ON ALGEBRAIC GROUPS DEFINED BY NORM FORMS OF SEPARABLE EXTENSIONS

TAKASHI ONO

Let K be any field, and L a separable extension of K of finite degree. Lhas a structure of vector space over K, and we shall denote this space by V. The space of endomorphisms of V will be denoted by $\mathfrak{C}(V)$. Let x be any element of L, and N(x) the norm of x relative to the extension L/K. then a function defined on V with values in K. We shall call N the norm form on V. The multiplicative groups of non-zero elements of K and L will be denoted by K^* and L^* respectively. Let H be any subgroup of K^* . Then the elements z of L^* such that $N(z) \in H$ form a subgroup of L^* , which we shall denote by G_H . On the other hand the elements s of $\mathfrak{E}(V)$ such that $N(sx) = \Lambda(s)N(x)$ with $\Lambda(s) \in H$ for all $x \in V$, form obviously a subgroup of GL(V), which we shall denote by \widetilde{G}_H . \widetilde{G}_H becomes an algebraic group if $H = K^*$ or $\{1\}$. In case $H = K^*$, $\widetilde{G}_H = \widetilde{G}_{K^*}$ will mean the group of linear transformations of V leaving semi-invariant the norm form of L/K and in case $H = \{1\}, \quad \widetilde{G}_H = \widetilde{G}_{(1)}$ will mean the group of linear transformations of V leaving invariant the norm form of L/K.

The object of this paper is to investigate the structure of these groups \widetilde{G}_H , particularly in the cases $H=K^*$ and $H=\{1\}$. Our result in most general form reads in Proposition 2, which is obtained under a sole hypothesis that K contains infinitely many elements. Theorems 1 and 2 correspond respectively to the cases $H=K^*$ and $H=\{1\}$. Theorem 2 will show in particular that $G_{(1)}$ is the algebraic component of $\widetilde{G}_{(1)}$, and if L/K is normal, $\widetilde{G}_{(1)}$ may be considered as a semi-direct product of $G_{(1)}$ and the Galois group of L/K. Theorem 3 gives the center of \widetilde{G}_H .

The significance of the group $G_{(1)}$ as an algebraic group was indicated by Chevalley.²⁾ The groups $G_{(1)}$ and $\widetilde{G}_{(1)}$ may be regarded as analogues of special

Received August 18, 1956.

¹⁾ For definition, see p. 127, footnote 3).

²⁾ Théorie des groupes de Lie: Vol. 2, Hermann, Paris, 1951, p. 170. We shall quote this book as C. II. We shall also quote Vol. 3 (1955) of the series as C. III.

126 TAKASHI ONO

orthogonal and orthogonal groups respectively. The groups G_H and \widetilde{G}_H have arithmetic meanings when K is the field of rational numbers, and we have in mind to investigate further arithmetic applications on later occasion.

Now, we denote by § the group of automorphisms of L leaving invariant each element of K. For simplicity we shall call § the automorphism group of L/K. Obviously § is a subgroup of GL(V). Each element $z \in L$ defines an endomorphism $\mu(z)$ of V by

(1)
$$\mu(z)(x) = zx, \qquad x \in V.$$

The mapping μ is clearly an isomorphism of V into $\mathfrak{G}(V)$, and we have $\mu(L^*) = \mu(V) \cap GL(V)$. It follows at once that $\mu(G_H) \subset \widetilde{G}_H$ and $\mathfrak{G} \subset \widetilde{G}_{(1)}$. We shall set $G = G_{(1)}$ and $\widetilde{G} = \widetilde{G}_{(1)}$.

PROPOSITION 1. For any $H \subset K^*$, we have $\mathfrak{G} \cap \mu(G_H) = \{\varepsilon\}$ where ε is the identity endomorphism in $\mathfrak{G}(V)$.

Proof. Take an element $\mu(z) \in \mathfrak{G} \subset \mu(G_H)$. Then, it follows that $1 = \mu(z)(1) = z$ and $\mu(z) = \varepsilon$.

Proposition 2. Assume that K is an infinite field. Then, for any $H \subset K^*$, we have $\widetilde{G}_H = \mu(G_H)$.

Proof. Let N be a Galois extension of K containing L. We denote by \mathfrak{H} and \mathfrak{R} the Galois groups of N/K and N/L respectively. Let $\sigma(\omega)$, $\omega \in N$, $\sigma \in \mathfrak{H}$ be a normal base of N/K. By some representatives τ_i , $1 \le i \le n$, of right cosets of \mathfrak{H} modulo \mathfrak{R} , we put $\eta_i = \sum_{\sigma \in \mathfrak{R}} \sigma \tau_i(\omega)$, $1 \le i \le n$, where we set $\tau_1 = 1$, the identity in \mathfrak{H} . It follows at once that η_i form a base of L/K. Let V^N be the scalar extension of V with respect to N. We define elements λ_j , $1 \le j \le n$, in the dual space $(V^N)^*$ by putting $\lambda_j(\eta_i) = \tau_j(\eta_i)$, $1 \le i$, $j \le n$. Since $\det(\tau_j(\eta_i)) \ne 0$, λ_j , $1 \le j \le n$, form a base of $(V^N)^*$. For $x = \sum_i x_i \eta_i \in V$, we have $N(x) = \prod_j (\sum_i x_i \tau_j(\eta_i)) = \prod_j \lambda_j(x)$. We set $(\eta(s)\lambda)(x) = \lambda(sx)$ for $s \in \mathfrak{E}(V^N)$, $\lambda \in (V^N)^*$, $x \in V^N$. Then clearly we have $\eta(s)\lambda \in (V^N)^*$ and we get $\eta(s)\lambda_j = \sum_k a_{kj}\lambda_k$ with $a_{kj} \in N$. Now let s be any element of \widetilde{G}_H . Then, we have $\prod_j (\sum_k a_{kj}\lambda_k)(x) = \Lambda(s)\prod_j \lambda_j(x)$ for all $x \in V$. As K contains infinitely many elements, this implies that $\prod_j (\sum_k a_{kj}\lambda_k) = \Lambda(s)\prod_j \lambda_j$ in the symmetric algebra on V^N . Thus, by a well known theorem on the decomposition of polynomials, there exists an integer k(j) for each j such that $k(j) \ne k(j')$ if $j \ne j'$, and

 $a_{kj} \neq 0$ if and only if k = k(j). Therefore we have $\eta(s)\lambda_j = a_j\lambda_{k(j)}$, $a_j \in N^*$. In particular for j = 1, we get $s(\eta_i) = \lambda_1(s\eta_i) = (\eta(s)\lambda_1)(\eta_i) = a_1\tau_{k(1)}(\eta_i)$, $1 \leq i \leq n$. Since we have $\sum_i \tau_{k(1)}(\eta_i) = \sum_{\sigma \in \mathfrak{H}} \omega^{\sigma} \in K^*$ and $s(\eta_i) \in L$, this implies that $a_1 \in L$ and we see that $\tau_{k(1)} \in \mathfrak{G}$. As we have $N(sx) = N(a_1\tau_{k(1)}(x)) = N(a_1)N(x)$, it follows that $N(a_1) = \Lambda(s) \in H$. Thus we have $s = \mu(a_1)\tau_{k(1)} \in \mu(G_H)\mathfrak{G}$. q.e.d.

As an immediate cosequence of the two propositions, we get the following

COROLLARY. If K contains infinitely many elements, \tilde{G}_H is a semi-direct product of $\mu(G_H)$ and \mathfrak{G}^3 .

Suppose now K is infinite. We shall restrict our attention to the case where H is algebraic, i.e. $H=K^*$ or $H=\{1\}$. The mapping μ , which is a linear isomorphism of V onto $\mu(V)$, gives also a homeomorphism of V onto $\mu(V)$ in the sense of Zariski-topology, and every closed set in $\mu(V)$ is also closed in $\mathfrak{E}(V)$ since $\mu(V)$, being a linear subspace of $\mathfrak{E}(V)$, is closed in $\mathfrak{E}(V)$. Also each irreducible set of V is mapped on an irreducible set of $\mu(V)$ and vice versa, and every irreducible set in $\mu(V)$ is irreducible in $\mathfrak{E}(V)$. Since $\mu(L^*) = \mu(V) \cap GL(V)$, $\mu(L^*)$ is an algebraic group on V and is irreducible as an open subset in $\mu(V)$. By Proposition 2, the group \widetilde{G}_{K} * has $\mu(G_{K}) = \mu(L^*)$ as a subgroup of a finite index. Thus we get by the above corollary the following

Theorem 1. Let K be an infinite field and L/K a separable extension of finite degree. Then, the group \widetilde{G}_{K}^{*} of all linear transformations of L over K which leave semi-invariant the norm form of L/K is algebraic on the vector space L over K and $\mu(L^{*})$ is the algebraic component of \widetilde{G}_{K}^{*} , μ being defined by (1). Furthermore \widetilde{G}_{K}^{*} is the semi-direct product of $\mu(L^{*})$ and \mathfrak{G} , where \mathfrak{G} is the automorphism group of L/K.

Next, we shall consider the group \widetilde{G} , i.e. the group of all linear transformations of V leaving invariant the norm form of L/K. Of course \widetilde{G} is an algebraic group on V. G being closed in V, $\mu(G)$ is also algebraic. We define a raitonal representation \widetilde{N} of $\mu(L^*)$ by $\widetilde{N}(\mu(x)) = N(x)$, $x \in L^*$. Let H be the smallest algebraic group containing $\widetilde{N}(\mu(L^*))$. Then, H is irreducible

³⁾ We say that a group G is a semi-direct product of a normal subgroup N and a subgroup H if we have $G=N \cdot H$ and $N \cap H=\{e\}$, e being the identity in G. We see that $\mu(G_H)$ is normal in \widetilde{G}_H by the relation $\sigma\mu(z)\sigma^{-1}=\mu(\sigma(z))$, $z\in L$, $\sigma\in \mathfrak{G}$,

⁴⁾ Çf. C. III. Chap. VI §1,

128 TAKASHI ONO

and $H = \{1\}$ or $H = K^*$. But as K is infinite, $\widetilde{N}(\mu(L^*)) \cong \{1\}$ and we have $H = K^*$. Since $\mu(G)$ is the kernel of the representation \widetilde{N} , it follows that $\dim_K \mu(G) \leq n-1$, where $n = [L:K]^{.5}$ On the other hand, we shall define a homomorphism ρ of L^* into itself by $\rho(x) = x^{-n}N(x)$, $x \in L^*$. Obviously we have $\rho(L^*) \subset G$ and ρ induces a rational representation $\widetilde{\rho}$ of $\mu(L^*)$ in $\mu(G)$ by $\widetilde{\rho}(\mu(x)) = \mu(\rho(x)), x \in L^*$. We denote by H the smallest algebraic group containing $\tilde{\rho}(\mu(L^*))$. If we take an algebraically closed field M containing K, then we have $H^{M} = (\widetilde{\rho})^{M} (\mu(L^{*})^{M})^{6}$ We denote by μ^{M} the unique extension of μ to $V^{M} = L^{M}$. Let $(L^{M})^{*}$ be the group of all invertible elements of L^{M} which is considered as an algebra over M. It follows that $\mu^{M}((L^{M})^{*}) = \mu^{M}(L^{M}) \cap GL(V^{M})$ $=\overline{\mu(L)} \cap GL(V^{M}) = \overline{\mu(L^{*})} \cap GL(V^{M}) = \mu(L^{*})^{M}$, where $\overline{\mu(L)}$ and $\overline{\mu(L^{*})}$ mean the closures of $\mu(L)$ and $\mu(L^*)$ in V^M respectively. Let ρ^M be the unique extension of ρ to $(L^M)^*$. It follows that $\dim_K H = \dim_M H^M = \dim_M (\widetilde{\rho})^M (\mu(L^*)^M) =$ $\dim_{\mathcal{M}} \mu^{\mathcal{M}}(\rho^{\mathcal{M}}(L^{\mathcal{M}})^*) = \dim_{\mathcal{M}} \rho^{\mathcal{M}}((L^{\mathcal{M}})^*).$ Since L/K is separable and M is algebraically closed, we have $V^{M} = L^{M} = Me_{1} + \ldots + Me_{n}$ with pimitive idempotents e_i , $1 \le i \le n$. Let $x = \sum x_i e_i$ be in the kernel of the homomorphism ρ^M . From the relation $N^{M}(x) = x^{n,7}$ it follows that $(x_1 \cdot \cdot \cdot x_n)1 = (x_1 \cdot \cdot \cdot x_n)(e_1 + \dots$ $(1+e_n)=x_1^ne_1+\ldots+x_n^ne_n$ and that $x_1^n=\ldots=x_n^n$. Therefore the kernel of ρ^{M} is of 1-dimension over M, as it has M^{*} as a subgroup of finite index, and so the kernel of $(\tilde{\rho})^M$ is also of 1-dimension over M. M being algebraically closed, it follows that $\dim_K H = \dim_M(\widetilde{\rho})^M(\mu(L^*)^M) = n - 1.^{8}$ Since H is contained in $\mu(G)$, we get at once $\dim_K \mu(G) \ge n-1$. Hence, we have $\dim_K \mu(G)$ = n - 1. Now, let $\mu(G_1)$ be the algebraic component of $\mu(G)$ and let $G = G_1 +$ $\ldots + G_r$ be the decomposition of G into the cosets modulo G_1 . G_i is irreducible and $\dim_K G_i = n - 1$. Let \mathfrak{P}_i , $1 \le i \le r$, be prime ideals of the polynomial ring $K[X_1, \ldots, X_n]$ associated to G_i respectively. known each \mathfrak{P}_i is principal: $\mathfrak{P}_i = (P_i(X)), X = (X_1, \ldots, X_n)$. Obviously the ideal $\mathfrak{A} = \mathfrak{P}_1 \cap \ldots \cap \mathfrak{P}_r = \mathfrak{P}_1 \cdot \cdot \cdot \mathfrak{P}_r$ is associated to G. On the other band, every element in G satisfies the equation $F(X) = \prod_{i} (\sum_{i} X_{i} \tau_{j}(\eta_{i})) - 1 = 0$, where

⁵⁾ C. II. Chap. II. § 6. Prop. 8. If the characteristic of K is zero, we get $\dim_K \mu(G) = n-1$ by C. II. Chap. II. § 14. Théorème 12.

⁶⁾ C. II. Chap. II. §5. Prop. 4, §7. Prop. 2. Cor. 1.

⁷⁾ N^M means the extension of N to V^M . It is also the norm of the algebra L^M over M with respect to the regular representation.

⁸⁾ C. II. Chap. II. § 6. Prop. 8. Cor.

 τ_j , η_i have the same meaning as in Proposition 2. Since F(X)+1 splits into the product of different n linear factors in the algebraic closure of K, F(X) is an irreducible polynomial. Since $F(X) \in \mathfrak{A}$, we have r=1 and it follows that $\mathfrak{A} = \mathfrak{P}_1 = (F(X))$ is the associated ideal to G. Thus G, or $\mu(G)$, is irreducible and we get the following

Theorem 2. Let K be an infinite field, and L/K a separable extension of finite degree n. Then, the group \tilde{G} of all linear transformations of L over K which leave invariant the norm form of L/K is an algebraic group of dimension n-1 and $\mu(G)$ is the algebraic component of \tilde{G} , μ being defined by (1). Furthermore \tilde{G} is the semi-direct product of $\mu(G)$ and \mathfrak{G} , where \mathfrak{G} is the automorphism group of L/K.

Lastly, we shall determine the center of the \widetilde{G}_H defined over an arbitrary field K.

PROPOSITION 3. Let K be an arbitrary field and L/K a separable extension of degree n. Then, there exists a base ω_i , $1 \le i \le n$ of L/K with $N(\omega_i) = 1$.

Proof. Suppose first that K is infinite. Let L(G) be the linear closure of G in V. Clearly we have $\dim_K L(G) \geqq \dim_K G = n-1$. (Theorem 2). Since G is irreducible and closed and is not a linear space, L(G) must be the whole space $V^{(9)}$. Next, suppose that K is a finite field with q elements. Thus, the number of elements in G is $= (q^n-1)/(q-1)$. Let r be the dimension of L(G). Then, we have $(q^n-1)/(q-1) \leqq q^r$. From this, it follows that $q^r(q-1) = q^{r+1} - q \trianglerighteq q^n - 1 > q^n - q$ and r+1 > n, namely r=n. Therefore we have again L(G) = V. This proves our proposition.

THEOREM 3. Let K be an arbitrary field and L/K a separable extension of degree n. Then the center of \widetilde{G}_H is the image of the group $W_H = \{a : a \in G_H, \sigma(a) = a, \sigma \in \mathfrak{G}\}$ by the isomorphism μ defined by (1).

Proof. Let ζ be any element of the center of \widetilde{G}_H . Let ω_i be a base of L/K with $N(\omega_i)=1$, $1 \leq i \leq n$ (Proposition 3). As we have $G \subset G_H$, ζ must commute with $\mu(\omega_i)$ and it must commute with all $\mu(z)$, $z \in L$. Thus it follows that $(\zeta \mu(z))(1) = \zeta(z) = \mu(z)\zeta(1) = z\zeta(1)$. Hence, it follows that $\zeta(z) = \alpha z$ and $\alpha = \zeta(1) \in L^*$. On the other hand, ζ must commute with each $\sigma \in \mathfrak{G}$,

⁹⁾ Ç. III. Chap. VI. §1 Prop. 14,

130 TAKASHI ONO

Thus, we have $\zeta \sigma(1) = \alpha = \sigma \zeta(1) = \sigma(\alpha)$. Since $\zeta \in \widetilde{G}_H$, we get $N(\alpha) \in H$. Conversely, it is easy to see that any $\mu(a)$ with $a \in W_H$ is in the center of \widetilde{G}_H either by Proposition 2 or by the fact that every $a \in W_H$ is an element in K if K is finite.

COROLLARY. Under the same assumption as in Theorem 3, suppose that L/K is a Galois extension. Then the center of \widetilde{G}_H is the image of $W_H = \{a, a \in K^*, a^n \in H\}$.

Remark 1. We can define the norm form for any algebraic extension L/K of finite degree by means of the regular representation. E.g. if L/K is a purely inseparable extension of degree p^f , where p is the characteristic of K, we have $N(x) = x^{pf}$, $x \in L$ and we see at once that $\mu(G) = \widetilde{G} = \{\varepsilon\}$. Thus, we have a simple example showing that the dimension of the kernel of a rational representation ρ of an algebraic group G is strictly smaller than the difference of the dimension of G and that of $\rho(G)$.

Remark 2. The conclusion of Proposition 2 does not hold in general if K is a finite field. E.g. let K = GF(2), [L:K] = 3. Since K^* is of order 1, $\widetilde{G}_H = \widetilde{G} = GL(V)$. Thus, the order of \widetilde{G} is $= (2^3 - 1)(2^3 - 2)(2^3 - 2^2) = 168$. On the other hand, $\mu(K^*) = \mu(G)$ is of order $2^3 - 1 = 7$. By Proposition 1, the order of $\mu(L^*) \otimes = 3.7 = 21 < 168$. The center of \widetilde{G} is of order 1 (Theorem 3, Corollary). Furthermore this \widetilde{G} is simple as is well known. Thus, it would be of some interest to study the structure of the finite group \widetilde{G} for these cases.

Mathematical Institute Nagoya University

 $^{^{10)}}$ C.f. C. II. Chap. II. $\S\,6.$ p. 119.

¹¹⁾ C.f. Dickson, Linear Groups, pp. 77-83,