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Abstract

XML data are described by types involving regular expressions. This raises the question of

what language feature is convenient for manipulating such data. Previously, we have given an

answer to this question by proposing regular expression pattern matching. However, since this

construct is derived from ML pattern matching, it does not have an iteration functionality

in itself, which makes it cumbersome to process data typed by Kleene stars. In this paper,

we propose a novel programming feature regular expression filters. This construct extends

the previous proposal by permitting pattern clauses to be closed under arbitrary regular

expression operators. This yields many convenient programming idioms such as non-uniform

processing of sequences and almost-copying of trees. We further develop a type inference

mechanism that obtains (1) types for pattern variables that are locally precise with respect

to the type of input values and (2) a type for the result of the whole filter expression that

is also locally precise with respect to the types of the body expressions. We discuss how

our construct is useful in the practice of XML processing and, in particular, how our type

inference is crucial for avoiding changes of programs when types of data to be processed

evolve frequently.

1 Introduction

XML (Bray et al., 2000) is a representation of typed data structures for trees. As it

becomes popular, a big demand has emerged for special-purpose languages dedicated

to processing XML data, in particular, those capable of statically guaranteeing

generated data to conform to given types (Cluet & Siméon, 1998; Meijer & Shields,

1999; Fankhauser et al., 2001; Murata, 2001; Milo et al., 2000; Frisch et al., 2002;

Tozawa, 2001; Hosoya & Pierce, 2003; Gapeyev et al., 2005; Lu & Sulzmann, 2004).

A unique property of XML data is that there is ordering among sibling nodes

and, in order to give structure on these nodes, types for XML data typically

involve regular expressions (Bray et al., 2000; Fallside, 2001; Clark & Murata,

2001; Hosoya et al., 2000). This gives rise to the question: what is a convenient

programming feature for manipulating such data? Previously, we have given an

answer to this question by proposing regular expression pattern matching (Hosoya

& Pierce, 2002; Hosoya, 2003). In one sense, this design is natural since it combines

regular expressions with the ML-style pattern matching paradigm, which has already

established its usefulness in tree processing in functional programming languages.

However, since pattern matching does not have an iteration functionality in itself,
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it is quite cumbersome to process data values typed with regular expressions, in

particular, those involving Kleene stars. Typically, an explicit recursive function is

required each time the program processes such data.1 As a construct more suitable

for this purpose, many languages for XML, such as XSLT (Clark, 1999), XQuery

(Fankhauser et al., 2001), and �Duce (Benzaken et al., 2003), provide a “for-each”

iterator, which performs a given operation on each node of a sequence independently.

However, such a construct is ad hoc in the sense that it has no connection to regular

expressions. More practically, it is difficult for this to manipulate data that repeat

groups of several elements. For example, for a value of type (a,b)*, we would

typically want to process each pair of a and b rather than each a or b. (Although

such “complex” regular expressions are not very typical, they can occasionally

be found in real XML schemas, such as DocBook (OASIS, 2002), MusicXML

(LLC., 2004), and RecipeML (FormatData, 2000). We give concrete instances in

Appendix B.)

This paper proposes regular expression filters as an XML manipulation construct

that is elegant, i.e., strongly connected to regular expressions, and has both func-

tionalities of pattern matching and iteration. The idea behind this is to extend

regular expression pattern matching, which can be seen as an alternation of pattern

clauses, by allowing arbitrary regular expressions over pattern clauses. This yields

a significant expressiveness, allowing various convenient programming idioms, such

as “non-uniform processing of sequences” (processing nodes with the same label

differently depending on their positions) and “almost-copying of trees” (copying the

whole tree structure with slight changes), that go beyond the capability of pattern

matching or a naive for-each style iterator.

We will give plenty of examples in section 2, but let us see here small ones.

Suppose that we have a value items of type Item* where Item is defined as follows

type Item = item[Content]

(where the Content type is defined somewhere else), that is, the value items is a

sequence of item labels each of which contains a value of type Content. Let us

consider converting such sequence of items into some display format. The simplest

way would be to format each item independently and concatenate all the results.

Using our filters, we can express it in a concise manner without involving any

recursive definition.

filter items {

(item[Any as c] { format(c) })*

}

A more complex formatting would be to process each item in this value, inserting

separators between the resulting values. Make sure not to put a separator in the

end, and return the empty sequence if the input is the empty sequence. To do this

1 This might not be the case if the language supported both parametric polymorphism and higher-order
functions as in ML. However, though each of these has been treated separately in Hosoya et al. (2005)
and in Frisch et al. (2002), handling both at the same time is still an open problem.
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with filters, we first regard the input type Item* as the following equivalent one

() | (Item*,Item)

and write the filter expression below, which processes the input value according to

the structure indicated by the new regular expression.

filter items {

() { () }

| (item[Any as c] { format(c), sep[] })*,

(item[Any as c] { format(c) })

}

That is, when the input is the empty sequence, we use the first clause to emit the

empty sequence. In the other case, we use the second clause to format each node

and append a separator except for the last node, for which we use the third clause

to format the node without adding a separator.

In order for our construct to comfortably be used in a statically typed language,

we have designed a type inference mechanism. Similarly to our previous inference

technique for regular expression pattern matching (Hosoya & Pierce, 2002), the

inference here is local and locally precise. By local, we mean that we calculate types

relevant to a filter by using only type information obtained from its adjacent expres-

sions. By locally precise, we mean that the types to be computed precisely represent

the values of the corresponding expressions, with the conservative assumption that

the type information from the adjacent expressions is also precise.

More specifically, the inference computes types for two parts of a given filter: the

bound variables and the result. For the first part, we have already shown (Hosoya &

Pierce, 2002), in the setting of regular expression patterns, how to calculate types for

bound variables from a given type for the input. However, the previous technique has

the limitation that it can infer types only for “tail” variables (binding a sub-sequence

up to the end of the input sequence), which is not acceptable in the present setting

since most filters actually use variables to capture intermediate sequences (as in the

above example). Therefore we have developed a novel inference technique based

on the combination of a tree automata encoding involving “sequence-capturing

variables” (Section 4) and product construction of automata (Section 5). (Frisch,

Castagna, and Benzaken have solved the same problem independently using a

different algorithm (Frisch et al., 2002).) The second part of the inference is to

compute a type for the result of the filter from both the type for the input and a given

type for each body expression. We have achieved this by using automata augmented

with “action annotations” (Section 4). For the practical implication, the inference is,

of course, quite convenient for eliding obvious type annotations, thus increasing the

writability and readability of programs. However, in the setting of XML, we believe

that such type inference is more important than this usual benefit, in particular, it

is actually mandatory in reducing the burden of changes of programs caused by

evolution of the types the programs work with, as we will argue in Section 2.5.

An important piece of related work is �Duce’s map and transform constructs

(Benzaken et al., 2003), which are similar to our regular expression filters except that
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theirs are restricted to uniform processing of sequences. They also have a somewhat

similar but different type inference technique for both bound variables and the

result. We will make a more detailed comparison in Section 6.

Although we intend this work to be a feature proposal independent of a specific

language, we have incorporated regular expression filters and the type inference in

our design and implementation of the typed language XDuce for XML processing.

The reader is encouraged to try out our prototype system available through:

http://xduce.sourceforge.net

The rest of the paper is organized as follows. Section 2 shows a series of examples

to illustrate regular expression filters and the type inference. We then formalize

these in Section 3. In Section 4, we introduce an automata model for regular

expression filters that is suitable for performing the type inference. The inference

algorithm itself is described in Section 5. Section 6 compares our work with other

work and Section 7 closes this paper. Appendix A shows an algorithm from filters

in the surface language to our automata model. Appendix B collects examples of

“complex” regular expressions found in real-world DTDs.

2 Examples

This section gives an informal presentation of our language constructs and illustrates

their practical uses. The formal definitions can be found in Section 3.

2.1 Values and types

Values in our type system are sequences of labeled values (or base values) and

thus representing fragments of XML structures. For example, a sequence of several

labeled values like

name["Hosoya"],email["hahosoya"],tel["123-456"]

and a single label containing some other sequence like

person[name["Pierce"],email["bcpierce"]]

are values.

Types are regular expressions over labeled types (or base types such as String).

For example, the following type

name[String],email[String]*,tel[String]?

allows a sequence of a name label followed by zero or more email labels and an

optional tel label where each label contains a string. We can also nest types as in

the following.

person[

name[String],email[String]*,tel[String]?

]*
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We also allow recursive types (and type abbreviations) through type definitions.

For example, the following defines a type for trees where each node can have an

arbitrary number of subtrees.

type Tree = node[Tree*] | leaf[String]

We do not impose any restriction on regular expressions, such as determinism or

unambiguity (e.g., we allow unions of the same labels like a[b[]]|a[c[]]). This

makes types to correspond to nondeterministic finite tree automata, which form the

basis of our framework. More discussions can be found in Hosoya et al. (2000).

A labeled type can actually have a label set instead of a single label. For example,

we can use union label sets as in (name|email)[String], the universal label set as

in ~[String], and negation label sets as in ^(tel|email)[String]. In particular,

we use the types Any (matching any value) and AnyOne (matching any singleton

sequence) defined as follows.

type Any = AnyOne*

type AnyOne = ~[Any] | String

(We assume here that the only base type is String.)

The subtype relation between two types is simply inclusion between the sets of

values that they denote. For example, (Name*,Tel*) is a subtype of (Name|Tel)*

since the first one is more restrictive than the second. That is, Names must appear

before any Tel in the first type, while Names and Tels can appear in any order in

the second type.

2.2 Regular expression filters

The basic blocks of regular expression filters are clauses. A clause has the form

pattern {expression} and means “if the input value is matched by the pattern,

execute the expression,” just like ML pattern matching. Patterns are syntactically

identical to types except that patterns may contain variables to which the corres-

ponding substructures of the input value are bound. (Therefore a type itself can be

used as a pattern by putting no variable.) We do not give a specific definition of

expressions in this paper; however, examples shown in the sequel use the following

kinds of expression: labeling constructors l[e], concatenations e1,e2, the empty

sequence (), variables x, base values such as strings, function calls f(e), and filter

expressions themselves.

We can connect or enclose clauses by regular expression operators, forming filters.

For example, the following filter expression gives a value v to the filter connecting

several clauses by the union operator |.2

2 The precedence rule for operators usable in filters is as follows (from stronger to weaker):
* + ? as {} (suffix operators)
,
|
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filter v {

person[Any as i] { li[...] }

| company[Any as j] { li[...] }

| comment[Any as s] { p[] }

}

Here, the form pattern as variable binds the variable to the value matched by

the pattern. Thus, the above filter matches any singleton sequence where the label

of the only element is either person, company, or comment. In the first case, it

executes the first body expression creating a label li (containing some sequence not

shown here), and similarly for the other cases. As one can see, this use of filters is

similar to ML pattern matching and, in fact, is exactly the same as our previous

proposal, regular expression pattern matching (Hosoya & Pierce, 2002) (except that

the union operator in filter expressions does not have the first-match semantics, i.e.,

top-to-bottom evaluation of clauses, but instead it chooses an arbitrary match if

there are multiple possibilities; we will come back to this point in Section 3.)

A filter can be enclosed by Kleene closure *, enabling iteration on sequences. For

example, the following wraps the above filter by *.

filter v {

( person[Any as b] { li[...] }

| company[Any as f] { li[...] }

| comment[Any as s] { p[s] } )*

}

The filter matches any sequence of labels person, company, or comment, converts

each label to either li or p in the same way as above, and concatenates all the

results in the left-to-right order.

The concatenation of two filters splits the given sequence so that the first sub-

sequence matches the first filter and similarly for the second one, then evaluates each

filter with the corresponding sub-sequence, and finally concatenates the two results.

(Again, when there are multiple ways of matching, the system chooses an arbitrary

one.) For example, the following filter expression

filter v {

(email[Any as e] { emailAddress[e] }),

(tel[Any as t] { telNumber[t] })

}

matches any value of type email[Any],tel[Any] and replaces the label email with

emailAddress and tel with telNumber.

When a filter is enclosed by a label, it matches a value with this label, processes the

content with the enclosed filter, and puts the label back to the result. For example,

the following filter

filter v {

person[ Any as pc { proc_person_content(pc) } ]

}
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processes the content of a person label by the proc_person_content function

(defined somewhere else), keeping the label itself.

2.3 Non-uniform sequence processing

Since we can use arbitrary combinations of regular expressions over clauses, this

allows us to process a sequence in a more complex way than “for-each” iteration –

such as processing elements with the same label in a different way depending on

their positions, or operating on each group of elements in a sequence rather than

on each individual element.

In the introduction, we have already seen a small example of non-uniform

processing. Let us show here another, slightly more complex one. In the second

example shown in Section 2.2, the output may mix lis and ps in the same sequence.

However, since this is actually not allowed in XHTML, we want to put consecutive

lis together in a dl label this time. For this, we need to process each consecutive

list of persons and companys separately from intervening comments. Our solution is

to first view the type

(Person | Company | Comment)*

as the following equivalent type

((Person | Company)*, Comment)*, (Person | Company)*.

Here, we assume that the following type definitions are given.

type Person = person[Info]

type Company = company[Info]

type Comment = comment[String]

Then, we write a filter that corresponds to the above regular expression.

filter v {

(((Person|Company)* as s { dl[proc_mix(s)] }),

comment[Any as s] { p[s] })*,

((Person|Company)* as s { dl[proc_mix(s)] })

}

This filter calls the function proc_mix defined below (which takes an argument of

type (Person|Company)*), which in turn uses another filter to process a sequence

of persons and companys.

fun proc_mix ((Person|Company)* as seq) : ... =

filter seq {

( person[Any as i] { li[...] }

| company[Any as i] { li[...] } )*

}
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2.4 Almost-copying of trees

In practical XML processing, we often want to modify small bits of the input

document, retaining the rest of the structure. For this purpose, regular expression

filters are quite convenient.

For example, consider the following type definitions.

type Person = person[Name,Email*,Tel?]

type Name = name[String]

type Email = email[String]

type Tel = tel[String]

Suppose that we want to “clean up” a sequence of persons by processing the string

of each name, email, or tel by a corresponding tidying function. Then, we can

write a filter expression by copying the structure of the Person type and inserting

an appropriate variable binder and a body expression after each String type.

filter ps {

person[

name[String as n { tidy_name(n) }],

email[String as e { tidy_email(e) }]*,

tel[String as t { tidy_tel(t) }]?

]*

}

(We assume that the tidy_name etc. functions from strings to strings are defined

somewhere else.) Note that two Kleene stars are nested, around person and around

email. If we had to write the same function only with pattern matching, we would

need two recursive functions, which would be much more cumbersome.

The examples so far have been horizontal processing of XML data, but we would

sometimes want vertical processing. For example, let us slightly change the Person

type definition by allowing each person to have a sequence of persons recursively.

type Person = person[Name,Email*,Tel?,Person*]

Then, we would like to tidy leaf information in the same way as before, but, this

time, the type involves recursion and therefore we would naturally want a filter

traversing recursively on data of such type. For this, we provide a notation for

writing recursively defined filters. In our example, we can first declare a filter named

tidy_persons in the following way.

rule tidy_persons =

person[

name[String as n { tidy_name(n) }],

email[String as e { tidy_email(e) }]*,

tel[String as t { tidy_tel(t) }]?,

tidy_persons

]*
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That is, the filter tidy_persons processes a sequence of persons similarly to the

previous paragraph, except that, for the sequence of persons appearing in the end

of the content of each person, we apply the tidy_persons filter recursively. To

invoke this filter for a given value, we simply refer to the filter’s name in a filter

expression as in the following.

filter ps { tidy_persons }

In writing an almost-copying program, we often want to retain the whole

substructure of a value, delete it, or insert a substructure. For example, suppose

that we have the following type definitions

type Person1 = person[Name,Email*]

type Person2 = person[Name,Tel]

and want to convert a value from type Person1 to type Person2, retaining the name

element, delete the sequence of email elements, and insert a “default” tel element.

The following filter achieves this in a simple way.

filter p {

person[

Name,

Email* { () },

() { tel["unknown"] }

]

}

Here, we use the type Name as a filter, which simply retains the value matched by

the type. Also, note that we use a clause with the empty sequence pattern, by which

we can insert any value even though there is nothing corresponding in the original

value.

2.5 Type inference

We now turn our attention to the type inference mechanism dedicated to our

filter facilities. As mentioned in the introduction, the type inference has two parts:

inference of types for bound variables and that of a type for result values.

2.5.1 Types for variables

The type inference for variables is local in the sense that it depends only on a type for

input values and a subject filter (thus using no constraint from distant expressions).

The inference is locally precise in the following sense. First, we conservatively assume

that all the values from the input type may be passed to the filter. Then, under this

assumption, we compute, for each pattern variable, a type that contains exactly the

values that may be bound to the variable.

For example, consider the following filter where the input bookcontent has type

(Person|Company|Comment)*.
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filter bookcontent {

()

{ () }

| AnyOne+ as c

{ dl[

filter c {

(AnyOne as e { li[proc_each(e)] })+

}]

}

}

The purpose of the filter is to process each node in the input by the proc_each

function (taking type (Person|Company|Comment) and defined somewhere else), put

a li to each result, and enclose all the results by a dl. We need, however, to handle

the case of the empty sequence specially since XHTML requires that a dl must

contain one or more lis. In this case, we return the empty sequence as the whole

result. From the fact that input values have type (Person|Company|Comment)*

and the second clause matches only sequences of length one or more, the inference

computes the type (Person|Company|Comment)+ for the variable c. From this type,

we further infer the type (Person|Company|Comment) for the variable e.

One benefit from this type inference is, of course, to avoid verbose type annota-

tions. Another, potentially bigger benefit is that the inference can make program

code robust against changes of types. For example, suppose we have changed the

input type (Person|Company|Comment)* to (Person|Company|Shop|Comment)*.

(In general, the most common way of evolving a type is to make it larger in

denotation.) If we want to process the input exactly in the same way as before

(except that the proc_each function should now handle the new case), then it is

desirable that we need not change the above code fragment. If we did not have a

precise inference, the type explicitly annotated for c has to manually be modified

from (Person|Company|Comment)+ to (Person|Company|Shop|Comment)+ (and

similarly for e’s type). With our precise inference, on the other hand, types for c and

e are automatically computed and therefore such a modification is also automatic,

which makes the code remain the same.

2.5.2 Types for result values

The inference for result types is also local in the sense that it depends only on a

type for each body expression in addition to the input type and the filter. The type

for each body expression may have been obtained by some typing algorithm from

the types inferred for bound variables. We do not, however, assume any concrete

typing algorithm for body expressions; rather, this is given as a parameter to our

inference scheme.

Then, the inference is, again, locally precise. Before describing what we mean by

this, let us show an example. Consider the following filter
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filter v {

(email[String as s] { emailAddr[s] } )*

}

Suppose that we have the type emailAddr[String] for the body expression. What

should be the result type of this filter? Naively, we may answer emailAddr[String]*

from the structure of the filter. However, we could go further. That is, the result

type can depend on the input type. For example, it can be emailAddr[String]+

if the input type is email[String]+ since the filter produces one output node for

each input node. In general, we first conservatively assume that all the values in the

input type may be passed to the filter, as before, and that all the values in the type

of each body may be returned by it. (Again, some values from the body type may

not actually be returned at run time.) Under these assumptions, we compute a type,

for result values of the filter, that contains exactly the values that may be returned

by the filter.

One may wonder why we need such a precision. Our answer is, again, robustness

against type evolution. Let us consider the following hypothetical scenario. Suppose

that a schema for address book documents is maintained by a (big) standard

committee and you are an engineer in a (small) company writing filters from

address books to address books. As in the reality, the committee often changes the

type when there are enough external requirements. However, you may not want to

change your filter programs every time they change the type especially when you

write many different filters for address books. Therefore you may want to make your

programs as general as possible in the first place so that they work after foreseeable

type changes.

For concreteness, suppose that the address book schema contains the type

PersonInfo, which is defined as follows at the beginning.

type PersonInfo = Name,Addr+,Email*,Tel?

You could write a filter with the same structure as this type, but this would not be

robust against any type change. The committee might allow any addr to be omitted

or allow more than one tel to be present. So it is better to write in the following

way.

filter content {

(name[Any as n] { name[tidy_name(n)] }),

(addr[Any as a] { addr[tidy_addr(a)] })*,

(email[Any as e] { email[tidy_email(e)] })*,

(tel[Any as t] { tel[tidy_tel(t)] })*

}

So does this filter typecheck (with the expected type Name,Addr+,Email*,Tel?)

before the anticipated type change actually happens? The naive inference would

compute the result type as Name,Addr*,Email*,Tel* and makes the filter ill-

typed since this type is larger than the expected type. On the other hand, our precise

inference answers exactly the same type as the input type Name,Addr+,Email*,Tel?

(which is the same as the expected type) since our inference recognizes, from the
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input type, that there are only one or more addrs and zero or one tel in any input

value, and therefore so in any output value.

If you further suspect that the committee might change the PersonInfo type in

a way that allows an arbitrary order among addrs, emails, and tels, then you can

make the filter more general in the first place as follows.

filter content {

( name[Any as n] { name[tidy_name(n)] }

| addr[Any as a] { addr[tidy_addr(a)] }

| email[Any as e] { email[tidy_email(e)] }

| tel[Any as t] { tel[tidy_tel(t)] })*

}

The type inference still gives you the right type – Name,Addr+,Email*,Tel? – for

the result. If you guess that they might allow more possible fields to be added, then

you can write an even more general filter to ignore such fields.

filter content {

( name[Any as n] { name[tidy_name(n)] }

| addr[Any as a] { addr[tidy_addr(a)] }

| email[Any as e] { email[tidy_email(e)] }

| tel[Any as t] { tel[tidy_tel(t)] }

| ^(name|addr|email|tel)[Any] { () } )*

}

The type inference still does the right job.

Caveat: our type inference has the restriction that it uses only one type for each

body expression. For example, consider the following filter expression with the input

type a[T]|b[U].

filter v {

~[ Any as x { c[x] } ]

}

This filter copies the input value, inserting an intermediate label c just under the

top label a or b. One may expect the result type to be a[c[T]]|b[c[U]]. However,

since we can give only one type to the body, the best type we can give is c[T|U], and

therefore the result type is a[c[T|U]]|b[c[T|U]], which is larger than the expected

one. We know that this limitation is undesirable and can have a negative impact on

practice. Unfortunately, this seems the best we could do in the present local inference

approach. Indeed, if we remove this restriction, then there is an example where we

can obtain unboundedly better types by repeating the inference on the same body

expression, which makes it difficult to define the specification of the inference. We

will describe this point in Section 3.3 in more detail.

3 Formalization

In this section, we give the syntax and semantics of types, patterns, and filters, as

well as the specification of our type inference.
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3.1 Syntax

We assume a (possibly infinite) set A of labels, ranged over by a. A value v is a

sequence of labeled values, where a labeled value is a pair of a label and a value.

We use the following syntax for writing values.

v ::= ε empty sequence

a[v] labeled value

v v concatenation

For brevity, we omit base values and types (such as strings) from the formalization.

The changes required to add them are straightforward.

We assume a countably infinite set S of sets of labels. Each member of S is called

label set and ranged over by L. Let the set S be closed under union, intersection, and

complementation. We also assume countably infinite sets of pattern names ranged

over by X, filter names ranged over by Y , variables ranged over by x, and body ids

ranged over by e. Then, patterns P and filters F are defined as follows.3

P ::= P as x binder

P P concatenation

P |P alternation

P ∗ repetition

L[X] label

ε empty sequence

F ::= P → e clause

F F concatenation

F |F alternation

F∗ repetition

L[Y ] label

ε empty sequence

A pattern grammar is a finite mapping from pattern names to patterns and, simi-

larly, a filter grammar is a finite mapping from filter names to filters. In either

grammar, the names appearing in each pattern must be in the domain of the

grammar. Throughout this paper, we assume fixed, global pattern grammar E and

filter grammar G to be given. (Note that, in the formalization, we forbid nesting of

labels and require names to occur only inside labels. This does not, however, lose

generality since any definitions without these restrictions can be translated to ones

with the restrictions4.)

3 In the formal definition, we slightly change the notation from the previous section to avoid confusion
with standard mathematical notations, namely concatenation by juxtaposition instead of comma and
clause by arrow instead of curly braces.

4 More precisely, even if we drop the above-mentioned restrictions, we still need a restriction to ensure
patterns not to have the power of context-free grammars, e.g.,

P = a[]P b[] | ε.

A commonly adopted restriction is to require any recursive use of pattern names to appear inside a
label. See Hosoya et al. (2000) and Hosoya (2003) for details.
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In the formal system here, we do not concretely specify what “body expressions”

are, but rather treat them in an abstract way by using body ids; we’ve chosen

this presentation for directly focusing on issues related to filters as well as for

providing our techniques for filters as a package modularized from the rest of

the programming language. We will show the operational semantics and the type

inference specification for filters, which take evaluation and typing algorithms defined

on body ids as parameters.

To ensure a given pattern to always bind the same set of variables, we impose

a “linearity” restriction on them. Let reach(P ) be the set of all variables reachable

from P—that is, the smallest set satisfying the following:

reach(P ) = BV(P ) ∪
⋃

X∈FN(P )

reach(E(X)),

where BV(P ) is the set of variables bound in P and FN(P ) is the set of pattern

names appearing in P . We say that a pattern P is linear iff, for any (reachable)

subphrase P ′ of P , the following conditions hold.

• x �∈ reach(P1) if P ′ = P1 as x.

• reach(P1) ∩ reach(P2) = ∅ if P ′ = P1 P2.

• reach(P1) = reach(P2) if P ′ = P1 |P2.

• reach(P1) = ∅ if P ′ = P1
∗.

In what follows, we assume that (1) all patterns are linear, (2) for clauses P1 → e1

and P2 → e2 in a filter with e1 �= e2, the same variable does not appear in P1 and

P2, and (3) for P1 → e1 and P2 → e2 with e1 = e2, the sets of variables in P1 and P2

are the same.

Several features not appearing in the syntax can be expressed as shorthands. An

optionality operator F? can be rewritten to F | ε and a one-or-more-repetition filter

F+ to F F∗. (Note that each body appearing in F here is duplicated in the expanded

form but still has the same id, e.g., no new id is allocated. This is important for

ensuring the expansion not to break the restriction that each body in the original

program is typechecked only once.)

As mentioned in Section 2.2, our alternation operator has the nondeterministic

semantics, i.e., F1|F2 matches F1 or F2 nondeterministically, as opposed to the

first-match semantics used in our previous framework (Hosoya & Pierce, 2002).

However, since first-matching is often convenient for writing “default” clauses, we

suggest providing (and indeed the current XDuce does support) a separate “first-

match” alternation operator F1||F2, where F2 matches only when F1 does not match.

One easy way to implement this is to convert the filter F1||F2 to F1|F ′
2 (using the

nondeterministic alternation) where F ′
2 is a filter that behaves exactly the same as

F2 except it matches only values not matched by F1. This conversion can easily

be done by taking a “set-difference” between F2 and F1 preserving binding and

action information in F2. Further details are omitted in this paper. (The first-

match alternation operator || suggested here does not cover the full expressiveness

of our previous first-match semantics of patterns. In particular, the previous can

express greedy matching, e.g., longest or shortest matching. However, we chose a
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nondeterministic semantics since the first-match semantics introduces a significant

complication in the language definition and implementation. Further discussion on

matching policies is out of scope of this paper since the same argument already

done elsewhere for pattern matching (Hosoya, 2003; Hosoya & Pierce, 2003) can be

applied here and we believe that, if one wishes greedy-matching filters, one could

transfer here previous techniques for greedy-matching patterns.)

A final remark is that, in Section 2.4, we have used a type expression itself as

a filter expression, whose semantics is to retain the matched substructure. This is

already in the syntax of filters since we allow a filter with no clause.

3.2 Evaluation

We now define the operational semantics of patterns and filters. As mentioned above,

the semantics is parametrized over an evaluation algorithm eval(V , e) that takes an

environment V and a body id e and returns a value. An environment is a finite

mapping from variables to values, written x1 : v1 . . . xn : vn.

The semantics of patterns is described by the matching relation v ∈ P ⇒ V , read

“value v is matched by pattern P and yields environment V .” The relation is defined

by the following rules.5

v ∈ P ⇒ V

v ∈ P as x ⇒ (x : v)V
PVar

∀i. vi ∈ Pi ⇒ Vi

v1 v2 ∈ P1 P2 ⇒ V1 V2

PCat

∃i. v ∈ Pi ⇒ V

v ∈ P1 |P2 ⇒ V
POr

∀i. vi ∈ P ⇒ Vi

v1 . . . vn ∈ P ∗ ⇒ V1 . . . Vn

PRep

a ∈ L v ∈ E(X) ⇒ V

a[v] ∈ L[X] ⇒ V
PLab

ε ∈ ε ⇒ ∅
PEps

We write v ∈ P when v ∈ P ⇒ V for some V .

For the semantics of filters, a straightforward way would be to define a three-place

relation on input values, filters, and output values, but we make a slight detour for

the ease of formalizing the specification of type inference later. We first define the

relation v ∈ F ⇒ h, read “from input value v, filter F yields thunk h.” A thunk h is a

sequence of pairs of environments and expressions or labeled thunks, as defined by:

h ::= V → e

h h

a[h]

ε

After evaluating a filter, we execute each body in the resulting thunk under the

corresponding environment, and combine all the results by concatenation and

5 Since we assume that patterns are linear, a repetition pattern P ∗ allows no variables in P and therefore
the premise of rule PRep in fact always returns an empty environment. We chose this presentation
only for symmetry.
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labeling. The filter evaluation relation v ∈ F ⇒ h is defined by the following

set of rules

v ∈ P ⇒ V

v ∈ P → e ⇒ V → e
FCla

∀i. vi ∈ Fi ⇒ hi

v1 v2 ∈ F1 F2 ⇒ h1 h2

FCat

∃i. v ∈ Fi ⇒ h

v ∈ F1 |F2 ⇒ h
FOr

∀i. vi ∈ F ⇒ hi

v1 . . . vn ∈ F∗ ⇒ h1 . . . hn
FRep

a ∈ L v ∈ G(Y ) ⇒ h

a[v] ∈ L[Y ] ⇒ a[h]
FLab

ε ∈ ε ⇒ ε
FEps

and the thunk evaluation relation h ⇒ v by the following.6

V → e ⇒ eval(V , e)
TCla

h1 ⇒ v1 h2 ⇒ v2

h1 h2 ⇒ v1 v2

TCat

h ⇒ v

a[h] ⇒ a[v]
TLab

ε ⇒ ε
TEps

3.3 Type inference

Similarly to the operational semantics above, the specification of type inference is

parameterized over a typing algorithm type(Γ, e) that takes a type environment Γ

and a body id e and returns a type. Here, we define types T as patterns from which

no variables are reachable, i.e., reach(T ) = ∅, and type environments Γ as mappings

from variables to types.

The specification of inference consists of two steps. In the first step, we assume that

a type T is given for input values and obtain a type environment Γ for the variables

appearing in the target filter F . (Note that we compute one type environment for

the whole filter. There is no danger of name clashes since, as already mentioned,

patterns with different body ids have disjoint sets of variables.) We compute the type

environment in such a way that, for each variable x, the type Γ(x) contains exactly

the set of values captured by x as a result of matching values from the input type

T against the filter. Formally, we first define the set, written h(x), of values assigned

to x in a given thunk h.

(V → e)(x) = {V (x)}
(h1 h2)(x) = h1(x) ∪ h2(x)

(a[h])(x) = h(x)

(ε)(x) = ∅

6 The following equivalences have been observed by Wadler:

a[P → e] ≡ a[P ] → a[e]
(P → e) (P ′ → e′) ≡ P P ′ → e e′

(P → e |P ′ → e′) (P ′′ → e′′) ≡ P P ′′ → e e′′ |P ′ P ′′ → e′ e′′

(where P , P ′, and P ′′ do not contain common variables).
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Then, the type environment Γ satisfies:

L(Γ(x)) =
⋃

{h(x) | v ∈ T , v ∈ F ⇒ h}

Here, the language L(T ) of a type T is the set of values matched by T . In the

second step of the inference, we assume that a type for each body id e is given by

type(Γ, e) and obtain a type U for result values. We compute it in the way that U

contains the set of values returned by the filter with the assumption that all values

from T may be passed to the filter and all values from type(Γ, e) may be returned

by the body e. Formally, we first define the set, written h(Γ), of values resulted from

a given thunk h.

(V → e)(Γ) = L(type(Γ, e))

(h1 h2)(Γ) = {v1 v2 | v1 ∈ h1(Γ), v2 ∈ h2(Γ)}
(a[h])(Γ) = {a[v] | v ∈ h(Γ)}
(ε)(Γ) = {ε}

Then, the result type U to compute satisfies:

L(U) =
⋃

{h(Γ) | v ∈ T , v ∈ F ⇒ h}.

In the definitions of Γ(x) and U above, it would still be sound if we had only

containments (L(Γ(x)) ⊇ . . . and L(U) ⊇ . . . ). However, we further ensure equalities

in order to provide the maximal flexibility to the user; this is why we say that our

inference is precise. Despite this strong guarantee, we can compute it efficiently as

an algorithm for it will be presented in the next section.

As mentioned before, our inference uses only one type for each body. This

restriction is reflected in the fact that we obtain one type environment for the whole

filter, from which the typechecking of each body can yield only one result type.

What if we remove this restriction and allow more than once to typecheck each

body? The answer is that there is an example where we can always get better types

by typechecking the same body more times. Consider the filter

filter v {

a[]* as x { x, b[], x }

}

with the input type a[]*. The current scheme typechecks the body by giving the

type a[]* to x and obtains the result type

a[]*,b[],a[]*.

However, if we split the input type into the case of the empty sequence and the case

of sequences of length one or more, we obtain the result type

(),b[],() | a[]+,b[],a[]+

which is more specific than the previous one. In this way, by splitting the input type

into more cases, we can always obtain strictly better types. In the limit, we could

split the input type into all the cases of possible input values, where the set of result

values would be

{a[]n,b[],a[]n | n � 0}.
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But this set is not expressive by our types (since it is not regular). (Note that

this argument already applies to regular expression pattern matching: the problem

appears when we consider the precision of the result type, not when we extend

the language feature.) Although this limitation is quite disappointing, this seems

inevitable as long as we stick to the current approach. We will continue this issue

in Section 7, where we will show some possible future directions to address this

problem.

4 Automata model

In this section, we introduce a notion of filter automata, which is a finite-state

machine model corresponding to regular expression filters. We will use this for

describing our type inference algorithm in the next section. The basic part of the

model is standard, nondeterministic top-down tree automata accepting binary trees.

We extend these to handle the additional functionalities provided by filters. Recall

that a filter has a two-layered structure, i.e., the whole is a regular expression over

clauses and each clause associates a body id with a pattern, which is a regular

expression augmented with variable binders. We represent the whole structure by

a tree automaton and add extra annotations to indicate which parts correspond

to clauses or variable binders. Let us show an example before formalization. We

represent the following filter in the surface language

((a[],b[]) as x { e })*

by the filter automaton depicted below:

start �� ��������	
�����q0
in(e) �� ��������q1

{x}:a[qε]�� ��������q2
{x}:b[qε]�� ��������q3

out �� ��������q4

ε

��

Here, we suppose that the state qε accepts the empty sequence. If we ignore in(e)- and

out-transitions and variable sets on label transitions, we can see that the automaton

accepts a sequence of alternating a and b nodes each containing the empty sequence.

Then, to process each pair of a and b nodes in the input, we first follow an in(e)-

transition before accepting an a and an out-transition after accepting a b. The

subpart of the automaton between the in(e)- and the out-transitions corresponds

to a clause in the filter. Inside the subautomaton, we bind the variable x to the

sequence of a and b and, when exiting, we “invoke” the body e under the binding.

We construct such binding by using label transitions annotated with variable sets.

That is, while the automaton runs, we accumulate each label in the input whenever

following a transition whose variable set contains the target variable. (We annotate

a label transition with a set of variables rather than a single variable since variable

binders may be nested in the surface language, e.g., (a[] as x) as y.)

Formally, a filter automaton A is a tuple (Q,Qinit, Qfin, T) where Q is a finite set of

states, Qinit ⊆ Q is a set of initial states, Qfin ⊆ Q is a set of final states, and T is a
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set of transition rules of the form q1
λ−→ q2 where λ is defined by the syntax below,

each q is a member of Q, and x is a set of variables.

λ ::= x : L[q] label

in(e) action-in

out action-out

ε silent

For a transition q1
λ−→ q2, we call q1 the source state and q2 the sink state; when

λ = x : L[q], we call q the content state. (Note that, as in the surface language, we

allow a label set in each label transition as opposed to standard automata formalisms

using single labels.) To lighten the notation, we sometimes omit the set of variables

from a label transition if the set is empty. A filter automaton is said ε-free if it does

not have an ε-transition. A tree automaton is a filter automaton that has no action

transition and whose each label transition has the empty variable set.

We make several syntactic restrictions on filter automata to reflect the two-

layered structure of the surface language syntax. For this, we define two kinds of

reachability—global and local—and their related concepts. Let a filter automaton

A = (Q,Qinit, Qfin, T) given. Global reachability is the most standard one describing

that a state can reach another by following any transitions. Formally, a (global)

path from q1 to qn is a sequence q1, . . . , qn of states where, for i = 1, . . . , n − 1,

either

C1 qi
λ−→ qi+1 ∈ T for some λ, or

C2 qi
x:L[qi+1]−−−−→ q′ ∈ T for some q′, x, and L.

In this case, qn is said (globally) reachable from q1; we define reachA(q) to be the set of

states reachable from q and reachA(R) (for a set R of states) to be
⋃

q∈R reachA(q). We

next introduce local reachability for precisely defining a subautomaton corresponding

to a clause, which consists of a set of states that appear between an in(e)- and out-

transitions and that have no action transition among them. A local path from q1 to

qn is a sequence q1, . . . , qn of states where, for i = 1, . . . , n − 1, either C1 holds with

λ having the form x : L[q′] or ε, or C2 holds. In this case, we say that qn is locally

reachable from q1 and define localA(q) to be the set of locally reachable states from

q. A state q is in the scope of e if q1

in(e)
−−→ q2 ∈ T and q ∈ localA(q2) for some q1

and q2. Define scopeA(e) to be the set of states in the scope of e. A state q is said in

scope when q is in the scope of some body id, and said out of scope when q is not in

the scope of any body id. A state q1 is an in-state when q1

in(e)
−−→ q2 ∈ T for some e,

q2, and an out-state when q1
out−→ q2 ∈ T for some q2. Now, we impose the following

restrictions on the given filter automaton for ensuring a “well-formedness” of the

scope structure:

• Each state is either in the scope of a unique body id or out of scope.

• No state is an out-state if it is out of scope.

• No state is an in-state if it is in scope.
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• When q1

x:L[q2]−−−→ q3 ∈ T with q1 in scope, no state reachable from q2 is either

an in-state or an out-state.

The first condition is to avoid the same state being locally reachable from two dif-

ferent in-transitions. The second and third conditions are to prevent an in-transition

with no corresponding out-transition or an out-transition with no corresponding

in-transition. Also, scopes cannot be “nested,” e.g., two in-transitions followed by

two out-transitions are disallowed; the second, third, and last conditions altogether

preclude such situation. We next give a restriction on variable binders. First, define

the set BVA(q) of variables bound after q:

BVA(q) =
⋃

{x | q1 ∈ localA(q), q1

x:L[q2]−−−→ q3 ∈ T }.

Then, we require the following to the given filter automaton.

When q1

x:L[q2]−−−→ q3 ∈ T with q1 in scope, we have that BVA(q2)∩ (x∪BVA(q3)) = ∅.

This corresponds to the linearity restrictions in the surface language. Note, however,

that some non-linear patterns can be translated to automata with the above

restriction, e.g.,

(a[] as x), (b[] as x).

In other words, we can safely relax our definition of linearity for patterns so that

variables can capture non-consecutive sequences. This approach has been taken by

�Duce (Benzaken et al., 2003).

Next, we define the semantics of filter automata. Analogously to the surface

language, a given automaton produces, from an input value, an intermediate

structure called annotated value rather than directly emitting an output. The

produced annotated value is, in fact, identical to the input value except that it

is augmented with variable and action annotations. The annotated value is then

processed for forming environments, executing bodies, and constructing a result

value. Formally, an annotated value ρ is defined by the following syntax.

ρ ::= ρ ρ concatenation

a[ρ]x label with variable set

ε empty sequence

in(e) action-in

out action-out

An annotated value is in-out-free when it does not contain in(e) or out. We define

BV(ρ) by the union of the variable sets appearing in ρ. Now, the semantics of filter

automata is described by the relation A �q v ⇒ ρ, read “automaton A in state

q accepts value v and yields annotated value ρ,” and inductively defined by the
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following set of rules.

q ∈ Qfin

A �q ε ⇒ ε
Fin

q1
ε−→ q2 ∈ T A �q2

v1 ⇒ ρ

A �q1
v1 ⇒ ρ

Eps

a ∈ L q1

x:L[q3]−−−→ q2 ∈ T A �q3
v1 ⇒ ρ1 A �q2

v2 ⇒ ρ2

A �q1
a[v1] v2 ⇒ a[ρ1]

x ρ2

Lab

q1

in(e)
−−→ q2 ∈ T A �q2

v ⇒ ρ

A �q1
v ⇒ in(e) ρ

Enter

q1
out−→ q2 ∈ T A �q2

v ⇒ ρ

A �q1
v ⇒ out ρ

Exit

We form an environment from an in-out-free annotated value by using the

following envof function

envof (a[ρ1]
x ρ2)(x)

=

⎧⎨
⎩
a[erase(ρ1)] envof (ρ2)(x) (x ∈ x)

envof (ρ1)(x) (x �∈ x, x ∈ BV(ρ1))

envof (ρ2)(x) (x �∈ x, x �∈ BV(ρ1))

envof (ε)(x) = ε

where erase(ρ) is the value after eliminating all variables from ρ:

erase(a[ρ1]
x ρ2) = a[erase(ρ1)] erase(ρ2)

erase(ε) = ε

To understand the definition of envof , first note that linearity ensures that, in any

annotated value resulted from a matching, the same variables occur only in the same

sequence. For example, we may have an annotated value

b[a[]{x} a[]{x}]∅

but never

b[a[]{x}]∅ a[]{x}.

Thus, when the envof function visits each node a[ρ1]
x ρ2 of the given annotated

value, there are only three cases. First, the node’s variable set contains x, in which

case we retain this node (by erasing all the annotations from its content ρ1) and

proceed to the remaining sequence ρ2. In the second case, x occurs in ρ1. Then, x

does not in ρ2, so we ignore ρ2. In the third case, x does not occur in ρ1. Then, x

may occur in ρ2, so we proceed to ρ2.

Finally, to construct the result value from an annotated value, we use the relation

ρ� v defined as follows.

eval(envof (ρ), e) = v1 σ � v2

in(e) ρ out σ � v1 v2

RCla

σ1 � v1 σ2 � v2

a[σ1] σ2 � a[v1] v2

RLab

ε� ε
RFin

In RCla, the annotated value ρ between in(e) and out is fed to envof (ρ), thus

ensured to be in-out-free. The relation uses the same evaluation function eval as in

the previous section.
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It is easy to translate regular expression filters to filter automata by using a

variation of the standard translation algorithm from string regular expressions to

string automata (Hopcroft & Ullman, 1979). Our concrete translation algorithm is

given in Appendix A. Also, we can easily convert any filter automata to ε-free filter

automata by using the usual ε-elimination technique (Comon et al., 1999).

Since the presented semantics contains nondeterminism, a naive implementation

of this with backtracking would be inefficient. Although we have not yet worked it

out, we believe that we can construct a linear-time algorithm for evaluating filters by

adapting existing linear-time algorithms for checking membership of tree automata

(Murata et al., 2001).

5 Inference algorithm

In this section, we describe our inference algorithm using filter automata introduced

in the last section and give a formal discussion of its correctness.

5.1 Inference for variables

For bound variables, the inference takes as inputs a tree automaton A (representing

the input type) and a filter automaton B. For simplicity, we assume that both

automata are ε-free. The inference algorithm works in three steps. First, we specialize

the filter automaton B with respect to the tree automaton A such that the resulting

automaton D behaves exactly the same as the original B except that it accepts only

values accepted by the automaton A. For this, we use a variation of standard product

construction where we preserve the action and the variable binding behaviors in

the automaton B. Second, we eliminate spurious transitions that are never used for

any input. Third, we obtain, for each variable x, a tree automaton He,x (where x

is bound in the scope of e) such that He,x accepts a value v if and only if the

filter automaton D accepts some value from A and binds x to v. We compute the

automaton He,x from the filter automaton D by retaining all the transitions with

variable sets containing x and eliminating all the other transitions.

Formally, we first construct a product automaton C = (QC,Q
init
C , Qfin

C , TC ) from

A = (QA,Q
init
A , Qfin

A , TA) and B = (QB,Q
init
B , Qfin

B , TB) as follows.

QC = QA × QB

Qinit
C = Qinit

A × Qinit
B

Qfin
C = Qfin

A × Qfin
B

TC =
{

〈p1, q1〉
x:(K∩L)[〈p3 ,q3〉]

−−−−−−−−−→ 〈p2, q2〉
∣∣∣

p1

K[p3]−−−→ p2 ∈ TA, q1

x:L[q3]−−−→ q2 ∈ TB, K ∩ L �= ∅
}

∪
{

〈p, q1〉
in(e)

−−→ 〈p, q1〉
∣∣∣ p ∈ QA, q1

in(e)
−−→ q2 ∈ TB

}

∪
{

〈p, q1〉 out−→ 〈p, q2〉
∣∣∣ p ∈ QA, q1

out−→ q2 ∈ TB

}
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The first clause of TC follows the standard technique of product construction except

that we take the intersection of the label sets from both transitions and that we

copy the variable set in the transition from the automaton B. Note here that we

need to check that the intersected label sets are disjoint since otherwise some states

might become reachable by following “empty” transitions, making our inference

imprecise. For the second and the third clauses, we keep the action annotation on

the transition from the automaton B. Since the automaton A should not consume

any input while the automaton B takes this action, the created transition connects

the state 〈p, q1〉 to 〈p, q2〉 where the first component remains the same.

Next, we eliminate, from the automaton C , all the states that accept no tree and

obtain the automaton D = (QD,Q
init
D , Qfin

D , TD) defined as follows.

QD = {r|C �r v ⇒ ρ}
Qinit

D = Qinit
C ∩ QD

Qfin
D = Qfin

C ∩ QD

TD =
{
q1

x:a[q3]−−−→ q2 ∈ TC

∣∣∣ q1, q2, q3 ∈ QD

}

∪
{
q1

in(e)
−−→ q2 ∈ TC

∣∣∣ q1, q2 ∈ QD

}

∪
{
q1

out−→ q2 ∈ TC

∣∣∣ q1, q2 ∈ QD

}

The above definition does not directly give a concrete algorithm for empty state

elimination. However, there is a standard linear-time algorithm that works for tree

automata and can easily be transferred here (Comon et al., 1999).

The final step is, from the automaton D, to extract, for each variable x, an

automaton He,x representing the set of values that x may capture. Note that such a

captured value is the concatenation of the nodes that are matched by x-annotated

label transitions (i.e., whose variable set contains x) between an in(e)-transition

and an out-transition in the automaton D. Thus, the basic idea of the inference

is to obtain an automaton after extracting only such label transitions from D. A

subtlety here is, however, that each state in the automaton D can have two different

behaviors. That is, after following an in-transition, we are in the “capture mode,”

where we skip the nodes matched by transitions without x; when we take a label

transition with x, we get into the “duplicate mode” from the content state of the

transition, where we completely retain the structure of the input. Thus, in creating

the new automaton He,x, we copy two complete sets of states from the automaton

D: a capture-mode state 〈r, 0〉 and a duplicate-mode 〈r, 1〉 for each state r of D.

Formally, the final step is to compute He,x = (QHe,x , Qinit
He,x , Qfin

He,x , THe,x ) defined as

follows.

QHe,x =
{

〈r, 0〉, 〈r, 1〉
∣∣∣ r ∈ QD

}

Qinit
He,x =

{
〈r, 0〉

∣∣∣ r′ in(e)
−−→ r ∈ TD, r′ ∈ reachD(Qinit

D )
}

Qfin
He,x =

{
〈r, 0〉, 〈r, 1〉

∣∣∣ r ∈ Qfin
D

}

∪
{

〈r, 0〉
∣∣∣ r out−→ r′ ∈ TD

}
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THe,x =
{

〈r1, 0〉
L[〈r3 ,1〉]

−−−−→ 〈r2, 0〉
∣∣∣ r1 x:L[r3]−−−→ r2 ∈ TD, x ∈ x

}

∪
{

〈r1, 0〉 ε−→ 〈r2, 0〉
∣∣∣ r1 x:L[r3]−−−→ r2 ∈ TD, x �∈ x, x ∈ BVD(r2)

}

∪
{

〈r1, 0〉 ε−→ 〈r3, 0〉
∣∣∣ r1 x:L[r3]−−−→ r2 ∈ TD, x �∈ x, x �∈ BVD(r2)

}

∪
{

〈r1, 1〉
L[〈r3 ,1〉]

−−−−→ 〈r2, 1〉
∣∣∣ r1 x:L[r3]−−−→ r2 ∈ TD

}

To form initial states of He,x, we take only the sink states of in(e)-transitions that are

reachable from D’s initial states since, as a result of eliminating empty states when

computing D from C , some states can become unreachable from initial states. In

the first clause of THe,x , we copy all the x-annotated label transitions in the capture

mode, where the content state is in the duplicate mode. In the second and third

clauses, we create an ε-transition in the capture mode for each non-x-annotated

label transition in D, where the sink state is either the remainder r2 or the content r3
depending on whether x is bound in r2 or not – recall that the linearity restriction

ensures that x is never bound both in r2 and in r3. The fourth clause copies all the

label transitions in the duplicate mode. Note that a capture-mode state 〈r, 0〉 is final

when r is either an out-state or final in D, whereas a duplicate-mode state 〈r, 1〉 is

final only when r is final in D. This is because the automaton is always in the capture

mode at the top level (i.e., at the same level as an in-transition), and moreover, when

moving to the content of a label value, the automaton either continues the capture

mode or gets in the duplicate mode depending on whether the variable x appears

on the transition itself or inside its content state.

Let k be the number of variables appearing in B. The complexity of the inference

algorithm for variables is O(|TA| · |TB | · k) since the number of the generated

transitions in the first phase (C) is proportional to |TA| · |TB | 7, the second phase (D)

is linear, and the final phase (He,x) creates k automata each with a linear number of

transitions relative to the one in the second phase.

5.2 Inference for result values

For result values, the inference takes as inputs a tree automaton Je for each body id

e (representing the set of values returned by e), in addition to the filter automaton

D obtained in the last subsection (which represents the target filter restricted to the

input type). For simplicity, we assume that Je is ε-free. (Note that D is also ε-free

from its definition.) We then produce a tree automaton K representing the set of

values returned by the filter automaton D.

To see what values should be contained in K , let us trace the behavior of the

filter automaton D. Starting from its initial state, we retain all the labels matched

by label transitions that are out of scope. After entering in the scope of a body id

e, we perform variable binding. When exiting from the scope, we execute the body

and emit the resulting value, which, as we have assumed, is contained in Je. We then

7 Here, the complexity of computing K ∩ L and checking its emptiness is not made clear. However, it
does not, at least, depend on m or n
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go back to the behavior of out-of-scope states. We continue these until we reach a

final state.

Thus, in building the automaton K , we basically need to replace each subauto-

maton in D enclosed by an in(e)-transition and an out-transition by the corresponding

automaton Je. The replacement can be done by reconnecting the source state of

each in(e)-transition to Je’s initial states and reconnecting Je’s final states to the

sink state of the out-transition. However, there are two subtleties here. First, several

subautomata in different places may have the same body id but may have different

in- or out-transitions. In this case, we cannot simply replace each subautomaton with

a single copy of Je since this would mix up potentially different constraints expressed

before the in-transitions (or the out-transitions). Instead, we need to replace each

subautomaton with a separate copy of Je and perform the reconnetion for each.

Second, since we intend to concatenate a value resulting from e to the continuing

value, we need to link only the “top-level” final states of Je – horizontally reachable

(formally defined below) from Je’s initial states – to the sink state of the out-

transition. (Note that non-top-level final states are for the tails of deeper nodes of e’s

result value.) Therefore we duplicate the top-level states of the automaton Je, but we

leave the final states in deeper levels not to be reconnected. Thus, in creating K , we

copy one complete set of states from D (“out-of-scope” states), one complete set of

states from Je for each subautomaton described above (“top-level” states), and one

complete set of states from Je (“deeper-level” states). Each state in the second set

is written 〈p, q〉 where p is the sink state of the in(e)-transition (the “representative”

state to identify which duplicate) and q is a state from D.

Let us formalize these ideas. First, for a given automaton A = (Q,Qinit, Qfin, T), we

define a horizontal path from q1 to qn to be a sequence q1, . . . , qn of states where,

for i = 1, . . . , n − 1, we have qi
λ−→ qi+1 ∈ T with λ having the form x : L[q′] or ε.

In this case, we say that qn is horizontally reachable from q1 and define horizA(q) to

be the set of horizontally reachable states from q. Then, from a given automaton

Je = (QJe , Q
init
Je

, Qfin
Je
, TJe ) and the automaton D computed in the previous section, we

obtain K = (QK,Q
init
K , Qfin

K , TK ) defined as follows.

QK = QD ∪
⋃

e{(QD × QJe) ∪ QJe}
Qinit

K = Qinit
D

Qfin
K = Qfin

D ∪ Qfin
Je

TK =
{
p1

L[p3]−−→ p2 ∈ TD

}

∪
{
p1

ε−→ 〈p2, q3〉
∣∣∣ p1

in(e)
−−→ p2 ∈ TD, q3 ∈ Qinit

Je

}

∪
{

〈p, q1〉
L[q2]−−→ 〈p, q3〉

∣∣∣ p ∈ QD, q1

L[q2]−−→ q3 ∈ TJe

}

∪
⋃

e TJe

∪
{

〈p0, q1〉 ε−→ p3

∣∣∣ q1 ∈ Qfin
Je
, p2 ∈ horizD(p0), p2

out−→ p3 ∈ TD

}

In the first clause of TK , we simply copy all the transitions from D. In the second

clause, we connect the source state of each in(e)-transition to each initial state of Je
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duplicated for the transition’s sink state. The third clause copies the transitions of

Je for each duplicate, where we tag the duplicate’s “representative” state on their

source and sink states. The fourth clause copies Je’s transitions without tagging.

Note that each transition in the third clause has a content state in the fourth clause.

The fifth clause connects a final state of p0’s duplicate of Je to the sink state of each

corresponding out-transitions. Such a transition has the source state horizontally

reachable from the state p0.

Let l be the sum of the numbers of transitions in the automata Je for all e. By

noticing that each clause of TK contains at most |TD| · l transitions, we can easily see

that the complexity of the inference algorithm for result values is O(|TA| · |TB | · l).

5.3 Correctness

Let us first discuss the correctness of the first part of the inference – for bound

variables. We prove that, for each variable x, the automaton He,x accepts the values

that x is bound to as a result of matching the filter automaton B against values

from the input type A. To precisely state that x is bound to a value w, we actually

need to say that the annotated value yielded by the matching contains an in-out-free

annotated value ρ as a substructure enclosed by an in(e) and an out, and that the

extraction of the x-marked subnodes from ρ results in the value w. Formally, we

first define contexts, i.e., annotated values containing a single hole [·]:
S ::= a[S]x ρ

a[ρ]x S

[·] ρ
in(e) S

out S

We write S[ρ] for the annotated value after replacing S ’s hole with ρ. Now, the main

theorem for the first part of the inference is as follows.

Theorem 1

The following are equivalent.

1. A � v and B � v ⇒ S[in(e) ρ out] where ρ is in-out-free and envof (ρ)(x) = w.

2. He,x � w.

This theorem follows from three lemmas shown below (Lemma 1, Lemma 2, and

Lemma 5) corresponding to the three steps of the algorithm.

For the first step, we show that the created filter automaton C (in the state 〈p, q〉)
exactly simulates the behavior of the original filter automaton B (in the state q) for

the values accepted by the tree automaton A (in the state p).

Lemma 1

A �p v and B �q v ⇒ ρ if and only if C �〈p,q〉 v ⇒ ρ.

Proof

We first provethe “only if” direction by induction on the derivations of A �p v

and B �q v ⇒ ρ with case analysis on the last rules applied. (To see that all

cases are covered, note that A is an ε-free tree automaton and therefore it can
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either terminates by Fin or transits by Lab; B and C are ε-free filter automata and

therefore can additionally take an action transition.)

• Both A and B terminate by Fin, that is, p ∈ Qfin
A and q ∈ Qfin

B . This implies

that 〈p, q〉 ∈ Qfin
C . Therefore C terminates by Fin.

• Both A and B transit by Lab. That is, v and ρ each have the form a[v1] v2 and

a[ρ1]
x ρ2. In addition, the last derivations of A �p v and B �q v ⇒ ρ are:

a ∈ K p
K[p1]−−−→ p2 ∈ TA A �p1

v1 A �p2
v2

A �p a[v1] v2

a ∈ L q
x:L[q1]−−−→ q2 ∈ TB B �q1

v1 ⇒ ρ1 B �q2
v2 ⇒ ρ2

B �q a[v1] v2 ⇒ a[ρ1]
x ρ2

From the definition of C , we have 〈p, q〉
x:(K∩L)[〈p1 ,q1〉]

−−−−−−−−−→ 〈p2, q2〉 ∈ TC . Also, by

the induction hypothesis, C �〈p1 ,q1〉 v1 ⇒ ρ1 and C �〈p2 ,q2〉 v2 ⇒ ρ2. The result

follows by Lab.

• The other cases are that B transits by Enter and Exit. The proof can be done

by a straightforward use of the induction hypothesis.

We then prove the “if” direction by induction on the derivation of C �〈p,q〉 v ⇒ ρ

with case analysis on the last rule applied.

• C terminates by Fin. From the definition of C , we have p ∈ Qfin
A and q ∈ Qfin

B .

The result follows from Fin.

• C transits by Lab. That is, v and ρ each have the form a[v1] v2 and a[ρ1]
x ρ2.

In addition, the last derivation of C �〈p,q〉 v ⇒ ρ is:

a ∈ M

〈p, q〉
x:M[〈p1 ,q1〉]

−−−−−−→ 〈p2, q2〉 ∈ TC C �〈p1 ,q1〉 v1 ⇒ ρ1 C �〈p2 ,q2〉 v2 ⇒ ρ2

C �〈p,q〉 a[v1] v2 ⇒ a[ρ1]
x ρ2

From the definition of C , we have p
K[p1]−−−→ p2 ∈ TA and q

x:L[q1]−−−→ q2 ∈ TB with

M = K ∩ L. Also, by the induction hypothesis, we have:

A �p1
v1 A �p2

v2 B �q1
v1 ⇒ ρ1 B �q2

v2 ⇒ ρ2

The result follows by Lab.

• The other cases are that C transits by Enter and Exit. The proof can be done

by a straightforward use of the induction hypothesis. �

For the second step, we show that the automaton C and the automaton D (with

no empty states) behave the same.

Lemma 2

C �q v ⇒ ρ if and only if D �q v ⇒ ρ.

Proof

Both directions are trivial. �
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For the third step, we need to prove two technical lemmas before showing the

main lemma. First, we show that the automaton He,x in a state 〈r, 1〉 accepts the

erasures of the values that are produced by the automaton D in the state r. (The

erasures are in fact exactly the same as the input values to D, but we formalize in

this way for convenience in later lemmas.) The intention here is that the state r is

in the duplicate mode. (Note that in such a state, the automaton D produces an

annotated value without in- or out-transitions.)

Lemma 3

The following are equivalent.

1. D �r v ⇒ ρ where ρ is in-out-free and w = erase(ρ).

2. He,x �〈r,1〉 w for all x.

Proof

Both directions can be proved by straightforward induction. �

Next, we show that the automaton He,x in a state 〈r, 0〉 accepts the values obtained

by taking the in-out-free prefixes of the annotated values produced by the automaton

D in the state r (in the scope of e) and then extracting the nodes marked x from

these. The intention here is that the state r is in the capture mode.

Lemma 4

Let r ∈ scope(e). The following are equivalent.

1. D �r v ⇒ ρ ρ′ where ρ is in-out-free and ρ′ is either ε or out ρ′′ with w =

envof (ρ)(x).

2. He,x �〈r,0〉 w.

Proof

We first prove that (1) implies (2) by induction on the derivation of D �r v ⇒ ρ ρ′

with case analysis on the last rule applied. (Note that D is an ε-free filter automaton.)

Fin or Exit We have ρ = ε with either r ∈ Qfin
D or r

out−→ r′ ∈ TD . In either case, we

have 〈r, 0〉 ∈ Qfin
He,x . The result holds from Fin.

Lab We have:

v = a[v1] v2 ρ = a[ρ1]
x ρ2 a ∈ L

r
x:L[r1]−−−→ r2 ∈ TD D �r1 v1 ⇒ ρ1 D �r2 v2 ⇒ ρ2

By the induction hypothesis, we obtain the following.

He,x �〈r2 ,0〉 envof (ρ2)(x) (1)

He,x �〈r1 ,0〉 envof (ρ1)(x) (2)

We have three subcases.

• x ∈ x. This implies w = a[erase(ρ1)] envof (ρ2)(x). Also, 〈r, 0〉
a[〈r1 ,1〉]

−−−−→ 〈r2, 0〉 ∈
THe,x . By Lemma 3, He,x �〈r1 ,1〉 erase(ρ1). With (1) and Lab, the result follows.

• x �∈ x and x ∈ BVD(ρ1). This implies w = envof (ρ1)(x). Also, x ∈ BVD(r1)

from x ∈ BVD(ρ1), and therefore 〈r, 0〉 ε−→ 〈r1, 0〉 ∈ THe,x . With (2) and Eps, the

result follows.
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• x �∈ x and x �∈ BVD(ρ1). This implies w = envof (ρ2)(x). We have further two

subcases.

— x �∈ BVD(r1). Then, 〈r, 0〉 ε−→ 〈r2, 0〉 ∈ THe,x and therefore the result follows

from (1) and Eps.

— x ∈ BVD(r1). Then, x �∈ BVD(r2) and therefore x �∈ BVD(ρ2), implying

w = envof (ρ2)(x) = ε. Also, 〈r, 0〉 ε−→ 〈r1, 0〉 ∈ THe,x . On the other hand,

from x �∈ BVD(ρ1), we have envof (ρ1)(x) = ε. The result follows from (2)

and Eps.

We next prove that (2) implies (1) by induction on the derivation of He,x �〈r,0〉 w

with case analysis on the last rule applied. (Note that He,x is a filter automaton

possibly with ε-transitions.)

Fin We have w = ε. From 〈r, 0〉 ∈ Qfin
He,x , we have r ∈ Qfin

D . The result follows from

Fin.

Lab We have:

w = a[w1]w2 a ∈ L

〈r, 0〉
L[〈r1 ,1〉]

−−−−→ 〈r2, 0〉 ∈ THe,x

He,x �〈r1 ,1〉 w1 He,x �〈r2 ,0〉 w2

By the induction hypothesis, D �r2 v2 ⇒ ρ2 ρ
′
2 for some v2, in-out-free ρ2, and ρ′

2

with ρ′
2 = ε or ρ′

2 = out ρ′′
2. In addition, w2 = envof (ρ2)(x). From 〈r, 0〉

L[〈r1 ,1〉]
−−−−→

〈r2, 0〉 ∈ THe,x , we have r
x:L[r1]−−−→ r2 ∈ TD and x ∈ x. By Lemma 3, D �r1

v1 ⇒ ρ1 for some ρ1 with w1 = erase(ρ1). From these and Lab, we obtain

D �r a[v1] v2 ⇒ a[ρ1]
x ρ2 ρ

′
2. Further, since x ∈ x, we have envof (a[ρ1]

x ρ2) =

a[erase(ρ1)] envof (ρ2)(x) = a[w1]w2 = w. The result follows.

Eps We have:

〈r, 0〉 ε−→ 〈r2, 0〉 ∈ THe,x He,x �〈r2 ,0〉 w

By the induction hypothesis, D �r2 v2 ⇒ ρ2 ρ
′
2 for some v2, in-out-free ρ2, and ρ′

2

with ρ′
2 = ε or ρ′

2 = out ρ′′
2. Also, w = envof (ρ2)(x). We have three subcases.

• r
x:L[r1]−−−→ r2 ∈ TD and x �∈ x with x �∈ BVD(r1). From the definition of D,

we have D �r1 v1 ⇒ ρ1 for some v1, ρ1. Then, by Lab, we obtain D �r

a[v1] v2 ⇒ a[ρ1]
x ρ2 ρ

′
2 for some a ∈ L (we know L �= ∅ by the definition

of C). Further, from x �∈ BVD(r1), we have x �∈ BVD(ρ1) and therefore

envof (a[ρ1]
x ρ2)(x) = envof (ρ2)(x) = w.

• r
x:L[r2]−−−→ r1 ∈ TD and x �∈ x with x ∈ BVD(r2). From the definition of D, we

have D �r1 v1 ⇒ ρ1 for some v1, ρ1. Since r ∈ scope(e) and r2 is the conent

state of the transition r
x:L[r2]−−−→ r1 ∈ TD , we can assume that ρ′

2 = ε. Then,

by Lab, we obtain D �r a[v2] v1 ⇒ a[ρ2]
x ρ1 for a ∈ L. We have further two

subcases.

— When x ∈ BVD(ρ2), we have envof (a[ρ2]
x ρ1)(x) = envof (ρ2)(x) = w. The

result follows.
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— When x �∈ BVD(ρ2), we have envof (a[ρ2]
x ρ1)(x) = envof (ρ1)(x). Further,

since x ∈ BVD(r2) implies x �∈ BVD(r1) by the variable restriction, we

have x �∈ BVD(ρ1) and therefore envof (ρ1)(x) = ε. On the other hand,

x �∈ BVD(ρ2) implies w = envof (ρ2)(x) = ε. The result follows. �

Finally, we show that the automaton He,x accepts a value w if and only if the

automaton D yields an annotated value that contains an in-out-free annotated value

between an in(e) and an out and w is the extraction of the x-marked subnodes.

Lemma 5

The following are equivalent.

1. D � v ⇒ S[in(e) ρ out] where ρ is in-out-free and envof (ρ)(x) = w.

2. He,x � w.

Proof

To show that (1) implies (2), we prove a stronger statement that, for all r, if

D �r v ⇒ S[in(e) ρ out] where ρ is in-out-free and envof (ρ)(x) = w, then He,x � w.

The proof proceeds by induction on the derivation of D �r v ⇒ S[in(e) ρ out] with

case analysis on the last rule applied.

Lab v = a[v1] v2. We have two subcases.

• S = a[S ′] ρ′. We have r
L[r1]−−→ r2 ∈ TD and a ∈ L with D �r1 v1 ⇒ S ′[in(e) ρ out]

and D �r2 v2 ⇒ ρ′. The result follows by the induction hypothesis.

• S = a[ρ′] S ′. Similar to the above case.

Enter We have two subcases.

• S = [·] ρ′. We have r
in(e)

−−→ r2 ∈ TD with D �r2 v2 ⇒ ρ out ρ′. The result follows

by Lemma 4 and the definition of Qinit
He,x .

• S = in(e) S ′. We have r
in(e)

−−→ r2 ∈ TD with D �r2 v2 ⇒ S ′[in(e) ρ out]. The result

follows by the induction hypothesis.

Exit S = out S ′. We have r
out−→ r2 ∈ TD with D �r2 v2 ⇒ S ′[in(e) ρ out]. The result

follows by the induction hypothesis.

We next prove that (2) implies (1). Let He,x �〈r′ ,0〉 w with 〈r′, 0〉 ∈ Qinit
He,x . Then

r
in(e)

−−→ r′ ∈ TD and D �r′ v ⇒ ρ out ρ′ where in-out-free and envof (ρ)(x) = w. By

Enter, D �r v ⇒ in(e) ρ out ρ′. From the definition of He,x, the state r is reachable

from a state r0 ∈ Qinit
D . Let r0, . . . , rn be a path from r0 to r (where r = rn). The result

holds if, for all 0 � i � n, we have D �ri v ⇒ S[in(e) ρ out] for some S . The proof

proceeds by mathematical induction on n− i. The base case is already shown. For the

inductive cases, we show only the case ri
x:L[r′′]

−−−→ ri+1 ∈ TD for some r′′ and x since

the other cases are similar. By the induction hypothesis, D �ri+1
v′ ⇒ S ′[in(e) ρ out]

for some v′ and S ′. From the definition of D, we have D �r′′ v′′ ⇒ ρ′′ for some v′′

and ρ′′. Also, there is a ∈ L. By letting v = a[v′′] v′ and S = a[ρ′′]x S ′, the result

follows by Lab. �

Next, we turn our attention to the second part of the inference – for result values.

First, we define a relation �J for constructing a result value from an annotated
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value, which slightly modifies the relation� defined in section 4 so as to incorporate

the assumption that e’s result values come from Je (instead of eval applied to e with

the environment envof (ρ)).

Je � v1 σ �J v2

in(e) ρ out σ �J v1 v2

JCla

σ1 �J v1 σ2 �J v2

a[σ1] σ2 �J a[v1] v2

JLab

ε�J ε
JFin

(Note that JCla ignores the annotated value ρ between the in(e) and out.) Clearly,

the relation�J is more conservative than� in the sense that σ � v implies σ �J v,

provided Je � eval(envof (ρ), e) for any ρ such that σ = S[in(e) ρ out] for some S .

Then, the second main theorem shown below states that the tree automaton K

accepts the values that are obtained by executing the filter automaton B for values

from A and evaluating the produced annotated value σ by �J .

Theorem 2

A � v and B � v ⇒ σ with σ �J w if and only if K � w.

This theorem follows from Lemma 1 and 2 together with Lemma 6 shown below

(which proves that K in the out-of-scope state p accepts the values that are obtained

by executing the filter automaton D in the state p and evaluating the produced

annotated value σ by �J).

Lemma 6

Let p ∈ QD be out of scope. Then, D �p v ⇒ σ and σ �J w if and only if K �p w.

Proof

We first prove the “only if” direction by simultaneous induction on the derivations

of D �p v ⇒ σ and σ �J w with case analysis on the last rule applied to the former

relation.

Fin The result immediately holds by Fin since w = ε and p ∈ Qfin
D ⊆ Qfin

K .

Lab The result follows from a straightforward use of the induction hypothesis and

Lab.

Enter From the structural restrictions on filter automata, σ must have the form

in(e) ρ out σ′ where ρ is in-out-free. This implies p
in(e)

−−→ p′′ ∈ TD and p′′′ out−→ p′ ∈ TD

with D �p′ v′ ⇒ σ′ for some p′, p′′, p′′′, and v′. Also, from σ �J w, we have Je � w1

and σ′ �J w2 with w = w1 w2. By the induction hypothesis, K �p′ w2. From the

definition of K , we have both 〈p′′, q1〉
L[q2]−−→ 〈p′′, q3〉 ∈ TK and q1

L[q2]−−→ q3 ∈ TK

for each q1

L[q2]−−→ q3 ∈ TJe . In addition, p
ε−→ 〈p′′, q〉 ∈ TK for each q ∈ Qinit

Je
and

〈p′′, q′〉 ε−→ p′ ∈ TK for each q′ ∈ Qfin
Je

. Therefore the result K �p w1 w2 follows from

Lab and Eps.

We then prove the “if” direction by induction on the derivation of K �p v ⇒ w with

case analysis on the last rule applied.

Fin From w = ε and p ∈ Qfin
K ∩ QD = Qfin

D , the result follows from Fin by choosing

v = ε and σ = ε.

Lab We have w = a[w1]w2 for some w1 and w2. Also, a ∈ L and p
L[p1]−−→ p2 ∈ TK

with K �p1
w1 and K �p2

w2 for some p1, p2, and L. From p ∈ QD and the definition
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of K , we have p
L[p1]−−→ p2 ∈ TD . By the induction hypothesis, D �p1

v1 ⇒ σ1 and

σ1 �J w1; also, D �p2
v2 ⇒ σ2 and σ2 �J w2. The result follows by Lab.

Eps From p ∈ QD , we have p
ε−→ 〈p1, q1〉 ∈ TK with K �〈p1 ,q1〉 w for some p1 and

q1. Then, p
in(e)

−−→ p1 ∈ TD and q1 ∈ Qinit
Je

. From K �〈p1 ,q1〉 w, there is w1 and w2

such that w = w1 w2 where a horizontal path from 〈p1, q1〉 to 〈p1, q2〉 in K accepts

w1 and there is a transition 〈p1, q2〉 ε−→ p3 ∈ TK with K �p3
w2. Therefore there

is a horizontal path from q1 to q2 in Je. Also, from 〈p1, q2〉 ε−→ p3 ∈ TK , we

have that q2 ∈ Qfin
Je

and there is p2 horizontally reachable from p1 in D such that

p2
out−→ p3 ∈ TD . Therefore Je � w1. From K �p3

w2, the induction hypothesis yields

D �p3
v2 ⇒ σ2 with σ2 �J w2 for some v2 and σ2. Since p

in(e)
−−→ p1 ∈ TD and p2

is horizontally reachable from p1, we obtain D �p v1 v2 ⇒ in(e) ρ out σ2 for some

v1 ρ. Finally, from Je � w1 and σ2 �J w2, we obtain in(e) ρ out σ2 �J w1 w2, as

desired. �

6 Related work

With the same motivation as ours, the �Duce language (Benzaken et al., 2003)

supports features that combine pattern matching and iteration. One notable dif-

ference between them and us is that their constructs are limited to operating on

each individual element of a sequence and therefore are not capable of the non-

uniform processing our filters allow. Another difference is that they provide three

separate constructs with slightly different semantics corresponding to most common

usages—map for operating each of the top-level elements and leaving out unmatched

ones, transform for a similar operation but retaining unmatched elements, and

xtransform for also a similar operation except that it retains the label of each

unmatched element and recursively applies the same transformation to the content

of the label. In contrast, our approach is to provide a single feature to support all

purposes and indeed all of map, transform, xtransform can be encoded by our

filters. For example, a �Duce map

map e {

P1 -> e1

| ...

| Pn -> en

}

(where each pattern here is required to match only a single element) can be written

as

filter e {

( P1 { e1 }

| ...

| Pn { en }

|| AnyOne { () } )*

}
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and similarly for a transform. For an xtransform

xtransform e {

P1 -> e1

| ...

| Pn -> en

}

we can express it by first defining a recursive filter

rule F =

( P1 { e1 }

| ...

| Pn { en }

|| ~[ F ] )*

and apply it to the input:

filter e { F }

Another similar proposal is a simple for-each style iterator with a type-matching

facility in XML Query (Fernández et al., 2001; Fankhauser et al., 2001). As briefly

discussed in the introduction, since these constructs do not have a strong connection

to regular expressions, it is quite difficult to process XML data with slightly unusual

types such as (a,b*)* or process data in a non-uniform way as discussed in

Sections 2.3 and 2.4.

A popular idiom found in many query languages for XML (Deutsch et al., 1998;

Cardelli & Ghelli, 2001; Abiteboul et al., 1997; Fankhauser et al., 2001) is a construct

of the form select e where p, which collects the set of all bindings resulted from

matching the input value against the pattern p, then evaluates the expression e

under each binding, and finally concatenates all the results. Usually in this style

of features, the “matching” part uses powerful pattern languages and therefore is

quite expressive, whereas the “processing” part is not as satisfactory since it allows

only one expression for any match. In particular, it is typically difficult to process

different occurrences (or cases) of data in different ways, which is exactly what

regular expression filters are good at.

A technique closely related to our type inference is �Duce’s, which computes types

both for bound variables and result values of map, transform, and xtransform

constructs as well as pattern matches. The main difference from ours is, however,

what types to be computed. First, they allow the inference to go over each body

expression more than once, whereas we limit it to only once. As a result, they can

obtain better types than ours. However, as argued in Section 3.3, it is impossible

to obtain precise types if we remove our “only once” restriction. Thus, a difficulty

arises how to give a specification of the inference; as of writing this paper, they have

no accurate specification and this might make it hard for the user to figure out the

reasons of type errors reported by the system.

Although handling the general case is difficult, some restrictions could yield a

complete type inference technique. One approach is to restrict the language so
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that precise analysis becomes decidable. For example, there is a large collection of

work on precise type inference techniques for different computation models such

as k-pebble tree transducers (Milo et al., 2000), subsets of XSLT (Tozawa, 2001;

Martens & Neven, 2003), models based on macro tree transducers (Perst & Seidl,

2004; Maneth et al., 2005), and extended path expressions (Murata, 2001). Their

work is, though, still in the theoretical level and actual feasibility is yet to be seen.

More practical yet complete algorithms based on “type splitting” have been used

first in the initial proposal of a type system for XQuery (Fernández et al., 2001)

and then in a typed-based analysis for detecting never-matching path expressions in

XQuery programs (Colazzo et al., 2004). Notably, both use a technique that splits

the input type into several and typechecks the body expression multiple times. In

the former work, splitting is done in a simple manner based on the syntax of the

given input type and completeness is obtained for simple path expressions with only

child axis. (The current specification of XML Query, however, uses an even simpler

inference and has no desirable property of precision.) The latter work handles more

general queries and achieves completeness with a certain restriction on types that

ensures splitting to be finite.

7 Conclusions

We have shown that the simple idea of regular expressions on pattern clauses can

yield significant expressiveness allowing non-trivial and useful programming idioms.

Though, no single language feature is suitable for every purpose. Indeed, the kind

of processing that filters permit is, roughly, the map operation as in usual functional

languages; we cannot express fold-like processing, for example. However, rather than

trying to extend our feature to allow as many programming patterns as possible, we

prefer to keep it simple and easy to use. On the other hand, the effort required for

implementing filters is not so big. The type inference is a series of simple operations

on automata and the addition from our previous inference for pattern matching is

rather moderate.

One dissatisfaction about the present proposal is the precision of the type

inference, as discussed in Section 3—the computed types are sometimes not precise

enough due to the restriction that the inference can use only one type for each body

expression. For breaking through this obstacle, there are at least two directions. One

possibility, taken by �Duce’s map and transform (Benzaken et al., 2003), is to give

up having an accurate specification of type inference and compute some type that

is more precise than ours. Whether this lack of specification is acceptable from the

user’s point of view is, however, yet to be seen. (There might be an intermediate

solution that gives both a simple specification and a better precision, but whether

it exists is still an open question.) Another possibility is to pursue a backward

inference approach, which computes input types from output types (the opposite

to our inference) (Milo et al., 2000; Tozawa, 2001). This approach has successfully

dealt with similar problems in several different settings, and therefore seems to be

the most promising at the moment.
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A Translation from filters to filter automata

Given a pattern definition E, a filter definition G, and a “starting” filter name Y0,

we create an automaton Aall = (QAall , Qinit
Aall , Q

fin
Aall , TAall) where

QAall =
⋃

X∈dom(E)(QE(X),∅ ∪ {qX})
∪

⋃
Y ∈dom(G)(QG(Y ) ∪ {qY })

Qinit
Aall = qY0

Qfin
Aall =

⋃
X∈dom(E) Q

fin
E(X),∅ ∪

⋃
Y ∈dom(G) Q

fin
G(Y ),∅

TAall =
⋃

X∈dom(E)(TE(X),∅ ∪ ({qX} ε−→ Qinit
E(X),∅))

∪
⋃

Y ∈dom(G)(TG(Y ),∅ ∪ ({qY } ε−→ Qinit
G(Y ),∅))

and AP,x = (QP,x, Q
init
P ,x, Q

fin
P ,x, Q

fin
P ,x) and AF = (QF,Q

init
F , Qfin

F , Qfin
F ) are inductively

defined as follows.

Aε,x = 〈{q1}, {q1}, {q1}, ∅〉

AL[X],x = 〈{q1, q2}, {q1}, {q2}, {q1

x:L[qX ]
−−−−→ q2}〉

A(P1 P2),x = 〈QP1 ,x ∪ QP2 ,x, Q
init
P1 ,x

, Qfin
P2 ,x

, TP1 ,x ∪ TP2 ,x ∪ (Qfin
P1 ,x

ε−→ Qinit
P2 ,x

)〉

A(P1 |P2),x = 〈QP1 ,x ∪ QP2 ,x, Q
init
P1 ,x

∪ Qinit
P2 ,x

, Qfin
P1 ,x

∪ Qfin
P2 ,x

, TP1 ,x ∪ TP2 ,x〉

AP ∗ ,x = 〈QP,x ∪ {q1, q2}, {q1}, {q2}, TP ,x ∪ ((Qfin
P ,x ∪ {q1}) ε−→ (Qinit

P ,x ∪ {q2}))〉

A(P as x),x = AP,x∪{x}

Aε = 〈{q1}, {q1}, {q1}, ∅〉

AL[Y ] = 〈{q1, q2}, {q1}, {q2}, {q1

L[qY ]
−−−→ q2}〉

A(F1 F2) = 〈QF1
∪ QF2

, Qinit
F1

, Qfin
F2
, TF1

∪ TF2
∪ (Qfin

F1

ε−→ Qinit
F2

)〉

A(F1 |F2) = 〈QF1
∪ QF2

, Qinit
F1

∪ Qinit
F2

, Qfin
F1

∪ Qfin
F2
, TF1

∪ TF2
〉

AF∗ = 〈QF ∪ {q1, q2}, {q1}, {q2}, TF ∪ ((Qfin
F ∪ {q1}) ε−→ (Qinit

F ∪ {q2}))〉

AP→e = 〈QP,∅ ∪ {q1, q2}, {q1}, {q2}, TP ,∅ ∪ ({q1}
in(e)

−−→ Qinit
P ,∅) ∪ (Qfin

P ,∅
out−→ {q2})〉

Here, Q1
λ−→ Q2 means {q1

λ−→ q2 | q1 ∈ Q1, q2 ∈ Q2}. Note that the construction

for the empty sequence, labels, concatenations, alternations, and repetitions of both
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patterns and filters is exactly the same as the standard one (Hopcroft & Ullman,

1979). The correctness proof of the translation is omitted.

B Complex regular expressions

In this section, we give a collection of regular expressions taken from real-world

DTDs. These regular expressions have a certain complex structure that can defeat the

use of a standard for-each style of language features mentioned in the introduction.

Specifically, we choose the following characterization of such structure: a regular

expression is complex if it has, as subexpression, either

• a concatenation of two expressions containing the same label, or
• a repetition containing a concatenation.

An example of the first is ((a,b),a) and an example of the second is (a,b)*.

Below, we pick up six DTDs and quote their element and entity declarations

with complex regular expressions. We omit the definitions of some of the entities

referenced here when they are not important for the present purpose. The other

entities are already expanded.

B.1 DocBook 4.2

The element declarations shown below can be found in the file dbhierx.mod (OASIS,

2002). Almost the same structure as the element appendix is used for the elements

chapter, preface, section, sect1, sect2, sect3, sect4, and sect5 (omitted here).

<!ELEMENT appendix

(beginpage?,

appendixinfo?,

(%bookcomponent.title.content;),

(toc|lot|index|glossary|bibliography)*,

tocchap?,

(%bookcomponent.content;),

(toc|lot|index|glossary|bibliography)*)>

<!ELEMENT indexentry

(primaryie, (seeie|seealsoie)*,

(secondaryie, (seeie|seealsoie|tertiaryie)*)*)>

<!ELEMENT refmeta

((indexterm)*,

refentrytitle, manvolnum?, refmiscinfo*,

(indexterm)*)>

B.2 MusicXML 0.8

The elements key and time are declared in the file attributes.dtd, the element

harmony in direction.dtd, and the elements ornaments and lyric in note.dtd

(LLC., 2004).
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<!ELEMENT key

((cancel?, fifths, mode?) |

((key-step, key-alter)*))>

<!ELEMENT time

((beats, beat-type)+ | senza-misura)>

<!ELEMENT harmony

(((root | function), kind,

inversion?, bass?, degree*)+)>

<!ELEMENT ornaments

(((trill-mark | turn | delayed-turn |

shake | wavy-line | mordent |

inverted-mordent | schleifer |

other-ornament),

accidental-mark*)*)>

<!ELEMENT lyric

((((syllabic?, text),

(elision, syllabic?, text)*, extend?) |

extend | laughing | humming),

end-line?, end-paragraph?)>

B.3 RecipeML 0.5

The following can be found in (FormatData, 2000).

<!ENTITY % amt.cont ’(amt, (sep?, amt)*)’>

<!ENTITY % time.cont ’(time, (sep?, time)*)’>

<!ENTITY % temp.cont ’(temp, (sep?, temp)*)’>

<!ELEMENT equipment

(equip-div+ | (note*, tool, (note | tool)*))>

<!ELEMENT equip-div

(title?, description?, note*, tool,

(note | tool)*)>

<!ELEMENT ingredients

(ing-div+ | (note*, ing, (note | ing)*))>

<!ELEMENT ing-div

(title?, description?, note*, ing,

(note | ing)*)>
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<!ELEMENT directions

(dir-div+ | ((note | ing)*, step,

(note | ing | step)*))>

<!ELEMENT dir-div

(title?, description?, (note | ing)*, step,

(note | ing | step)*)>

<!ELEMENT amt

((qty | range)?, size?, unit?, size?)>

B.4 Adex 1.2

The following can be found in (Newspaper Association of America, 1999).

<!ELEMENT transfer-info

(transfer-number, (from-to, company-id)+,

contact-info)*>

<!ELEMENT days-and-hours

(date, time)+>

B.5 SMIL 2.0

The following is in the file smil-model-1.mod (W3C, 2005).

<!ENTITY % SMIL.head.content

(meta*,

(customAttributes, meta*)?,

(metadata, meta*)?,

((layout|switch), meta*)?,

(transition+, meta*)?)>

B.6 W3C XML Specification 2.1

The following can be found in (W3C, 1998).

<!ELEMENT prod

(lhs, (rhs, (com|wfc|vc|constraint)*)+)>
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