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What is observable from wall data in turbulent
channel flow?
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Estimation of the initial state of turbulent channel flow from spatially and temporally
resolved wall data is performed using adjoint-variational data assimilation. The estimated
flow fields satisfy the Navier–Stokes equations and minimize a cost function defined as
the difference between model predictions and the available observations. The accuracy
of the predicted flow deteriorates with distance from the wall, most precipitously across
the buffer layer beyond which only large-scale structures are reconstructed. To explain
this trend, we examine the domain of dependence of the observations and the Hessian
matrix of the state-estimation cost function, both of which are efficiently evaluated using
adjoint fields initiated from impulses at wall sensors. Eigenanalysis of the Hessian is
performed, and the eigenvalues are related to the capacity to reconstruct flow structures
represented by the eigenvectors. Most of the eigenmodes decay beyond the buffer layer,
thus demonstrating weak sensitivity of wall observations to the turbulence in the bulk.
However, when the measurement time t+m � 20, some streamwise-elongated Hessian
eigenfunctions remain finite in the outer flow, and correspond to the sensitivity of wall
observations to outer large-scale motions. At much longer observation times, the adjoint
field becomes chaotic as it amplifies exponentially, which is indicative of extreme gradients
of the cost function and an ill-conditioned Hessian matrix, and both exacerbate the
difficulty of estimating turbulence from wall observations.

Key words: variational methods, chaos

1. Introduction

In turbulent channel flow, the walls play an important role in the generation of vorticity.
Despite this role, whether wall observations of the stresses can be used in data assimilation
to accurately predict the initial state of the flow and its evolution are challenging questions.
The difficulty is primarily due to the nonlinear, chaotic nature of turbulence: small
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deviations in the initial state grow exponentially in time (Deissler 1986) and, conversely,
small errors in the observations can obscure the reconstruction of the flow. Previous studies
have demonstrated that the near-wall turbulence and only the outer large-scale structures
can be reconstructed from wall signals. In this work, we adopt an adjoint-variational
approach to quantify the domain of dependence of wall sensors, and demystify the
difficulty of flow reconstruction from wall observations.

Previous attempts to estimate the state of wall-bounded turbulence from limited
observations can be separated into two general classes: filters and smoothers (e.g. Colburn,
Cessna & Bewley 2011; Suzuki 2012; Mons et al. 2016; Wang, Hasegawa & Zaki 2019b).
In filtering techniques, the state is adjusted to best match the most recently available
observations. On the other hand, smoothers take into account the entire observation
history.

Extended (Hœpffner et al. 2005) and ensemble (Chevalier et al. 2006) Kalman filters
were adopted to estimate turbulent channel flow from wall observations, and in both cases
accuracy deteriorates with distance from the wall. Suzuki & Hasegawa (2017) adopted
linear stochastic estimation (LSE) to interpret wall observations at the friction Reynolds
number of Reτ = 100. Accuracy of their predicted flow fields was commensurate with
earlier efforts that used Kalman filtering techniques: the estimation was only successful in
the region y+ � 20, where + indicates scaling in viscous wall units, and the error in the
estimated field increased beyond that height. At higher friction Reynolds number (Reτ =
1000–5000), LSE was able to also capture the large-scale structures in the outer layer
(Encinar & Jiménez 2019). It is important to note that LSE relies on prior knowledge
of the correlation between wall observations and the flow, which may not be available.
In addition, LSE and also Kalman filtering techniques do not satisfy the Navier–Stokes
equations.

In contrast to filters, smoothers satisfy the governing equations and attempt to reproduce
the observations over the entire time horizon during the forward evolution of the flow. The
problem is formulated as a nonlinear optimization: an initial state is sought to minimize
a cost function that is proportional to the difference between predicted and available
observations. Both ensemble-variational (Mons, Wang & Zaki 2019; Buchta & Zaki 2021)
and four-dimensional adjoint-variational (4DVar) (Le Dimet & Talagrand 1986; Li et al.
2020) data assimilation can be adopted for the minimization procedure. In the latter
approach, which will be adopted herein, deviations from the observations appear in the
adjoint system as a forcing term; the adjoint variable at the initial time provides the
gradient of the cost function with respect to the initial state, and is used to adjust the
initial condition. Adjoint-variational methods are popular in weather prediction (Kleist
& Ide 2015a,b), nonlinear stability analysis (Schmid 2007; Kerswell 2018) and optimal
flow control (Luchini & Bottaro 2014). In wall turbulence, Bewley & Protas (2004) used
4DVar to reconstruct the initial state of channel flow from observations of wall friction and
pressure, at a moderate friction Reynolds number Reτ = 100. The estimation was accurate
near the wall, but was nearly uncorrelated with the true initial flow state in the channel
centre. As the Reynolds number is increased, the outer large-scale structures can also be
reconstructed from wall observations using 4DVar (Wang & Zaki 2021).

A measure of the difficulty of reconstructing the turbulent state from wall data is
desirable. In the present work, we will objectively and quantitatively relate the difficulty
of variational flow estimation to the sensitivity of wall measurements to the flow state. In
variational methods, since the optimal initial condition minimizes the cost function, the
local gradient vanishes. Therefore, the second-order sensitivity of the cost function with
respect to the initial condition, or its Hessian matrix, characterizes the local geometric
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What is observable from wall data in turbulent channel flow?

properties of the optimization problem. Specifically, the eigenvalues of the Hessian are
the curvatures of the cost function if the initial condition were to be disturbed along
the directions given by the associated eigenvectors. Higher eigenvalues indicate higher
curvature, and therefore the data assimilation algorithm will predict these eigendirections
from the measurements with higher certainty. The flow structures associated with smaller
eigenvalues, or curvatures, are more difficult to estimate accurately. In addition, the ratio
of the largest to the smallest eigenvalue of the Hessian is its condition number, which
provides a quantitative measure of the ill-conditioned nature of the inverse problem.

The Hessian analysis has broad applications and profound implications. For example,
Kalmikov & Heimbach (2014) estimated the large-scale ocean state using an adjoint
method, evaluated the Hessian matrix using algorithmic differentiation, and used its
leading eigenvectors to study the influence of uncertainties in observations on estimation
of oceanographic target quantities. In data assimilation, the landscape of the cost function
depends on the design of measurements (e.g. choice of observed quantity, sensor
placement, relative weighting of observations), and the Hessian analysis can provide an
objective and quantitative approach for optimizing these measurements parameters in
order to mitigate the difficulty of state estimation (Zaki & Wang 2021). For example,
Mons et al. (2019) optimized the placement of sensors for estimating scalar sources in
turbulent channel flow by minimizing the condition number of the Hessian, and Buchta &
Zaki (2021) adopted a Hessian-based strategy to optimize the weighting of wall-pressure
measurements for estimating hypersonic transitional boundary-layer flow. The primary
focus of the present work is on the role of the Hessian matrix in adjoint-variational
estimation of turbulence from wall observations. In this context, the Hessian matrix has
never been evaluated or analysed before – a gap that we address herein.

The adjoint-variational approach for state estimation is reviewed briefly in § 2.1,
and sample flow reconstructions in turbulent channel flow are presented. Using the
forward-adjoint duality relation, we formulate an approach for computing the Hessian
matrix at the true initial flow state in § 2.2. The adjoint fields associated with wall
observations are reported in § 3.1, and interpreted as the dependence of wall data on the
flow at different times from the observations. The adjoint fields are then used to construct
the Hessian matrix. Eigenanalysis for the Hessian is presented in § 3.2, and used to
explain the sensitivity of the wall data to various wall-normal locations in state estimation.
We proceed to evaluate the sensitivity of wall observations to the most energetic flow
structures that are obtained from a proper orthogonal decomposition (POD) of turbulent
channel flow. Finally, statistical behaviour of the adjoint field at long times is discussed in
§ 3.3.

2. Methods

The flow configuration of interest is statistically stationary turbulent channel flow. The
reference length h is the channel half-height and the reference velocity is the bulk value
U . The flow is governed by the non-dimensional incompressible Navier–Stokes equations

∂U
∂t

+ (U · ∇) U = −∇P + 1
Re

∇2U, (2.1a)

∇ · U = 0, (2.1b)

U |t=0 = U0, (2.1c)

where Re ≡ Uh/ν is the bulk Reynolds number and ν is the kinematic viscosity. The
spatially and temporally dependent velocity and pressure are denoted U and P, and U0
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Parameters Domain size Grid points Grid resolution

Reτ Re Lx/h Ly/h Lz/h Nx Ny Nz �x+ �z+ �y+
max �y+

min

100 1429 4π 2 2π 128 128 128 9.8 4.9 2.2 0.74
180 2800 4π 2 2π 384 256 320 5.9 3.5 2.95 0.20
392 6875 2π 2 π 256 320 192 9.6 6.4 5.1 0.34
590 10 935 2π 2 π 384 384 384 9.6 4.8 6.5 0.44
1000 20 000 2π 2 π 768 768 768 8.2 5.5 4.1 0.37

Table 1. Domain sizes and grid resolutions. Grid sizes are normalized by the viscous length scale,
e.g. �x+ ≡ �x uτ /ν.

is the initial state which is the target of reconstruction. The flow is driven by a constant
streamwise pressure gradient, is periodic in the streamwise (x) and spanwise (z) directions,
and satisfies the no-slip conditions at the bottom and top walls y = {0, 2}. The governing
equations (2.1) are solved using a fractional step method with a volume-flux formulation
(Kim & Moin 1985; Rosenfeld, Kawak & Vinokur 1991). The diffusion terms are
discretized implicitly in time with Crank–Nicolson scheme while the nonlinear advection
terms are treated explicitly using Adams–Bashforth. The pressure Poisson equation is
solved by Fourier transforms in the periodic streamwise and spanwise directions, followed
by a tridiagonal solver in the wall-normal direction. The numerical algorithm has been
used extensively for direct numerical simulations of transitional (Zaki 2013) and turbulent
flows (Lee, Sung & Zaki 2017).

The majority of the results are focused on Reynolds numbers Re = 2800 and 10 935;
the corresponding friction Reynolds numbers are Reτ ≡ uτ h/ν = 180 and Reτ = 590,
where uτ ≡

√
ν(dŪ/dy)wall is the friction velocity evaluated from the mean wall shear

stress, and an overbar denotes averaging in the homogeneous spatial directions and
in time. We adopted a Cartesian grid with uniform spacing in both the streamwise
and spanwise directions and hyperbolic stretching in the wall-normal coordinate. The
dimensions of the computational domains and grid resolutions are reported in table 1,
including for additional Reynolds numbers that are referenced in the text. The grid
resolutions were selected based on the general criteria that �x+ � 10, �z+ � 5 and
�y+

min � 1.
Independent reference simulations were performed to generate the observation data

that are then adopted in the state estimation procedure. The reference flow fields are
therefore the hidden truth that will be used to quantify the accuracy of the estimated
fields.

2.1. Adjoint-variational state estimation
Starting from wall observations only, we seek to evaluate an estimate of the true initial state
of the flow U0, which will be denoted Ũ0. Similar to U , the estimated field Ũ satisfies
the Navier–Stokes equations (2.1) which are referred to as the forward model. Errors in
Ũ0 result in deviation of the associated model predictions from available observations,
and the difference is used in the definition of our cost function that we aim to minimize.
Throughout the present study, observations are only available at the top and bottom
surfaces S of the channel. The initial state is defined at t = 0, and the final observation time
is denoted as tm. When observations are only available at one instant, tm, the associated
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cost function for the streamwise wall stress is

Ju(Ũ0; tm) = 1
2S

∫
S

(
∂Ũ
∂y

− ∂U
∂y

)2

(xm,tm)

dxm dzm, (2.2)

where xm is the observation location. Similarly, cost functions Jw and Jp are defined
for deviations from instantaneous observations of spanwise wall stress (∂W̃/∂y −
∂W/∂y)(xm,tm) and wall pressure (P̃ − P)(xm,tm).

Results for observations of only one component of the stress or pressure at one time
instance are the focus of this work, and will be discussed in detail in §§ 3.1 and 3.2. In
order to place that discussion in context, however, we start by examining the capacity for
state estimation when all three components are available as a function of time during the
assimilation window; this preliminary step is a summary of a recent detailed study by
Wang & Zaki (2021). The cost function for the collective observations over the entire time
horizon is defined as

J = 1
Re2 Ju + 1

Re2 Jw + Jp, (2.3)

where Ju is the integral of the instantaneous cost function (2.2) over the observation
window,

Ju(Ũ0) =
∫ tm

0
Ju(Ũ0; t′) dt′ = 1

2S

∫ tm

0

∫
S

(
∂Ũ
∂y

− ∂U
∂y

)2

(xm,t′)
dxm dzm dt′, (2.4)

and similarly for Jw and Jp. The coefficients of Ju and Jw in (2.3) ensure that the three
terms are comparable in magnitude.

The gradient of the cost function with respect to the initial condition is obtained by
solving the adjoint equations

∇ · u∗ = − ∂J

∂P̃
, (2.5a)

∂u∗

∂τ
+
(
∇Ũ

)
· u∗ −

(
Ũ · ∇

)
u∗ = ∇p∗ + 1

Re
∇2u∗ + ∂J

∂Ũ
, (2.5b)

where ∗ denotes adjoint variables, and τ ≡ tm − t is the reverse time over the duration of
the assimilation window tm. The boundary conditions for the adjoint variables are no-slip
at the walls and periodicity in the horizontal x and z directions. The source terms on
the right-hand side of the equations are due to the deviation between the estimated and
true observations. The gradient of the cost function with respect to the initial condition
is obtained at the end of the adjoint computation, ∂J/∂Ũ0 = u∗(τ = tm) (for a detailed
derivation, see Wang, Wang & Zaki (2019a)).

The adjoint equations (2.5) are solved using the discrete-adjoint approach, which
provides a more accurate gradient of the cost function than the continuous-adjoint
counterpart (Vishnampet, Bodony & Freund 2015). The gradient is then used
in a quasi-Newton method in order to update the estimation of the initial
state; our particular choice of quasi-Newton method was the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm (Nocedal 1980), which does
not require the Hessian of the cost function and instead approximates it from successive
gradients (see e.g. chapter 6 in Nocedal & Wright (2006)). The entire forward-adjoint

941 A48-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

29
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.295


Q. Wang, M. Wang and T.A. Zaki

gradient-based optimization is then repeated until the estimated initial state significantly
reduces the cost function.

In summary, the procedure for minimizing the cost function (2.2) is the following: (i)
start with a guess of the initial condition Ũ0, march the forward equations (2.1) from
t = 0 to t = tm, and store the instantaneous fields Ũ(t); (ii) solve the adjoint equations
(2.5) from τ = 0 to τ = tm and compute the gradient of the cost function; (iii) update the
estimated initial condition Ũ0, and repeat procedures (i) and (ii) until convergence. Note
that this optimization process is computationally expensive, both in terms of storage cost
and computational time. The former is caused by the storage of the forward flow fields
Ũ(t), and the latter is due to the hundreds of forward and adjoint simulations that are
required for the minimization of the cost function.

Due to the exponential divergence of state-space trajectories of both the forward and
adjoint dynamical systems, the choice of the assimilation time horizon is guided by the
Lyapunov time scale. In viscous units, that horizon is t+m = 50, which corresponds to
approximately one Lyapunov time scale, τ+

σ ≈ 50 at Reτ = 180, and fields were stored at
every time step to perform adjoint simulations. At each Reynolds number, the initial guess
of Ũ0 is obtained from LSE (Adrian & Moin 1988; Encinar & Jiménez 2019) using wall
measurements. This guess is then refined using 100 L-BFGS iterations, each comprising
a forward and an adjoint fully resolved simulations of turbulence over the time window of
assimilation. The convergence history for different Reynolds numbers are similar, and the
cost function is reduced to less than 4 % of its initial value.

A sample estimation of the turbulence from wall observations is provided in figure 1.
Since the estimated flow progressively approaches the true state in time within the
estimation window (e.g. Wang et al. 2019a), we only report the predictions at t = tm
when the estimation is most accurate. Note that the temporal decay of the errors is
unique to 4DVar. In contrast, starting from an LSE of the initial state and solving the
Navier–Stokes equations would lead to a flow evolution that diverges exponentially from
the true state-space trajectory. The contours in figure 1(a) show both the streamwise
velocity fluctuations from the turbulence in the true state and in the reconstruction using
our 4DVar algorithm, at Reτ = 590. The two fields are nearly identical very near the wall,
but precipitously deviate from one another from the buffer layer and into the bulk of the
channel. The turbulence within the core of the channel is not accurately reconstructed, with
the exception of the large-scale streaky structures; these outer energetic motions are known
to modulate the near-wall region and the wall shear stress (Abe, Kawamura & Choi 2004;
Mathis, Hutchins & Marusic 2009; Hwang et al. 2016; You & Zaki 2019). The ability to
predict the outer large scales from wall data using 4DVar is qualitatively consistent with,
but quantitatively more accurate than, other estimation techniques, for example applying
LSE at t = tm (Suzuki & Hasegawa 2017; Encinar & Jiménez 2019). The herein reported
characteristics of the estimated field using 4DVar are a summary of the findings by Wang
& Zaki (2021).

The correlation coefficient Cxz between the true and estimated fields at the final time,
t = tm, is reported in figure 1(b),

Cxz = 〈Ũ′U′〉xz

〈Ũ′2〉1/2
xz 〈U′2〉1/2

xz
, (2.6)

where angle brackets denote averaging with respect to the marked dimensions and prime
indicates fluctuations U′ = U − 〈U〉xz. The correlation coefficient decays from the start of
the buffer layer and the estimated field becomes essentially uncorrelated with the true state
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Figure 1. (a) Top views of streamwise velocity fluctuations in the true and estimated states at t = tm for
Reτ = 590 at selected y locations, y+ = {15, 100, 300}. (b) Correlation coefficient between true and estimated
streamwise velocity fluctuations at t = tm. Progressively darker lines corresponding to Reτ = {100, 180, 392};
thick blue curve corresponds to Reτ = 590; filled circles mark the wall-normal locations of the subpanels in
panel (a).

as we approach the channel centre. We have repeated the analysis for Reynolds numbers
Reτ = {100, 180, 392, 590}, and the findings remain qualitatively similar. In effect, as the
Reynolds number increases, wall observations can be interpreted to accurately estimate the
flow in a diminishingly small physical region near the wall and also the outer large-scale
structures that are known to have a near-wall signature.

2.2. Hessian analysis
A fundamental difficulty in reconstructing the initial condition is due to the chaotic nature
of the governing equations and their adjoint: just as infinitesimal deviation in the initial
conditions leads to exponentially diverging state-space trajectories in forward time, small
mismatch between the estimated and true observations leads to exponentially diverging
trajectories in the adjoint. In terms of the variational state-estimation procedure, we can
quantify this difficulty by examining the convergence behaviour when the estimated state
Ũ0 is infinitesimally close to the true solution U0. We can then introduce the deviation
field u = Ũ − U , which is governed by the linearized Navier–Stokes equations,

∂u
∂t

+ (U · ∇) u + (u · ∇) U = −∇p + 1
Re

∇2u, (2.7a)

∇ · u = 0. (2.7b)

The initial condition of the linearized equations is u0 = Ũ0 − U0.
Here, we focus on the estimation of the initial condition using the instantaneous cost

function (2.2). In other words, we only consider instantaneous observations at t = tm,
recorded over the entire walls, and in this manner we can evaluate the influence of the
observation time tm. Extension to the full assimilation window involves integration over
time, which is straightforward. In terms of the new variable u, the cost function (2.2)
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becomes

Ju(tm) = 1
2S

∫
S

(
∂u
∂y

)2

(xm,tm)

dxm dzm, (2.8)

and similar expressions can be written for Jw and Jp. Note that at the true solution u0 =
Ũ0 − U0 = 0, and the gradient of the cost function (generically denoted as J ) vanishes,

∂J
∂Ũ0

∣∣∣∣
Ũ0=U0

= ∂J
∂u0

∣∣∣∣
u0=0

= 0. (2.9)

Therefore, the difficulty of the state estimation is directly tied to the second-order
derivative, or Hessian matrix, of the cost function. If the Hessian is well conditioned,
converging from the vicinity of the true solution will be straightforward; conversely, an
ill-conditioned Hessian obstructs the optimization algorithm from finding the true state,
even if the initial guess is infinitesimally close to the true solution.

The cost function J depends on u, and involves solving the linearized forward
Navier–Stokes equations using the initial condition u0 and registering observations.
Computing the Hessian using this forward relation is very expensive, since each possible
spatial location in the initial condition and each velocity component must be perturbed
independently, and therefore O(Nx × Ny × Nz × 3) simulations are required, each evolved
up to the time of the observation tm. A more efficient method is sought using the duality
relation of the linearized Navier–Stokes equations and their adjoint.

Our proposed approach for evaluating the Hessian matrix starts from the impact of a
deviation in the velocity field, u, on an isolated observation at (xm, tm). Mathematically,
this quantity can be expressed as [u(t = tm), φ(xm)], where [a, b] = ∫

V aTb dV is the
spatial inner product evaluated over the entire channel volume, and φ is the observation
kernel that extracts the measurements of interest. For example, when observing the
streamwise wall-shear-stress, the kernel φ is the wall-normal derivative, selectively acting
on the streamwise component of u and evaluated at xm. Note that observing the deviation
in wall pressure can also be expressed as [u(t = tm), φ(xm)] because p is linearly related to
u by the linearized Navier–Stokes equations (2.7). Now we exploit forward-adjoint duality
to rewrite this expression in terms of the adjoint field u∗, which will simplify the evaluation
of the Hessian,

[u(t = tm), φ(xm)] = [Au0, φ(xm)] = [u0,A∗φ(xm)] = [u0, u∗(τ = tm; xm, tm)].
(2.10)

In the first equality, we replaced u = Au0, where A is the forward linearized
Navier–Stokes operator (2.7) that advances the initial condition u0 to the final state u
at time t = tm. The second equality introduces the adjoint operator A∗; its action A∗φ is
equivalent to solving the linearized adjoint equations

∇ · u∗ = 0, (2.11a)

∂u∗

∂τ
+ (∇U) · u∗ − (U · ∇) u∗ = ∇p∗ + 1

Re
∇2u∗, (2.11b)

u∗(τ = 0) = φ(xm), (2.11c)

where τ = tm − t is the reverse time, and the interval 0 ≤ t ≤ tm is the same time horizon
as the forward equations. The adjoint boundary conditions are, as before, no-slip at
the walls and periodicity in the horizontal directions. It is important, however, to note
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the difference between these adjoint equations (2.11) and the earlier ones (2.5); here the
equations do not feature a forcing term by the cost function and their initial condition is
the observation kernel. The resulting adjoint field is therefore not the gradient of the cost
function, and its meaning will be explained below in terms of the duality relation (2.10).
In the last equality of (2.10), we replace A∗φ by the resulting field at the end of the adjoint
evolution, u∗(τ = tm).

Before continuing the derivation of the Hessian, we note that the duality relation (2.10)
is a powerful expression: instead of evolving different initial deviations u0 and evaluating
their respective impact on the observations, we can perform a single adjoint simulation
starting from the observation kernel φ and determine the impact on the observations
by the simple inner product, [u0, u∗(τ = tm; xm, tm)], for any choice of u0 and without
performing any forward simulations. From this expression, if u∗ is non-zero only within a
compact region, the initial perturbation must be finite within the same region in order to
affect observations. In other words, the support of u∗ represents the domain of dependence
of the observation evaluated at (xm, tm).

We now complete the derivation of the Hessian. Using the duality relation (2.10), we
can rewrite the cost function with observation kernel φ at time tm in terms of adjoint field
u∗,

J (u0; tm) = 1
2S

∫
S
[u, φ]2dxm dzm = 1

2S

∫
S
[u0, u∗]2dxm dzm. (2.12)

The quadratic relation between J and u0 thus becomes explicit, and facilitates the
evaluation of both the gradient and the Hessian,

∂J
∂u0

= 1
S

∫
S

[
u0, u∗]u∗ dxm dzm,

H ≡ ∂2J
∂u0∂u0

= 1
S

∫
S

u∗u∗ dxm dzm.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (2.13)

At optimality, u0 = 0 and the gradient vanishes while the Hessian matrix is finite. The
integral in (2.13) is over all measurement locations, i.e. the top and bottom walls; the
integrand is the cross-correlation of the adjoint fields, u∗u∗, which is the Hessian for
an isolated measurement. In the language of control theory (Rowley 2005), the Hessian
matrix corresponds to the observability Gramian. The size of H is [3NxNyNz]2, where
three is the number of velocity components and NxNyNz is the number of spatial grid
points. Written explicitly,

Hij(x1, x2; tm) = 1
S

∫
S

u∗
i (x1, τ = tm; xm, tm)u∗

j (x2, τ = tm; xm, tm) dxm dzm. (2.14)

From (2.14), and the fact that J ≥ 0, the Hessian at optimality must be symmetric and
positive semidefinite. As a result, it has real eigenvalues and orthogonal eigenvectors. For
each choice of the observation kernel φ, be it the wall-normal gradient or sampling of the
local pressure, we define Ju,Jw, Jp and use the above outlined procedure to evaluate the
associated Hessian matrices, Hu,Hw, Hp.

The Hessian matrix in (2.14) is evaluated in physical space, has a very large size, and
is difficult to compute and analyse. The integrand features the adjoint fields released
from the measurement location xm and evaluated at x1 and x2. Since we consider all
measurement positions on the wall, and since the forward flow is homogeneous in the
horizontal plane, the Hessian is invariant under a coordinate shift in x and z directions. Due
to this homogeneity, the eigenvectors in x and z are guaranteed to be Fourier modes (similar
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to the eigenfunctions from POD, see e.g. Lumley (1981)). As a result, after performing a
Fourier transform of the adjoint fields, the Hessian can be compactly expressed in spectral
space,

Ĥ(kx, kz, y1, y2; tm) =
∫

S
û∗( y1, τ = tm; xm, tm)û∗

c.c.( y2, τ = tm; xm, tm) dxm dzm,

(2.15)

where û∗ is the Fourier transform of u∗ in x and z, and subscript c.c. denotes a complex
conjugate. For each wavenumber pair (kx, kz), the Hessian has size 3Ny × 3Ny, and
therefore its (eigen)analysis is affordable. Note that Ĥ preserves the same eigenvalues
as the Hessian in (2.14), and the eigenfunctions of Ĥ at every (k+

x , k+
z ) are the spectral

representation of those of the original Hessian (2.14). A major advantage of evaluating
and analysing Ĥ is the relative computational efficiency.

In § 3.2, we will perform an eigenanalysis of Ĥ at each (kx, kz) pair in order to extract
the associated eigenmodes whose significance is threefold. Firstly, the eigenvalues are
curvatures of the cost function along directions represented by the eigenvectors. Therefore,
the performance of 4DVar state estimation can be explained in terms of the Hessian
eigenmodes. Specifically, flow structures described by the leading modes will be most
effectively targeted by the 4DVar procedure or, in other words, accurately reconstructed
from observations. Secondly, the leading eigenvectors are also optimal perturbations to the
forward field, that yield the largest influence on wall observations, and the corresponding
sensitivity is quantified by the eigenvalues. Finally, we note that the condition number of
the Hessian is a quantitative measure of the ill-posedness of the state-estimation problem.

The integral (2.15) is evaluated by sampling different measurement locations on the
wall. It is also possible to use û∗ evaluated from different realizations of the true
forward flow which is homogeneous in the horizontal dimensions and time. In total, 512
adjoint simulations were included in the evaluation of Hessian (2.15). This process was
repeated for every observation time tm of interest and for every type of measurement:
∂U/∂y|wall, ∂W/∂y|wall and P|wall. The herein described approach for evaluating the
Hessian matrix with the aid of the adjoint and in spectral space significantly reduces the
computational cost relative to forward methods. Nonetheless, the adjoint simulations still
require approximately 1.2 × 106 CPU hours for each Reynolds number considered.

3. Results

This section initially focuses on turbulent channel flows at Reτ = 180 and 590. Ensemble
averaged adjoint fields u∗ will be reported for different types of wall data and reverse
times. Appropriate normalization demonstrates the similarity across different Reynolds
numbers. The results also highlight the domains of dependence of different wall sensing
modalities and their change with the time separation between the observation and the
initial state. Eigendecomposition of the Hessian will be performed, and the eigenvalues
and vectors at different wavenumbers and reverse times will provide a unique perspective
on the problem of initial-state estimation. The section concludes with a discussion of
the long-time statistical properties of the adjoint fields for select Reynolds numbers from
table 1, Reτ = {180, 590, 1000}, and their implications.
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What is observable from wall data in turbulent channel flow?

3.1. Domain of dependence of isolated wall observation
The duality relation (2.10) provides an interpretation of the adjoint, where the support of
u∗(τ = tm) can be viewed as the domain of dependence for an observation. Starting from
an impulse at observation locations xm on the wall, the adjoint field is a growing puff
that propagates upstream. We evaluated the adjoint associated with different observation
locations xm on the wall, each evolving in backward time using the stored forward velocity
fields (see (2.11)). For each observation location, we have also considered different starting
times. Due to the homogeneity of channel-flow turbulence in the horizontal plane and
time, the structures of all these adjoint fields u∗(τ = tm) are statistically similar within a
coordinate shift. The ensemble average of the adjoint fields was evaluated and is reported
in figure 2.

Three different types of observations are examined, namely ∂U/∂y|wall, ∂W/∂y|wall
and P|wall. For each measurement modality, 512 samples were included in the ensemble
average. Figure 2 shows that the fields are similar at the two Reynolds numbers, when
visualized using viscous scaling. No matter the choice of wall observations, the adjoint
structures all advect upstream of the observation point and expand as a function of
reverse time, or for longer separation between the observation and the initial state. The
quantity plotted is the streamwise adjoint velocity, specifically u∗/u∗

max. The spanwise
symmetry when observing ∂U/∂y|wall and P|wall can be contrasted to the antisymmetry
when measuring ∂W/∂y|wall; in the first two cases, initial disturbances to the forward U
velocity at either side of the measurement cannot be distinguished, but they have opposite
influences on a measurement of the spanwise stress. In addition, due to the non-local nature
of pressure, the adjoint structure associated with wall-pressure observations, P|wall, are
appreciably larger than those associated with the wall stresses, especially for shorter times.
This observation is congruent with the finding by Bewley & Protas (2004) that including
wall-pressure observations in addition to the surface stresses improves the accuracy of
state estimation.

Figure 3 shows an instantaneous adjoint field for an even longer separation between the
observation and the initial state, τ+ = t+m = 220 at Reτ = 180. The isosurfaces of adjoint
streamwise velocity form a large chaotic patch that spans most of the horizontal plane,
and which resembles the familiar turbulent spots from transitional flows (Cantwell, Coles
& Dimotakis 1978; Marxen & Zaki 2019) but with the opposite orientation and direction
of propagation. The long-time behaviour of the adjoint field becomes independent of its
initial condition, and is only meaningful to examine statistically. In addition, due to the
chaotic nature of the underlying turbulent field U , the convergence behaviour of the adjoint
statistics quickly deteriorates and the required number of samples rapidly increases with
larger tm (see e.g. Eyink, Haine & Lea 2004; Chandramoorthy et al. 2019). A discussion of
the asymptotic behaviour of the adjoint field and its impact on the state estimation problem
is provided in § 3.3, after we examine eigenproperties of the Hessian matrix at short times
and the implication for state estimation (cf. figure 1).

3.2. Eigenvalues and eigenvectors of the Hessian
Recalling (2.15), the eigenmodes of the Hessian are Fourier modes in the homogeneous
x and z directions, and their y-dependence can be evaluated from Ĥ for different
wavenumber pairs (kx, kz). With reference to the eigenvalues and vectors of the Hessian,
we can then explain the capacity of 4DVar to reconstruct different wavenumber
components of the initial flow state. The largest eigenvalues are the highest curvatures
of the cost functions, and the associated eigenvectors are the flow structures which are
most accurately estimated from the measurements.
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∂U/∂y|w

∂W/∂y|w

(a)

(b)

(c)

τ+ = 20

τ+ = 16

τ+ = 12

τ+ = 8

500

0.01–0.01

500500

0

τ+ = 4

τ+ = 20

τ+ = 16

τ+ = 12

τ+ = 8

τ+ = 4

Reτ = 180

Reτ = 590

Reτ = 180

Reτ = 590

Reτ = 180

Reτ = 590

x+

u—∗/u—∗
max

z+y+

P w

Figure 2. Three-dimensional isosurfaces of the ensemble-averaged, streamwise adjoint velocity fields for
different measurement times t+m when observing (a) ∂U/∂y|wall, (b) ∂W/∂y|wall and (c) P|wall, plotted at
τ+ = t+m .

The contours in figure 4 correspond to the largest eigenvalue of Ĥu, the Hessian
for instantaneous observation of ∂U/∂y|wall, as a function of the wavenumber vector.
The results for Reτ = 180 and 590 are unified by adopting viscous scaling, and a short
observation time is considered, t+m = 4. The two Reynolds numbers Reτ = 180 and
590 are compared using the colour and line contours, respectively, which demonstrates
their agreement when scaled using viscous units. The maximum eigenvalue generally
decays with increasing magnitude of the horizontal wavenumber vector (k+

x , k+
z ), and

the supremum corresponds to a two-dimensional mode (k+
x , k+

z ) = (0.12, 0). Figure 4(b)
shows the entire eigenvalue spectra of Ĥu at that wavenumber pair, for both Reynolds
numbers. The eigenvalues appear in pairs, and decay exponentially, which demonstrates
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y

Figure 3. Instantaneous, streamwise adjoint velocity field at τ+ = t+m = 220 due to an impulse of ∂u/∂y|wall
at the wall for Reτ = 180. The isosurfaces show u∗ = ±0.001u∗

max, and are coloured by the vertical distance
from the wall.
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Figure 4. (a) The logarithm of the largest eigenvalue of the Hessian matrix Ĥu at t+m = 4. Colour contours
show the eigenvalues for Reτ = 180 and line contours correspond to Reτ = 590. (b) Eigenvalue spectra at the
wavenumber pair (k+

x , k+
z ) = (0.12, 0); the thicker line is the higher Reynolds number.

that the sensitivity of the system is dominated by few directions associated with the leading
eigenvectors: a typical feature of ill-conditioned systems.

The profiles of select eigenvectors, (û( y), v̂( y), ŵ( y)), are examined in figure 5. The
mode associated with the supremum eigenvalue at (k+

x , k+
z ) = (0.12, 0) corresponds to

spanwise homogeneous rolls. The roll peaks at y+ ≈ 3 and generates counter vorticity
at the wall that most effectively impacts the wall observation of streamwise shear stress.
This eigenmode should not be interpreted using the conventional wisdom from forward
simulations of turbulence and knowledge of its structures; the interpretation should be
based on the notion of the adjoint. The eigenfunction shows the direction along which
the cost function has the largest curvature, and hence the measurement is most sensitive
to a perturbation in this direction at τ = tm earlier in time. When this time is short, as
is the case in figure 5, the forward dynamics do not have sufficient time to evolve an
initial disturbance of the form of the eigenfunction into an amplified flow response that
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(b)(a)

Figure 5. Visualizations of the leading eigenmodes of the Hessian matrix with wavenumber (k+
x , k+

z ) =
(0.12, 0) obtained for t+m = 4: (a) Reτ = 180; (b) Reτ = 590. Side view contours of the spanwise vorticity
ωz ≡ ∂v/∂x − ∂u/∂y and arrows of (u, v) components are shown. Line plots show the mode shapes as a
function of y for û (——), v̂ (– – – -) and ŵ (— - —) components normalized by |û|max.

has a significant signature at the sensor. As such, the eigenfunction does not resemble flow
structures that are common in simulations of turbulence. Rather the eigenfunction is the
initial disturbance that, without significant development, essentially itself maximizes the
sensor signal. It is nonetheless the leading direction in the process of minimizing the cost
function during an adjoint-variational data assimilation using measurement of streamwise
shear stress at t+m = 4.

Figure 6(a–c) show contours of the normalized eigenvalues of the Hessian as a
function of (k+

x , k+
z ), for increasing observation time t+m . Here the Hessian matrices

are associated with instantaneous observations of ∂U/∂y|wall at t+m . In each panel,
we identify three important wavenumber pairs, and plot the associated eigenmodes in
figure 6(d–f ). Modes IA and IB correspond to the two local peaks of the eigenvalues
on the horizontal and vertical axis, which represent spanwise and streamwise rolls,
respectively. Mode II represents large-scale, streamwise-oriented structures with k+

z =
0.02, or 2π/k+

z ≈ O(300). Compared with other eigenfunctions, mode II demonstrates
finite sensitivity of wall measurement to the flow beyond the buffer layer towards the core
of the channel when the measurement time t+m is large (figure 6f ).

Five remarks are notable in connection with figure 6. (i) The supremum of the
eigenvalues for observing ∂U/∂y|wall is associated with a two-dimensional mode IA (kz =
0), which has the form of a roll in the x–y plane for all the considered times. (ii) At short
time, two perturbations that can effectively influence the wall measurement are modes IA
and IB. They represent an immediate sensitivity that is not significantly affected by the
underlying dynamics of the flow, and their eigenvectors are clustered near the wall. (iii) At
longer times, since fine-scale near-wall structures would be dampened by viscous effects,
modes IA and IB shift towards longer streamwise and spanwise wavelengths. These larger
structures survive longer times, and can be amplified by the flow dynamics over the time
duration between initial condition and measurement. (iv) All modes extend farther from
the wall at longer observation times, as the domain of dependence of the measurement
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Figure 6. The logarithm of the largest eigenvalue of the Hessian matrix for observing ∂U/∂y|wall
instantaneously at (a–c) t+m = {4, 8, 20}. Colour and line contours are for Reτ = 180 and 590, respectively.
The eigenvalues are reported as a function of the horizontal wavenumber vector (k+

x , k+
z ) and are normalized

by the respective supremum. (d–f ) Profiles of the eigenfunction |û| associated with the wavenumbers marked
in panels (a–c). Thin red lines correspond to Reτ = 180 and thick black lines are for Reτ = 590.

expands in backward time (cf. figure 2). However, most eigenfunctions vanish above the
buffer layer – a detail that we quantify in Appendix A. The practical implication is that wall
observations of the streamwise stress are insensitive to many of the turbulence scales above
the buffer layer, especially large values of (k+

x , k+
z ). (v) A very important exception is in a

small region near mode II where the eigenfunctions maintain a finite value in the core of
the channel; these modes correspond to the sensitivity of observations of the streamwise
wall stress to outer large-scale structures. These elongated motions are immune to the
sheltering effect of the strong near-wall shear (see Hunt & Durbin (1999) and Zaki &
Saha (2009) for discussion of shear sheltering), and their influence on the wall stress is
consistent with earlier efforts focused on the forward evolution of turbulence (Abe et al.
2004; Mathis et al. 2009; Hwang et al. 2016; You & Zaki 2019). The implication of last
two observations (iv) and (v) is evident in figure 1, where only the large-scale motions in
the logarithmic layer are accurately reconstructed and the finer scales of turbulence are
absent from the estimated state.

The above discussion of the behaviour of the Hessian eigenvalues at long times remains
qualitatively unchanged when considering wall observations of instantaneous spanwise
shear stress or pressure. The key distinctions are made by aid of figure 7, where the
associated largest eigenvalues are plotted as a function of (k+

x , k+
z ), at observation time

t+m = 20. The most effective flow structure for observing ∂W/∂y|wall is three-dimensional
with wavenumber (k+

x , k+
z ) ≈ (0.05, 0.05). As for observing the wall pressure, the
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Figure 7. Contours of the logarithm of the largest eigenvalue of the Hessian matrix for observing (a)
∂W/∂y|wall and (b) P|wall, instantaneously at t+m = 20, as a function of the horizontal wavenumber vector and
normalized by the respective suprema. Colour and line contours correspond to Reτ = 180 and 590, respectively.
Line plots are profiles of the eigenfunctions |û| associated with the marked eigenvalues I and II, at Reτ = 590.

eigenvalue spectrum shows sensitivity to spanwise rolls and much weaker sensitivity to
streamwise ones, the latter being known to develop without an associated strong pressure
perturbation (Phillips 1969). The profiles of modes I and II shown in figure 7 are,
respectively, similar to those of modes IA and II in figure 6( f ) for observing ∂U/∂y|wall,
also at t+m = 20. Most importantly, for all three types of observations mode II maintains a
finite value beyond the buffer layer, which represents the sensitivity of wall data to the
outer large-scale motions. Mathematically, the eigenmodes of the Hessian matrix can
rigorously be interpreted as (a) the leading search directions in adjoint state estimation
problem or (b) as the perturbations that yield the largest influence on wall observations.
Such interpretations, while accurate, do not guarantee that such eigenstructures are
present, or observable, in developed wall turbulence. In addition, we argued on physical
grounds that short-time observations may not be sensitive to the dynamics that lead to the
generation of energetic flow structures in wall turbulence because such structures develop
on longer time scale. We also argued on physical grounds that longer-time observations are
sensitive to initial disturbances that amplify by the flow dynamics thus having a large wall
signature. In order to support our interpretation, we can tailor the Hessian analysis to focus
on the most energetic modes of developed channel flow at different (k+

x , k+
z ). Specifically,

we evaluate the sensitivity of wall observations to flow structures v obtained from a POD
of channel-flow turbulence (Lumley 1967; Moin & Moser 1989; Taira et al. 2017).

Assume that the initial perturbation u0 is aligned with a POD mode u0 = αv, where α

is the amplitude. The cost function (2.12) can be written as

J (αv; tm) = 1
2S

∫
S
[αv, u∗]2dxm dzm = 1

2S

∫
S
α2[v, u∗]2dxm dzm. (3.1)

Since the POD mode generally satisfies [v, v] = 1, the inner product [v, u∗] is the scalar
projection of the adjoint field onto the POD mode. Given v, the cost function only depends
on α, and the corresponding projected Hessian is the second-order derivative with respect
to α,

HPOD(tm) = ∂2J
∂α∂α

= 1
S

∫
S

[
v, u∗]2 dxm dzm. (3.2)

Note that the projected Hessian is a scalar that quantifies the curvature along a POD
direction. This scalar becomes equivalent to the eigenvalues from the preceding section
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Figure 8. (a) Eigenvalues of the projected Hessian showing the sensitivity of wall observations of ∂U/∂y to
(left subpanels) the first and (right subpanels) the second POD modes of turbulent channel flow at Reτ = 180.
Lines are reproduced from figure 6, for the original Hessian without projection. Observation times are
(top subpanels) t+m = 4 and (bottom subpanels) t+m = 20. (b) The first v̂1 and second v̂2 POD modes for
wavenumbers (‘A’, solid) (k+

x , k+
z ) = (0, 0.08) and (‘B’, dashed) (k+

x , k+
z ) = (0, 0.02). (c) Eigenmodes of the

original Hessian |û∗| for the same wavenumber pairs, at t+m = 20.

when the POD mode is aligned with a single eigenfunction of the original Hessian. For
projection onto POD modes at different (k+

x , k+
z ), the corresponding Hessian is denoted as

ĤPOD(k+
x , k+

z ; tm).
Analogous to the earlier interpretation, the projected Hessian ĤPOD quantify the

difficulty of turbulence estimation, but in terms of reconstructing the most energetic
structures, or POD modes, in turbulent channel flow. Larger values imply a significant
alignment between the eigenmodes of the original Hessian and the POD modes, and the
associated flow structures will therefore be effectively reconstructed by adjoint-variational
estimation.

Results are reported in figure 8 for Reτ = 180. The colour contours are the eigenvalues
λ′ of the Hessian as a function of (k+

x , k+
z ), when the projection is onto (figure 8a,

left subpanels) the first and (figure 8a, right subpanels) the second POD modes; for
comparison, the eigenvalues of the original Hessian, without projection, are included
as lines. The maximum eigenvalues of the latter are used for normalization. For early
observations, t+m = 4, the spectra of the original and projected Hessian are dissimilar:
specifically, the original peak eigenvalue at k+

x = 0.12 (mode IA) does not persist, which
indicates that the wall observations are not sensitive to the energetic turbulent structures in
that wavenumber range. Instead, the sensitivity at k+

x = 0.12 (mode IA) is to the near-wall,
small scales; the adjoint-variational data assimilation procedure is therefore effective at
reconstructing these structures. For late observations (t+m = 20), the contours of the spectra
of both the original and projected Hessian are more similar near the peak (k+

x , k+
z ) =

(0, 0.08), which is marked ‘A’ in figure 8 and is associated with streamwise-elongated
structures with spanwise width 2π/k+

z ∼ O(100). The implication is that the maximum
sensitivity of wall observations is aligned with the most energetic POD modes at this
wavenumber. Adjoint-variational data assimilation using observations at t+m = 20 will
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therefore target a reconstruction of these energetic structures in the initial state, because
the underlying flow dynamics amplify these structures in forward time and thus they lead
to the largest impact on the observations.

A more detailed interpretation of the spectra is aided by comparison of the leading
POD modes (figure 8b) and the eigenfunctions of the original Hessian (figure 8c).
The results for point ‘A’ show that the peak projection at (k+

x , k+
z ) = (0, 0.08) is due

to the similarity between the modes below the buffer layer, both being associated
with streamwise-elongated and energetic near-wall streaks. Another wavenumber pair of
interest is marked ‘B’ in figure 8, at (k+

x , k+
z ) = (0, 0.02) which was previously labelled

mode II in the analysis of the original Hessian. The eigenvalues at ‘B’ become appreciable
when t+m = 20. The POD modes (figure 8b) are finite throughout the majority of the
channel height, and the eigenfunction of the original Hessian (figure 8c, also mode II in
figure 6f ) is similarly finite outside the buffer layer at this t+m . The projected Hessian at ‘B’
thus satisfies two important conditions: (i) the eigenvalue λ′1 is appreciable and (ii) both the
POD and original-Hessian modes are aligned in the outer flow. The practical implication
is that wall observations are sensitive to the outer streamwise-aligned (k+

x = 0) large-scale
(2π/k+

z ∼ O(300)) energetic structures, and 4DVar can estimate these structures in the
initial state from wall measurements.

The above discussion was framed in terms of the eigenspectrum of the Hessian, and
the reported eigenvalues were normalized in all the figures by their supremum at the
corresponding observation time. The time dependence of the supremum is reported
in Appendix A, and shows long-time exponential amplification due to the Lyapunov
behaviour of the adjoint system. As a result, when observations are accumulated during
a long time horizon, for example t+m = 50 as in § 2.1, the estimation of the initial state is
most affected by the late observations. It is instructive to compare the notions of Lyapunov
divergence in the adjoint and forward Navier–Stokes equations: just as in the forward
problem where an initial perturbation to the state grows exponentially in time with the
Lyapunov exponent, an initial perturbation in the adjoint equations amplifies exponentially
in backward time. For example, at Reτ = 180 Nikitin (2018) reported a Lyapunov exponent
σ+ = 0.021 for the forward problem; the adjoint field has the same exponential rate as we
will report in § 3.3. The interpretation of the adjoint behaviour is, however, different from
the familiar forward problem. In the context of the Hessian at optimality, the sensitivity
of an observation, which is represented by the adjoint field starting from the observation
kernel, leads to exponentially ‘larger Hessian’ at τ = tm. Not only does the supremum
eigenvalue increase, but so does its separation from smaller ones as well (cf. figure 6). As
a result, the condition number of the Hessian becomes larger and it becomes much more
difficult to solve the state-estimation problem, accurately. The important implication is that
errors in observations, in particular at larger tm, can strongly obscure the reconstruction of
the initial state.

3.3. Asymptotic behaviour of the adjoint field and of the gradient of the cost function
The analysis in the previous section focused on evaluation of the Hessian when the gradient
of the cost function vanishes. The results highlighted the difficulty of accurately predicting
the full turbulent state, especially beyond the buffer layer, from wall observations. Even
when the initial estimate of the flow is near the true state, the wall stress has a diminishing
sensitivity to the state with distance from the wall and, in the outer region, can improve
the estimation of the large-scale motions only. Generally, however, an initial guess of the
state may just be the mean-flow profile that is far from the true field. In addition, the

941 A48-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

29
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.295


What is observable from wall data in turbulent channel flow?

assimilation window of observations is often long. As such, the exponential amplification
of the adjoint in backward time is evidence of a very large gradient of the cost function
with respect to the initial condition, as well as an ill-conditioned Hessian. These realities
impose severe restrictions on the step size in the gradient descent method. In this section,
we examine the kinetic energy of the adjoint field because it is directly proportional to the
magnitude of the gradient of the cost function with respect to the initial condition. The
results will highlight regions of the flow that contribute most to this amplification, and
will be contrasted to the evolution of perturbations in the forward field for which we have
established understanding.

In § 3.1, we examined the adjoint fields due to impulses at the wall (figures 2 and 3),
at short observation times. At long reverse times, the initially localized patches spread,
become chaotic and fill the domain. Ultimately they reach a statistical state that is
independent of the observation type and location. Therefore, the long-time asymptotic
behaviours of the adjoint fields from (2.5) and (2.11) are the same; the former provides
the gradient of the cost function and the latter is associated with Hessian matrix. The
asymptotic statistical state can be reached efficiently by performing adjoint computations
starting from broadband adjoint velocities throughout the computational domain, which
is the approach adopted here. It should be noted that the adjoint equations are linear, and
hence the initial field is anticipated to grow exponentially in backward time, indefinitely.
This behaviour can be likened to the amplification of perturbations to a forward system:
while the nonlinear evolution of the perturbations leads to a statistically saturated state,
when the linearized Navier–Stokes equations are adopted the perturbations amplify
exponentially, unabated.

Starting from initial random perturbations that were projected onto solenoidal fields,
we simulated the flow evolution using both the linearized forward (2.7) and adjoint
(2.11) Navier–Stokes equations in order to contrast the long-time statistical properties of
both models. Recall that in both cases the base state in the governing equations is the
three-dimensional, time-dependent, fully turbulent flow at the corresponding Reynolds
number. Figure 9(a) shows the evolution of the perturbation energy,

K(t) = 1
2V

∫
V

|u|2 dV and K∗(t) = 1
2V

∫
V

|u∗|2 dV. (3.3a,b)

The integration is performed over the full three-dimensional domain, and the exponential
growth rate σ+ ≈ 2.11 × 10−2 at Reτ = 180 agrees with the value reported by Nikitin
(2018) for forward evolution.

Beyond a short-lived transient, the statistical behaviour of the perturbation field within
the exponential regime is unchanged, to within a rescaling. We therefore normalize
quantities by their Lyapunov amplification,

◦u = ue−σ t,
◦u∗ = u∗e−στ , (3.4a,b)

and analyse ◦u and ◦u∗ as statistically stationary fields. Figure 9(b) shows instantaneous
side views of the normalized forward and adjoint perturbation fields for Reτ = 180. The
adjoint field reflects the more localized near-wall behaviour, which is manifest in the form
of concentrated high-intensity patches of turbulence. The horizontally and time-averaged
kinetic energy of the normalized variables,

◦
k
(∗) = 1

2 | ◦u(∗)|2, (3.5)

was evaluated and the wall-normal profiles are plotted in figure 10. Each profile is
normalized to unit integral, and is plotted multiplied by y+ to ensure that the area under
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Figure 9. (a) Exponential energy amplification for the (solid) linearized forward and (dashed) adjoint fields.
Increasing line thickness and vertical shift correspond to Reτ = {180, 590, 1000}. For each Reynolds number,
the Lyapunov exponents are similar for the forward (σ+ = {2.11, 2.48, 2.73} × 10−2) and adjoint (σ+ =
{2.04, 2.33, 2.61} × 10−2). (b) Side views of sample (top subpanel) linearized forward and (bottom subpanel)
adjoint fields during the statistically stationary state for Reτ = 180.

the curve is representative of the integral. The energy of the forward perturbations peaks
in the buffer layer, and decays within the logarithmic region towards the channel centre.
The energy of the adjoint field exhibits narrower support, with a more concentrated peak
and much faster decay within the buffer layer. The large gradient of the cost function
in the state estimation problem is therefore most concentrated in the buffer layer. These
results are also relevant to the poor condition number of the Hessian. In the previous
section (§ 3.2), figure 6(a–c) shows that the separation between the supremum and smaller
eigenvalues of the Hessian increases with tm, and hence the Hessian becomes progressively
more ill-conditioned. The asymptotic behaviour of the adjoint system (figures 9–10)
reinforces this statement by showing that observation errors could lead to exponential
amplification of errors in the buffer layer, due to adjoint chaos. Taken altogether, the large
gradient in the buffer layer and ill-conditioned Hessian render the state estimation problem
very challenging.

The evolution equations of the kinetic energies of the perturbations are derived by
performing the dot product of the linearized forward Navier–Stokes equations (2.7) with
u and similarly the dot product of the adjoint Navier–Stokes equations (2.11) with u∗. The
resulting equations are

∂k
∂t

= −uiujSij − ∂

∂xj

(
1
2

uiuiUj + ujp − 2
Re

uisij

)
− 2

Re
sijsij,

∂k∗

∂τ
= −u∗

i u∗
j Sij − ∂

∂xj

(
−1

2
u∗

i u∗
i Uj − u∗

j p∗ − 2
Re

u∗
i s∗

ij

)
− 2

Re
s∗

ijs
∗
ij,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.6)

where k = (uiui)/2 is the kinetic energy, sij = (∂ui/∂xj + ∂uj/∂xi)/2 and Sij =
(∂Ui/∂xj + ∂Uj/∂xi)/2 are the rate of strain tensors for the perturbation and the reference
fields, respectively, and stars denote adjoint quantities. We multiply the forward equation
by exp(−2σ t) and the adjoint by exp(−2στ), and average each of them in time and in the

941 A48-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

29
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.295


What is observable from wall data in turbulent channel flow?

103102101

y+
10010–1

0

0.2

0.4

0.6

0.8

1.0

1.2

k°+ y+ ,
  k

° ∗
+ y+

Figure 10. Profiles of the horizontally and time-averaged kinetic energy in the (black solid) linearized forward
and (red dashed) adjoint velocity fields. Increasing line thickness corresponds to Reynolds numbers Reτ =
{180, 590, 1000}. Each curve is normalized to have unit integral.

homogeneous x and z directions, which yields

2σ
◦̄
k = −◦ui

◦ujSij︸ ︷︷ ︸
P

− d
dy

(
1
2

◦ui
◦uiU2 + ◦u2

◦p − 2
Re

◦ui
◦si2

)
︸ ︷︷ ︸

T

− 2
Re

◦sij
◦sij︸ ︷︷ ︸

ε

, (3.7)

2σ
◦
k
∗ = −◦u∗

i
◦u∗

j Sij︸ ︷︷ ︸
P∗

− d
dy

(
−1

2
◦u∗

i
◦u∗

i U2 − ◦u∗
2

◦p∗ − 2
Re

◦u∗
i

◦s∗
i2

)
︸ ︷︷ ︸

T ∗

− 2
Re

◦s∗
ij

◦s∗
ij︸ ︷︷ ︸

ε∗

. (3.8)

The various terms in the kinetic energy equations (3.7) and (3.8) are reported in
figure 11. For the forward flow, the profiles are qualitatively similar to the recent results
by Nikitin (2018) at Reτ around 390. In contrast to the forward terms, the adjoint profiles
are confined to a narrower wall-normal extent y+ ≤ 60, have more compact support and
have a relatively more prominent peak in the buffer layer where the adjoint activity is most
intense. The cause of the difference between the forward and adjoint terms can perhaps be
understood in terms of the reversal in the turbulent motions in the adjoint evolution: sweeps
that are prominent near the wall in the forward dynamics become ejections in the adjoint,
and pronounced ejections above the buffer layer in the forward equations become sweeps
in the adjoint. Ultimately the very large concentrated production of the adjoint energy in
the buffer layer is responsible for the exponential amplification in reverse time. In terms
of the state-estimation problem, this corresponds to extreme gradients in the cost function
and an ill-conditioned Hessian with expanding assimilation horizon; the buffer layer thus
obscures the interpretability of wall observations. However, when these results are viewed
through the lens of the spectral analysis of the Hessian (§ 3.2), it becomes evident that
wall observations remain sensitive to low kx flow structures beyond the buffer layer, which
have been related to outer–inner interactions in wall turbulence. Taken all together, the
present statistical results and the Hessian analysis provide a comprehensive understanding
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Figure 11. Kinetic energy budget for (a) the linearized forward and (b) the adjoint equations. Results for

Reτ = {180, 590, 1000} and shown with increasing line thickness. Curves are normalized such that maxy 2σ
◦̄
k =

maxy 2σ
◦
k
∗ = 1.

of the interpretability of wall observations in the attempt to estimate the initial condition
of channel flow turbulence.

4. Conclusion

The nonlinear and chaotic natures of turbulence render its reconstruction from limited
observations a challenging problem. The present work focused on the canonical
configuration of turbulent channel flow. While all the vorticity in this flow has its origin at
the wall, estimating the turbulent state from observations of the wall shear stresses of wall
pressure is notoriously difficult.

The present effort focuses on the interpretability of the wall measurements, from the
perspective of adjoint-variational data assimilation (i.e. 4DVar). In this approach, the
estimation problem is formulated as a constrained optimization where we attempt to
identify the initial condition whose nonlinear Navier–Stokes evolution reproduces all the
available observations. Discrepancies between the model predictions and the available
observations define the cost function to minimize, and which also features in the forcing
term to the adjoint equations that are marched back in time. The outcome of one
forward-adjoint loop is the gradient of the cost function that is used in the gradient-based
minimization procedure. The accuracy of the state estimation depends on a number of
factors, including the sensitivity of the observations to the flow state which is related to
the geometry of the cost function, most importantly its gradient and Hessian. In order
to ensure accuracy of our computations, a discrete adjoint is adopted which satisfies the
forward-adjoint duality relation to machine precision.

In order to frame the discussion, we provided a summary of recent results by Wang
& Zaki (2021) for estimating the initial state of turbulent channel flow from wall
observations, at friction Reynolds numbers Reτ = {100, 180, 392, 590}. The assimilated
states were obtained starting with an initial guess from an LSE and performing 100
iterations of the 4DVar algorithm, for each of the reported Reynolds numbers. The
predicted flow state displayed important characteristics. (i) The near-wall turbulence was
accurately reconstructed with a nearly perfect correlation with the true flow that generated
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the observations. This region therefore diminishes in physical height at higher Reynolds
numbers. (ii) The correlation coefficient between the estimated and true states, however,
decays precipitously across the buffer layer and into the channel core. Despite the reduction
in accuracy, the outer large-scale energetic motions which modulate the near-wall flow are
captured by the estimation.

The above characteristics were explained in terms of the domain of dependence
of observations, and by examining geometric properties of the cost function for state
estimation from instantaneous wall measurements. Specifically, we considered a scenario
where the estimate of the initial flow field is infinitesimally close to the true solution
and an instantaneous observation at t = tm is used to improve the estimate. At optimality
the gradient of the cost function vanishes and its Hessian determines the behaviour
of the optimization procedure. In order to evaluate the Hessian, an efficient approach
is introduced that exploits a forward-adjoint duality relation. The relevant adjoint field
in this relation is initiated from an observation kernel at the wall; its spatiotemporal
evolution in reverse time is the domain of dependence of the kernel, which has a universal
behaviour across Reynolds numbers when scaled in viscous units. The interpretation of
this adjoint field as the domain of dependence of observations can be exploited in the
design of measurements, for example to optimally distribute the measurements and ensure
sensitivity to the entire state. The Hessian matrix is the cross-correlation of this adjoint
field at the final reverse time, τ = tm. It was evaluated efficiently in Fourier space for
each horizontal wavenumber pair (kx, kz), and was integrated over observation locations
(xm, zm) in the plane of the wall. The eigenmodes of the Hessian were then analysed in
order to demonstrate the capacity to use wall observations for 4DVar estimation of the
state of channel-flow turbulence.

When observing the streamwise wall shear-stress at time t+m = 4 (figure 6), the largest
Hessian eigenvalue, or curvature, is for mode IA with (k+

x , k+
z ) ≈ (0.12, 0) and the

associated eigenvector is a spanwise roll. The measurements are therefore most sensitive
to a disturbance in the initial state that is aligned with mode IA and, from the perspective
of state estimation, this component of the initial condition is reliably targeted by the
4DVar procedure. For longer measurement times, similar spanwise rolls with smaller k+

x
have the greatest influence on the measurement. For most wavenumber pairs, the leading
eigenvectors of the Hessian are concentrated near the wall (y+ ≤ 40), and hence the
turbulence is accurately estimated in this region. One important exception is mode II
at (k+

x , k+
z ) ≈ (0, 0.02), which by t+m = 20 becomes finite outside the buffer layer and

represents the sensitivity of wall measurements to outer large-scale structures.
The role of the observation time tm is noteworthy: at small values of t+m ≈ 4, the

Hessian eigenspectrum captures the sensitivity of wall observations to perturbations
to the flow state that may not have sufficient time to amplify or decay due to the
dynamics of the forward operator. In contrast, at larger values of t+m ≈ 20, the Hessian
eigenspectrum shows higher sensitivity to lower wavenumbers because the associated
perturbations to the flow can amplify in forward time and have a sizable impact on
wall signature, while high-wavenumbers are dissipated by viscosity. This perspective
was reinforced by projecting the Hessian onto the first and second modes from POD
of channel flow turbulence (§ 3.2). After projection, the Hessian yields the curvature of
the cost function along the directions of these POD structures in channel flow, or the
capacity of state estimation to predict them. Another equally valid interpretation of the
projected Hessian is the sensitivity of wall observations to the energetic POD structures.
The peak sensitivity of the original Hessian at (mode IA) is not retained in the projection
because it was not associated with energetic flow structures but rather with near-wall
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small-scale turbulence. At larger times t+m = 20, the contours of the eigenvalues of the
original and projected Hessians are more aligned, both showing strong sensitivity of wall
observations to streamwise-elongated and energetic flow structures.

The increase in observation time is accompanied by another important effect: the
largest eigenvalues of the Hessian increase exponentially and their separation from
smaller ones becomes larger (cf. figure 6), which renders the Hessian progressively more
ill-conditioned. If observations are accumulated during a time horizon, late observations
dominate the state estimation problem and the solution of the inverse problem becomes
prone to errors. Specifically, infinitesimal uncertainties in later observations can lead to
large errors in the estimation of the initial state. The condition number of the Hessian also
provides an objective approach to optimize the design of measurements, for example by
optimally placing sensors or weighting their relative contributions to the cost function in
order to minimize the condition number.

The starting estimate for practical data assimilation often deviates appreciably from
the true flow state, and hence the gradient of the cost function as well as its Hessian
are important. Both quantities are related to the adjoint field, and are affected by adjoint
chaos at long reverse times which is markedly different from the more familiar forward
counterpart. We contrasted the evolution of small-amplitude perturbations to the forward
flow field and the adjoint model, using the linearized Navier–Stokes equations and their
adjoint, respectively. The long-term statistical behaviour of the adjoint chaos in turbulent
channel flow was reported for the first time. The results provided a glimpse of the cause for
the exponential growth of the adjoint in backward time. The energy of the adjoint variable
peaks in the buffer layer, and its distribution has narrower support in the wall-normal
direction than that of the forward variable. By rescaling the energy equation by twice
the Lyapunov amplification rate of perturbations, we are able to compute the different
contributions to its budget. Production is concentrated in the buffer layer and decays
quickly away from its peak, relative to the profile for the forward problem. This high
adjoint turbulent kinetic energy of its production is the root of chaos in the buffer layer.
These adjoint characteristics are indicative of the extreme gradients of the cost function
and its ill-conditioned Hessian matrix, which both obscure the reconstruction of the initial
state from wall data. These results support the practice of limiting the assimilation time
horizon based on the Lyapunov time scale (Li et al. 2020; Wang & Zaki 2021), in order
to mitigate the impact of adjoint (and also forward) chaos, and adopting a sliding window
(Chandramouli, Mémin & Heitz 2020) or a cycling scheme (Fisher & Auvinen 2011) for
longer horizons. In addition, while we can precisely reconstruct all the turbulence scales in
the near-wall region from boundary observations, the buffer layer acts as a low-pass filter
beyond which we were able to accurately estimate only the low-frequency, large-scale,
energetic outer motions.
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Figure 12. Measures of persistence of the Hessian eigenfunctions away from the wall, ȳc and ȳ0.1. These
quantities are evaluated for the leading eigenvector at every horizontal wavenumber pair, and then averaged
over all (k+

x , k+
z ). The Reynolds number is Reτ = 180. Results correspond to observing (——) ∂U/∂y|wall,

(– – – -) ∂W/∂y|wall and (— - —) P|wall. (a) Observation at one time instance tm. (b) Observations at every time
instance within the assimilation window 0 < t′ ≤ tm.

Appendix A. Temporal behaviour of the Hessian eigenmodes

The eigenmodes of the Hessian represent the sensitivity of the observations to
perturbations to the flow state. The results in the main text showed that, for the
majority of modes, the leading eigenfunctions are concentrated in the near-wall region,
expand vertically with observation time and decay above the buffer layer (see figure 6).
One important exception was noted for the modes with horizontal wavenumber vector
(k+

x , k+
z ) ≈ (0, 0.02) at t+m ≥ 20 that provide a connection between wall observations and

the outer large-scale structures. In order to characterize the general wall-normal extent of
penetration of the Hessian eigenmodes in the channel, we adopt two measures, yc and y0.1.
The first is the moment

yc ≡

∫ 1

0
y|û| dy∫ 1

0
|û| dy

, (A1)

where |û| ≡
√

|û|2 + |ŵ|2 + |ŵ|2, and the second is the height at which the eigenvector
decays to 10 % of its maximum value,

y0.1 = max
{
0 < y < 1 | (|û( y)|/|û|max

) = 0.1
}
. (A2)

For the Reynolds number of Reτ = 180, we considered the Hessian eigenspectrum due
to an instantaneous observation at time tm, and averaged yc and y0.1 over all horizontal
wavenumber vectors, yc ≡ 〈yc〉kxkz and y0.1 ≡ 〈y0.1〉kxkz . The results are shown as a
function of t+m in figure 12. While both measures initially increase with observation time,
they level off beyond a few time units. The value of yc never exceeds the buffer layer,
while the less conservative estimate remains in the range y+

0.1 < 50. The elongated modes
which penetrate beyond the buffer layer are therefore not reflected in the average, but are
important to recall since they enable the reconstruction of the outer large-scale structures.
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Figure 13. The supremum eigenvalue of the Hessian matrices associated with instantaneous observations at
all horizontal wavenumber pairs (k+

x , k+
z ) as a function of the observation time t+m for Reτ = 180. Different

wall-observation modalities are shown: ∂U/∂y|wall (——); ∂W/∂y|wall (– – – -); and P|wall (— - —). Lyapunov
amplification at σ+ = 0.0215 is marked for comparison.

Since in practice observations are often available not just at one time instance but
rather over an assimilation time window, the cost function is integrated in time, i.e. all
the available observations are used to estimate of the initial condition. The relevant cost
function is therefore the time integrated form. For example, when we observe ∂U/∂y|wall,
the time-integrated cost function is

Ju = 1
2S

∫ tm

0

∫
S

(
∂u
∂y

∣∣∣∣
(xm,t′)

)2

dxm dzm dt′ (A3)

and the associated Hessian involves the time integral

Hu = ∂2Ju

∂u0∂u0
= 1

S

∫ tm

0

∫
S

u∗ (•; xm, t′
)

u∗ (•; xm, t′
)

dxm dzm dt′, (A4)

where • refers to (x, t = 0). We can similarly evaluate Hw and Hp. In other words,
the Hessian associated with estimating the initial state from the full time-history of
observations is the time integral of the Hessian associated with isolated, or instantaneous,
observations. The integral is dominated by late observations because the adjoint field
amplifies exponentially with tm. As such, we can anticipate that the results from
figure 12(a) remain qualitatively unchanged when observations are accumulated over the
assimilation window. This expectation is verified in figure 12(b) where yc and y0.1 are
plotted, evaluated from the eigenfunction of the time-integrated Hessian. These results
supplement the discussion of figure 6 in the main text, and provide statistical confirmation
of the challenge of estimating channel-flow turbulence from wall observations.

The discussion at the end of § 3.2 referred to the time-dependence of the supremum
eigenvalue of the Hessian associated with instantaneous observations. This dependence
is reported in figure 13 as a function of t+m . After an initial transient, the eigenvalues
increase exponentially due to the chaotic nature of the adjoint system. This trend, and
the larger separation between the supremum and infimum (figure 6) with observation
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time, demonstrate that the Hessian becomes increasingly ill-conditioned. As a result, the
state-estimation problem becomes progressively more challenging.
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