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The method of equivariant moving frames is employed to construct and completely classify the dif-
ferential invariants for the action of the projective group on functions defined on the two-dimensional
projective plane. While there are four independent differential invariants of order ≤ 3, it is proved
that the algebra of differential invariants is generated by just two of them through invariant differ-
entiation. The projective differential invariants are, in particular, of importance in image processing
applications.
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The differential invariants pertaining to several basic planar transformation groups of geo-
metric significance – Euclidean, similarity, equi-affine, affine, Möbius and projective – have
played important roles in image processing over many years, see for instance [11] for a sur-
vey for developments through the early 1990s. Except for the Möbius group [10, 22], all the
groups noted above are subgroups of the projective group, which governs the transformations
of camera projections of three-dimensional objects and forms the focus of this note. Research
has tended to concentrate on the induced action on planar curves, representing the outlines of
(the projections of) objects [3, 5, 6]. One can, alternatively, study the action on the entire image.
For us, this means a greyscale image, represented (in the continuum limit) by a smooth function
u = f (x, y) defined on some planar region � ⊂R

2, often, but not necessarily, a rectangle. The
group acts trivially on the dependent variable u, whose value (usually between 0 = black and
1 = white) corresponds to the grey level of the pixel at position (x, y) ∈ �. Extensions of this
analysis to colour images, where the dependent variable u is vector valued, will not be treated
here, although our moving frame methods can be readily extended to this more general context.

Let RP2 be the real projective plane consisting of all lines passing through the origin in R
3.

On the dense open subset containing those lines that do not lie in the x y plane, we can employ
the inhomogeneous coordinates (x, y) to represent the line in the direction (x, y, 1). The stan-
dard action of the general linear group GL(3, R) on R

3 induces an action of the 8 dimensional
projective linear group PSL(3, R) = GL(3, R)/{λI|0 �= λ ∈R} on the lines in RP

2. We are thus
interested in the induced intransitive action
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X = αx + βy + γ

ρx + σy + τ
, Y = λx + μy + ν

ρx + σy + τ
, U = u, (1)

of PSL(3, R) on the trivial bundle M =RP
2 ×R. To avoid the overall scaling ambiguity, we

impose the unimodularity condition

� = det

⎛
⎜⎜⎝

α β γ

λ μ ν

ρ σ τ

⎞
⎟⎟⎠ = 1 (2)

on the group parameters appearing in the coefficient matrix. This action coincides with the special
case n = 0 for the one-parameter family of actions of the general linear group GL(3) that was
studied in [20]. However, this particular case was not relevant to the main focus of that work –
ternary forms in classical invariant theory – and so was not analysed.

The goal is to conduct a similar moving frame-based analysis, cf. [4, 9, 18, 19], of
the differential invariants of the induced action of (1) on two-dimensional surfaces S ⊂ M
representing the graphs of functions u = f (x, y); in other words, we have two independent vari-
ables and one dependent variable. We prolong the group action to the surface jet bundles
Jn = Jn(M , 2), n = 0, 1, 2, . . ., [12], which are coordinatised by the independent variables x, y,
along with the dependent variable u = u00 and its derivatives:

ujk = D j
xDk

yu for 0 ≤ j + k ≤ n, (3)

in which Dx, Dy denote the total derivative operators with respect to x, y, respectively. A smooth
function of the jet coordinates, defined an open subset of Jn, is known as a differential function.
A projective differential invariant is a differential function that is unchanged by the prolonged
projective group action. Note: When writing ‘differential invariant’ without qualification, we
always mean an absolute differential invariant. Often these are ratios of two relative differential
invariants having the same weight, see [13]. We begin by noting the obvious differential invariant
of order 0

I0 = u, (4)

resulting from the intransitivity of the group action.
In local coordinates, the prolonged action is explicitly given by

ujk �−→ Ujk = Dj
X Dk

Y U , (5)

where

DX = ρx + σy + τ

�

( [
(μρ − λσ )x + μτ − νσ

]
Dx + [

(μρ − λσ )y − λτ + νρ
]
Dy

)
,

DY = ρx + σy + τ

�

( [
(ασ − βρ)x − βτ + γ σ

]
Dx + [

(ασ − βρ)y + ατ − γρ
]
Dy

)
, (6)
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are the operators of implicit differentiation. They are dual to the transformed one-forms

dX =
[
(ασ − βρ)y + ατ − γρ

]
dx + [

(βρ − ασ )x + βτ − γ σ
]
dy

(ρx + σy + τ )2
,

dY =
[
(λσ − μρ)y + λτ − νρ

]
dx + [

(μρ − λσ )x + μτ − νσ
]
dy

(ρx + σy + τ )2
, (7)

which are obtained by differentiating the expressions for X , Y in (1). Duality means that the
horizontal differential [13] of a differential function F(x, u(u)) is given by

dH F = (DxF)dx + (DyF)dy = (DX F)dX + (DY F)dY .

Let us construct the moving frame based on the cross-section

K = {x = y = 0, ux = uyy = 1, uy = uxx = uxy = uyyy = 0} ⊂ J3. (8)

We will not write out the explicit formulas for the transformed jet coordinates (5) during our
implementation of the normalisation procedure but just display the results of the MATHEMATICA

calculation. At each stage, the successive partial normalisations of the group parameters are sub-
stituted into the remaining formulas before effecting the next round of normalisations. However,
it is important that the prolonged transformation formulae be computed in advance, before any
normalisation is implemented; an alternative strategy would be to employ the recursive normali-
sation algorithm developed in [16], which has the advantage of determining the formulas for the
projective differential invariants in terms of differential invariants of its subgroups; this remains
to be written down in detail.

First, setting X = Y = 0 produces

γ = −αx − βy, ν = −λx − μy. (9)

Next, setting UX = 1, UY = 0, implies

α = (ρx + σy + τ ) ux, β = (ρx + σy + τ ) uy. (10)

The second-order normalisations are done in two steps. First, setting UXX = UXY = 0 yields

σ = − A

C
ρ, τ = − B

C
ρ, (11)

where

A = μ2(uyuxx − 2uxuxy) + 2λμuxuyy − λ2uyuyy,

B = μ2(xuxuxx + 2yuxuxy − yuyuxx + 2u2
x) − 2λμ(xuyuxx + yuxuyy + 2uxuy)

+ λ2(−xuxuyy + 2xuyuxy + yuyuyy + 2u2
y),

C = μ2uxuxx − 2λμuyuxx + λ2(2uyuxy − uxuyy). (12)

We then substitute these values and solve UYY = 1 for

ρ = − μ2uxuxx − 2λμuyuxx + λ2(2uyuxy − uxuyy)

2(μux − λuy)
√

J
, (13)
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where

J = u2
yuxx − 2uxuyuxy + u2

xuyy. (14)

Substituting (13) into (11) produces the slightly simpler formulas

σ = E

2(μux − λuy)
√

J
, τ = F

2(μux − λuy)
√

J
. (15)

where

E = μ2(uyuxx − 2uxuxy) + 2λμuxuyy − λ2uyuyy,

F = μ2(xuxuxx + 2yuxuxy − yuyuxx + 2u2
x) − 2λμ(xuyuxx + yuxuyy + 2uxuy)

+ λ2(−xuxuyy + 2xuyuxy + yuyuyy + 2u2
y). (16)

We note that the second-order differential polynomial J given in (14) is a relative differential
invariant, transforming under the projective action (1) according to

J �−→ W 2 J , where W = (ρx + σy + τ )3

�
. (17)

The multiplier function W 2 is also known as the weight of J . We refer the reader to [8] and [21]
for applications of J in image analysis. We are assuming J > 0. If J < 0, we can replace J by
−J in any square roots that appear or, alternatively, use its absolute value throughout. Also, as
in most moving frame calculations in the literature, we ignore any discrete ambiguities caused
by the change of sign in a square root, which are due to the local freeness of the prolonged group
action, cf. [4]. (See [15] for a complete discussion of sign ambiguities in the case of Euclidean
curves.)

The points where J vanishes define the singular subvariety V = {J = 0}, where the orbits of
the prolonged the action of PSL(2) have less than maximal dimension, and are not covered by
the moving frame constructed here. Isolated points where J vanishes can be handled by using a
higher order moving frame. On the other hand, the functions for which J ≡ 0 are totally singular
[14] and therefore do not admit a moving frame of any order. They can be explicitly characterised
as follows.

Theorem 1. Let u(x, y) be a C2 function with domain D ⊂R
2 that has non-zero gradient every-

where in its domain: ∇u = (ux, uy) �= 0. Then u is a solution to the quasilinear partial differential
equation

J = u2
yuxx − 2uxuyuxy + u2

xuyy = 0 (18)

if and only if all its level curves u(x, y) = c, for c ∈R, are straight line segments or disjoint
unions thereof.

Note that if ∇u ≡ 0 on a connected open set, then u is constant and has no level curves there.
Otherwise, isolated points and curves on which ∇u = 0 will correspond to intersections, limit
points and envelopes [2] of its level curves.

Remark: The second-order parabolic quasilinear partial differential equation (18) was anal-
ysed in [1], where it was shown to have vanishing Goursat invariant and hence infinitely
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many non-trivial (generalised) conservation laws and, in particular, infinitely many inequivalent
Lagrangians.

Proof Let (x0, y0) ∈ D. We assume, without loss of generality, that uy(x0, y0) �= 0, and hence,
by continuity, also in a neighbourhood of (x0, y0). Otherwise, we must have ux(x0, y0) �= 0, and
we can apply the following arguments with the roles of x and y reversed. The implicit function
theorem implies that the level curve passing through (x0, y0) can be locally parametrised by
y = y(x). Then, differentiating the level curve equation

u(x, y(x)) = c, where c ∈R,

twice with respect to x yields

ux + uyyx = 0, uxx + 2uxyyx + uyyy2
x + uyyxx = 0.

Combining the second and third equations produces

yxx = −u−3
y J .

Thus, if u satisfies (18), then its level curve satisfies yxx = 0, and hence must be a straight
line.

An alternative proof proceeds by noting that one can write J as multiple of a Jacobian
determinant:

J = u2
x

∂(u, uy/ux)

∂(x, y)
= u3

xDy(uy/ux) − u2
xuyDx(uy/ux). (19)

Thus, if (18) holds, then the functions u and uy/ux are functionally dependent, so, locally, uy/ux =
h(u) for some scalar function h(u), or, equivalently,

uy − h(u)ux = 0. (20)

Using the method of characteristics [17], one deduces that any solution to such a quasilinear
first-order partial differential equation is constant on its characteristic curves, which, in this case,
are straight lines. �

In particular, if the solution to (18) is defined and has non-vanishing gradient for all (x, y) ∈R
2,

then its level curves corresponding to different values of c cannot cross,1 and hence must all be
parallel straight lines. This implies:

Corollary 2. The only globally defined solutions to (18) are functions of the form u = g(ax + by)
for a, b ∈R and g(t) an arbitrary scalar function.

Of course, there are many locally defined solutions that are not of this special form.

1The crossing of the level curves underlies the formation of shocks in the solutions to the partial
differential equation (20).
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Returning to our moving frame calculation, we now recall the unimodularity constraint (2)
Under the normalisations accumulated so far (9, 10, 13, 15), this becomes

� = (μux − λuy)

J
= 1,

which serves to constrain the values of λ, μ when we perform the final normalisation UYYY = 0,
which yields

λ = uxK − 6u3
yu2

xx + 18uxu2
yuxxuxy − 6u2

xuy(uxxuyy + 2u2
xy) + 6u3

xuxyuyy

6J5/3
,

μ = uyK − 6u3
yuxxuxy + 6uxu2

y(uxxuyy + 2u2
xy) − 18u2

xuyuxyuyy + 6u3
xu2

yy

6J5/3
, (21)

where

K = u3
yuxxx − 3uxu2

yuxxy + 3u2
xuyuxyy − u3

xuyyy. (22)

We remark that, despite its elegance and similarity to (14), the differential polynomial K in (22)
is not a relative invariant, meaning that, under the group action (1), it does not transform to a
multiple of itself. Third-order relative invariants will appear in the expressions for the (absolute)
differential invariants below.

This completes our derivation of the moving frame based on the cross-section (8). The right
equivariant moving frame map ρ : J3 \ V → PSL(3) is obtained by combining the preceding
normalisation formulas (9, 10, 13, 15, 21), producing fairly long formulas for all the group
parameters in terms of the third-order jet coordinates, which we will not write out in detail.

There are three functionally independent third-order (absolute) differential invariants, corre-
sponding to the invariantisations of the remaining third-order jet coordinates:

I1 = ι(uxxx), I2 = ι(uxxy), I3 = ι(uxyy).

To obtain their explicit formulas, we merely substitute the moving frame normalisations
(9, 10, 13, 15, 21) into the formulas for the unnormalised transformed third-order jet coordinates
UXXX , UXXY , UXYY , respectively, to eliminate all the group parameters. The resulting expressions
are the third-order differential invariants. First,

Î1 = I1 − 1
2 I2

3 = L1

2 J2
, I2 = L2

54 J9/2
, I3 = L3

12 J3
. (23)

The fact that Î1, I2, I3 are absolute differential invariants implies that their numerators L1, L2, L3

are relative differential invariants of weights W 4, W 9, W 6, respectively, where W 2 denotes the
weight of J , cf. (17). The explicit formulas are as follows:

L1 = u2
x(uxxyuyyy − u2

xyy) + uxuy(uxxyuxyy − uxxxuyyy) + u2
y(uxxxuxyy − u2

xxy)

+ 2ux

(
u2

yyuxxx − 3uxyuyyuxxy + (uxxuyy + 2u2
xy)uxyy − uxxuxyuyyy

)
+ 2uy

(−uxyuyyuxxx + (uxxuyy + 2u2
xy)uxxy − 3uxxuxyuxyy + u2

xxuyyy

) − 4H2, (24)

where

H = uxxuyy − u2
xy (25)
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is the Hessian of the function u, while

L2 = −K3 + 18J2M1 + 18JM2, L3 = K2 − 12J2H + 12JM3, (26)

where

M1 = [
u3

y(uxxuyy − 4u2
xy) + 6uxu2

yuxyuyy − 3u2
xuyu2

yy

]
uxxx

+ [
6u3

yuxxuxy − 9uxu2
yuxxuyy + 3u3

xu2
yy

]
uxxy

+ [−3u3
yu2

xx + 9u2
xuyuxxuyy − 6u3

xuxyuyy

]
uxyy

+ [
3uxu2

yu2
xx − 6u2

xuyuxxuxy − u3
x(uxxuyy − 4u2

xy)
]
uyyy,

M2 = u5
y(uyuxy − uxuyy)u2

xxx + u4
y(−u2

yuxx − 4uxuyuxy + 5u2
xuyy)uxxxuxxy

+ uxu3
y(u2

yuxx + uxuyuxy − 2u2
xuyy)(2uxxxuxyy + 3u2

xxy)

+ u2
xu2

y(−u2
yuxx + u2

xuyy)(uxxxuyyy + 9uxxyuxyy)

+ u3
xuy(2u2

yuxx − uxuyuxy − u2
xuyy)(3u2

xyy + 2uxxyuyyy)

+ u4
x(−5u2

yuxx + 4uxuyuxy + u2
xuyy)uxyyuyyy + u5

x(uyuxx − uxuxy)u2
yyy,

M3 = (−u3
yuxy + uxu2

yuyy)uxxx + (u3
yuxx + uxu2

yuxy − 2u2
xuyuyy)uxxy

+ (−2uxu2
yuxx + u2

xuyuxy + u3
xuyy)uxyy + (u2

xuyuxx − u3
xuxy)uyyy. (27)

Again, it is worth noting that, while J and L1, L2, L3 are relative differential invariants, their indi-
vidual summands are not, and neither are H , K, M1, M2, M3. The third-order relative differential
invariant L3 was found in [8]; the other two third-order relative differential invariants L1, L2

appear to be new.
There are five independent fourth-order differential invariants, given by invariantising the

corresponding jet coordinates:

I4 = ι(uxxxx), I5 = ι(uxxxy), I6 = ι(uxxyy), I7 = ι(uxyyy), I8 = ι(uyyyy). (28)

As we will see, these can all be generated by invariantly differentiating the third-order differen-
tial invariants, which implies that the latter along with the order 0 differential invariant I0 = u
form a generating set for the differential invariant algebra. To prove this, we use the symbolic
moving frame calculus [4, 18] to construct the recurrence formulae that relate the invariantly
differentiated and normalised differential invariants.

First, normalising the implicit differentiation operators (6) using the moving frame formulas
yields the explicit formulas for the two invariant differential operators:

D1 =
[

uyK + 6(−uyuxy + uxuyy) J
]

Dx + [−uxK + 6(uyuxx − uxuxy) J
]

Dy

6J2
, D2 = −uyDx + uxDy√

J
.

(29)
By definition, applying D1, D2 to any (absolute) differential invariant produces another dif-
ferential invariant. (However, applying D1 or D2 to a relative differential invariant does not
necessarily produce a relative differential invariant, see below.) According to the Lie–Tresse
theorem, [4, 7], we can generate all the higher order differential invariants by applying these
operators to a finite generating set of differential invariants. We note that the invariant differential
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operators do not commute; indeed, their commutator is given by

[D1, D2] =D1 D2 −D2 D1 = Y D2, where Y = − 1
6 I8 + I3 (30)

is the sole commutator invariant. The commutator (30) can also be straightforwardly deduced
using the general symbolic moving frame calculus.

We begin by invariantly differentiating the order 0 invariant I0 = u:

D1u = 1, D2u = 0, (31)

which are easy to check directly from the formula (29). The right-hand sides of (31) are trivially
invariant since they are constant, and consequently not of any help. We also note

D1J = K2 + 6JM3 + 12J2H

J2
, D2J = K√

J
, (32)

which are found by direct calculation. However, these are not relative differential invariants, and
we will not make use of these formulas here.

We compute the higher order recurrence formulas by implementing the standard sym-
bolic algorithm, [4, 20], in MATHEMATICA. The starting point is the following basis for the
infinitesimal generators of the projective action (1):

v1 = ∂x, v2 = ∂y, v3 = x∂x, v4 = y∂y,

v5 = y∂x, v6 = x∂y, v7 = x2∂x + xy∂y, v8 = xy∂x + y2∂y. (33)

These are prolonged to the jet spaces and then used to write out the associated recurrence for-
mulae. Leaving out the intermediate details, after solving for the Maurer–Cartan invariants, the
third-order recurrence formulas take a relatively simple form:

D1I1 = I4 + 1

2
I2I7 − 3I2

2 , D2I1 = I5 + 1

2
I2I8 − 9

2
I2I3,

D1I2 = I5 + 1

3
I3I7 − 5

2
I2I3, D2I2 = I6 + 1

3
I3I8 − I1 − 3I2

3 ,

D1I3 = I6 − I1 − I2
3 , D2I3 = I7 − 3I2. (34)

Thus, we can generate all the fourth-order differential invariants (28) except I8 by differentiating
the third-order differential invariants. Since I8 can be deduced from the commutator invariant
Y , we can use the commutator trick, as in [20], to also generate it. Moreover, since the moving
frame has order 3, a general theorem [4] implies that we can generate all differential invariants
by invariantly differentiating the normalised differential invariants of order ≤ 4. The only differ-
ential invariant we cannot generate in this fashion is the trivial order 0 invariant I0 = u. We have
thus proved that the four differential invariants I0, I1, I2, I3 of order ≤ 3 generate the projective
differential invariant algebra.

Further detailed analysis of the recurrence formulae can be used to reduce the number of
generators to two.

Theorem 3. The differential invariant algebra for the projective action (1) on surfaces S ⊂
RP

2 ×R is generated by the order 0 invariant I0 = u along with the third-order differential
invariant I3, as given in (23, 26, 27).

https://doi.org/10.1017/S0956792522000298 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000298


944 P. J. Olver

Remark: This almost proves that I0, I3 form a minimal generating set. Indeed, by (31), we clearly
cannot generate I3 from I0. On the other hand, invariantly differentiating I3 does not produce
a differential invariant that explicitly depends on u, and hence we also clearly cannot generate
I0 from I3. However, there is the (remote) possibility that starting with some cleverly chosen
differential invariant that depends on both u and the higher order invariants, one might be able
to generate both I0 and I3 by combining its invariant derivatives. This seems extremely unlikely,
but I am as yet unable to completely rule this out. On the other hand, if this were the case, one
could start with the commutator trick to generate Y, as given in (30), in terms of the purported
generator, and then proceed from there. But I find it hard to believe this strategy would be
successful. Unfortunately, when dealing with more than one independent variable, there is no
known criterion for proving that a generating set of differential invariants is minimal – unless it
happens to consist of just one differential invariant!

Proof Starting with I3, we first apply the commutator trick referenced above to I3 in order to
generate the commutator invariant Y = − 1

6 I8 + I3, and hence I8, as a rational function of I3 and
its invariant derivatives. On the other hand, using the last two recurrence formulas (34) for the
derivatives of I3, we can also generate the third-order differential invariants I6 − I1 and I7 − 3I2.

We now need the fourth-order recurrence formulas:

D1I4 = I9 + 2
3 I5I7 − 4I2I5 − 6I2

1 ,

D2I4 = I10 + 2
3 I5I8 − 6I3I5 − 6I1I2,

D1I5 = I10 + 1
2 I6I7 − 1

2 I3I5 − 3I2I6 − 1
2 I1I7 − 9

2 I1I2,

D2I5 = I11 − I4 − 9
2 I3I6 − 1

2 I1I8 + 1
2 I6I8 + 3

2 I1I3 − 9
2 I2

2 ,

D1I6 = I11 − I3I6 + 1
3 I2

7 − 3I2I7 − 3I1I3,

D2I6 = I12 − 2I5 − 3I3I7 − I2I8 + 1
3 I7I8,

D1I7 = I12 − 3I3I7 − I2I8 + 1
6 I7I8,

D2I7 = I13 − 3I6 − 3I3I8 + 1
6 I2

8 + 9
2 I2

3 ,

D1I8 = I13 − 2I3I8,

D2I8 = I14 − 4I7, (35)

where

I9 = ι(uxxxxx), I10 = ι(uxxxxy), I11 = ι(uxxxyy),

I12 = ι(uxxyyy), I13 = ι(uxyyyy), I14 = ι(uyyyyy), (36)

are the functionally independent fifth-order differential invariants. This allows us to compute

D2(I7 − 3I2) −D1I8 = 3I1 − 6I6 + (
1
6 I2

8 − 2I3I8 + 27
2 I2

3

)
.

We have already shown how to generate the terms on the left-hand side and the terms in the
parentheses by suitably combining invariant derivatives of I3, and hence the same holds for
I1 − 2I6. But we also know how to generate I1 − I6, and hence we can generate both I1 and I6
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individually. Finally, we use the recurrence formulae (34, 35) to compute

D1I6 −D2
2I1 −D1I1 − 1

3

(D2I3
)2

= − 1
2 I2 D2

(
I8 − 6I3

) + I1I8 + 8I3I6 − 1
6 I3I2

8 − I6I8 + 3I2
3 I8 − 27

2 I3
3 − 9I1I3. (37)

The right-hand side depends linearly on I2. Moreover, we already know how to express the
left-hand side and all terms other than I2 on the right-hand side in terms of I3 and its invariant
derivatives. Thus, assuming

D2(I8 − 6I3) �= 0, (38)

then we can solve (37) to express I2 as a rational function of I3 and its invariant derivatives. Since
I8 has order 4, while I3 has order 3, and the invariant differential operator D2 is explicitly given
in (29), it is easily checked that condition (38) holds for generic surfaces u = f (x, y). It would be
of interest to classify those surfaces for which the non-degeneracy condition (38) fails.

We have thus generated both I1 and I2 from I3, thereby completing the proof of Theorem 1. The
explicit formulas expressing them as rational combinations of the invariant derivatives of I3 can
be constructed by implementing the above manipulations. However, they are quite complicated
and not especially enlightening, and thus will not be displayed. �

Remark: The commutator trick used at the outset also requires that the surface be suitably
generic. Applying the argument in [19], genericity fails when the surface is degenerate in the
sense that there exist scalar functions F1(t), F2(t), such that, when evaluated on the surface, the
differential invariant I3 satisfies the equations

D1I3 = F1(I3), D2I3 = F2(I3). (39)

It would also be of interest to classify such projectively degenerate surfaces.
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