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Abstract

Gross and Siebert developed a program for constructing in arbitrary dimension a mirror
family to a log Calabi–Yau pair (X, D), consisting of a smooth projective variety X with a
normal-crossing anti-canonical divisor D in X. In this paper, we provide an algorithm to
practically compute explicit equations of the mirror family in the case when X is obtained
as a blow-up of a toric variety along hypersurfaces in its toric boundary, and D is the strict
transform of the toric boundary. The main ingredient is the heart of the canonical wall struc-
ture associated to such pairs (X, D), which is constructed purely combinatorially, following
our previous work with Mark Gross. In the case when we blow up a single hypersurface
we show that our results agree with previous results computed symplectically by Aroux–
Abouzaid–Katzarkov. In the situation when the locus of blow-up is formed by more than a
single hypersurface, due to infinitely many walls interacting, writing the equations becomes
significantly more challenging. We provide the first examples of explicit equations for mirror
families in such situations.

2020 Mathematics Subject Classification: 14J33 (Primary); 14N35 (Secondary)

1. Introduction
1·1. Overview

Gross and Siebert developed a program for constructing mirror families to Calabi–Yau
varieties algebro-geometrically [16]. More recently, this construction has been extended to
the set up of log Calabi–Yau pairs (X, D), given by a smooth projective variety X along with
a reduced normal–crossings anticanonical divisor D. The construction of the mirror family
to (X, D) – or rather to the complement X \ D – uses a canonical wall structure on an affine
manifold with singularities arising as the tropicalisation of (X, D) [16]. Roughly put, such
a structure is a combinatorial gadget incorporating tropical analogues of all rational stable
log maps to (X, D), with a specified marked point mapping to D. Such maps, referred to
as A

1-curves throughout this paper, give rise to well defined invariants of (X, D), and fit
into the more general framework of punctured log Gromov–Witten invariants defined by
Abramovich–Chen–Gross–Siebert [2, 3].

For a toric log Calabi–Yau pair (X� , D�), given by a smooth toric variety X� associated
to a complete fan � in R

n, along with the toric boundary divisor D� , the construction of the
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mirror family is pretty straightforward as there are no A
1-curves in (X� , D�) – any curve

in a toric variety touching the boundary at one point would necessarily touch also other
boundary components. Thus, toric log Calabi–Yau pairs (X� , D�) form form an immediate
class of examples where we know how to write explicit equations for the mirror family.
Beyond this, so far there have been very few examples of explicit equations of mirrors.
Particularly, in dimension two explicit equations for mirror families to few log Calabi–Yau
surfaces surfaces could be computed using computer algebra [5], and in dimension three
only in one case, a three dimensional analogue of the del Pezzo surface of degree 7, the
mirror is understood [10].

A particular challenge to compute equations of mirror families to log Calabi–Yau pairs
(X, D) in bigger generality arises due to the fact computing counts of A

1-curves which
appear in the construction of the canonical wall structure is technically difficult. In our joint
with Mark Gross [4], generalising previous results of Gross–Pandharipande–Siebert [14]
in dimension two to higher dimensions, we show that for particular log Calabi–Yau pairs
(X, D), there is a purely algebraic algorithm to capture the data of A1-curves appearing in
the construction of the canonical wall structure. Such a log Calabi–Yau pair (X, D), which
we study in [4], is given by a blow-up

X −→ X� (1·1)

of a toric log Calabi–Yau pair (X� , D�) along hypersurfaces of the toric boundary D� ,
and where D is the strict transform of D� , The algebraic algorithm giving the counts of
A

1-curves of such a pair uses a degeneration of X into the union of the toric variety X�
and some simpler components obtained as blow-ups of P

1 bundles over the toric bound-
ary. Working with such a degeneration enables us to reduce the complicated enumerative
geometry of (X, D) to a toric situation, which amounts to pulling singularities out from the
canonical wall structure and working with a simpler wall structure in R

n. In this paper, we
describe a wall structure associated to a log Calabi–Yau pair (X, D), obtained from this sim-
pler wall structure in R

n, by eliminating from it all classes of curves which are not in X. We
then show that the resulting wall structure, which we call the heart of the canonical wall
structure associated to (X, D), produces the correct mirror family as in [16].

The advantage of working with the heart of the canonical wall structure is that it is con-
structed purely combinatorially, and thus provides a combinatorial recipe to write explicitly
equations for mirror families. As a particular application, we write explicit equations of mir-
rors to three dimensional log Calabi–Yau pairs obtained by non-toric blow-ups of P3 along
unions of hypersurfaces contained in the toric boundary. This provides the first non-trivial
examples of mirror families to log Calabi–Yau pairs in dimension bigger than two. In the
situation where one considers the blow up of a toric variety along only a single hypersurface
the mirror has been constructed earlier in the work of Aroux–Abouzaid–Katzarkov [1] using
symplectic geometric tools. We prove in Section 6·3 that our mirror construction agrees with
the one of [1], restricted to this situation.

1·2. Background

Associated to a log Calabi–Yau pair (X, D) is its tropicalisation, given by a polyhedral
complex B defined similarly as in the two dimensional case in [11, section 1·2]. This
polyhedral complex carries the structure of an integral affine manifold with singularities,
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with singular locus �⊂ B. To define the canonical wall structure, one first fixes a sub-
monoid Q ⊂ N1(X) containing all effective curve classes, where N1(X) denotes the abelian
group generated by projective irreducible curves in X modulo numerical equivalence [13,
definition 1·8]. The canonical wall structure associated to (X, D) is then given by pairs

D(X,D) := {(d, fd)}
of codimension one subsets d⊂ B called walls, along with attached functions fd, called wall-
crossing functions, that are elements of the completion of k[P+

x ] at the ideal generated by
Q \ {0}, where P+

x =�x × Q, x ∈ Intd is a general point and� is the local system of integral
vector fields on B \�. These functions fd are explicitly given by

fd = exp (kτNτ̃ tβz−u), (1·2)

where τ̃ = (τ , β) ranges over types of dim X − 2-dimensional families of tropicalisations

of A
1-curves in (X, D) of class β ∈ H2(X, Z). The contact order of the image of such an

A
1-curve is tropically recorded in the tangent vector u ∈�x, for a general point x ∈ d, and

kτ is a positive integer depending only on the tropical type τ as in [15, section 2·4] or [16,
(3·10)]. The term tβz−u denotes the monomial in k[�x × Q] associated to ( − u, β), and the

number Nτ̃ is an invariant of (X, D), defined via counts of all A1-curves of contact order u,
and type τ [2, 3].

A key result in our joint work with Mark Gross [4] shows that when (X, D) is a log Calabi–
Yau pair obtained as a blow-up of a toric log Calabi–Yau pair (X� , D�) with center a union of
general hypersurfaces of the toric boundary, the canonical wall structure can be constructed
combinatorially, without using the enumerative invariants given by counts of A

1-curves.
We do this by following [14], and considering a degeneration (X̃, D̃) of (X, D) obtained
from a blow-up of the degeneration to the normal cone of X� , with general fiber (X, D).
We then investigate the canonical wall structure associated to (X̃, D̃), which has support in
the tropicalisation B̃ of (X̃, D̃). This tropicalisation comes naturally with a projection map
p̃ : B̃ →R�0. Hence, we obtain a wall structure D1

(X̃,D̃)
supported on B̃1 := p̃−1(1), which is

an integral affine manifold with singularities away from the origin. Localising to the origin
0 ∈ B̃1 we obtain a wall structure

T0D
1
(X̃,D̃) := {(T0d, fd) | (d, fd) ∈D1

(X̃,D̃), 0 ∈ d} (1·3)

on T0B̃1, the tangent space to 0 ∈ B̃1. We then relate this wall structure via piecewise linear
isomorphisms both to the canonical wall structure associated to (X, D), and to a combinato-
rially constructed wall structure on (Rn,�). In this paper, following [4] we take as a starting
point the description of T0D

1
(X̃,D̃)

. By suitably modifying it to eliminate the classes of curves

in X̃ \ X which appear in the wall crossing functions, we construct the heart of the canonical
wall structure. We give a more detailed overview of the construction and its consequences
in what follows.

1·3. Outline of the paper and main results

One of the objectives of this paper is to provide readers who are not familiar with working
with computations using wall-structures many examples, starting from easy ones going to
technically involved ones. Therefore, we first review the construction of the coordinate ring
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R(X� ,D� ) of a mirror family to a toric log Calabi–Yau pair (X� , D�), by adopting the general
construction of [16] to this primitive case where there are no walls – or all walls carry triv-
ial wall crossing functions given by identity. We explain how the associated ring R(X� ,D� )

is generated by theta functions (see Section 2). We then review the general construction of
the theta functions generating the coordinate ring of the mirror to a log Calabi–Yau pair
(X, D) using broken lines in the canonical wall structure (see Section 3). These are piece-
wise linear analogues of holomorphic discs on (X, D), given by proper continuous maps
β : ( − ∞, 0] → B ending at β(0), which carry monomials and allow us to trace how these
monomials change each time the image of β crosses a wall while approaching β(0) (see
Section 3·5). In Section 4 we introduce the heart of the canonical wall structure, and prove
our main result showing that the theta functions generating the mirror family to (X, D) can
be defined using broken lines in the heart. As the main application of this construction, we
compute the equations of the mirror in several three dimensional examples given by blow-
ups of toric varieties along disjoint unions of hypersurfaces. In the final section we show that
our results agree with the mirrors constructed earlier symplectically, in the work of Aroux–
Abouzaid–Katzarkov [1], in the situation when the locus of blow-up is a single hypersurface.
In the remaining part we provide more details on the results we prove along the way.

First recall that to describe the canonical wall structure associated to a log Calabi–Yau
pair in (X, D), one a priori fixes a monoid Q ⊂ N1(X), containing all effective curve classes,
and the base of the corresponding mirror family is the formal completion of Spec k[Q] at
the maximal ideal Q \ {0}. However, it follows from the construction of the mirror family
[11, 16], that it actually lives over a smaller base where Q is replaced by the relevant monoid
Q(X, D) defined as the set of integral points of the relevant cone of curves,

C(X, D) ⊂ N1(X) ⊗R

generated by the union of A
1-curves in (X, D) and curves in the boundary D, see

Definition 3·5.
If X is of dimension two, we show that the relevant cone of curves is simply the Mori cone

of effective curves:

THEOREM 1·1 (= Theorem 3·9.) Let (X, D) be a generic log Calabi–Yau pair as in
Definition 3·7. Then, the relevant cone of curves C(X, D) in Definition 3·5 is isomorphic to
the Mori cone NE(X).

The generalisation of Theorem 3·9 to higher dimensions is wrong – see Remark 3·10 for a
counterexample.

Now assume we are given a log Calabi–Yau pair (X, D) obtained by a blow-up from a
toric log Calabi–Yau pair. Comparing the cones of relevant curves associated to (X, D) and
its degeneration (X̃, D̃) discussed above, we see that Q(X̃, D̃) is contained in the monoid
generated by the union of Q(X, D), the fiber classes ±Fi’s and classes of exceptional curves
±Ej

i’s. Moreover as there are no relations between the fiber classes F′
is and the classes in

Q(X, D), we have a well defined morphism of monoids Q(X̃, D̃) → Q(X, D) given by set-
ting ±Fi = 0. Hence, by setting all the classes ±Fi = 0 in the wall structure T0D

1
(X̃,D̃)

, we
obtain a consistent wall structure defined over the localisation of Q(X, D) at classes of excep-
tional curves (see Definition 4·1). We call this wall structure the heart of the canonical wall
structure associated to (X, D) and denote it by D♥

(X,D) – see Definition 4·3.
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The advantage of passing to the heart of the canonical wall structure is that it is supported
on R

n rather than B which carries affine singularities. Particularly, keeping track of broken
lines in D♥

(X,D) is more convenient. Our main result shows that the broken lines on the heart

of the canonical wall structure D♥
(X,D) define the correct theta functions generating the mirror

to (X, D):

THEOREM 1·2 (= Theorem 4·6). The ring of theta functions defined by broken lines in
D♥

(X,D) is isomorphic to the coordinate ring of the mirror to (X, D).

As a particular application using the heart of the canonical wall structure we compute
explicit equations for mirror families to a log Calabi–Yau pair (X, D) in dimension three,
obtained as the blow-up of P

3 along a disjoint union of hypersurfaces. In the case when
we consider the blow-up along more than one hypersurface, writing an explicit equation for
the mirror is significantly challenging, since the walls formed using the tropicalisations of
the hypersurfaces intersect and at each such intersection there are new walls formed. We
show that even in the simplest case, when the center of blow-up is a union of two disjoint
lines, we have infinitely many new walls. Nonetheless, we observe that the product of the
wall crossing functions on these walls converge and we obtain concrete equations for the
mirror – see Section 5.

In the final section, we prove that the equation for the Gross–Siebert mirror constructed
using the heart of the canonical wall structure, in the situation when one considers the blow-
up of a toric variety along a single hypersurface, agrees with previous results of Abouzaid–
Auroux–Katzarkov computed from the symplectic point of view [1, theorem 1·5]:

THEOREM 1·3 (= Theorem 6·3). Let X be the blow-up of a toric variety along a hyper-
surface H of its toric boundary and D be the strict transform of the toric boundary divisor.
Let E be the class of an exceptional fiber over H. Then, the restriction of the mirror
Y → Speck[Q(X, D)] to the locus C

∗ = SpecC[t±E] ⊂ Speck[Q(X, D)] is isomorphic to the
mirror constructed in [1].

We note that in some situations the pairs (X, D) obtained by a blow-up of P3 with center
a disjoint union of hypersurfaces of degrees d1 and d2 are Fano (for instance when d1 =
d2 = 1, or d1 = d2 = 2). In these cases, the sum of the theta functions we compute, which
generate the mirror family, agree with the Landau–Ginzburg superpotential as computed by
Coates–Corti–Galking–Kasprzyk [8] (see Remark 5·4). This verifies that the mirror families
we compute in these situations are the ones expected from the point of view of Landau–
Ginzburg mirror symmetry.

Conventions. For any variety X, we denote by N1(X) the abelian group generated by
projective irreducible curves in X modulo numerical equivalence. Moreover, we denote by
NE(X) ⊂ N1(X) ⊗Z R the Mori cone, which is the cone generated by effective curves. We
use the notation 〈ρ1, . . . , ρn〉 for a cone in R

n whose set of ray generators is {ρ1, . . . , ρn}.

2. Mirrors to log Calabi–Yau pairs: the toric case

In this section we review the construction of the mirror to log Calabi–Yau pairs in the
context of the Gross–Siebert program [13, 16], by restricting attention to toric log Calabi–
Yau pairs (X� , D�) given by an n-dimensional toric variety X� associated to a complete toric
fan � ⊂ MR, and the toric boundary divisor D� , that is, the anti-canonical divisor formed
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Figure 1. The possible Q-valued PL functions on the fan� of P2 with kinks L, and which vanish
along a maximal cone.

by the union of divisors that are invariant under the torus action. To construct the mirror to
such a pair we need the following data:

(i) the tropicalisation of (X� , D�): this is given by the pair (Rn,�), where� is naturally
viewed as a polyhedral subdecomposition of Rn;

(ii) the monoid Q of integral points of the Mori cone NE(X�), and a convex piecewise lin-
ear (PL) function ϕ : Rn → Qgp

R
, that is, a function whose restriction to each maximal

cone of � is a linear function. Such a function is uniquely determined, up to a linear
function, by specifying its kinks along codimension one cells of �. For any codimen-
sion one cell ρ of � the kink of ϕ which we denote by κρ , up to a choice of sign, is
given by the change of slopes of the restriction of ϕ to the maximal cells adjacent to
ρ – see [13, definition 1·6, proposition 1·9]. There is a canonical choice for the kinks
of ϕ, which we use in what follows, given along each codimension one cell ρ by the
corresponding curve class in X� . In general, by the assumption of convexity of ϕ we
ensure the kinks are elements of Q, rather than Qgp – see [13, definition 1·10]

Example 2·1. Let X� be the complex projective plane P
2. The Mori cone in this case is

given by Q =N= 〈[L]〉. The three rays in � of the toric fan correspond to lines in P
2, for

which we denote the associated curve class by [L]. Let ϕ be the PL function defined by

ϕ(x, y) =

⎧⎪⎨⎪⎩
0 on 〈(1, 0), (0, 1)〉
−y[L] on 〈(1, 0), ( − 1, −1)〉
−x[L] on 〈(0, 1), ( − 1, −1)〉

(2·1)

The PL function ϕ has kinks [L] along each of the rays of �. We note that specifying the
kinks along each ray, determines uniquely ϕ only up to a linear function, as we can always
add a multiple of a linear function and the kinks of the resulting PL function will still be the
same. However, note that in addition to specifying the kinks, if we ask the PL function to
vanish at a given maximal cell, then the choice is unique. We illustrate the three PL functions
with kinks L, and which vanish on a maximal cell in Figure 1.

In the remaining part of this section, by applying the general recipe developed in [16] to
toric varieties, we explain how to construct the mirror family to a toric log Calabi–Yau pair
(X� , D�) as an affine toric variety. In this situation the mirror arises as a family with total
space a toric variety, whose momentum map image is given by the polytope formed by the
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upper convex hull of the graph of ϕ. More precisely, we define the monoid P of integral
points lying above the graph of ϕ by

P := {(m, ϕ(m) + q) | m ∈ M, q ∈ Q} ⊂ M ⊕ Qgp

The natural inclusion Q ↪→ P gives rise to a family

Spec k[P] −→ Spec k[Q],

which is declared to be the mirror family to (X� , D�). Here, the ring k[P] is called the ring
of theta functions [13]. Indeed, for any integral point m ∈ M, we have a regular function,
referred to as a theta function,

ϑm = z(m,ϕ(m)) ∈ k[P]

on Spec k[P]. Moreover, the set of theta functions {ϑm}m∈M form a basis for k[P] as a
k[Q] module. In the situation when the toric variety X� is smooth, a generating set for k[P]
as a k[Q] algebra is given by particular theta functions {ϑmi}i∈I , where the set of vectors
{mi | i ∈ I} correspond to the set of primitive generators of rays of the fan �. To write these
functions, we fix a general point p ∈ MR contained in the interior of a maximal cell of �,
and define ϕ to be the PL function which vanishes in the maximal cell containing p. Then,
we set

ϑmi(p) := z(mi,ϕ(mi)) = zmi tϕ(mi) ∈ k[P] = k[M ⊕ Qgp]. (2·2)

Here we denote for the element (mi, ϕ(mi)) ∈ P, the corresponding element in the monid
algebra by z(mi,ϕ(mi)) ∈ k[P]. Note that we have a natural splitting P = M ⊕ Qgp since the
point p is chosen in the interior of a maximal cell �. To distinguish between the elements of
the monoid algebras associated to M and Qgp, following the notational convention of [4] for
m ∈ M we denote the corresponding element in the monoid algebra by zm ∈ k[M], and for
q ∈ Qgp the corresponding element in the monoid algebra is tq ∈ k[Qgp].

Example 2·2. For X� = P
2, recall we have Q := N= 〈L〉, where [L] is the class of a line in

P
2. We let p ∈� be a point in the positive octant. Then the Q-valued PL function ϕ vanishing

at p is defined in (2·1). For the generators (1, 0) and (0, 1) of the monoid M =Z
2, we denote

the corresponding elements in the monoid algebra k[M] by

z(1,0) = x, and z(0,1) = y .

Then, by (2·2), the theta functions generating the coordinate ring for the mirror to (X� , D�)
in this case are given by

ϑ(1,0) = z(1,0)tϕ(1,0) = x , (2·3)

ϑ(0,1) = z(0,1)tϕ(0,1) = y ,

ϑ(−1,−1) = z(−1,−1)tϕ(−1,−1) = x−1y−1t[L] .

It follows from (2·3) that the mirror to (X� , D�) is

Speck[〈L〉][ϑ(1,0), ϑ(0,1), ϑ(−1,−1)]/(ϑ(1,0)ϑ(0,1)ϑ(−1,−1) = tL)

https://doi.org/10.1017/S030500412300021X Published online by Cambridge University Press

https://doi.org/10.1017/S030500412300021X


388 HÜLYA ARGÜZ

Before proceeding, we give another example of the mirror to a toric log Calabi–Yau pair
in dimension three.

Example 2·3. Let X� = P
3. For the generators (1, 0, 0), (0, 1, 0) and (0, 0, 1) of the monoid

M =Z
3, we denote the corresponding elements in the monoid algebra k[M] by

z(1,0,0) = x, z(0,1,0) = y, and z(0,0,1) = z

We fix a point p ∈� in the interior of the positive octant, and a PL function ϕ vanishing at p
defined by

ϕ(x, y, z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 on 〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉
−x[L] on 〈(0, 1, 0), (0, 0, 1), ( − 1, −1, −1)〉
−y[L] on 〈(1, 0, 0), (0, 0, 1), ( − 1, −1, −1)〉
−z[L] on 〈(1, 0, 0), (0, 1, 0), ( − 1, −1, −1)〉.

(2·4)

Then, using (2·2), we write the theta functions generating the coordinate ring for the mirror
to (X� , D�) which in this case are:

ϑ(1,0,0) = z(1,0,0)tϕ(1,0,0) = x , (2·5)

ϑ(0,1,0) = z(0,1,0)tϕ(0,1,0) = y ,

ϑ(0,0,1) = z(0,0,1)tϕ(0,0,1) = z ,

ϑ(−1,−1,−1) = z(−1,−1,−1)tϕ(−1,−1,−1) = x−1y−1z−1t[L] .

It follows from (2·5) that the mirror to (X� , D�) is ‘

Speck[〈L〉][ϑ(1,0,0), ϑ(0,1,0), ϑ(0,0,1), ϑ(−1,−1,−1)]/(ϑ(1,0,0)ϑ(0,1,0)ϑ(0,0,1)ϑ(−1,−1,−1) = tL)

3. Mirrors to log Calabi–Yau pairs: the general case

To construct mirrors to log Calabi–Yau pairs which are not toric, we need a generalisation
of the notion of a momentum polytope image of the mirror to a toric log Calabi–Yau pair.
This is provided by the canonical wall structure, or the canonical scattering diagram [11,
13, 16]. Before describing the canonical wall structure, we first review the general definition
of wall structures1.

3·1. Data for wall-structures

To define a wall structure we need to fix the following data:

(i) (B, P): an integral affine manifold with singularities B, along with a polyhedral
decomposition P, such that the discriminant locus � of the affine structure is con-
tained in a union of codimension two cells of P. In what follows we refer to cells of
P ⊂ B which are of dimensions 0, 1 and n as vertices, edges and maximal cells. The
set of k-cells are denoted by P[k] and we write Pmax := P[n] for the set of maximal

1 Compare with the most general set-up of [13], we are making some simplifying assumptions which will
always be satisfied for the examples considered in this paper: B is taken to be a manifold rather than a
general pseudomanifold, and we assume that � is contained in a union of codimension two cells of P.
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cells. We allow B to be a manifold with boundary ∂B, that is required to be a union of
codimension one cells of P. Cells of P contained in ∂B are called a boundary cell,
and cells of P not contained in ∂B are called interior. We denote by P ⊆ P the set
of interior cells of P. We denote by � the sheaf of integral tangent vectors on B \�,
and for every cell σ of P , we denote by�σ the space of integral tangent vectors to σ ;

(ii) a toric monoid Q. Recall that a toric monoid Q is a finitely generated, integral, sat-
urated monoid which in addition satisfies that Qgp is torsion-free. We denote by
QR ⊆ Qgp

R
the corresponding cone, that is, Q = Qgp ∩ QR. We denote I0 := Q \ Q�

the maximal monoid ideal of Q, where Q� is the set of invertible elements. We also
fix a monoid ideal I of Q with radical I0;

(iii) a multi-valued piecewise linear (MVPL) function ϕ on B \� with values in Qgp
R

:
We define a multi-valued piecewise linear (MVPL) function ϕ on B \� with values
in Qgp

R
as in [13, definition 1·4]. On the open star Star(ρ) of each codimension one

cell ρ ∈ P, we have a piecewise linear function ϕρ , well-defined up to linear func-
tions. Such a MVPL function is determined by specifying its kinks κρ ∈ Qgp for each
codimension one cone ρ ∈ P defined as follows (see [13, definition 1·6, proposition
1·9]): Let ρ ∈ P be a codimension one cone and let σ , σ ′ be the two maximal cells
containing ρ, and let ϕρ be a piecewise linear function on Star(ρ) ⊂ B \�. An affine
chart at x ∈ Intρ thus provides an identification �σ =�σ ′ = :�x. Let δ:�x →Z be
the quotient by �ρ ⊆�x. Fix signs by requiring that δ is non-negative on tangent
vectors pointing from ρ into σ ′. Let n, n′ ∈ �̌x ⊗ Qgp be the slopes of ϕρ |σ , ϕρ |σ ′ ,
respectively. Then (n′ − n)(�ρ) = 0 and hence there exists κρ ∈ Qgp with

n′ − n = δ · κρ . (3·1)

We refer to κρ as the kink of ϕρ along ρ. Thus, if ϕ is an MVPL function, it has a
well-defined kink κρ for each such ρ, and these kinks determine ϕ. We also assume
that the MVPL function ϕ is strictly convex in the sense that κρ ∈ I0 for all ρ;

(iv) an order zero function fρ ∈ (k[Q]/I0)[�ρ] for each codimension one cell ρ of P.

The choice of the MVPL function ϕ gives rise to a local system P fitting into the exact
sequence

0 → Qgp →P →�→ 0. (3·2)

Here Qgp is the constant sheaf with stalk Qgp. The sheaf P contains via [13, definition 1·16],
a subsheaf P+ ⊆P .

(i) For a generic point x ∈ B in the interior of a maximal cell Pmax ∈ P, the stalk of P+
is P+

x =�x × Q, whereas the stalk of P is Px =�x × Qgp.

(ii) For a point x lies in the interior of a codimension one cell ρ which is not a boundary
cell,

P+
x = {(

m, (dϕρ |σ )(m) + q
) ∣∣ ρ ⊆ σ ∈ Pmax, m ∈ Txσ ∩�x, q ∈ Q

}
.

Here Txσ denotes the tangent wedge to σ at x.

For an element m ∈Px, we write m̄ ∈�x for its image under the projection of (3·2).
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3·2. Wall-structures

Now we are ready to define a wall structure.

Definition 3·1. Fix an integral affine manifold with singularities along with a polyhedral
decomposition (B, P), a toric monoid Q, a strictly convex MVPL function ϕ, and order zero
functions fρ as in Section 3·1. A wall on (B, P) is a codimension one rational polyhedron
d �⊆ ∂B contained in some maximal cone σ of P, along with an element

fd =
∑

m∈P+
x ,m̄∈�d

cmzm ∈ k[P+
x ]/Ix, (3·3)

referred to as a wall crossing function, where cm ∈ k. Here x ∈ Int(d) and �d is the lattice of
integral tangent vectors to d. We require that m ∈P+

x for all y ∈ d \� when cm �= 0. We say
a wall d has direction v ∈�d if the attached function fd, given as in (3·3), satisfies m̄ = −kv
for some k ∈N whenever cm �= 0. We call a wall with direction v incoming if d= d−R≥0v.
A wall structure or a scattering diagram on (B, P) over Q is a finite set D of walls on B
given as in (3·3), and satisfying the following conditions:

(i) if d∩ Intσ �= ∅ then fd ≡ 1 modulo I0; and

(ii) for every codimension one cell ρ of P, and every point x ∈ ρ, denote by fρ,x the
product of fd over all the walls d containing x and contained in ρ. Then, we have
fρ,x ≡ fρ modulo I0.

If D= ∪(d, fd) is a wall structure, we define the support and the singular locus in D
respectively by

Supp(D) :=
⋃
d

d,

Sing(D) := �∪
⋃
d

∂d∪
⋃
d,d′

(d∩ d′) ,

where the last union is over all pairs of walls d, d′ with d∩ d′ codimension at least two. In
particular, Sing(D) is a codimension at least two subset of B.

3·3. The canonical wall structure

To define the canonical wall structure associated to a log Calabi–Yau pair (X, D) we first
describe the tropicalisation (B, P) of (X, D), then the monoid Q(X, D) associated to (X, D)
along with a Qgp

(X,D)-valued PL function on (B, P).

3·3·1. The tropicalisation (B, P) of (X, D)

The tropical space associated to (X, D), or the tropicalisation of (X, D), is a pair (B, P)
consisting of an integral affine manifold with singularities B, along with a polyhedral decom-
position P. We describe (B, P) from the data of the intersection numbers of irreducible
components of D. For this, first consider Div (X), which denotes the group of divisors on X,
and DivD (X) ⊆ Div (X), the subgroup of divisors supported on D. Moreover, we set

DivD (X)R = DivD (X) ⊗Z R.
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Let D = ⋃m
i=1 Di be the decomposition of D into irreducible components, and write {D∗

i } for
the dual basis of DivD (X)∗

R
. We assume throughout that for any index subset I ⊆ {1, . . . , m},

if non-empty,
⋂

i∈I Di is connected. Define the polyhedral decomposition P to be the
collection of cones

P :=
{∑

i∈I

R≥0D∗
i | I ⊆ {1, . . . , m} such that

⋂
i∈I Di �= ∅

}
. (3·4)

Then we set

B :=
⋃
τ∈P

τ ⊆ DivD (X)∗
R

.

Generally, we view the tropicalisation (B, P) of a log Calabi–Yau pair (X, D) as a topo-
logical manifold described as above, together with the data of an affine structure with
singularities – see [4, section 2·1·1].

Example 3·2. Let X be a del Pezzo surface of degree 8. Thus, X is isomorphic to the
blowup X → P

2 in a single point, which we assume to lie in the interior of a component
of the toric boundary divisor DP2 ⊂ P

2. We set D to be the strict transform of DP2 . Then,
(X, D) defines a log Calabi–Yau pair. In this case, D has 3 irreducible components with
self-intersection numbers given by the tuple (1,1,0). The associated tropical space B has
three maximal two dimensional cones, whose set of rays are given respectively by {ρ1, ρ2},
{ρ2, ρ3} and {ρ3, ρ1}, where ρ1 has direction (1, 0), ρ2 has direction (0, 1), and ρ3 has direc-
tion ( − 1, −1). We denote the cone with rays {ρi, ρj} by Ci,j. For this consider an open cover
of R2 \ {0} given by the union of the three subsets

U1 = C1,2 ∪ C1,3 \ {ρ2, ρ3},
U2 = C1,3 ∪ C2,3 \ {ρ1, ρ3},
U3 = C1,2 ∪ C2,3 \ {ρ1, ρ3},

and define the charts for the affine structure by setting �1 : U1 ↪→R
2 �2 : U2 ↪→R

2 to be
restrictions of the identity map on U1 and U2 respectively. We then define �3:U3 →R

2 by

�3(x, y) =
{

(x, y) on C1,2 \ {ρ1}
(x, y − x) on C1,2 \ {ρ3}

as illustrated in Figure 2. Note that the matrix for the change of coordinate transformation
in this case is conjugate to (

1 1
0 1

)
which represents the standard focus-focus singularity – see for instance [18] for further
discussion on such singularities in dimension two and the affine monodromy. This endows
B with an integral affine structure with a singularity at the origin.

The next ingredient we need to define the canonical wall structure associated to a log
Calabi–Yau pair (X, D) is the toric monoid, which we denote by Q(X, D) and refer to as
the relevant monoid, and the data of a MVPL function with values in Qgp

R
(X, D), which is

specified by its kinks in Q(X, D).
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Figure 2. The three charts defining the integral affine structure on B \ {0}.

3·3·2. The relevant monoid Q(X, D)

To define Q(X, D), we first need the description of A
1-curves and boundary curves on

(X, D).

Definition 3·3. An A
1-curve on a log Calabi–Yau pair (X, D) is the image of a genus zero

stable map to X, such that the intersection of C with D is a single point.

Observe that by the description of the tropicalisation of (X, D), it automatically follows that
in the situation (X, D) is a blow-up of a toric log Calabi–Yau pair as in (1·1), any codimension
one stratum on B corresponds to a rational curve in X contained in D. More generally, for any
log Calabi–Yau pair (X, D) since by definition D has simple normal crossing singularities,
such a strata corresponds to a smooth curve.

Example 3·4. Let X be the blow-up of a non-toric point in the interior of the toric boundary
divisor in P

2. Then, an exceptional curve with class E as well as a curve with class L −
E, where L is the class of a general line in X as illustrated in Figure 3 are examples of
A

1-curves.

To describe the relevant monoid, in addition to A
1-curves, we also consider boundary

curves in (X, D), which are curves contained in D.

Definition 3·5. Let (X, D) be a log Calabi–Yau pair. The relevant cone of curves C(X, D)
is the cone in N1(X) ⊗R generated by the union of all A1-curves and boundary curves. The
relevant monoid Q(X, D) associated to (X, D) is the monoid of integral points in C(X, D):

Q(X, D) := 〈[C] | C is an A
1 − curve or a boundary curve 〉Z. (3·5)

Here we us the notation [C] to denote the class of a curve C.
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Figure 3. The momentum polytope picture associated to X, the blow-up of P2 at a non-toric
point, on the left and the central fiber of the degeneration of X̃ of X on the right. The exceptional
curve E illustrated on the left contributes to the canonical wall structure of (X, D), while the
curves illustrated on the right contribute to the canonical wall structure of the degeneration (X̃, D̃).

Before proceeding, we show that in the two dimensional situation, the relevant cone of
curves agrees with the Mori cone “generically”. To describe the notion of genericity for
a log Calabi–Yau pair in dimension two, we need the following definition, which can be
found in [12, definition 1·5]:

Definition 3·6. Let (X, D) be a log Calabi–Yau pair and assume that X is of dimension
two. Denote by D⊥ ⊂ Pic(X) be the sublattice of the Picard group of X, defined by

D⊥ := {α ∈ Pic(X) | α · [Di] = 0 for all i}.
There is a natural period map

φX : D⊥ −→ Pic0(D) ∼=C
∗ (3·6)

L �−→L|D
defined by restricting a line bundle on X to D.

A key result in [12] shows that the deformation space of a log Calabi–Yau pair (X, D), where
X is of dimension two, is locally isomorphic to Hom(D⊥, C∗). Therefore, it makes sense to
define a generic log Calabi–Yau pair as follows.

Definition 3·7. A log Calabi–Yau pair (X, D), where X is of dimension two, is called
generic if φX(α) �= 1 for all α ∈ D⊥ where φX is the period map defined in (3·6).

Remark 3·8. The definition of genericity we provide here is slightly different than in [12,
definition 1·4], which is equivalently stated in [12, corollary 3·5] as the condition φX(α) �= 1
for all α ∈ D⊥ which have self-intersection −2. Here we require this condition for all α
regardless of the self-intersection. It is also worthwhile mentioning that, frequently the term
generic is used for the complement of finitely many objects, while here we have not finite
but countably many objects, as the condition φX(α) = 1 defines in most cases an infinite
union of hypersurfaces in Hom(D⊥, C∗). If we would consider only α with self intersection
−2 we would still have countably many hypersurfaces, rather than finite. So, we inherit the
abuse of the term “generic” here from [12].
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THEOREM 3·9. Let (X, D) be a generic log Calabi–Yau pair, where X is of dimension
two. Then, the relevant cone of curves C(X, D) in Definition 3·5 is isomorphic to the Mori
cone NE(X).

Proof. By definition as C(X, D) is generated by the union of boundary curves, together
with A

1-curves, any element in C(X, D) is an element of the Mori cone NE(X, D). For the
converse, first note that the statement can be easily verified when X is P

2 or a Hirzebruch
surface. In a more general situation, given any irreducible effective curve C in a generic log
Calabi–Yau pair (X, D) of dimension two, we will show that it lies in C(X, D), by analysing
the following three possible cases:

(i) C · KX = 0: Consider the line bundle OX(C), which has a canonical section that van-
ishes exactly on C. So, as OX(C) is trivial away from C, the image of it under the
period map (3·6) is trivial, that is, φX(OX(C)) = 1. Thus, in this case X is not generic;

(ii) C · KX < 0: By Mori’s cone theorem, the part of the Mori cone with KX < 0 is gener-
ated by extremal rays. Either these would be −1 curves or X is a Hirzebruch surface
or P2 – see [9, section 5·4]. Hence, excluding the latter cases, the result follows since
any −1 curve, by the adjunction formula is a rational curve intersecting D at a single
point, hence is in C(X, D);

(iii) C · KX > 0: In this case we have C · D< 0, and hence C is enforced to be a boundary
curve.

Hence, the result follows.

Remark 3·10. The natural generalisation of Theorem 3·9 to higher dimensions does not
hold. For instance, consider the log Calabi–Yau pair (X, D), where X is obtained by a
blowing-up 4 disjoint lines, each contained in one of the toric boundary components of
P

3, and let D be the strict transform of the toric boundary. Then, since there always exists
at least one line passing through the 4 lines that we blow up, there will always be at least
one effective curve in the interior of X obtained as the strict transform of such a line, which
does not correspond to an element of C(X, D). In conclusion, generally the mirror family
constructed in [16] is a base change from a family over the smaller base given by the formal
completion of Speck[Q(X, D)] at the maximal ideal Q(X, D) \ {0}.

We proceed with the description of the final ingredient needed to define the canonical wall
structure, that is, a multi-valued piecewise-linear (MVPL) function.

3·3·3. The MVPL function ϕ : B \�→ Q(X, D)gp
R

Now we are ready to describe the MVPL function ϕ : B \�→ Q(X, D)gp
R

, by specifying
its kinks on codimension one cells of (B, P). There is a canonical choice of these kinks,
defined as follows: for a codimension one cell ρ ∈ P, set the kink of ϕ to be

κρ = [Dρ], (3·7)

the class of the boundary curve corresponding to ρ (see [4, section 2·1·2] for further details).
Note that fixing the kinks, uniquely determines ϕ up to a linear function. Before proceeding,
we provide an example of a multi-valued PL function.
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Figure 4. The canonical wall structure D(X,D) associated to the blow up of P2 at a single non–
toric point on the left, the height one slice of the canonical wall structure D1

(X̃,D̃)
associated to

the degeneration (X̃, D̃) on the right.

Example 3·11. Let (B, P) be the tropical space as in Example 3·2, associated to the log
Calabi–Yau pair (X, D), where X is a non-toric blow up of P2. To define a MVPL function
on B \ {0} it suffices to define a piecewise linear function on the neighbourhoods given by
the open stars of each of the three rays ρi, for 1 � i � 3. These functions, up to linear func-
tions are defined by specifying the kinks [L] ∈ Q, given by the class of a general line in X,
along each ray ρ2 and ρ3, and [L − E] ∈ Q along ρ1 where [E] stands for the class of the
exceptional fiber. Note that in their domains of intersections these PL functions may take
different values, as ρ is indeed “multi-valued”.

3·3·4. The canonical wall-structure

Now, we are ready to review definition of the canonical wall structure associated to (X, D)
following [4, section 2·4], or [16]. We let (X, D) be a log Calabi–Yau pair with tropicalisation
(B, P), and Q(X, D) the relevant monoid associated to (X, D) defined as in (3·5). We also fix
a MVPL function with kinks defined canonically as in (3·7). Finally, for every codimension
one cell ρ of P, we consider the order zero functions fρ = 1. Note that Q(X, D)� = {0}, so
I0 = Q(X, D) \ {0}, and so k[Q(X, D)]/I0 � k.

The canonical wall structure associated to (X, D) is a wall structure on (B, P) over
Q(X, D), where for each wall d, the attached wall crossing function is concretely given
by (1·2). Note that, for every ideal I ⊆ Q(X, D) such that

√
I = I0, considering the wall

crossing functions modulo I, the canonical wall structure is a wall structure in the sense
of Definition 3·1, that is, with finitely many walls. If we do not work modulo such ideal I,
the canonical wall structure might contain infinitely many walls.

Example 3·12. The canonical wall structure associated to the blow-up of P2 at a non-toric
point is illustrated on the left-hand side of Figure 4.

3·4. Pulling singularities out from the canonical wall structure

In this section we review how to “pull out” the discriminant locus of the canonical wall
structure associated to a log Calabi–Yau pair (X, D), obtained from a toric log Calabi–Yau
pair (X� , D�) by a blow-up as in (1·1). More precisely, we fix distinct rays ρ1, . . . , ρs of the
fan � of X� , and a disjoint union of smooth hypersurfaces H = H1 ∪ · · · ∪ Hs in D� , such
that Hi ⊂ Dρi for all 1 � i � s, where Dρi is the toric divisor of X� corresponding to the ray
ρi. Then, we take for X the blow-up of X� along H, and for D the strict transform of D� .
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We assume further that the toric variety X� is smooth and projective, and that no cone of
� contains two rays ρi and ρj with i �= j. These conditions are always satisfied after refining
enough the fan �.

We further write

Hi =
si⋃

j=1

Hij , (3·8)

for the decomposition of Hi into its connected components. The main result of [4] provides a
combinatorial algorithm to construct the canonical wall structure D(X,D) associated to (X, D)
from a toric wall structure D(X� ,H) in R

n, obtained from the data of X� and H. We show that
this toric wall structure, in rough terms, encodes all the data of the canonical wall structure
with its singularities are pulled out. We first provide a precise description of the toric wall
structure D(X� ,H), and then explain how to obtain the canonical wall structure associated to
(X, D) from it in the remaining part of this section. For details, we refer to [4].

3·4·1. The toric wall structure

Let

P = M ⊕
s⊕

i=1

N
si ,

where M is the cocharacter lattice associated with X� , so that the fan � is contained in the
real vector space MR := M ⊗R, and let P× be the group of units of P. Consider the ideal
mP = P \ P×, and denote by k̂[P] the completion of k[P] with respect to mP. We denote the
generators of Nsi by ei1, . . . , eisi , and set

tij := zeij ∈ k̂[P]. (3·9)

Definition 3·13. A wall structure on MR is a wall structure as in Definition 3·1, where B =
MR with the integral affine structure induced by M ⊂ MR, and P is the trivial polyhedral
decomposition with the single cell MR. In particular, there is no MVPL function ϕ or order
zero functions in the description of a wall structure in MR. Note also that MR is an integral
affine manifold without singularities and so the discriminant locus � is empty.

We review below the definition of the wall structure D(X� ,H) on MR over P. We first
describe the initial wall structure D(X� ,H),in whose walls are codimension one subsets
of MR called widgets. We review the description of widgets below. For details, see [4,
section 5·1·2].

For every 1 � i � s, we denote by mi ∈ M the primitive generator of the ray ρi of σ . The
corresponding widget Dmi is the wall-structure on MR over P defined as follows:

Dmi :=
⋃
ρ

⎛⎝ρ,
si∏

j=1

(1 + tijz
mi)Dρ ·Hij

⎞⎠ , (3·10)

where the union is over the codimension one cones ρ of � containing the ray ρi =R�0mi,
and Dρ · Hij is the intersection number in Dρi between the hypersurface Hij and the toric
curve Dρ corresponding to ρ.
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Now, the initial wall structure D(X� ,H),in is defined as the union of the widgets Dmi :

D(X� ,H),in :=
s⋃

i=1

Dmi .

We describe the consistent wall structure D(X� ,H) in MR obtained from D(X� ,H),in in a
moment, after reviewing the notion of consistency for a wall structure.

3·4·2. The notion of consistency

In this section we shortly review the notion of path-ordered products and consistency for
a wall structure D in MR, after setting up a couple of necessary notations.

Let γ :[0, 1] → MR be a piecewise smooth path whose image is disjoint from Sing (D).
Further, assume that γ is transversal to Supp(D), in the sense that if γ (t0) ∈ d ∈D, then
there is an ε > 0 such that γ ((t0 − ε, t0)) lies on one side of d and γ ((t0, t0 + ε)) lies on the
other. Assuming that γ (t0) ∈ d, we associate a wall-crossing homomorphism θγ ,d as follows.
Let nd be a generator of �⊥

d ⊆ �̌x = Hom(�x, Z) for some x ∈ Intd, with nd positive on
γ ((t0 − ε, t0)). Then define

θγ ,d : zm �−→ f 〈nd,m〉
d zm. (3·11)

We may now define the path-ordered product

θγ ,D := θγ ,ds ◦ · · · ◦ θγ ,d1 ,

where d1, . . . , ds is a complete list of walls traversed by γ , in the order traversed.

Definition 3·14. A joint is a codimension two polyhedral subset of MR contained in
Sing (D), and such that for x ∈ Int(j), the set of walls {d ∈D | x ∈ d} is independent of x.
Further, a joint must be a maximal subset with this property. A wall structure on MR is said
to be consistent if all path ordered products along any sufficiently small loop around a joint
is identity.

In [4, theorem 5·6], we prove the higher dimensional analogue of the Kontsevich–Soibelman
Lemma [17]:

THEOREM 3·15. There is a consistent wall structure D(X� ,H) on MR over P containing
D(X� ,H),in such that D(X� ,H) \D(X� ,H),in consists only of non-incoming walls. Further, this
wall structure is unique up to equivalence.

3·4·3. From D(X� ,H) to D(X,D)

To compare D(X� ,H) with the canonical wall structure associated to (X, D), first note that
there is a natural piecewise-linear isomorphism

ϒ : (MR,�) −→ (B, P).

The existence of such a piecewise linear isomorphism follows from the definition of the
tropicalisation of (X, D) and we refer to [4, section 6] for details. For every 1 � i � s and
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1 � j � si, let Ej
i denote an exceptional curve of the blow-up over the hypersurface Hij. There

is a natural splitting

N1(X) = N1(X�) ⊕
⊕

ij

ZEj
i ,

in which N1(X�) is identified with the set of curve classes in N1(X) with intersection number
zero with all exceptional divisors. We will define ϒ(d, fd), to describe a wall of D(X,D) on B.
This definition depends on whether (d, fd) is incoming or not.

If the wall is incoming, then by construction of D(X� ,H) it is of the form (d, (1 + tijzmi)wij)
for some positive integer wij, see (3·10). As mi is tangent to the cone of � containing d and
ϒ is piecewise linear with respect to �, ϒ∗(mi) makes sense as a tangent vector to B. We
then define

ϒ(d, (1 + tijz
mi)wij) = (ϒ(d), (1 + tE

j
i z−ϒ∗(mi))wij).

If the wall d is not incoming, then still the attached function fd is necessarily a power-series
in the expression

∏
i,j (tijzmi)aij , for some positive integers aij. We assume after refining

the walls of D(X� ,H) that d⊆ σ ∈�. Then the data A = {aij} determines a curve class
β̄A ∈ N1(X�) as follows. Up to a linear function, there exists a unique piecewise linear
function

ψ : MR −→ N1(X�) ⊗R

with kink along a codimension one cone ρ being the class of the corresponding one-
dimensional stratum Dρ ⊂ X. Then, we define

β̄A := ψ( −
∑

i,j

aijmi) +
∑

i,j

ψ(aijmi) .

Under the inclusion N1(X�) ↪→ N1(X) given by the above mentioned splitting, we may
view β̄A,σ as a curve class in N1(X), which we also denote by β̄A,σ . We then obtain a curve
class

βA = β̄A −
∑

ij

aijE
j
i.

Further, as mout := − ∑
ij aijmi is tangent to the cone of � containing d, as before ϒ∗(mout)

makes sense as a tangent vector to B. We may thus define the wall

ϒ(d, fd) = (ϒ(d), fd(tβAz−ϒ∗(mout))). (3·12)

We then define

ϒ(D(X� ,H)) := {ϒ(d, fd) | (d, fd) ∈D(X� ,H)}.
A key result in [4, theorem 6·1], then states:

THEOREM 3·16. ϒ(D(X� ,H)) is equivalent to D(X,D).

Here, two wall structures are equivalent if they induce the same wall-crossing automor-
phisms. In the remaining part of this section, we summarise the proof.
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To prove Theorem 3·16, we first consider a degeneration (X̃, D̃) over A
1 = Speck[t]

obtained from a blow-up of the degeneration to the normal cone of X� , with general fiber
(X, D), and central fiber given by

X� ∪
s⋃

i=1

BlHi(P(NDρi |X� ⊕ODρi
)). (3·13)

We then describe the canonical wall structure associated to the total space (X̃, D̃). It is a
wall structure on the tropicalisation (̃B, P̃) of of (X̃, D̃) over the relevant monoid Q(X̃, D̃).
The tropicalisation of the degeneration map X̃ →A

1 defines a projection map

p̃ : B̃ −→R�0 ,

and so we obtain a wall structure D1
(X̃,D̃)

on B̃1 := p̃−1(1) over Q(X̃, D̃) by restriction to

p−1(1), see [4, section 3·3] for details. The singularities of the integral affine manifold B̃1

are away from the origin: from B = p−1(0) to B̃1 = p−1(1), the singularities are pushed away
from the origin, see Figure 4. We use the notation P1 to denote the restriction of the polyhe-
dral decomposition P̃ on B̃ to B̃1. Localising to the origin 0 ∈ B̃1 we obtain a wall structure

T0D
1
(X̃,D̃) := {(T0d, fd) | (d, fd) ∈D1

(X̃,D̃), 0 ∈ d} (3·14)

on the tangent space T0B̃1 of B̃1 at the origin (see [4, section 5]), and where T0d is the tangent
space at the origin of the wall d. More precisely, as the origin is a smooth point of the integral
affine structure on B̃1, we have a natural identification MR → T0B̃1 such that the fan� is MR

is the restriction of P1 to T0B̃1. Moreover, the MVPL function for (X̃, D̃) restricts to the PL
function ϕ0 for the toric pair (X� , D�), that is, with kink [Dρ] across a codimension one cone
ρ of �, where [Dρ] is the corresponding toric curve class in X� . Then, T0D

1
(X̃,D̃)

is a wall

structure on (MR,�) over Q(X̃, D̃) as in Definition 3·1, where one uses the toric PL function
ϕ0, and where the order zero functions are fρ = 1 for every codimension one cone ρ of �.

The main technical result of [4], [4, theorem 6·2], is a comparison between the wall struc-
ture T0D

1
(X̃,D̃)

on (MR,�) over Q(X̃, D̃) with the wall structure D(X� ,H) on MR over P. There
is a map

ν : k[P] −→ k[P+
0 ] (3·15)

tijz
mi �−→ z(mi,ϕ0(mi)+Fi−Ej

i) ,

where Fi denotes the class of a general P1 fiber of BlHi(P(NDρi |X� ⊕ODρi
)). Then, the walls

of T0D
1
(X̃,D̃)

are obtained from the walls (d, fd) of D(X� ,H) by applying ν to fd:

T0D
1
(X̃,D̃) � ν(D(X� ,H)) . (3·16)

As a second step we consider the asymptotic wall structure D1,as
(X̃,D̃)

, defined by

D1,as
(X̃,D̃)

:= {(d∩ B̃0, fd) | (d, fd) ∈D(X̃,D̃) with dim d∩ B̃0 = n − 1}. (3·17)

We show that D1,as
(X̃,D̃)

is equivalent to ι(D(X,D)) – here we view the canonical wall struc-
ture D(X,D) as a wall structure that is embedded into D(X̃,D̃), which we denote by ι(D(X,D)).
Finally, we show that there is a natural piecewise-linear isomorphism μ : MR −→ B̃0 =
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p̃−1(0) ∼= B which induces the equivalence of wall structures μ(T0D
1
(X̃,D̃)

) and D1,as
(X̃,D̃)

, and
hence ι(D(X,D)):

μ(T0D
1
(X̃,D̃)) � ι(D(X,D)) . (3·18)

The map ϒ is then given by the composition ϒ =μ ◦ ν.

Example 3·17. Let X be the blow-up of a non-toric point in the interior of the boundary
divisor D� ⊂ P

2, and D be the strict transform of D� . The central fiber of the degeneration
X̃ of X is then given as a union of P2 and the Hirzebruch surface F1 = P(O ⊕O( − 1)), as
illustrated in Figure 3. A possible choice for the piecewise linear functionψ isψ(x, y) = 0 on
the cone < (1, 0), (0, 1)>, ψ(x, y) = −xL on the cone < (0, 1), ( − 1, −1)>, ψ(x, y) = −yL
on the cone< (0, 1), ( − 1, −1)>, where L is the class of a line in P

2, generating NE(P2). We
have m1 = (1, 0) and m2 = (0, 1). So, when applying ϒ to the function 1 + t1x = 1 + t1zm1

attached to a non incoming wall, we obtain 1 + xtβ̄A , where βA = β̄A − E, and

β̄A =ψ( − m1) +ψ(m1) = L + 0 = L .

In other words, the function 1 + t1x attached to a non incoming wall becomes 1 + xtL−E. We
illustrate the canonical wall structure associated to (X, D), and the height one slice of the
canonical wall structure associated to the degeneration (X̃, D̃) in Figure 4.

3·5. Theta functions defined by broken lines

As shown in [13], the mirror to a log Calabi–Yau pair (X, D) – or rather the mirror to the
complement X \ D is a family SpecRX∨ over the formal completion of Speck[Q(X, D)] at
the maximl ideal Q(X, D) \ {0}, where RX∨ denotes the ring of theta functions associated to
(X, D). The generators of this ring, referred to as theta functions, are defined combinatorially
via broken lines in the canonical wall structure D(X,D). Below we first review the definition
of broken lines. In what follows, we show that the generators of the ring of theta functions
for the mirror to a log Calabi–Yau pair (X, D) as in (1·1) can actually be obtained by studying
broken lines in the “heart” of the canonical wall structure. This will allow us to compute the
theta functions concretely, and to obtain concrete equations for the mirrors.

To define broken lines on (B, P) we need some notations for the local rings defined
by considering the monoids over the graphs of the MVPL function ϕ on B discussed in
Section 3·3. As the restriction of such a function to maximal cells is linear, the monoid above
the graph of such a cell takes a rather simple form. Indeed, for a maximal cell σ ∈ Pmax with
x ∈ Int(σ ), we set

Rσ := k[P+
x ]/Ix = (k[Q]/I)[�σ ], (3·19)

where we have a natural splitting P+
x =�x × Q. On the other hand, for a codimension one

cell ρ of P not contained in the boundary of B, we set Rρ := k[P+
x ]/Ix, for x ∈ Int(ρ).

However, in this case the description of P+
x requires some more care, and involves the kinks

of – see [4, equation (2·13)] for details. Now, we are ready to define broken lines.

Definition 3·18. Let Q be a toric monoid and D a wall structure on (B, P) over Q.
A broken line in D is a piecewise linear continuous directed path

β : ( − ∞, 0] −→ B \ Sing (D) (3·20)
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with β(0) �∈ Supp(D) and whose image consists of finitely many line segments
L1, L2, . . . , LN , such that dim Li ∩ d= 0 for any wall d ∈D, and each Li is compact except
L1. Further, we require that each Li ⊆ σi for some σi ∈ Pmax. To each such segment we
assign a monomial

mi := αiz
(vi,qi) ∈ k[�Li ⊕ Qgp].

Here �Li , as usual, denotes the group of integral tangent vectors to Li and is hence a
rank one free abelian group. Each vi is non-zero and tangent to Li, with β ′(t) = −vi for
t ∈ ( − ∞, 0] mapping to Li. We require α1 = 1 and set m1 = z(v1,0). We refer to v1 as the
asymptotic direction of the broken line, and to β(0) as the end-point. Given Li and its
attached monomial mi, we determine Li+1 and mi+1 as follows. Let Li be the image under β
of an interval [ti−1, ti] ⊂ ( − ∞, 0]. Let I = [ti − ε, ti + ε] be an interval with ε chosen suffi-
ciently small so that β([ti − ε, ti)) and β((ti, ti + ε]) are disjoint from Supp(D). There are two
cases:

(i) β(ti) ∈ Int(σi) for σ ∈ Pmax. Then we obtain a wall-crossing automorphism
θβ|I ,D:Rσi → Rσi , and mi may be viewed as an element of Rσi via the inclusion
�Li ⊆�σi . We expand θβ|I ,D(mi) as a sum of monomials with distinct exponents,
and require that mi+1 be one of the terms in this sum.

(ii) β(ti) ∈ Int(ρ) for ρ ∈ P a codimension one cell. If y = β(ti − ε), y′ = β(ti + ε),
x = β(ti), we may view (vi, qi) ∈P+

y . By parallel transport to x along β, we may
view (vi, qi) ∈Px. In fact, (vi, qi) ∈P+

x by the assumption that β ′(ti − ε) = −vi and
[4, Proposition 2·7]. Thus, we may view mi ∈ Rρ , and then mi+1 is required to be a
term in θβ|I ,D(mi). A priori, mi+1 ∈ Rρ , but it may be viewed as a monomial in Rσi+1

by parallel transport to y′.

We call the monomial aNz(vN ,qN ), carried by the final segment LN of a broken line β the final
monomial carried by β. If v1 = . . .= vN we say β is never-bending.

Definition 3·18, roughly put, says that a broken line β with asymptotic direction v, starts
its life coming from infinity with a monomial z(v,0) and ends at a fixed endpoint in B. Each
time β crosses a wall of D it either goes straight, or bends in the direction of the wall. If
it goes without bending it only may gets a contribution from the kink of the PL function,
otherwise when it bends the monomial z(v,0) gets multiplied with the monomial term in the
wall crossing function attached to the wall.

Now we are ready to define theta functions from broken lines following [13, section 3·3].

Definition 3·19. Let D be a wall structure on (B, P) over Q. Fix a general point p in the
interior of a cell σ ∈ Pmax. Let m ∈ B be an asymptotic direction for P, that is, a direction
of an unbounded ray of P. Then, the theta function defined by broken lines in D with
asymptotic direction m and end point p is defined by

ϑm(p) :=
∑
β

aNz(vN ,qN ) ∈ Rσ , (3·21)

where the sum runs over all broken lines β with asymptotic direction m, and end-point p,
and aNz(vN ,qN ) are the corresponding final monomials, as in Definition 3·18.
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Figure 5. The theta functions generating the coordinate ring for the mirror to (P2, D�) are
defined by never-bending broken lines.

Given a log Calabi–Yau pair (X, D) with tropicalisation (B, P), it is shown in [13, sec-
tion 3·3] that the theta functions defined by the broken lines in the canonical wall structure
D(X,D), with end-point at a general fixed point and asymptotic directions given by asymp-
totic directions of P, form the generators for the coordinate ring for the mirror to (X, D).
This is easy to verify for the case of a toric log Calabi–Yau pair (X� , D�) – in this situation
we view the tropicalisation (Rn,�) endowed with the data of a PL function as discussed in
Section 2 a trivial wall structure, where the wall crossing functions on all walls given by
codimension one cells of �, are identity.

Example 3·20. The theta functions generating the mirror to the toric log Calabi–Yau pair
(X� , D�) for X� = P

2, defined by never-bending broken lines are illustrated in Figure 5.
Note that they agree with the theta functions in (2·3), defined without using broken lines.

Generally, due to the existence of the discriminant locus in the tropicalisation (B, P) of
a non-toric log Calabi–Yau pair (X, D), it is challenging keeping track of all broken lines
defining theta functions. In the following section, we show that in the situation when (X, D)
arises as a blow-up as in (1·1), the generators of the coordinate ring to the mirror of (X, D)
are given by broken lines in the heart of the canonical wall structure associated to (X, D),
and these are easier to keep track of.

4. The heart of the canonical wall structure

Let (X, D) be a log Calabi–Yau pair obtained as a blow-up of a toric pair as in (1·1)
and (X̃, D̃) its degeneration described in Section 3·4·3. Recall that the corresponding wall
structure T0D

1
(X̃,D̃)

in (1·3) is obtained by restricting the canonical wall structure of (X̃, D̃)
to height one, and localising around the origin. In this section we define the heart of the
canonical wall structure associated to (X, D) using T0D

1
(X̃,D̃)

. For this, we first fix a monoid
defined as follows.

Definition 4·1. Let (X, D) be the blow-up of a toric log Calabi–Yau pair (X� , D�) as
in (1·1) along a union of hypersurfaces Hi ⊂ Dρi in the toric boundary where 1 � i � s,
and where D is the strict transform of the toric boundary divisor D� ⊂ X� . Denote by
Hi = ⋃si

j=1 Hij the decomposition of Hi into connected components, and Ej
i an exceptional

curve over Hij. We define the relevant monoid to (X, D) localized at Ej
i, as the monoid
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obtained from the relevant monoid associated to (X, D) in (3·5) by adding the opposite of
each exceptional curve Ej

i, and denote it by

QE(X, D) := 〈[Dρ], [C], −[Ej
i] where 1 � i � s and 1 � j � si〉Z , (4·1)

where [Dρ] and [C] are as in (3·5).

Note that unlike Q(X, D), the monoid QE(X, D) has non-trivial invertible elements: we
have

QE(X, D)� =
s⊕

i=1

si⊕
j=1

Z[Ej
i] .

Definition 4·2. A wall structure on (MR,�) over QE(X, D) is a wall structure as in
Definition 3·1, where B = MR with the integral affine structure induced by M ⊂ MR, P =�,
the MVPL function is the toric PL function ϕ0, and the order zero functions are given by

fρ =
si∏

j=1

(1 + z(mi,ϕ0(mi))−Ej
i))Dρ ·Hij ,

when ρ is a codimension one cone of � containing the ray ρi, and fρ = 1 if ρ is a
codimension one cone of � containing none of the rays ρi.

Definition 4·3. Let (X, D) be a log Calabi–Yau pair with tropicalisation (B, P), obtained
from a toric log Calabi–Yau pair (X� , D�) by a blow-up as in (1·1). The heart of the canon-
ical wall structure associated to (X, D), denoted by D♥

(X,D), is the wall structure on (MR,�)

over QE(X, D), obtained from the wall structure T0D
1
(X̃,D̃)

in (1·3) by setting all classes

Fi = 0, where Fi denotes the class of a general P1 fiber of BlHi(P(NDρi |X� ⊕ODρi
)), and

Hi is as in Definition 4·1.

Note that by the construction of the degeneration (X̃, D̃), elements of the monoid Q(X̃, D̃)
are contained in the monoid generated by the union of Q(X, D) and the fiber classes ±Fi’s.
As there are no relations between the fiber classes F′

is and the classes in Q(X, D), we have
indeed a well defined morphism of monoids Q(X̃, D̃) → Q(X, D) given by setting ±Fi = 0.

Moreover, one can check that D♥
(X,D) is indeed a wall structure on (MR,�) over QE(X, D).

If (d, fd) is a non incoming wall of T0D
1
(X̃,D̃)

, then it follows from (3·18) that (d, fd) can be
viewed as a wall of D(X,D), and so the curve classes appearing in fd, which are a priori in
Q(X̃, D̃), are actually contained in Q(X, D). In particular, setting Fi = 0 has no effect on the
non incoming walls (d, fd), and we have fd ≡ 1 modulo I0 = QE(X, D) \ QE(X, D)�. On the
other hand, it follows from the comparison with D(X� ,H) given in (3·15)–(3·16) and from the
description of incoming walls of D(X� ,H) in (3·10) that the initial walls of T0D

1
(X̃,D̃)

are

(ρ,
si∏

j=1

(1 + z(mi,ϕ0(mi)+Fi−Ej
i )Dρ ·Hij) ,

for codimension one cones ρ of � containing a ray ρi. Setting Fi = 0, we obtain that the
initial walls of D♥

(X,D) are (ρ, fρ), where fρ is as in Definition 4·2. Finally, note that D♥
(X,D) is

a consistent wall-structure because the wall-structure T0D
1
(X̃,D̃)

is consistent.
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Figure 6. The points p, p′ and p0

In the remaining part of this section we prove our main result, Theorem 4·6 which shows
that the mirror to a log Calabi–Yau pair can be effectively constructed using the heart of
the associated canonical wall structure. For this, we first review the analysis we carried in
[4, lemma 4·20] to determine the monodromy around each of the standard pieces of the
discriminant locus in the tropicalisation (̃B, P̃) of (X̃, D̃). We fix some notations to do this.

Notation 1. Let ρi be a ray in the toric fan � with primitive generator mi, corresponding
to a divisor Dρi ⊂ X� . We define the toric fan corresponding to Dρi by

�(ρi) = {(σ +Rρi)/Rρi | σ ∈�, ρi ⊆ σ }. (4·2)

We use the notation ρ for a codimension one cell of �(ρi) satisfying ρ = (ρ +Rρi)/Rρi.
We denote by ρ̄i := ρi ×R≥0 ∈� ×R�0. Note that ρ̄i is generated by (mi, 0) and (0, 1).
Recall that a standard piece of the discriminant locus in B1 is located at (mi, 1), and the ray
connecting it to the origin it splits the ρ̄i into a of two cones: one of them generated by (mi, 1)
and (0, 1) denoted by ρ̃ and the other generated by (mi, 1) and (0, 1) which we denote by
ρ̃′. We use the notation ρ0 and ρ∞ for the intersections of ρ̃ and ρ̃∞ with B̃1 respectively.
Moreover we denote the maximal cells adjacent to ρ0 and ρ∞ respectively by σ ′± and σ±
as illustrated in Figure 6.

To describe the monodromy around the singular locus �⊂ B̃1, we need the data of a PL
function, which is different than the PL function ϕ we fix through Section 3·3 to describe
wall structures (see [4, equation 3·14] for details). We review the description this function in
a moment. Denote by Dρi ⊂ X� the divisor corresponding to a ray ρi with direction mi and
let Hi ⊂ Dρi be a hypersurface as in (3·8). Denote by �(ρi) the toric fan corresponding to
Dρi defined as in (4·2). Then, there is a piecewise linear function on �(ρi), given by

ϕi:MR/Rρi −→R (4·3)
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corresponding to the divisor Hi, defined as follows: if Hi is linearly equivalent to a sum∑
aτDτ of boundary divisors, where τ ranges over rays in �(ρi), then ϕi(mτ ) = aτ for mτ

a primitive generator of τ .

PROPOSITION 4·4. The monodromy around a loop γ in B̃1 around a piece of the
discriminant locus on a wall with direction mi is given by the formula

Tγ (m) = m + κ i
ρ · δ(m) · mi, (4·4)

where κ i
ρ is the kink of the PL function ϕi defined in (4·3) along a codimension one cone

ρ ∈�(ρi) given by ρ = (ρ +Rρi)/Rρi for some codimension one cone ρ ∈� containing ρi,
and δ:M/Zmi →Z is the quotient by �ρ (see [4, equation 3·28]).

Proof. See [4, lemma 3·6].

Using the description of monodromy in (4·4), we define the parallel transport map as
follows. With the notation of Proposition 4·4, it follows from (4·4) that there is a natural
parallel transport map on B̃1, given by

℘ : k[�][Q(X, D)] −→ k[�][Q(X, D)] (4·5)

tqzm �−→ tqzm+〈m,n〉mi ,

where n ∈ N = Hom(M, Z) is the normal vector to ρi pointing away from σ̃+ ∪ σ̃ ′+. Note
that by the definition of lift δ : M/Zmi →Z in Proposition 4·4 it naturally lifts to n : M →Z,
so that δ(m) = n. In [4, section 4] we carried a rigorous analysis using the parallel transport
map around the pieces of the discriminant locus of the wall structure D1(X̃, D̃). A key point
in that analysis is a proof that this wall structure is radiant [4, definition 4·7]. We will
need the following result of [4, theorem 4·22] as a consequence of this property of the wall
structure D1(X̃, D̃):

THEOREM 4·5. Let S = (MR \ {0})/R>0 be the sphere parameterising rays from the ori-
gin in B̃. Choose a general point s ∈ S, such that the corresponding ray ρs does not intersect
the discriminant locus. For any point x ∈ ρs, denote by fx be the product of all the wall cross-
ing functions attached to walls containing x. Then, there are two possibilities: either fx is
independent of x for any x, or ρs is contained in the union of two maximal cells such that if y
and y′ are two points contained in these cells, fy and fy′ are related by the parallel transport
map in (4·5).

Now we are ready to state our main result:

THEOREM 4·6. The ring of theta functions defined by broken lines in D♥
(X,D) is isomor-

phic to the coordinate ring of the mirror to (X, D).

Proof. Let D1,Fi=0
(X̃,D̃)

be the wall structure obtained from D1
(X̃,D̃)

in (1·3) by setting all fiber

classes Fi as in Definition 4·3 to zero. Thus, the localisation of D1,Fi=0
(X̃,D̃)

around the origin is

the heart of the canonical wall structure D♥
(X,D). Moreover, it follows from [4, proposition

3·13], that asymptotically D1,Fi=0
(X̃,D̃)

is still equivalent to the canonical wall structure associate
to (X, D).
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Let RX∨ denote the coordinate ring for the mirror to (X, D). Let uj for 1 � j � � be the
primitive integral directions of the rays of the polyhedral direction P of B. Then, the cor-
responding theta functions θuj generate RX∨ as an algebra. Indeed, the mirror of (X, D) is
constructed as a smoothing of a union of affine toric varieties corresponding to the cones
of the tropical space associated to (X, D) [11, 16], and the coordinate ring for the mirror
RX∨ restricted to each such affine piece is generated the monomials corresponding to the
primitive integral directions uj of the rays of the corresponding cone in (B, P).

Let p be a general point of B̃1, so that the ray R�0p does not intersect the discriminant
locus in B̃1. For every s ∈R>0, we denote by θuj(sp) the theta function θuj computed at the s-

rescaled point s p by the scattering diagram D1,Fi=0
(X̃,D̃)

. Note that for every s, s′ ∈R>0, θuj(sp)

and θuj(s
′p) are related by parallel transport from s to s′ by consistency of the scattering

diagram D1,Fi=0
(X̃,D̃)

. Our goal is to show that for 0< s<< 1, the theta functions θuj(sp) coincide

with the theta functions θuj computed by the heart of the canonical scattering diagram D♥
(X,D),

and that for s>> 1, the theta functions θuj(sp) coincide with the theta functions θuj computed
by the canonical scattering diagram D(X,D). This will imply Theorem 4·6.

It is enough to show that for 0< s<< 1, all broken lines contributing to θuj(sp) only

intersect walls of D♥
(X,D), and that for s>> 1, all broken lines contributing to θuj(sp) only

intersect walls of the asymptotic scattering diagram of D1,Fi=0
(X̃,D̃)

. For that, it is enough to
study how the broken lines contributing to θuj(sp) change as a function of s. As long as
broken lines do not pass through the discriminant locus, it follows from the radiant property
of D1,Fi=0

(X̃,D̃)
reviewed in Theorem 4·5 that the broken lines move continuously as a function

of s by s-rescaling of the intersection points with the walls. In particular, one obtain a one-
to-one correspondence between broken lines at different values of s as long as no broken
line passes through the discriminant locus.

It remains to study how the broken lines change when passing through the discriminant
locus. This can be done by an explicit local analysis as follows. Assume that there exists
a broken line β crossing a wall in ρ∞ for some value of s, going to the discriminant locus
for s approaching a critical value scrit. Let aβzmβ be the monomial attached to the linearity
domain of β just before crossing the wall. Let βin be the part of the broken line β consisting
of the linearity domains before crossing the walls. Then, using the notation of Theorem 4·5
and Figure 6, the possible ways to continue βin in a broken line after crossing the wall in ρ∞
are in one-to-one correspondence with the monomials in

aβzmβ f
〈mβ ,n〉
y′ tκ∞〈mβ ,n〉 , (4·6)

where fy′ denotes the wall crossing function attached to ρ∞, and by κ0 we denote the kink of
the MVPL function ϕi defined in (4·3) along ρ∞. Similarly, for s< sin, the possible ways to
continue the s-rescaling of βin in a broken line after crossing the wall in ρ0 are in one-to-one
correspondence with the monomials in

aβzmβ f 〈m,n〉
y tκ0〈mβ ,n〉, (4·7)

where fy denotes the wall crossing function attached to ρ0, and by κ0 we denote the kink of
the MVPL function ϕi defined in (4·3) along ρ0.
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The heart of canonical wall structures 407

Figure 7. The broken lines defining theta functions on D♥
(X,D) on the left and on D(X,D) on

the right.

It follows from [4, lemma 4·20] (see the final equation in the proof of [4, lemma 4·20] by
inserting Fi = 0 for the fiber classes), that the functions fy and fy′ are related by the equation

fy = t−
∑

j Ej
ρ z
κ i
ρmi
℘(fy′), (4·8)

where Ej
ρ , for 1 ≤ j ≤ κ i

ρ denotes the classes of the exceptional curves of the blow-up Dρi

along Hij, and ℘ is the parallel transport map defined in (4·5). By substituting the formula
for fy given in (4·8) to (4·7), one can rewrite (4·7) as

aβz
mβ+κ i

ρmi〈mβ ,n〉
tκ0〈mβ ,n〉−∑

j Ej
ρ〈mβ ,n〉

℘(fy′). (4·9)

Note that kinks κ0 and κ∞ are related by the formula

κ∞ − κ0 = −
κ i
ρ∑

j=1

Ej
ρ , (4·10)

by [4, equation 3·37]. Thus, κ0〈m, n〉 − ∑
j Ej
ρ〈m, n〉 =℘(κ∞). Hence, it follows that (4·7) is

obtained by applying the parallel transport ℘ to (4·6). More precisely, the parallel transport
℘ induces a one-to-one correspondence between the monomials in (4·6) and the monomials
in (4·7), and so we have a well-defined continuous way to deform the broken lines across
the discriminant locus from s> scrit to s< scrit, see Figure 7 for an example.

Therefore, rescaling by s ∈R>0 the intersection points with the walls, along with the
above local parallel transport around the discriminant locus, is a well-defined way to con-
tinuously deform the broken lines contributing to θuj(sp) as a function of s. As there are
finitely many 1 � j � l, and finitely many broken lines contributing to θuj(p), with finitely
many bendings (recall that we work modulo the ideal I), we deduce that for s> 0 small
enough, the distance to the origin of all the intersection points of all broken lines contribut-
ing to θuj(sp) are all strictly smaller than one for all 1 � j � l. Hence, these broken lines only

intersect walls of D♥
(X,D). Similarly, for all s> 0 large enough, the distance to the origin of

all the intersection points of all broken lines contributing to θuj(sp) are all strictly bigger
than one for all 1 � j � l. Hence, these broken lines only intersect walls of the asymptotic
scattering diagram of D1,Fi=0

(X̃,D̃)
.
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Remark 4·7. Note that a particular consequence of 4·6 is that though the heart of the
canonical wall structure D♥(X, D) associated to a log Calabi–Yau pair is defined over the
localisation QE(X, D) of the relevant monoid Q(X, D) at exceptional curve classes, as in
(4·1), the mirror to (X, D) is nonetheless obtained as a family over Q(X, D). This is indeed
natural, since in the wall structure D♥(X, D) the only occurrence of the negative powers
of exceptional curve classes are on the finitely many incoming walls – this is a particular
corollary of the main result of [4] that asymptotically the wall structure D̃1

(X̃,D̃)
is equivalent

to the canonical wall structure, in which the coefficients of the wall functions correspond to
honest effective curve classes. The occurrence of negative powers of the exceptional curve
classes in the finitely many incoming walls does not change the fact that the resulting ring
of theta functions obtained by broken lines in D♥(X, D) defines a family over Q(X, D).

Example 4·8. Let X be the blow-up of a non-toric point in P
2 as in Example 3·17, for which

the the height one slice of the canonical wall structure associated to the degeneration (X̃, D̃)
is illustrated in Figure 4. The broken lines defining theta functions with end point at a general
point p0 on D♥

(X,D) are given by

ϑ(1,0) = x, ϑ(0,1) = y, and ϑ(−1,−1) = x−1y−1(1 + xz−[E])z[L] .

On the other hand, the broken lines defining theta functions with end point at a general point
p′ on Das

(X̃,D̃)
∼=D(X,D) are given by

ϑ ′
(1,0) = x, ϑ ′

(0,1) = xy, and ϑ ′
(−1,−1) = x−1y−1(1 + x−1z[E])z[L−E] .

Observe that in this example the theta functions are related by a parallel transport map
defined in (4·5), which is along a path on the upper half plane mapping p0 to p′ by

℘ : k[�][Q(X, D)] −→ k[�][Q(X, D)]

tqz(1,0) �−→ tqz(1,0)

tqz(0,1) �−→ tqz(1,1)

The mirror family to (X, D) in this case, is given by

Speck[Q(X, D)][ϑ(1,0), ϑ(0,1), ϑ(−1,−1)/
(
ϑ(1,0)ϑ(0,1)ϑ(−1,−1) = z[L] + ϑ(1,0)z

[L−E]) ,

or equivalently, by

Speck[Q(X, D)][ϑ ′
(1,0), ϑ

′
(0,1), ϑ

′
(−1,−1)]/

(
ϑ ′

(1,0)ϑ
′
(0,1)ϑ

′
(−1,−1) = z[L] + ϑ ′

(1,0)z
[L−E]) .

5. Explicit equations for mirrors to log Calabi–Yau pairs in dimension three

In this section we first illustrate how to obtain the concrete equation of the mirror, in the
simple situation when we blow-up a single hypersurface in a three dimensional log Calabi–
Yau pair. We then study the situation when several hypersurfaces are blown-up.

Example 5·1. Let � be the toric fan of X� = P
3, with rays generated by e1, e2, e3 and e1 −

e2 − e3. Consider the blow-up of X� with center a general degree d hypersurface H ⊂ D1

contained in a component D1 in the toric boundary corresponding to the ray generated by e1.
The initial walls of the heart of the associated wall structure, D♥

(P3,H)
are displayed in Table 1.
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Table 1. Initial walls of D♥
(P3,H), where L denotes class of the strict trans-

form of a general line in P
3 and E denotes the class of a fiber of the

exceptional divisor. By 〈ei, ej〉 we denote the cone spanned by ei and ej.

d fd
〈e1, e2〉, 〈e1, e3〉, 〈e1, −e1 − e2 − e3〉 (1 + t−Ex)d

〈−e1, e2〉, 〈−e1, e3〉, 〈−e1, −e1 − e2 − e3〉 (1 + tL−Ex)d

Figure 8. The initial walls of D♥
P3,H formed by the widget corresponding to a hypersurface of

degree d in the toric boundary.

To obtain a consistent wall structure we extend each of the initial walls as illustrated in
Figure 8. Let ϕ be the PL function as in Section 3·3·3, which vanishes on the positive octant
and whose kinks on each of the two dimensional cells of � are the class [L] of the strict
transform of a general line in P

3. We fix a general point p in the positive octant. The theta
functions with endpoint p, and asymptotic directions given by the asymptotic directions of
the rays of �, are given by

ϑe1 = z(1,0,0) = x, (5·1)

ϑe2 = z(0,1,0) = y,

ϑe3 = z(0,0,1) = z,

ϑe4 = z(−1,−1,−1)(1 + t−[E]x
)d

t[L] = 1

ϑ1ϑ2ϑ3

(
1 + t−[E]ϑ1

)d
t[L] ,

where the factor t[L] is the contribution from the kink of ϕ. It follows from (5·1) that the
mirror to (X, D) is given by

Speck[Q(X, D)][ϑe1 , ϑe2 , ϑe3 , ϑe4]/
(
ϑe1ϑe2ϑe3ϑe4 = (1 + t−[E]ϑe1 )dt[L]), (5·2)

where [L] is the class of a general line and [E] is the class of an exceptional fiber over H,
and Q(X, D) is the relevant monoid associated to (X, D) defined as in (3·5).

We next consider the situation when we blow-up a disjoint union of two hypersurfaces
contained in toric boundary components of P3. In this case, the walls formed by widgets
of the tropicalisations of these hypersurfaces interact. This creates a pretty sophisticated
wall structure, even in the simplest case when the center of blow up is a disjoint union of
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Table 2. Walls of D(P3,�),in formed by the two widgets in Figure 9.

d fd
〈e1, e2〉, 〈e1, e3〉, 〈e1, −e1 − e2 − e3〉 1 + t1x
〈e2, e1〉, 〈e2, e3〉, 〈e2, −e1 − e2 − e3〉 1 + t2y

Figure 9. The walls of D(P3,�1∪�2),in formed by two widgets obtained by deformations of the two
tropical lines corresponding to �1 and �2.

two lines, and requires to do first the combinatorial construction of the toric wall structure
D(X� ,H) for purposes of book keeping, and then passing to the heart of the canonical wall
structure. Before proceeding with the more general situation, we first analyse in detail the
case with two lines, in which we a priori obtain infinitely many walls in the heart of the
canonical wall structure.

Example 5·2. Let X be the blow-up of P3 with center two disjoint lines �1, �2 contained in
two different components D1, D2 in the toric boundary divisor D� ⊂ P

3, and D be the strict
transform of D� . The set of ray generators of the toric fan� of P3 is given by {e1, e2, e3, e4 =
−e1 − e2 − e3}, where {ei | 1 � i � 3} is the standard basis in R

3. We further set

ze1 = x, ze2 = y, ze3 = z, and z−e1−e2−e3 = 1/xyz.

The walls of the initial wall structure D(P3,�1∪�2),in are formed by the two widgets, illustrated
in Figure 9. We list the set of walls of D(P3,�1∪�2),in in Table 2. The set of ray generators for
the initial joints in D(P3,�1∪�2),in is then given by

{( − 1, −1, −1), (0, 0, 1), (1, 0, 0), (0, 1, 0)}
We first need to check for consistency up to order 1 around all these initial joints, and then
repeat it consecutively for higher orders, analysing also the new joints formed at each step.
We describe how to do this in detail below.
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Figure 10. On the left is the projection of the walls of D1 := D(P3,D�),in adjacent to the joint
〈(1, 0, 0)〉, along 〈(1, 0, 0)〉. On the right is the projection of the walls of D(P3,D�), adjacent to
〈(1, 0, 0)〉. We write the attached function to each wall inside the nearby box.

Order 1 Corrections. Let us denote D1 := D(P3,D� ),in. First, we check consistency in D1

around the joint generated by (1, 0, 0) : The projections of the walls of D1 adjacent to
〈1, 0, 0〉, along 〈1, 0, 0〉, are illustrated in Figure 10. Note that to remember the normal
directions of the walls adjacent to a joint, we label them on each of the rays obtained
after projecting them along the joint. By the formula (3·11), the wall crossing functions
attached to the walls of D1, transfer the monomials x,y and z as follows: x remains invariant
since in (3·11) the power of the wall crossing function vanishes. For y, consecutively apply-
ing the wall crossing transformations, going counterclockwise around the joint with a loop
illustrated as in Figure 10, we obtain

y �−→ y �−→ y(1 + t1x)−1 �−→ y(1 + t1x)−1(1 + t1x) = y.

Hence, y remains invariant as well. However for z, at order 1 (i.e. up to higher order terms
of degree at least 2) we obtain,

z �−→z(1 + t1x)−1(1 + t2y)−1

�−→z(1 + t1x)(1 + t1x)−1(1 + t2y(1 + t1x)−1)−1 = z(1 + t2y(1 + t1x)−1)−1

�−→z(1 + t2y(1 + t1x)(1 + t1x)−1)−1 = z(1 − t2y)

Hence at first order, z is not invariant. To correct the discrepancy for z to be invariant at first
order, following the recipe explained in [4, theorem 5·6], we set

D2 := D1 ∪ (〈(1, 0, 0), (0, −1, 0)〉, 1 + t2y)

to be the wall structure obtained from D1 by inserting the wall (〈(1, 0, 0), (0, −1, 0)〉, 1 +
t2y). Next we check consistency around the joint generated by (0, 1, 0) : The walls of D2

which are adjacent to 〈(0, 1, 0)〉 are illustrated after projecting along 〈(0, 1, 0)〉 in Figure 11.
Applying the wall-crossing automorphisms to x,y,z, at degree 1, we obtain

x �−→ x, y �−→ y, z �−→ z(1 − t1x)

Hence, to do the first order correction, we set

D3 := D2 ∪ (〈(0, 1, 0), ( − 1, 0, 0)〉, 1 + t1x)
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Figure 11. On the left is the projection of the walls of D1 := D(P3,D�),in adjacent to 〈(0, 1, 0)〉,
along 〈(0, 1, 0)〉. On the right is the projection of the walls of D(P3,D�), adjacent to 〈(0, 1, 0)〉. We
write the attached function to each wall inside the nearby box.

Next checking consistency around the joint generated by (0, 0, 1) and proceeding analo-
gously, we define

D4 := D3 ∪ (〈(0, 0, 1), ( − 1, 0, 0)〉, 1 + t1x) + (〈(0, 0, 1), (0, −1, 0)〉, 1 + t2y)

For consistency around the joint generated by ( − 1, −1, −1), applying the wall-crossing
automorphisms to the monomials x,y,z, we obtain

x �−→ x(1 + t2y), y �−→ y(1 − t1x), z �−→ z(1 + t1x − t2y)

Proceeding analogously, we set

D5 := D4 ∪ (〈( − 1, −1, −1), ( − 1, 0, 0)〉, 1 + t1x) + (〈( − 1, −1, −1), (0, −1, 0)〉, 1 + t2y)

The set of all joints of D5 is given by

{(0, −1, 0), ( − 1, 0, 0), ( − 1, −1, −1), (0, 0, 1), (1, 0, 0), (0, 1, 0)}.
Now, it is easy to verify that D5 is consistent to order 1 around all these joints. So, we can
continue with consistency at order 2.

Order 2 Corrections. Consistency around the joint generated by ( − 1, −1, −1): D5 is not
consistent to order 2 around this joint. Indeed, the wall crossing functions transform x,y,z by

x �−→ x(1 + t1t2xy), y �−→ y(1 − t1t2xy), z �−→ z

To correct this, we define

D6 := D5 ∪ (〈(1, 0, 0), ( − 1, −1, 0)〉, 1 + t1t2xy).

Consistency around the joint generated by (0, 1, 0) : D6 is not consistent to order 2. The
wall crossing functions transform x,y,z by

x �−→ x, y �−→ y, z �−→ z(1 − t1t2xy)
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To correct this, we define

D7 := D6 ∪ (〈(0, 1, 0), ( − 1, −1, 0)〉, 1 + t1t2xy)

Consistency around the joint generated by (0, 0, 1) : D7 is not consistent to order 2. The
wall crossing functions transform x,y,z by

x �−→ x(1 + t1t2xy), y �−→ y(1 − t1t2xy), z �−→ z

So, we define

D8 := D7 ∪ (〈(0, 0, 1), ( − 1, −1, 0)〉, 1 + t1t2xy).

Consistency around the joint generated by ( − 1, −1, −1): D8 is not consistent to order 2.
The wall crossing functions transform x,y,z by

x �−→ x(1 + t1t2xy), y �−→ y(1 − t1t2xy), z �−→ z

To correct this, we define

D9 := D8 ∪ (〈( − 1, −1, −1), ( − 1, −1, 0)〉, 1 + t1t2xy).

Now, we are done with order 2. Note that the set of joints of D9 is given by

{(0, −1, 0), ( − 1, 0, 0), ( − 1, −1, 0), ( − 1, −1, −1), (0, 0, 1), (1, 0, 0), (0, 1, 0)}
and D9 is consistent around all these joints to order 2. Moreover, it is easy to verify that in
D9 around the joints (0, 0, 1) and ( − 1, −1, −1) we already have consistency to all orders,
hence no new wall which are adjacent to either of z or 1/xyz will be inserted at the next
steps. Although the process of inserting new walls will never terminate in this example,
all the remaining walls will have support on the plane spanned by e1 and e2. Using magma
computer algebra, and continuing to do higher order corrections around the other joints
consecutively we deduce that achieving consistency around the joint 〈(1, 0, 0)〉 requires the
insertion of infinitely many new walls to D9, given by

(〈(1, 0, 0), ( − 1, −1, 0)〉, 1 + t1t2xy) ∪
⋃

(a,b)∈Z2

b<a<0

(〈(1, 0, 0), (a, b, 0)〉, f(a,b,0)) .

To write the equations of mirror families, we do not need to provide closed formulas for
f(a,b,0)’s, as we will see in a moment. We nonetheless note that such a closed formula
would provide one the data of of counts of A1-curves – as explained in [4, section 7], such
counts correspond to coefficients of log f(a,b,0). It is a challenging task beyond the scope
of this paper to write such closed formulas. Proceeding similarly, achieving consistency
around the other joints of D9, requires the insertion of infinitely many new walls to D9 with
support on the plane spanned by e1 and e2. We compute the limits of all the products of the
corresponding wall crossing functions and obtain the following:

PROPOSITION 5·3. The walls of D(P3,�1∪�2), up to equivalence, are displayed in Table 3.
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Table 3. Walls of D(P3,�1∪�2), where e4 = −e1 − e2 − e3. Here the first two rows corre-
spond to initial walls.

d fd
〈e1, e2〉, 〈e1, e3〉, 〈e1, e4〉 1 + t1x
〈e2, e1〉, 〈e2, e3〉, 〈e2, e4〉 1 + t2y
〈e3, −e1〉, 〈e4, −e1〉 1 + t1x
〈e3, −e2〉, 〈e4, −e2〉 1 + t2y
〈−e2, −e1 − e2〉, 〈−e1, −e1 − e2〉, 〈e3, −e1 − e2〉, 〈e4, −e1 − e2〉 1 + t1t2xy
〈e1, −e2〉 1 + t2y + t1t2xy
〈e2, −e1〉 1 + t1x + t1t2xy

Figure 12. Walls of the consistent wall structure D(P3,�1∪�2) which lie on the 〈e1, e2〉 plane. Each
upward pointing arrow on a joint indicates that there is a wall spanned by it and 〈(1, 0, 0)〉.
Each downward pointing arrow on a joint indicates that there is a wall spanned by it and
〈( − 1, −1, −1)〉.

Proof. Since up to equivalence there is a unique consistent will structure, is suffices to
check that the wall structure with the final walls listed in Table 3 is consistent. For this,
we check consistency around each of the joints. Tracing around the joint 〈(1, 0, 0)〉, with a
loop illustrated on the right hand side of Figure 10, we immediately obtain x �→ x, y �→ y
as computed above while doing the first order corrections on D1. Moreover, now for the
monomial z, we obtain

z �−→z(1 + t1x)−1(1 + t2y)−1

�−→z(1 + t1x)(1 + t1x)−1(1 + t2y(1 + t1x))−1 = z(1 + t2y(1 + t1x))−1

�−→z(1 + t2y + t1t2xy)(1 + t2y(1 + t1x))−1 = z �−→ z

Hence, we get consistency to all orders around 〈(1, 0, 0)〉. Consistency around 〈(0, 1, 0)〉
follows analogously by replacing x by y in the above computation. The consistency around
the other joints is an analogous straight forward computation.

We illustrate the walls of D(P3,�1∪�2) in Figure 12. We pass from the ti-variables on the walls
of D(P3,�1∪�2) to the curve classes variables, as explained in Section 3·4·3. Further, we insert

all fiber classes F = 0, as explained in Section 4, to obtain the walls of the heart D♥
(X,D) of the

canonical wall structure, which are displayed in Table 4. Observe that, by picking a general
point p in the positive octant spanned by e1, e2, and e3 we ensure that the only broken lines
that are not never-bending are the ones with asymptotic direction −e1 − e2 − e3, which cross
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Table 4. Walls of D♥
(Bl�1∪�2 (P

3),D)

d fd
〈e1, e2〉, 〈e1, e3〉, 〈e1, e4〉 1 + t−E1 x
〈e2, e1〉, 〈e2, e3〉, 〈e2, e4〉 1 + t−E2 y
〈e3, −e1〉, 〈e4, −e1〉 1 + tL−E1 x
〈e3, −e2〉, 〈e4, −e2〉, 1 + tL−E2 y
〈−e1, −e1 − e2〉, 〈−e2, −e1 − e2〉, 〈e3, −e1 − e2〉, 〈e4, −e1 − e2〉 1 + tL−E1−E2 xy
〈e1, −e2〉 1 + tL−E2 y + tL−E1−E2 xy
〈e2, −e1〉 1 + tL−E1 x + tL−E1−E2 xy

Table 5. Walls of D(P3,H1∪H2),in

d fd
〈e1, e2〉, 〈e1, e3〉, 〈e1, −e1 − e2 − e3〉 (1 + t1x)d1

〈e2, e1〉, 〈e2, e3〉, 〈e2, −e1 − e2 − e3〉 (1 + t2y)d2

the wall (〈(1, 0, 0), (0, 1, 0)〉, (1 + t[−E1]x)(1 + t[−E2]y)). The theta functions defined by these
broken lines are given by

ϑe1 = x, ϑe2 = y, ϑe3 = z, and ϑe4 = x−1y−1z−1(1 + t[−E1]x)(1 + t[−E2]y)t[L]. (5·3)

In this case, the mirror to (X, D) is given by

Speck[Q(X, D)][ϑe1 , ϑe2 , ϑe3 , ϑe4]/(ϑe1ϑe2ϑe3ϑe4 = (1 + t[−E1]ϑe1)(1 + t[−E2]ϑe2)t[L]),

where −[E1] denotes the class of an exceptional curve over �1, and −[E2] is the class of an
exceptional curve over �2.

Remark 5·4. Note that X in Example 5·2 is a Fano variety with Mori-Mukai name MM
3 − 25 – see [8]. Moreover, the associated superpotential to X given in [8, table 1], agrees
with the sum of the theta functions we compute in (5·3), defining the tropical superpotential
as in [7], which conjecturally agrees with the superpotential of [8]. So, we verify that the
expectation that the mirror construction of [16] is compatible with the manifestations of
Landau–Ginzburg mirror symmetry.

Example 5·5. Let X be the blow-up of P3 with center a disjoint union of a degree d1 hyper-
surface H1 and a degree d2 hypersurface H2 contained in two different components, say D1

and D2 respectively, in the toric boundary divisor D� ⊂ P
3, and D be the strict transform

of D� . We list the set of walls of D(P3,H1∪H2),in, along with the attached functions in this
case in Table 5. Doing order by order consistency check around all joints, analogously as in
Section 5·2 we obtain infinitely many walls on the plane spanned by e1 and e2. By the aid
of magma computer algebra [6], we deduce that the final consistent wall structure again is
formed by these infinitely many walls supported on the 〈e1, e2〉 plane, together with walls
whose supports are on the cones 〈j, e3〉 and 〈j, e1 − e2 − e3〉, for any joint j on the e1 − e2

plane displayed in Figure 13. Again by picking a generic point p in the positive octant
spanned by e1, e2, e3, similarly as in Section 5·2, we the obtain the theta functions defined
by broken lines with endpoint p, given by
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Figure 13. Walls of the consistent wall structure D(P3,H1∪H2) which lie on the 〈e1, e2〉 plane.
Each upward pointing arrow on a joint indicates that there is a wall spanned by it and 〈(1, 0, 0)〉.
Each downward pointing arrow on a joint indicates that there is a wall spanned by it and
〈( − 1, −1, −1)〉.

ϑe1 = x, ϑe2 = y, ϑe3 = z, and ϑe4 = x−1y−1z−1(1 + t[−E1]x)d1(1 + t[−E2]y)d2 t[L].
(5·4)

Therefore, the mirror to (X, D) is given by

Speck[Q(X, D)][ϑe1 , ϑe2 , ϑe3 , ϑe4]/(ϑe1ϑe2ϑe3ϑe4 = (1 + t[−E1]ϑe1)d1(1 + t[−E2]ϑe2 )d2 t[L]),
(5·5)

where Q(X, D) is the relevant monoid associated to (X, D) defined as in (3·5), [L] is the
class of a general line, [E1] is the class of a fiber over H1 and [E2] is the class of a fiber
over H2.

6. Comparison with the work of Abouzaid–Auroux–Katzarkov

In this section we first overview the mirror construction of Abouzaid–Auroux–Katzarkov
for blow-ups of toric varieties along a smooth hypersurface [1] using symplectic geometric
techniques and then compare it with our construction [4] following the algebro-geometric
framework of Gross–Siebert. The main result in this section shows that these two construc-
tions agree.

Let V be a smooth projective toric variety and H ⊂ V a smooth hypersurface. Denote by
X the blow-up of P1 × V at {0} × H, and let D be the strict transform of the toric boundary
divisor of P

1 × V . The mirror to the log Calabi–Yau pair (X, D), by which we mean the
mirror to the open Calabi–Yau manifold X0 = X \ D, from the SYZ point of view [19] is
constructed by Abouzaid–Auroux–Katzarkov using symplectic geometric techniques [1].2

Note that X0 is apriori described on [1, p. 5] as a conic bundle. However, it follows that it
actually agrees with X \ D – see [1, p. 16].

The explicit mirror construction we outline in this paper, following our work with Mark
Gross using algebro-geometric tools coming from the Gross–Siebert program [4], is in some
sense both more general and in other both more special: it is more general that we can con-
sider more than a single hypersurface, and construct mirrors to blow-ups of toric varieties
along unions of many hypersurfaces. However, it is also more special as we fix the tropical
types of hypersurfaces, so that the tropicalisations of the hypersurfaces we consider corre-
spond to widgets as defined in (3·10). On the other hand, in [1], it is allowed to consider

2 In [1] one starts with C× V rather than P
1 × V . However, the complement X \ D in either case if the

same. Thus, for convenience in this section we adopt [1] to the situation when we start with the compact
toric variety P

1 × V apriori, to be able to compare it with the construction of [4].
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any generic tropical type of hypersurfaces, and in particular, the mirror constructed in [1]
depends on a chosen tropical type of the hypersurface, while in [4] we apriori fix the type. In
what follows, we consider the special case of the [1] mirror where the tropical type is fixed
as in [4].

Remark 6·1. Allowing the tropical type of the hypersurface to vary as in [1], amounts to
considering a 1-parameter of hypersurfaces Ht inside V, which define a 1-parameter family
of complex structures on X \ D. As manifested by mirror symmetry, the complex moduli
space corresponds to the Kähler moduli space of the mirror. Hence, the mirror of [1] encodes
the data of a choise of Kähler parameter, while in the construction of [4] this parameter is
fixed. A particular consequence of fixing such a parameter is that the mirrors to the blow ups
of toric varieties in [4], which we explicitly write equations for in this paper, are typically
singular. However, in [1], by varying the Kähler parameter, which amounts to a birational
modification of the mirror, they construct a smooth mirror. Nonetheless, their construction
can be carried in the situation when one considers a constant family of hypersurfaces, and in
this special case we show it agrees with our construction. We expect that one can construct
a 1-parameter family of the (heart of the) canonical wall structure as in [16], which would
allow one to vary the type of hypersurfaces and produce a resolution of the mirror in the
situation where one works with blow ups of toric varieties along several hypersurfaces.

To define the mirror to X0, denoted by Y0 in [1, theorem 1·7], we will first describe a toric
variety Y by defining its momentum polytope as the upper convex hull of a piecewise-linear
(PL) function.

Assume that dimV = n, and let �V denote the fan of V in R
n. Let

ϕH : Rn −→R (6·1)

be a PL function with kink H · Cτ , the intersection number of H with Cτ , across a codi-
mension one cone τ of �V where Cτ is the curve in V corresponding to τ . As discussed
in Section 2 knowing the kinks along codimension one cones, determines a PL function
only up to a linear function. To get a unique PL function, without loss of generality in what
follows we assume that ϕH is zero on a given maximal dimensional cone σ0 of �V .

The PL function ϕH is one of the main ingredients to construct the mirror family to blow-
ups of toric varieties along hypersurfaces following our work with Mark Gross – note that
ϕH is denoted by ϕi in [4, equation 3.14], as in that context when we consider more than
one hypersurface we keep track of them by indexing with i. Though apriori in [4] we use an
alternative description for this function, it is shown in the proof of [4, theorem 3·4] that it
follows from standard toric geometry that the kinks of ϕi agree with the kinks of ϕi described
as above, given by the intersection number of H with Cτ , across a codimension one cone τ
of �V .

The following proposition shows that the PL function ϕH furthermore agrees with the PL
function used in the work of Abouzaid–Aroux–Katzarkov defined in [1, equation 3·2], in the
particular situation when one considers a constant family of hypersurfaces, as discussed in
Remark 6·1 (in this case the ρ(α) in [1, equation 3·2] are all zero).
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PROPOSITION 6·2. Let A be the set of vertices of the momentum polytope image, �V, of
the toric variety V, defined using the polarisation defined by the hypersurface H ⊂ V. Let
ϕ : Support(�V ) =R

n →R be a PL function defined by

ϕ(ξ ) = max{〈a, ξ〉 | a ∈ A}. (6·2)

Then, ϕ agrees with ϕH up to a linear function.

Proof. It suffices to show that ϕ and ϕH have the same kinks along codimension one
cones of �V . Let τ be such a cone, adjacent to maximal cones σ1, σ2 of �V and let Cτ
be the corresponding curve in V . It follows directly from the definition of the dual fan �V

associated to�V , that the restriction of the PL function ϕ to the maximal cones are given by
the linear functions defined by

ϕ|σ1 = 〈·, a1〉 and ϕ|σ2 = 〈·, a2〉,
where a1 and a2 are vertices of �V corresponding to the maximal cones σ1 and σ2 of �V

respectively. The kink of the PL function ϕ along τ , which by definition is the difference of
the slopes of ϕ|σ1 and ϕ|σ2 , equals the integral length of the edge with vertices σ1 and σ2 in
�V . However, by standard toric geometry this integral length equals the intersection number
H · Cτ . Hence, the result follows.

Without loss of generality we can assume that ϕH is zero on the maximal cone σ0 of
�V , as we had assumed for ϕH . Hence, we identify the two PL functions ϕ and ϕH in the
remaining part of this section.

Now, to define the mirror of X0 following [1], one first defines the (n + 1)-dimensional
toric variety Y with momentum polyope

�Y = {(η, ξ ) ∈R⊕R
n | η� ϕH(ξ )} ⊂R⊕R

n .

Let m1, . . . , mr be primitive generators of the rays of �V . For every 1 � i � r, the point
(ϕH(mi), mi) ∈R⊕R

n belongs to�Y , and so the monomial z(ϕH(mi),mi) defines a global func-
tion vi on Y . Similarly, as (1, 0) ∈�Y , the monomial z(1,0) defines a global function v0 on Y .
The ring C[Y] of regular functions on Y is generated by v0, v1, . . . , vr, because the vectors
(ϕH(mi), mi) and (1, 0) span the cone �Y . The AAK mirror is the variety

Y◦ := Y × SpecC[t±E] \ w−1
0 (0) (6·3)

obtained from Y by removing the hypersurface defined by the vanishing of the function
w0 : Y × SpecC[t±E] →C given by

w0 := −tE + tEv0,

where E is the class of exceptional P1-fibers over H.
Note that, we view the mirror to the log Calabi–Yau (X, D) as a family, where the com-

plex structure can vary, hence we call the family Y0 over C defined above the mirror to Y ,
although it is natural to call a general fiber of Y0 the mirror (in [1], Y0 stands for a general
fiber of the total space Y0 →C

∗ we define above). The following main result of this sectin
shows that the mirror of [1] agrees with our mirror in [4], when we consider the specific
situation of blow ups of toric varieties along a single hypersurface.
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THEOREM 6·3. The restriction of the mirror family Y → Speck[Q(X, D)], constructed
following [4], to the locus C

∗ = SpecC[t±E] ⊂ Speck[Q(X, D)] is isomorphic to the AAK
mirror Y0.

Proof. We first describe C[Y◦] as a subalgebra of the field C(Z⊕Z
n) of rational functions

in the monomials zm with m ∈Z⊕Z
n. Let ϕ be the PL function as in (6·1) and let p be a

general point in the maximal cone σ0 of�V where ϕH = 0. Fix 1 � i � r. The line p +R�0mi

intersects some number (possibly zero) of codimension one cones τj of �V , with normal
vectors nτj . As ϕH has a kink κτj across each of these cones, we have

ϕH(mi) =
∑

j

(nτj , mi)κτj

and so

vi = z(ϕH(mi),mi) = z(0,mi)
∏

j

(z(1,0))(nτj ,mi)κτj . (6·4)

In other words, the algebra C[Y◦] is the subalgebra of C(Z⊕Z
n) generated by

v0 = z(1,0) ,

vi = z(0,mi)
∏

j

(z(1,0))(nτj ,mi)κτj

for 1 � i � r, and

w′
0 = ( − tE + tEz(1,0))−1 .

Next, we describe the mirror following our work [4], using the heart of the canonical
wall structure we introduced in Section 4, and compute its restriction to C

∗ = SpecC[t±E]
setting all non-exceptional curve classes to zero. In particular, all the kinks of the heart of the
canonical wall structure are trivial because they are all pullback of toric curve classes. The
heart of the canonical wall structure of (X, D) lives in R⊕R

n. For every codimension-one
cone τ of �V , we have a wall ρτ := R⊕ τ in R⊕R

n, with attached function

fρτ := (1 + t−Ez−(1,0))κτ ,

where κτ is the kink of ϕH across τ . The ring RX,D of regular functions on the GS/HDTV
mirror of (X, D) is spanned by theta functions ϑ0, ϑ1, . . . , ϑr, ϑ ′

0 corresponding respectively
to the rays of the fan of P1 × V in R⊕R

n spanned by ( − 1, 0), (0, m1), . . . , (0, mr), (1, 0).
We compute the theta function at a point (ε, p) ∈R⊕R

n with ε �= 0. First of all, we have
ϑ0 = z(−1,0) and ϑ ′

0 = z(1,0). For every 1 � i � r, moving along the line (ε, p) +R�0(0, mi),
we encounter the walls R⊕ τj, where the cones τj are as above. In particular, we have

ϑi = z(0,mi)
∏

j

(1 + t−Ez−(1,0))(nτj ,mi)κτj .

In other words, the algebra R(X,D) is the subalgebra of C(Z⊕Z
n) generated by

ϑ0 = z−(1,0) ,

ϑi = z(0,mi)
∏

j

(1 + t−Ez−(1,0))(nτj ,mi)κτj
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for 1 � i � r, and

ϑ ′
0 = z(1,0) .

Comparing the embeddings of C[Y◦] and RX,D in C(Z⊕Z
n), we obtain that the automor-

phism of C(Z⊕Z
n) defined by z(1,0) �→ 1 + t−Ez−(1,0) and z(0,m) �→ z(0,m) for every m ∈Z

n

restricts to an algebra isomorphism

� : C[Y0] −→R(X,D) ,

such that �(v0) := 1 + t−Eϑ0, �(vi) = ϑi for 1 � i � r, and �(w′
0) = ϑ ′

0.
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