce
the three elements in Ay, ® U(o,) with n = 2m:

’ N — /
0= E eiejdj, O = E e,-ejA,-J-, = E eiejA,-j.

1<ij<n 1<ij<n 1<ij<n

Then Theorem 4 is immediately deduced from the following identity:
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THEOREM 4*. We have

1
_\m @I’Vl@/m
) 22m(m!)?

:%(E—i-(m— DO(E+ (m—2)1)...(E — mn).

One might expect an easy proof parallel to what we gave in Section 1.7 for the
commutative case. We will, however, soon encounter difficulties in such a simple
planning, so that we will be forced to make an appropriate detour. Our proof is
divided into several steps accordingly.

First we observe the commutation relations between @, @' and =:

LEMMA 4.1. We have the commutation relations
[0,0 =415, [0,E]=210, [0, Z]=-210.
Remark. These commutation relations are essentially those of the slp-triplet.
Proof. These can be checked by straightforward calculations. First we see

[@» @,] = Z 6’,’6]@26}[1‘1,‘], Ak/]
ij.k,l

= Z eiejere(Aidu — Ajdiu — Aidji + Ajxdir)
ikl

= Z eie; At + Z eje Ayt + Z e, At + Z eje; Ajt
il 7 ik Tk

=4z

i

This proves the first formula. Similar calculation derives the second. By applying the
involutive automorphism " induced from the replacement e; <> e; to the second
formula, we see the third one, because ' = —t and &’ = =. O
COROLLARY 4.2. Put

E(u) = E + ur, Ew)=5u =& —ut = Z(—u).
Then we have

Eu+2)0 =0Zw), Ewu-+2)0 =060'E®u).

Proof. These follow from the second and the third formulas in Lemma 4.1. [J

The commutation relation between ® and @ in Lemma 4.1 itself cannot simply be
rewritten in a nice form as in Corollary 4.2. Our idea to handle these commutation
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relations is to add a catalyst Z in them. To be precise, we introduce
0W)=0+Euw)=0+E+ut, OW)=0"+E5u)=0"+E —ur.
Then we see the following, which is the key to our proof:
LEMMA 4.3. We have the commutation relation
0w)0' (u + 2) = 0'(w)0(u + 2).

Proof. 1t suffices to show the relation 6(u)0' (1) — 0'(1)0(u) = 2t0(u) + 276 (u). This
is indeed deduced from Lemma 4.1:

[0(w), 0'(w)] =[O + E(u), O + ' (w)]
=[0,01+[0,5 W] +[E(), O]
=415 4+ 210 + 210’
=21(0 + E) + O + E(—u)) = 2t0(u) + 210’ (v),

as desired. O

By virtue of Corollary 4.2, we can make the normal ordering of ® and Z in
polynomials of 0(«) (and respectively of @ and Z in polynomials of 0'(«)) as follows:

LEMMA 4.4. The following formulas hold:
Ow)o(u—2)...0u—2i+2)
= Z (;)E(u)E(u —2)...B(u—2p+20"7,
p=0
O (wu—2)...00(u—2j+2)

j .
= Z <])E/(u)5/(u -2)...Eu—29+ 2)@7"1.
q=0 q

Using the notation F®(u; 1) = []\=) F(u — 1I) for the factorial power of F(u) with
step ¢, where F(u) = 0(u), Z(u), etc., we can write these formulas as
i . J ;
0w 2) =" (;)E(")(u; 207, 0Vw2)=> <{] )E’(q)(u; 2)07.
p=0

q=0

With these preliminary lemmas in hand, we will make the crucial computation for
our Theorem. As in Section 1.7, we take

1 -1
h:(l I)GGLQ
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and consider the transformation (4 ® 1,),(®). Then we easily see that
h®1,),(0)=0+22+ 0.

The power of this is expanded as follows:

LEMMA 4.5. For k=0,1,2,..., we have

k!

h®1,)(0)=0O+22+06) = ) 22 (p — q)O” O

1g'r!
p+q+r=kp'q'r'

k!
— " @150 (g —
= +E+ kp!q!r!2@ 0" E"(q — p).
prgtr=

Here
EOw) =Ew)Ewu—1)...Eu—r+1).

Proof. We write for simplicity @ = @ + 22 + @'. Note first that @ = 0(u) + ' (1)
for any u, so that we have

k—1
0" =[O —21) + 60'(u — 21))
=0

— (O — 2k +2)+ 0 — 2k +2))... (0 —2) + 0'(u — 2))(O@) + 0 (u)).

We use here first Lemma 4.3 to expand the right-hand side, and then Lemma 4.4 for
further expansion in the power of @, @' and the factorial power of Z:

k

o =% (ﬁ)@(u—Zk ) 0u—2] — 2)0(u — 2) Ou—2j +2) . .. 0 — 2)0()
J=0
= > ()0 -2
ik M

_ Z <f> (;) (ZI)E(,'_]J)(” _ 2], 2)@11 E/(/—q)(u; 2)@@
i+j=k

0<p<i0<q<j

= > (k) (;) (J ) EEP (g — 2j;2) VD (u — 2p; 2)0F @1
J q

i+j=k
0<p<i0<q<j

k!
= > EW(—y+ 2k —2p — 2, 2) EOu — 2p; 2)0” @'
p+q+,u+v=kp!q!'u!‘)!

|
= > L ( > (V)E’(’”(—u + 2k —2p —2;2) EV(u — 2p; 2)>@P o,

1g'r!
prarr=i P \im=r \H
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Applying the binomial theorem for the factorial power
(x+ ) = z’: (V ) XU r=0
u=0 K
to the inner summation of the last line, we see that the sum turns out to be
r—1 r—1
[[ez-@k—d4p—2-200)=2[[E-(k—2p—1-1))
1=0 1=0
=25k —2p—1)=2"E(p — g).

Thus we have proved our assertion. O

To consider a bit more general case, let us take

a b
h_<C d)EGLz,

so that we have
(h® 1,),(0) = d*O + 2acE + 0O’

We put
Y(u) = a*O + acEu), 9 w) = 0O + acE (u).

Then we see that (2 ® 1,),(0) = 3(u) + 3*(«) and that the commutation relation
) w+2) = Fw)(u+2)

holds correspondingly to Lemma 4.3. Similar computation for Lemma 4.5 shows the
following:

LEMMA 4.6 For k=0,1,2,..., we have

k! .
(az@ + 2acE + c2@/)k _ Z _a2p+rC2q+r2rE(r)(p — )0’ @
p+q+r:kp!q!r!

k! . bt o o
=y g artrrtrrer @' 29 (g — p).
pratr=kt1T

Since the proof is almost the same as Lemma 4.5, we omit it.

Remark. As we noted above, the commutation relations for the three elements
0, @', & are essentially the same as those of the sl,-triplet. To be precise, we consider
X, Y, H € sl, subject to the relations

[H,X]=2X, [H Y]=-2Y, [X,Y]=H.
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Then the correspondence is given by
X< -0/2, Y- 0/2, H<wE

In the universal enveloping algebra U(sl;), Lemma 4.6 is accordingly interpreted as
the trinomial expansion
k!

(X +pH + 7YY = Y m;ﬁpﬂpzw Y7 (-X)" H"(q - p).
e P!

where H(u) = (H 4+ u)(H +u—1)...(H4+u—r+1). Note here the element
—2X + AuH + (2Y in the left-hand side is in the orbit Ad(SL,)X through X under
the adjoint action of SL;, so that it is nilpotent.

Having done the crucial computations, we are now at the final stage of the proof of
our Theorem. Notice the obvious relations that (h®1,),(0%) =0 for
k=m+1,...,n. By Lemma 4.5 or more generally by Lemma 4.6, these
(h ® 1,,),(0%) are expressed as the sum of the monomials in @, @', Z arranged in
normal order. What we should do for our Theorem is, by making suitable linear
combinations, to remove the catalyst from these m relations.

Looking at the coefficient of a*c in the relation (4 ® 1,),(0%) = 0, we have for

k=m+1,...,n

1

S - Y o V4 2—2p5(k—2p)(0) —0.
0 s;m pipl(k —2p)!

In general, introducing an integral parameter s, we define

1
Q)= > 0 0P 277 (p - 1) B (y),
0<oZin ppl(k — 2p)!

where (p—l)(s)z(p—l)(p—2)...(p—s). Then we see that Qi(0) =0 for
k=m+1,...,n, and that

1 B (_)m—l
=1l Oom(m —1) = @)

2m—15(2m)(m _ 1) 4 1 2—m—1@m @/m
m!m! ’

because the factor (p — )™V = (p — 1)(p — 2)...(p — m + 1) in the summation kills
all the terms except the both ends p = 0 and p = m. Thus Theorem 4 is proved when
we show the equality Qy,,(m — 1) = 0, because this is equivalent to Theorem 4*.

LEMMA 4.7. For s =0,1,2,...,m— 1, we have recursive relations

Ok(s + 1) = (k = 25 = 2)Qx(s) — Ok—1(8) - (E + (—k + 35+ 3)1).
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Proof. For simplicity we put W, = @ @7 272 /(p!)*. We have then by definition

E(kuP)( s)

@y 770

Q=2 Y W,

0<p<k/2

Let us introduce an auxiliary element

, 65+ 1
Ol(s) =2° Z Wp-#-

_ 1)(s)_
0<p<kp2 (k —2p)! v

Then as the difference for the factorial powers, we see

E(kuP)(S +1)— E(k72p)(s) E(k7172p)(s)
k — 2p)! Th—1-2p)"

This leads on the one hand to Q,T{(s) = Oi(s) + Ox—1(s)t. On the other hand, from the
obvious relation Z(s + 1) - E&1=2)(5) = 56— (s + 1), we have

k=254 1)

S

Qi) - E+ G+ =2 > W,
0<p<(k-1)/2

FE=2(s + 1)

=2 > W, - “(k=2p)(p — 1Y,

0<p<k-12 (k= 2p)
Note here k —2p = (k — 25 —2) —2(p — s — 1), so that

k=2p)p — 1)(S) =k—-2s=2)p— 1)(S) —2(p— 1)(&-&-])‘

Then we obtain the relation Qy_1(s) - (£ + (s + 1)) = (k — 25 — 2)Q,T((s) — Ok(s+1).
Eliminating the auxiliary element Q,t(s) from this and Qz(s) = Ok(8) + Qr_1(9)
above, we see our recursive relation in question. O

Proof of Theorem 4. Start from the relations Qx(0) =0fork=m+1,...,2m. By
Lemma 4.7, we have Qi(1) =0 for k=m+2,...,2m. We can repeat this process
till we come to Qy,,(m — 1) = 0, which proves our theorem as we saw in the above.[]

Remark. Tt is easy to check that an element of the form ©@”©%¢, where ¢ is a
homogeneous polynomial in = and 7 of degree r, is zero unless both of the conditions
2p+r <n and 2¢g +r < n are satisfied. In particular, if p + ¢+ r = n, these con-
ditions imply p = ¢ < n. This observation together with Lemma 4.5 will be enough
to obtain our conclusion of Theorem 4, though we have used Lemma 4.6 for a clearer
reasoning. In fact, through the same process of making Qx(s) in Lemma 4.7 starting
only from the right-hand side of Lemma 4.5, we see that eventually only the terms
satisfying the conditions described above survive, so that we get the same result.
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5. Supplementary Formulas

We give here some useful formulas derived from our main result. In this section,
except for Proposition 5.6, we assume that » is not necessarily even but arbitrary
natural number.

First, replacing 4 by the submatrices 4; in Theorem 4 and summing up over
|[I| = 2k, we see the following equality in the center of U(p,).

PROPOSITION 5.1. We have

> P4 = ) det(4; + diag(k, ..., —k +1)).

||=2k =2k

The fact that the both sides of Proposition 5.1 belong to the center of U(o,) is seen
from Proposition 3.8 and the following formula in A, ® U(p,), which is similar to
Theorem 4*.

PROPOSITION 5.1%. The following equality holds in Ay, ® U(oy):

(_)k 1 k ok n—2k __ 1 ~(2k)(k ) n—2k

=(2k) n—2k
22k(k!)2 (Zk)' (k)T .

T @R

This can be deduced by applying Theorem 4* to the submatrices A;, because we
have the relations

Ok@k 2%k _ Z @l[(@/[k_c;_—zk’ E(zk)(k)‘c”_zk — Z —-(Z/C)(k),rn -2k
\[|=2k |I|=2k

with

/ > - /) n—2k __ /
O = E eiejA;j, @I:ZeiejA,-j, zl(u)zg eeAy(u), T E e;e;.

ijel ijel ijel igl

We denote the quantity described in Proposition 5.1 by C3;. This is related with the
sum of double-determinants J3" = 1= Det(4y) as follows (cf. Proposition 2.7):

PROPOSITION 5.2. We have the following relation between the central elements in
U(o,)-

o _ N CRNn = 200!,
€ = 2 i —ary T

where the coefficient cj, is defined by the expansion

(2= (=D = =2)...(F =i = Zc' 2.
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Proof. We have

EMEr—1)... B(—r+ D"

E(r—1)...20)2(0)... E(=r + D" =) 5%
k=0

by the equality Z(r — 1)... Z(—r + 1)7"~?*+! = 0, which follows from Proposition 3.4.
Our assertion is proved from this and the expressions of double-determinant and
column-determinant in Propositions 1.2 and 3.8. O

Remark. The coefficient ¢j, in Proposition 5.2 can be expressed with the Stirling
number S; of the second kind as

2k
ro__ r+1 or r
= Z(—) S5 -
=0

The central elements Cy;, as expressed by determinant in the right-hand side of
Proposition 5.1, appear as the coefficients in the central element det(4 + f + «) with
the parameter u. The explicit form is given as follows.

PROPOSITION 5.3. We have the following expansion.

(" " _ LA

det(A+d1ag(2,2 1,..., 2+1>+u)—0<; Czk-(u—f-2 k) .
<k<n/2

This proof is readily seen from Proposition 3.8 and the following Lemma.

LEMMA 5.4. We have

=)=, B G ess)

0<k<n/2

(n—2k)

Proof. We note that the binomial expansion holds:

o [EO D e
o (E + u) =15 1 [n—i— 1\
Z (i)E(l)<|:§])Tn_l (u + 3 + [T:D . n:odd.

i=0

Here [x] indicates the greatest integer less than or equal to x. The expansion is proved
as a usual polynomial identity by induction on #n, as = and t are commutative. Our
assertion follows from this, because we have

E(2k+l)(k)fn_2k_l — E(k) o E(—k)’fn_2k_l =0

by Proposition 3.4. ]
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In Lemma 5.4, the terms containing %X (k) in the right-hand side can be rewritten

in @ and @’ by Proposition 5.1*. Also, the Z in the left-hand side of Lemma 5.4 can be
transformed into ® — @ in the same way as in Section 1.7, so that we have
EOm/2 +u) = 27" [['2 (@' — O + (n + 2u — 2i)7). Thus, Lemma 5.4 is interpreted
as the following expansion for the power of @ — ©:

PROPOSITION 5.5. We have

n—1

[]© — 6+ @n+2u-2iy
i=0

Kl ! k @k ;n—2k n (n—2k)
= ) Y ma el no, ‘
0<k<’1/2( ) 1 — 200! T (u+2 )

This is a generalized form of the direct counterpart of the binomial expansion that
we used in Section 1.7 for the proof of commutative version of our main theorem. If
we could have proved this more directly, the analogy would be much clearer in the
commutative case and our o, case. But it does not seem so easy.

We close this section by making a remark on the expressions of the right-hand side
of Theorem 4 as follows.

PROPOSITION 5.6. The following determinants with different shifts are equal to one
another:

det(A +diagim —1,...,m—k,m—k,...,—m+1)), k=0,...,2m.

Here the dots indicate a sequence of numbers descending by 1.
Proof. 1t suffices to show

det(A +diaglm—1,.... m—k,m—k,...,—m+1))
=det(d +diagim—1,.... m—k+1,m—k+1,...,—m+1))

for k=1,...,2m. For this, observe the equality

Yi(m—1).. Ay (m—k+ Dy (m — iy (m — k)., (—=m + 1)
= 1) O — K Dm — ke D — )y (1) —
—Ym =1 .. Yy (m—k+ Dehyp (m —k) .. .p,,(—m + 1).

Here the latter term in the right-hand side vanishes, because
det(4d; +diagim — 1, m—2,...,—m+1))=0

for 7 =1{1,2,...,2m}\ {k} as seen in Corollary 3.3. Then the resulting equality
proves our assertion. ]
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6. Relation to Other Realizations of the Orthogonal Lie Algebra

So far we have worked within a specially fixed realization of the orthogonal Lie
algebra o,. However, since the expressions of the Pfaffian and the double-
determinant by means of exterior algebra enjoy a certain stability as we saw in Sec-
tion 1.5, we may transfer our consideration still to other forms.

We take an n x n nondegenerate symmetric matrix .S in Mat,(KK), and consider the
orthogonal Lie algebra o(S) with respect to the quadratic form defined by S:

o(S) ={X egl,; ' XS+ SX =0}.

Via the natural embeddings of o(S) and o, in gl,,, we regard their universal enveloping
algebras U(o(S)) and U(o,) as the subalgebras of U(gl,). We introduce an involution
is : X 1— STVXS of gl,. Then we see X — ig(X) € o(S) for any X € gl,, and o(S) is
generated by those elements of the form Fj; = Ej; — is(Ej). Arrange the matrix
F = (1’7,_‘,-)7,/:1 from these generators. This matrix is expressed as

F=E—Ad(S""YE=E - SES™!

by Lemma 2.5. We see that FS and S™'F are alternating from this expression.
Theorem 4 is rewritten for o(S) as follows:

THEOREM 6. We have

Pf(FS)* det(S)™!
= Pf(S'F)* det(S)

1 _ o
“al Y sign(o)sign(o))Foye1y(m) . - Fopuoriy(—m + 1),

" (0,0)eS,xC,

Proof. Let s be an element in Mat,(K) such that S = s (we may always take
such an s by extending the ground field K). Then a natural isomorphism
0, ~ 0(S) is given as the restriction of the automorphism Ad(s~'"): X i— s~ Xs of
gl,. We remark that the image of our matrix A4 under this isomorphism is seen
to be Ad(s )4 =%5'Fs from Lemma 2.5. This leads to the equality
Ad(s A4 =57 'FSs~! = sS~!F’%, so that the following relations between Pfaffians
hold:

Pf(Ad(s™")A4) = det(s) 'Pf(FS) = det(s)Pf(S™'F).

Since Ad(s~")4 = 57! F's, we have Efgz,l WOE E%")(u) by Proposition 1.5. Hence,
transferring Theorem 4 under the isomorphism Ad(s~!): U(o,) =~ U(0(S)), we obtain

the following equality:

L —m) —(om)
()" 22m (m) ORas 14O Ras 14 = Engenya () = Zg " (m).
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Comparing the coefficients in both sides, we see

B 1 . . /
Pf(Ad(s"")4)* = o Z sign(o)sign(a’) Fo1)e(1) (M) - . . Fomyorin(—m + 1).

(0,0)€€,xE,

Together with the relations of Pf(Ad(s~!)4) to Pf(FS) and Pf(S~'F) given above,
this clearly proves our assertion. [

Remark. We see that the right-hand side of the equality in Theorem 6 is equal to

z Det(F))
;C’ (21) |1|2=;/ ety

as in Proposition 5.2.

In the case S = 1,,, Theorem 6 is reduced to the expression by column-determinant
as seen in Section 4. However, such a reduction to an alternating sum of #! terms
seems rather hard and complicated for general S. In the case of S=
(in+1-7); j=1» A. Molev [M] described the square of Pf(S~!'F) with Sklyanin deter-
minant in twisted Yangian. This suggests that our double-determinant in
Theorem 6 can be reduced to certain ‘single’ determinant at least this case. Further
investigation on this theme will be appearing elsewhere (see [I1]).
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