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Abstract

Left restriction semigroups are the unary semigroups that abstractly characterize semigroups of partial
maps on a set, where the unary operation associates to a map the identity element on its domain. They
may be defined by a simple set of identities and the author initiated a study of the lattice of varieties of
such semigroups, in parallel with the study of the lattice of varieties of two-sided restriction semigroups.
In this work we study the subvariety B generated by Brandt semigroups and the subvarieties generated
by the five-element Brandt inverse semigroup B2, its four-element restriction subsemigroup B0 and its
three-element left restriction subsemigroup D. These have already been studied in the ‘plain’ semigroup
context, in the inverse semigroup context (in the first two instances) and in the two-sided restriction
semigroup context (in all but the last instance). The author has previously shown that in the last of these
contexts, the behavior is pathological: ‘almost all’ finite restriction semigroups are inherently nonfinitely
based. Here we show that this is not the case for left restriction semigroups, by exhibiting identities for
the above varieties and for their joins with monoids (the analog of groups in this context). We do so by
structural means involving subdirect decompositions into certain primitive semigroups. We also show
that each identity has a simple structural interpretation.
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1. Introduction

The left restriction semigroups have received considerable attention in recent years,
arising in several different ways and within several historical contexts. Of particular
interest is that they abstractly characterize the semigroups of partial mappings of a
set, under the unary operation α 7→ α+ that associates with such a map the identity
map on its domain. Regarded as unary semigroups, they form the variety LR, which
from a different perspective may be viewed as that generated from inverse semigroups
(S , · ,−1 ) by forgetting the inverse operation and retaining only the unary operation
x 7→ x+ = xx−1. One set of defining identities is:

x+x = x, (x+y)+ = x+y+, x+y+ = y+x+, xy+ = (xy)+x.
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Traditionally, studying classes of semigroups (and algebras in general) through
their varieties, in particular through the identities that they satisfy, has proven fruitful.
For example, there is an extensive literature on varieties of inverse semigroups and
varieties of completely regular semigroups, in each case regarded as unary semigroups.

In [6] the author initiated the study of the lattice of varieties of left restriction
semigroups, in parallel with a study of the lattice of varieties of (two-sided and thus
biunary) restriction semigroups. In [7], we continued this study in the two-sided case
by investigating the variety generated by the Brandt semigroups, a natural step ‘up’
the lattice and, in addition, relevant to recent intense study of the varieties of ‘plain’
semigroups generated by completely 0-simple semigroups. The present paper is the
‘one-sided’ sequel to [6] and a parallel to [7].

As always, the Brandt semigroup of primary interest is B2 = {a, b, ab, ba, 0}. Given
that it is an inverse semigroup, it may also be regarded both as a restriction semigroup
and as a left restriction semigroup. Its subsemigroup B0 = {a, b, ab, 0} is naturally
a restriction semigroup and therefore also a left restriction semigroup. The lattice
of varieties of inverse semigroups generated by B2, and by Brandt semigroups in
general, has long been known to be simply described. (Regarded as ‘plain’ semigroups,
Lee [11] has determined the entire, countably infinite, lattice of subvarieties of the
variety generated by B2.)

The corresponding lattice of varieties of restriction semigroups is remarkably
complicated. In [7] the author exhibited a necessarily infinite basis of identities for
B2, regarded in this fashion. In fact, it is B0 that is central to the pathology: it is
inherently nonfinitely based and, as a result, the same is true for every finite restriction
semigroup in which the left and right unary operations are distinct.

In the context of left restriction semigroups, a general argument in a private
communication from M. Jackson (see Section 9 for the terminology and the precise
theorem and proof) shows that B0 and B2 cannot be inherently nonfinitely based.
Quite to the contrary, B2 is defined by a single identity and B0 by one further identity.
This is shown not by syntactic arguments but by structural ones, based on a subdirect
decomposition of semigroups in the variety B of left restriction semigroups generated
by all Brandt semigroups. In this context, there is a subsemigroup of B0 of relevance:
D = {a,ab,0}. This semigroup is left restriction but not restriction and was shown in [6]
to play a fundamental role in the lattice of varieties of left restriction semigroups: if
such a variety does not consist of unions of monoids, it must contain D.

Bases of identities for the principal varieties of interest are as follows. Here B2,
B0 and D denote the varieties generated by B2, B0 and D, respectively. Since the
identities themselves are rather unilluminating, we also provide a simple paraphrase
of each, in terms of the ‘generalized’ Green’s relation R = {(a, b) : a+ = b+} and right
identities. Here a right identity refers strictly to a projection e = e+ with that property
(and elements may or may not possess such right identities). A further characterization
of each variety is in terms of subdirect decompositions into ‘primitive’ left restriction
semigroups with a designated ‘base’, as described in the cited theorems.
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Theorem 1.1 (Theorems 6.6 and 8.11, Corollaries 8.12 and 7.7). Let S be a left
restriction semigroup. Then

• S ∈ B if and only if satisfies identity (6.1): (xz)+(yz+w)+ = (yz)+(xz+w)+; that is,
if two R-related elements share a right identity, they share all right identities;

• S ∈ B2 if and only if it satisfies identity (8.1): (xz)+(yz) = (yz)+(xz); that is, no two
distinct R-related elements share a right identity;

• S ∈ B0 if and only if it satisfies the conjunction of (8.1) and identity (8.3):
xyx = (xyx)+; that is, S ∈ B2 and every regular element is a projection;

• S ∈ D if and only if S satisfies identity (7.2): xz+ = (xz+)+; that is, the only
elements with right identities are the projections e = e+.

In addition to the varieties described in this theorem, in Theorems 8.13 and 7.5 we
provide analogous information for the varieties B0 ∨M and D ∨M, where M denotes
the variety of monoids (regarded as left restriction semigroups), which play the role
for restriction semigroups that groups play for inverse semigroups. The join B2 ∨M
is just B itself.

The key tool is Corollary 6.5, in which it is shown that a left restriction semigroup
satisfying (6.1) is a subdirect product of monoids and primitive left restriction
semigroups, that is, left restriction semigroups with zero in which every projection is
0-minimal. As alluded to above, the primitive factors can be chosen to have
a designated ‘base’, which makes them more amenable to treatment. This
decomposition is the one-sided analog of the decomposition of strict restriction
semigroups into monoids and primitive restriction semigroups [7].

A second key tool involves various embeddings of these special primitive left
restriction semigroups in restriction semigroups, enabling application of the work on
the latter cited above. In a sequel [9], we will study the lattice of varieties of strict left
restriction semigroups by carrying these techniques further, melding them with those
of [8]. The latter work studied the lattice of varieties of (two-sided) strict restriction
semigroups through an intimate connection with the lattice of varieties of categories,
as developed by Tilson [13]. We will show, rather remarkably in the author’s view,
that these two lattices are ‘almost’ isomorphic, in a manner made explicit there.

The plan of the paper is as follows. We first review the basics of left and two-sided
restriction semigroups and their varieties, including introduction of a key analytical
tool involving right identities. In Section 5 we analyze primitive left restriction
semigroups and introduce the special class with designated base. Section 6 provides
the subdirect decomposition mentioned above, under identity (6.1), and shows that
this identity defines B. The special case of D and D ∨M is treated in the following
section. The varieties B2 and B0 are treated in Section 8 along with their joins with M.
These require exceptional treatment, involving a covering theorem and a refinement
of the embedding result of Section 5. We leave to Section 9 the argument of Jackson
cited above regarding finite basability, since it is does not directly impinge on the
rest of the paper.
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2. Preliminaries

We briefly review the background on left restriction semigroups themselves and
introduce and study some new concepts. For general background on semigroups,
see [5]. Since we shall in various places apply results on (two-sided) restriction
semigroups, we shall also introduce those here, but leave more specialized background
on that topic to other sections. Useful introductions to both left and two-sided
restriction semigroups, including different ways in which they have arisen as topics
of interest, are [4] and [2]. Our definition of left restriction semigroups is based on
the set of identities stated in [2]. In the so-called ‘York school’, they were originally
called weakly [left] E-ample semigroups. We might also note that some of our work
on primitive left restriction semigroups could be rephrased in terms of the ‘inductive
constellations’ of the two cited authors [3], but there seems little benefit to the reader
in adding another level of abstraction to this work.

From the first two defining identities for left restriction semigroups in Section 1,
it follows that if S is such a semigroup, then for all x ∈ S , x+ is idempotent and, in
conjunction with the second identity, (x+)+ = x+. These idempotents (there may be
others) are the projections of S . The set PS of projections forms a semilattice, ordered
in the usual fashion, by virtue of the third identity. The last identity (or a variation of
it) is often termed the ‘left ample’ identity. The following lemma is well known and
will find frequent use.

Lemma 2.1. If S is a left restriction semigroup and x, y ∈ S , then x+ ≥ (xy)+ and
(xy)+ = (xy+)+. Thus an equivalent form of the left ample identity is: if e ∈ PS , then
xe = (xe)+x.

A restriction semigroup is a biunary semigroup (S , · ,+ ,∗ ) that is a left restriction
semigroup with respect to +, satisfies the ‘dual’ identities obtained by replacing +

by ∗ and reversing the order of each expression, and further satisfies (x+)∗ = x+ and
(x∗)+ = x∗. Thus PS = {x+ : x ∈ S } = {x∗ : x ∈ S }. Every restriction semigroup may be
regarded as a left restriction semigroup, by ‘forgetting’ the second unary operation.

In the context of this work, an inverse semigroup (S , · ,−1 ) may be regarded as a
restriction semigroup by setting x+ = xx−1 and x∗ = x−1x and ‘forgetting’ the inverse
operation. It may also be regarded as a left restriction semigroup by admitting only the
former operation. In either case, PS is just the semilattice of idempotents.

The term primitive refers to any (left or two-sided) restriction semigroup with zero
in which each nonzero projection is minimal with respect to that property.

For the purposes of this paper, the relevant generalized Green’s relations may
be defined as follows. In a left restriction semigroup, R = {(a, b) : a+ = b+}. In
a restriction semigroup, the relation L = {(a, b) : a∗ = b∗} is defined dually; then
H = R ∩ L and D = R ∨ L (not in general equal to R ◦ L). We have reverted to the
notation of [6, 7] after having misguidedly changed notation in [8]. The natural partial
order on a left restriction semigroup S is defined by a ≤ b if a = eb for some e ∈ PS

and, by application of the left ample identity, is easily seen to be compatible with
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the operations. On a restriction semigroup, this partial order is self-dual (and so
compatible with both unary operations).

In general, the terms ‘homomorphism’, ‘congruence’ and ‘divides’ will be used
appropriate to context; that is, they should respect the unary operation for left
restriction semigroups and both unary operations for restriction semigroups. For
instance, by Lemma 2.1, R is a left congruence, in either case. In the case of
subsemigroups, we shall generally use the modifier ‘left restriction’ (or ‘unary’) or
‘restriction’ to clarify. If S is a left restriction semigroup and T is a restriction
semigroup, when we say that T is a left restriction subsemigroup of S , the second
operation on T is forgotten. Note that in this situation, the R-relations coincide and
PT is a subsemilattice of PS (because the projections are determined by either unary
operation).

One congruence of note on left restriction semigroups is the greatest projection-
separating congruence, denoted µ. Equivalently, µ is the greatest congruence contained
in R. Elements a and b are µ-related if and only if (ae)+ = (be)+ for all e ∈ PS .

In the standard terminology, restriction semigroups S with |PS | = 1 are termed
reduced. Since, in essence, they are just monoids, regarded as restriction semigroups
by setting a+ = a∗ = 1 for all a, we will generally omit the qualifier ‘reduced’, except
in case of possible ambiguity.

A (unary) subsemigroup T of a left restriction semigroup S is a submonoid if it
contains a unique projection e. By [6, Lemma 4.6], the maximal submonoids of S
have the form Me = {a ∈ Re : a = ae}. We present the following lemma to illustrate the
subtleties entailed and application of the identities used in the sequel.

Lemma 2.2. Let S = (S , · ,+ ,∗ ) be a restriction semigroup. Its maximal submonoids
are those of its left restriction reduct (S , · ,+ ).

Proof. Recall that the projections are the same, however S is regarded. Let e ∈ PS . It
suffices to show that if a ∈ Me, as defined above, then a∗ ∈ Me, for then Me is a biunary
submonoid of S and thus the submonoid He. Now (a∗)+ = (a+)∗ = e∗ = e, so a∗ ∈ Re;
further, a∗ = (ae)∗ = (ae)∗e∗ = a∗e (using the duals of the identities for left restriction
semigroups). That is, a∗ ∈ Me. �

A +-ideal I of a left restriction semigroup S is an ideal of S that is also a left
restriction subsemigroup. It is easily seen that the Rees quotient semigroup S/I is
again a left restriction semigroup. As usual, for technical reasons it is convenient to
allow the empty set to be an ideal and, in that case, to put S/I = S . A restriction ideal
(r-ideal in [7, 8]) of a restriction semigroup S is an ideal that is closed under both unary
operations.

The following definitions are key tools of this work. Throughout it will be implicit
that the term ‘right identity’ always refers to a projection, rather than an idempotent in
general.

In a (two-sided) restriction semigroup, every element a has a least right identity,
namely a∗. This is of course no longer true in the left restriction case and it
is convenient to introduce notation that concisely distinguishes the existence of
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right identities. Let S be such a semigroup. Denote by S RI the set of elements of
S that have a right identity, and by S NRI the set of elements of S that do not have a
right identity. The following, though obvious, is worth stating.

Lemma 2.3. For any left restriction semigroup S , S RI is a +-subsemigroup of S that is
also a left ideal of S .

Again, let S be any left restriction semigroup and e ∈ PS . Put RF(e) = {s ∈ S : as+

= a for some a ∈ Re}. That is, RF(e) is the union of the R-classes of those projections
of S that are right identities for some element of Re. Observe that for any a ∈ Re and
f ∈ PS , f is a right identity for a if and only if a f ∈ Re, since a f = (a f )+a, the left
‘ample’ identity.

Note that the submonoid Me consists of those members of Re having e as right
identity. The special case whereby no other member of Re has a right identity will be
of interest in the sequel. In that case, clearly RF(e) is the union of the R-classes of the
projections f ≥ e.

Lemma 2.4. If S is a left restriction semigroup and e ∈ PS , then RF(e) = {s ∈ S : as ∈
Re for some a ∈ Re}. If x, y ∈ S and xy ∈ RF(e) then x, y ∈ RF(e).

Proof. The alternative description of RF(e) follows from the fact that as R as+ (and
that if as+ R a then as+ = a, as noted above). To prove the second statement, suppose
xy ∈ RF(e) and a ∈ Re is such that axy ∈ Re. Then ax ∈ Re (since e = a+ ≥ (ax)+ ≥

(axy)+ = e), so that x ∈ RF(e); and then y ∈ RF(e), from the definition. �

Put Ie = S \RF(e). By the lemma, unless S = RF(e), Ie is a +-ideal of S . As usual,
we may identify the Rees quotient S/Ie with the union of RF(e) and 0 when convenient.
If S = RF(e), then e must be the least projection of S and Re = Me. By convention,
S/Ie = S in that case.

3. Strictness

Call a left restriction semigroup strict if it is a subdirect product of primitive
left restriction semigroups and monoids. This definition – with the benefit of some
hindsight – is a natural generalization of the terminology for inverse semigroups and
restriction semigroups, although not the first that sprang to the author’s mind: see the
concluding remarks of this section. We briefly review how this term was used in those
contexts, since it is of great relevance in the sequel.

As defined in [12, II.4], an inverse semigroup is strict if it is a subdirect product of
Brandt semigroups (that is, completely 0-simple inverse semigroups) and groups. It is
easy to see that this is equivalent to being a subdirect product of primitive inverse
semigroups and groups. Various alternative descriptions are provided in [12], but
[7, Result 2.2] gives a convenient summary. The simplest structural description is
that they are the inverse semigroups that satisfy ‘D-majorization’, the property that if
idempotents e, f , g satisfy e > f , g and f D g, then f = g.
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By analogy, a restriction semigroup is strict [7, 8] if it is a subdirect product of
monoids and completely 0-r-simple restriction semigroups. Here we shall instead term
the latter connected, based on the connection with categories that was elucidated in [8]
and will be the basis for the sequel [9]. In the terminology of [7, 8], a restriction
semigroup S with zero is 0-r-simple if {0} and S are its only restriction ideals and
completely 0-r-simple (here, connected) if, in addition, it is primitive. The semigroup
is connected if and only if it is primitive and its nonzero elements form a single
D-class.

The basic computational tool is the following. Note that if such a semigroup
has only one nonzero projection, then it is a monoid with adjoined zero, and so a
semilattice of monoids.

Result 3.1 [8, Lemma 2.1]. If a and b are nonzero elements of a connected restriction
semigroup S , then ab , 0 if and only if a∗ = b+, in which case (ab)+ = a+ and
(ab)∗ = b∗.

Various characterizations of strict restriction semigroups were given in [7, Theorem
8.1], including the varietal one stated in Result 4.6 below, one by biunary identities,
and a structural one (cf. strict inverse semigroups, above): a restriction semigroup is
strict if and only if it satisfies D-majorization, that is, whenever f , g, h are projections,
f > g, h and g D h, then g = h.

Now it is remarked at the beginning of Section 7 that what might at first appear to
be the logical left restriction semigroups to consider, in view of the above, are those
that are ‘completely 0-R-simple’: primitive, with a single nonzero R-class (or perhaps
by R-majorization, which is, however, meaningless in this context). This class, while
of interest (see Section 7), turns out to be too narrow: the appropriate generalization of
strictness, rather, is the one above. A simply stated structural description will follow
from the characterization via identities provided by Theorem 6.6.

4. Varieties of left restriction semigroups and connections with varieties of
restriction semigroups

The elementary material on this topic is extracted from [6]. Again, due to the
intimate connection we establish with the two-sided case, we also briefly consider
varieties of restriction semigroups. We shall need only elementary universal algebra,
which may be found in [1].

Denote by LR the variety of all left restriction semigroups, under the operations
{ · ,+ }. The subvarieties consisting of trivial semigroups, of monoids, and of
semilattices, respectively, are denoted by T, M and S (by SL in [6]). Recall that
monoids in this context are left restriction semigroups with one projection and so may
be defined by the identity x+ = y+. Note that subvarieties of M are essentially varieties
of monoids, and we shall treat them as such. It is clear that a variety V of left restriction
semigroups consists of monoids if and only if V ∩ S = T.

For any variety V of left restriction semigroups, denote by L(V) its lattice
of subvarieties. If U,V ∈ L(V) and U ⊆ V, [U,V] denotes the interval sublattice
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{W : U ⊆W ⊆ V}. The notation V � U, V covers U, means that the interval consists
only of the two given varieties. If X is a set of left restriction semigroups, 〈X〉 (or
sometimes 〈X〉LR) will denote the variety of left restriction semigroups it generates.

Result 4.1 [6, Theorems 4.1, 4.2]. If V ∈ L(LR), then V ∨M = {S ∈ LR : S/µ ∈ V}.
Hence the map V −→ V ∨M is a complete lattice homomorphism. The map V −→
V ∩M is a lattice homomorphism.

If N is a variety of monoids, we shall in general abbreviate S ∨N to SN. The base of
the latticeL(LR) consists of two ‘layers’, the intervals [T,M] and [S,SM], as follows.

Result 4.2 [6, Theorems 4.4, 4.5]. The following are equivalent for a left restriction
semigroup S : (a) S ∈ SM; (b) S satisfies (xy)+ = x+y+; (c) S becomes a restriction
semigroup under the assignment a∗ = a+; (d) S is a (strong) semilattice of monoids.

The sublattice L(SM) of L(LR) is isomorphic to the direct product of the two-
element lattice L(S) and the lattice L(M), under the map V 7→ (V ∩ S) ∨ (V ∩M). If
V is not simply a variety of monoids, then it consists of all (strong) semilattices of
monoids from V ∩M.

If V is any variety of left restriction semigroups, let loc(V) consist of the left
restriction semigroups S that are ‘locally’ in V, meaning that eS e ∈ V for all e ∈ PS .
It is easily verified that loc(V) is again a variety. In a related vein, for any variety N of
monoids, let mon(N) consist of the left restriction semigroups all of whose submonoids
belong to N. Note that loc(SN) ⊂ mon(N). In general mon(N) is not a variety.

The topic of this paper is the variety B of left restriction semigroups generated by
the Brandt semigroups and the monoids. In view of the discussion in the previous
section, it may also be described as that generated by the reducts of strict inverse
semigroups, or by the reducts of strict restriction semigroups and monoids, and so
on. Since Brandt semigroups and monoids are both locally semilattices of monoids,
B ⊂ loc(SM). That the inclusion is proper is demonstrated in Corollary 6.7. In
conjunction with the inclusion loc(SN) ⊂ mon(N), we summarize as follows.

Proposition 4.3 (Cf. [7, Proposition 8.3]). The inclusion B ⊂ loc(SM) holds. For any
variety N of monoids, B ∩mon(N) = B ∩ loc(SN) and so forms a subvariety.

As remarked in the introduction, the Brandt semigroup of primary interest is the
inverse semigroup B2 = {a, b, e = ab, f = ba, 0}. Its subsemigroup B0 = {e, a, f , 0} is
naturally a restriction semigroup (with a+ = e and a∗ = f ) and therefore also a left
restriction semigroup, forgetting the ∗ operation. The left restriction subsemigroup
D = {e, a, 0} of B0 is not a restriction semigroup. The varieties of left restriction
semigroups generated by these three semigroups, respectively, are B2, B0 and D. Note
that they are all contained in B ∩mon(T). We finish this subsection by reviewing the
lattice coverings found in [6].

The variety L1
2 is generated by the left restriction semigroup L1

2 that is obtained from
the two-element left zero semigroup L2 = {g, h} by adjoining an identity 1, setting
g+ = g and h+ = 1+ = 1. Note that, when regarded as a ‘plain’ semigroup, L1

2 is a
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monoid, but not when regarded as a left restriction semigroup. It is the union of the
submonoids M1 = {1, h} and Mg.

Result 4.4 [6, Proposition 4.18, Theorems 4.19 and 4.20]. The coverings D � S � T
hold. Any variety of left restriction semigroups that consists of unions of monoids, but
not merely semilattices of monoids, contains L1

2. The varieties D and L1
2 are the two

varieties minimal with respect to not being contained in SM.

Proposition 4.5. Neither L1
2 nor D1 belongs to B.

Proof. Here D1 is the left restriction semigroup obtained by putting 1+ = 1. If either
of these semigroups is denoted by S , then S = 1S 1, where 1 ∈ PS , but S < SM, so
Proposition 4.3 applies. �

Since L1
2 < B, varieties consisting of unions of monoids play no role in this paper

and in our context D is the unique relevant cover of S.

4.1. Varieties of restriction semigroups. Next we briefly review varieties of
restriction semigroups, which were introduced in [6] in parallel with the material
above, and explored further in [7] and [8]. The material from the last of these papers
dealt with the lattice itself, through a connection with varieties of categories. It will
not be needed here, but will be integral to the sequel [9].

Let R denote the variety of all restriction semigroups. On the occasions where
confusion might otherwise arise, we shall distinguish two-sided varieties by using the
subscript R. So, for example, BR and (B0)R then denote the analogous varieties of
restriction semigroups. Recall that monoids may be regarded as both left restriction
semigroups and restriction semigroups. In fact, the same is true for the variety SM of
semilattices of monoids, and its subvarieties, since these are precisely the restriction
semigroups on which a∗ = a+ (also see Result 4.2). So in these cases we shall not use
the subscript notation.

Similarly, if X is a set of restriction semigroups, 〈X〉R will denote the variety of
restriction semigroups it generates.

First note that direct analogs of Results 4.1 and 4.2 hold in the two-sided case. The
notation loc(V) and mon(N) will be used as in the one-sided case and the analog of
Proposition 4.3 holds.

Recall from Section 3 that a restriction semigroup is strict if it is a subdirect product
of connected restriction semigroups and monoids. In [7], bases of identities were found
for BR, (B2)R, (B0)R and (B0)R ∨M. As these all involve both unary operations, we
shall not need them in this work.

Result 4.6 [7, Theorems 8.1, 10.6, 9.3 and 10.3]. A restriction semigroup S belongs
to the variety BR if and only if it is strict. In that event:

(i) S ∈ (B2)R if and only if H is the identical relation;
(ii) if (i) holds, then S ∈ (B0)R if and only if, further, the only regular elements of S

are the projections;
(iii) S ∈ (B0)R ∨M if and only if for e, f ∈ PS , both Re ∩ L f and Le ∩ R f cannot be

nonempty.
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Result 4.7 [7, Corollary 10.2]. In the lattice L(R), the sublattice L((B2)R) comprises
the chain (B2)R � (B0)R � S � T.

To conclude this section, we make some elementary observations regarding
relationships between varieties of left restriction semigroups and varieties of restriction
semigroups, based on the association of every restriction semigroup S = (S , · ,+ ,∗ )
with its left restriction reduct (S , · ,+ ). A much deeper analysis will be needed in the
sequel [9]. Since there are some ambiguities to be resolved, we begin carefully.

If X is a set of restriction semigroups, the notation 〈X〉LR, introduced earlier in this
section, will perforce denote the variety of left restriction semigroups generated by
the reducts of the members of X. Let V be a variety of left restriction semigroups.
Then VR will denote the collection of two-sided restriction semigroups whose reducts
belong to V. We now collect the results that will be used in the sequel.

Proposition 4.8. Let V be a variety of left restriction semigroups and let X be a set of
restriction semigroups. Then

(1) VR is a variety of restriction semigroups and 〈VR〉LR ⊆ V;
(2) 〈X〉R ⊆ (〈X〉LR)R;
(3) 〈X〉LR = 〈〈X〉R〉LR = 〈(〈X〉LR)R〉LR;
(4) as a result, BR ⊂ BR and B = 〈BR〉LR = 〈BR〉LR.

Proof. Statements (1) and (2) follow from the fact that the products, homomorphisms
and biunary subsemigroups of restriction semigroups retain their properties in the
reducts.

Statement (3) follows from the sequence 〈X〉LR ⊆ 〈〈X〉R〉LR ⊆ 〈(〈X〉LR)R〉LR ⊆ 〈X〉LR,
where the first is obtained from the inclusion X ⊆ 〈X〉R, the second from (2) and the
third from (1), applied to V = 〈X〉LR.

Now (4) is simply the case where X consists of the Brandt semigroups and the
monoids, so that 〈X〉LR = B and 〈X〉R = BR. �

The inclusion BR ⊂ BR asserts that the reduct of every strict restriction semigroup
is strict as a left restriction semigroup (looking ahead to the connection made in
Theorem 6.6). That the inclusion is strict will be shown in Proposition 8.15.

5. Primitive left restriction semigroups

In view of the definition of strictness, we first focus attention on primitive left
restriction semigroups, in fact a special class of such semigroups.

Let S be a primitive left restriction semigroup and suppose x ∈ S RI , that is, x has
a right identity. If x , 0, then x has a unique right identity, since the set of right
identities for x is a subsemilattice of PS . Denote this right identity by x∗. Put 0∗ = 0.
(This notation will be shown to be consistent with its use in two-sided restriction
semigroups.) Clearly e∗ = e for every projection e of S . We continue the notation
and techniques introduced in Section 2.
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Lemma 5.1 (Cf. Result 3.1). Let S be a primitive left restriction semigroup and let
x, y ∈ S , x, y , 0. Then xy , 0 if and only if (x∗ exists and) x∗ = y+, in which case
xy R x and if xy has a right identity then so does y and (xy)∗ = y∗.

Proof. If xy , 0, then since (xy+)+ = (xy)+ ≤ x+, equality holds, so that xy+ = x.
Therefore x∗ exists and equals y+. Conversely, if x∗ = y+, then (xy)+ = (xy+)+ =

(xx∗)+ = x+ and so xy , 0. If, further, xy = xy f , where f ∈ PS , then of necessity
y f , 0 and, by the first part of the proof, y∗ = f = (xy)∗. �

Proposition 5.2. In any primitive left restriction semigroup S , the left restriction
subsemigroup S RI is also a primitive restriction semigroup, under the additional
operation ∗ defined above. Equivalently, if every element of a primitive left restriction
semigroup S has a right identity, then S is also a primitive restriction semigroup in
this way.

Proof. We verify the defining identities. Clearly aa∗ = a. If a, b ∈ S , then (ab∗)∗ , 0
if and only if ab∗ , 0, if and only if a∗ = b∗ (by Lemma 5.1), and thus if and only if
a∗b∗ , 0. In that event, (ab∗)∗ = (b∗)∗ = b∗ = a∗b∗. Clearly, a∗b∗ = b∗a∗. To prove the
right ‘ample’ identity, note that a∗b , 0 if and only if a∗ = b+, in which case a∗b = b
and b(a∗b)∗ = bb∗ = b. Finally, (a∗)+ = a∗ and (a+)∗ = a+.

The first statement clearly implies the second, since if every element has a right
identity, S = S RI . Conversely, S RI is a left restriction subsemigroup, which is primitive
when S is. �

Call a primitive left restriction semigroup S primitive with base e if e is a nonzero
projection of S with the property that S \{0} = RF(e), in other words every nonzero
projection of S is a right identity for some element of Re. If g is a right identity for
a ∈ Re, then g = a∗. In general, the element a is not unique. Note that Me = {a ∈ Re :
a∗ = e}.

Lemma 5.3. A primitive left restriction semigroup S has both e and f as a base if and
only if there exist a, b ∈ S such that a+ = e = b∗ and b+ = f = a∗. If Me and M f are
actually groups, in particular if Me and M f are trivial, then this is the case if and only
if eD f .

Proof. The first statement is immediate from the definition. Note that in that event
ab R e and ab = abe, so ab ∈ Me; similarly, ba ∈ M f . If Me and M f are subgroups,
then e = abc and f = dba for some c, d ∈ S . Thus e R a L f . If, conversely, e D f ,
then clearly such a, b exist. �

Proposition 5.4. Let S be a primitive left restriction semigroup with base e. Then S
may be +-embedded in a primitive restriction semigroup S ∗, in fact in a connected
restriction semigroup. The submonoids of S ∗ are either those of S , or are trivial.

Proof. If S = S RI , put S ∗ = S . Otherwise, we use Proposition 5.2 by showing that a
new projection can be adjoined, incomparable to the nonzero projections of S , that is
a common right identity for every element of S NRI .
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Let S r = S ∪ {h}, where h is an element distinct from each element of S . Extend
the binary operation on S to S r by putting h2 = h, hs = 0 for all s ∈ S \{h}; sh = s for
all s ∈ S NRI; and sh = 0 for all s ∈ S RI . Put h+ = h.

Consider nonzero elements r, s, t ∈ S r. If r = h, then (rs)t and r(st) are each nonzero
if and only if s = t = h, in which case (rs)t = r(st) = h. If not, suppose s = h. Then
(rs)t = 0 unless r ∈ S NRI and t = h, in which case (rs)t = r; and the same holds for
r(st). If neither r nor s is h, suppose t = h. Then (rs)t = 0 unless rs ∈ S NRI , in which
case (rs)t = rs. Now r(st) = 0 unless s ∈ S NRI , in which case st = s and r(st) = rs. But
by Lemma 5.1 s ∈ S NRI if and only if rs ∈ S NRI .

Thus the binary operation on S r is associative. Since each nonzero projection f of S
belongs to S RI , f h = h f = 0, so S r is primitive. Observe that the only ‘new’ instances
of the left ‘ample’ identity are of the form (xh)+x = xh. Both sides are zero unless
x ∈ S NRI , in which case both sides yield x. The other identities for a left restriction
semigroup are trivially satisfied.

Clearly every element of S r now possesses a (unique) right identity and S r is
a restriction semigroup, by Proposition 5.2, with respect to the unary operation ∗,
extended from S by putting a∗ = h for all a ∈ S NRI . Since every nonzero projection is
L-related to an element of Re, the nonzero elements form a single D-class. So S r is
connected.

The inclusion map is a +-embedding of S in S ∗. �

The following sequel to Proposition 4.3 is a preview of the techniques employed in
the sequel [9]. It uses the notation introduced in Subsection 4.1.

Corollary 5.5. For any variety N of monoids, B ∩mon(N) = 〈BR ∩mon(N)〉LR.

Proof. That the right-hand side is included in the left-hand side follows from
Proposition 4.8. The opposite inclusion follows from the fact that the embedding in
Proposition 5.4 introduces only one new, trivial, submonoid. �

While Proposition 5.4 will serve our initial purpose of describing the members of
B, it should be clear that the embedding is rather ‘blunt’. For instance, it clearly need
not preserve the property (satisfied, as we shall see, by members of B2) that if distinct
R-related elements have right identities, the right identities must be distinct. Rather
than prove a more refined general embedding theorem, we shall content ourselves
in Section 8 with the situation just mentioned. The question of which identities are
preserved by the embedding in the proposition will be a key part of [9].

6. A basis of identities for B

We first study properties equivalent to satisfaction of identity (6.1), then study its
consequences, yielding the characterization of B in Theorem 6.6. Here and in the
sequel it will be convenient to use the convention in writing identities that letters e, f ,g,
etc, stand for ‘projection variables’, that is, for x+, y+, z+, as appropriate, as illustrated
in (b) in the following lemma. This identity will turn out to define the variety B.
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Lemma 6.1. In any left restriction semigroup S , the following are equivalent:

(a) S satisfies
(xz)+(yz+w)+ = (yz)+(xz+w)+; (6.1)

(b) S satisfies (x f )+(y f g)+ = (y f )+(x f g)+, for all x, y and for all projections f , g;
(c) if x R y in S and x f = x, y f = y for some f ∈ PS , then for any g ∈ PS , xg = x if

and only if yg = y.

Proof. The equations in (a) and (b) are merely restatements of each other, using
Lemma 2.1: (ab)+ = (ab+)+.

Now suppose S satisfies (b), x, y ∈ S , f , g ∈ PS , x R y, x f = x, y f = y, and xg = x.
Then, using (b), (yg)+ = x+(yg)+ = y+x+ = y+, that is, yg R y, so that yg = y.

Finally, suppose S satisfies (c) and let x, y ∈ S , f , g ∈ PS . Put a = (x f )+(y f g) and
b = (y f g)+(x f ). Then a R b (by Lemma 2.1), a f = a and b f = b, and ag = a, so by
(c), bg = b. Therefore a+ = (bg)+, that is, (x f )+(y f g)+ = (y f g)+(x f g)+. By symmetry,
(y f )+(x f g)+ = (x f g)+(y f g)+. Thus (b) holds. �

The statement in (c) may be paraphrased as ‘if two R-related elements share any
right identity, they share all right identities’. We will generally use this paraphrase,
and similar ones below, without further comment.

Proposition 6.2. Any primitive left restriction semigroup S satisfies (6.1).

Proof. Referring to Lemma 6.1(b), if S is primitive, then either f g = 0, in which case
both sides are 0, or f = g, in which case the two sides are equal. �

The following somewhat technical lemma will be used in Section 8. Its proof
demonstrates use of the paraphrased version of identity (6.1). Recall that a µ b in a
left restriction semigroup S if (ae)+ = (be)+ for all e ∈ PS .

Lemma 6.3. Let S be a left restriction semigroup that satisfies (6.1). Let e ∈ PS . Then
eµ = Me.

Proof. Suppose a ∈ eµ. Then a+ = e, since µ separates projections, and so ae =

(ae)+a = e+a = a, that is, a ∈ Me. Conversely, suppose ae = a and f ∈ PS . To show
(a f )+ = (e f )+ for all f ∈ PS , it suffices to assume that f ≤ e. Now, on the one hand,
f a R f e = f and f a and f share the right identity e. But f is a right identity for
itself and so by (6.1) is also a right identity for f a, that is, f a = f a f . It follows that
f = ( f a)+ ≤ (a f )+. On the other hand, (a f )+ and a f again share the right identity e.
But f is a right identity for a f and so for (a f )+. Therefore (a f )+ = f , as required. �

Let S be a left restriction semigroup. For each e ∈ PS , define a relation ρe on S as
follows: if x, y ∈ S , then (x, y) ∈ ρe if either both x and y belong to Ie, or both x and y
belong to RF(e) and there exists g ∈ PS such that gx, gy ∈ RF(e) and gx = gy.
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Proposition 6.4. Let S be a left restriction semigroup that satisfies (6.1). Then for
each e ∈ PS , the relation ρe is a congruence on S that separates the members of Re. If
e is minimum, then S/ρe is isomorphic to the monoid Me; otherwise, S/ρe is primitive
with base eρe.

If S itself is primitive with base e, then S � S/ρe.

Proof. Note that the projection g in the definition may be assumed to be such that
g ≤ x+y+, and that assumption will be made throughout. That ρe is reflexive and
symmetric is clear. The only case of transitivity to be verified is where x, y, z ∈ RF(e)
and (x, y), (y, z) ∈ ρe. Then there exist g, h ∈ PS such that gx, gy, hy, hz ∈ RF(e) and
gx = gy, hy = hz. We may assume g ≤ x+y+ and h ≤ y+z+, so that gx ∈ Rg, hy ∈ Rh.
Now by definition there exist a, b ∈ Re such that ag = a and bh = b. Since g, h ≤ y+,
ay+ = by+ and so by (6.1), a and b share all right identities, whence ah = a and so
a(gh) = a. Since (gh)x = (gh)z and (gh)x ∈ Rgh, it follows that ghx ∈ RF(e) and so
(x, z) ∈ ρe. Therefore ρe is an equivalence relation on S .

Since Ie is an ideal of S , compatibility with the operations need only be considered
for pairs (x, y) from RF(e). With g from the definition, again take a ∈ Re such that
ag = a and g ≤ x+y+. Let s ∈ S .

Suppose sx ∈ RF(e), with b ∈ Re such that b(sx) ∈ Re. Then bs ∈ Re, b = bs+ and
(bs)x+ = bs. Since a and bs share x+ as a right identity and y+ is a right identity for a,
by (6.1) the same is true of bs. Therefore b(sy) ∈ Re and sy ∈ RF(e). Likewise, since g
is a right identity for a, (bs)g = bs, so bsgx = bsx ∈ Re and therefore sgx ∈ RF(e).
By the left ‘ample’ identity, (sg)+sx = sgx = sgy = (sg)+sy, where (sg)+ ∈ PS , so
(sx, sy) ∈ ρe.

Next suppose xs ∈ RF(e), with c ∈ Re such that c(xs) ∈ Re. Then cx+ = c and,
similarly to the last paragraph, cg = c, so that c(gxs) = cxs ∈ Re. Therefore g(xs) =

g(ys) ∈ RF(e) and (xs, ys) ∈ ρe.
Now with g as above, gx+ = g = gy+, so (x+, y+) ∈ ρe. Therefore ρe is a (unary)

congruence on S .
To show that ρe separates Re, let x, y ∈ Re and suppose gx = gy ∈ RF(e) for some

g ∈ PS . Then a(gx) ∈ Re for some a ∈ Re. Since x = ex, ae ∈ Re, so ae = a. Now e and
a share the right identity e and so, by (6.1), from ag = a it follows that eg = e. Thus
gx = gex = ex = x and, similarly, gy = y, as required.

If e is the least projection, then Re = Me and eρe is the only projection in S/ρe.
Otherwise the image of Ie is the zero element. To prove S/ρe is primitive, suppose
x, y ∈ RF(e), xρe and yρe are projections and xρe ≥ yρe. Since ρe respects the unary
operation, we may actually assume that x, y ∈ PS with x ≥ y. But then yy = yx and so
xρey, as required. Since S = RF(e) ∪ Ie, it is clear that S/ρe = RF(eρe) ∪ {0}, so eρe is
then a base for the primitivity.

Finally, suppose that S was initially primitive with base e. Then S = RF(e) ∪ {0}.
Suppose x, y , 0 and g ∈ PS is such that gx = gy , 0. Then by primitivity g = x+ = y+,
so that x = y. �
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Corollary 6.5. Let S be a left restriction semigroup that satisfies (6.1). Then S is
a subdirect product of the left restriction semigroups S/ρe, e ∈ PS , each of which is
either a monoid or is primitive with base eρe.

Proof. Let x, y ∈ S and suppose (x, y) ∈ ρ f for all f ∈ PS . Put e = x+. Then x ∈ RF(e),
so y ∈ RF(e) and there exists g ∈ PS such that gx = gy ∈ RF(e), where again we may
take g ≤ x+y+. But then g = e and so x = ey. So x ≤ y in the natural partial order and,
by symmetry, equality holds. �

The proof of the main theorem of this section may now be completed.

Theorem 6.6. The following are equivalent for a left restriction semigroup S:

(i) S ∈ B, the variety generated by Brandt semigroups and monoids (or,
equivalently, by the reducts of strict inverse semigroups, or by the reducts of
strict restriction semigroups and monoids);

(ii) S satisfies identity (6.1), namely (xz)+(yz+w)+ = (yz)+(xz+w)+ (or either of the
equivalent formulations in Lemma 6.1);

(iii) S is a subdirect product of monoids and primitive left restriction semigroups with
a specified base;

(iv) S is strict (that is, a subdirect product of monoids and primitive left restriction
semigroups).

Proof. (i) ⇒ (ii) and (iv) ⇒ (ii). Every primitive left restriction semigroup satisfies
(6.1), by Proposition 6.2. Every Brandt semigroup is such a semigroup.

(ii)⇒ (iii)⇒ (iv). The first is an immediate consequence of Corollary 6.5 and the
second is obvious.

(iii) ⇒ (i). By Proposition 5.4, each primitive factor embeds in a primitive
restriction semigroup, which, according to Result 4.6 and the discussion in Section 3
belongs to BR. Thus S ∈ 〈BR〉LR = B, applying Proposition 4.8. �

Corollary 6.7. There exists a left restriction semigroup that is locally a semilattice
but does not belong to B.

Proof. Let P = {0, e, f , g} be the semilattice, with 0 as zero, in which e f = eg = 0 and
f > g. Adjoin distinct elements a and b and put a+ = b+ = e. Apart from ea = a and
eb = b, all products xa and xb are 0. Apart from a f = ag = a and b f = b, all products
ax and bx are 0. By checking cases, S = P ∪ {a, b} is seen to be a left restriction
semigroup with P as its semilattice of projections. Since each projection is either a
left or a right zero for each of a and b, S ∈ loc(S). However, a and b share the right
identity f but do not share the right identity g for a. So S does not satisfy (6.1). �

7. Bases of identities for D and D ∨M

The structural approach to membership in the variety generated by Brandt
semigroups, in both the inverse and the restriction cases, devolves to primitive
semigroups consisting of a single nonzeroD-class or D-class, respectively. The direct
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analog for left restriction semigroups comprises the primitive semigroups with a single
nonzero R-class, that is, with precisely one nonzero projection.

We term such semigroups 0-R-simple. It is clear from the previous section that
these are no longer the appropriate structural analogs, but they are of interest in their
own right, as we first show. (The essence of the distinction is the existence of the
minimal such example, namely D itself.) In a way, this connection is one analog of the
equivalence between primitive restriction semigroups and categories established in [8],
with M-acts replacing categories. For background on M-acts in general, see [10].
While no results from this theory are directly used, the connection was helpful in
establishing Theorem 7.5.

Let M be a monoid, with identity e, that acts unitarily (or ‘monoidally’) on the left
on a nonempty set X, (m, x) 7→ m · x. Let A(M, X) = M ∪ X ∪ {0} and define a product
as follows: if m, n ∈ M, the product is that in M; if x ∈ X, the product mx is m · x.
All other products are zero. Put a+ = e for all nonzero a and put 0+ = 0. Extend the
notation to A(M, ∅) = M ∪ {0} (where one might regard the ‘empty’ action as including
this with the case where X is nonempty).

Proposition 7.1. Let M be a monoid, with identity e, that acts unitarily on the left on
a set X. Then A(M, X), as just defined, is a 0-R-simple left restriction semigroup.

Conversely, any such left restriction semigroup S has this form, where if PS = {0, e},
then M = Me, X = Re\M and the action of M on X is as follows: for m ∈ M, x ∈ X,
m · x = mx.

Proof. Put A = A(M, X), for convenience. If X = ∅, this is clear. Otherwise, since
MX ⊆ X and XA = {0}, the only case of consequence to consider for associativity
is (mn)x = m(nx), where m, n ∈ M, x ∈ X. Equality follows from the definition of
action. Since e · a = a for all a ∈ A, a+a = a for all a. The remaining identities for
left restriction semigroups are straightforwardly verified.

Conversely, if S is as given, then M = Me is a monoid that acts unitarily on X, if
X , ∅, and it is clear that A(M, X) � S in any case. �

Write A(1, X) in the case that M is trivial. If X is nonempty, M acts identically on
the set and so A(1, X) is essentially the null semigroup on X, together with the left
identity and right zero element (other than for itself) 1. In particular, D = A(1, X),
where X is a singleton set. If X is empty, then A(1, X) is the two-element semilattice.
We leave it to the reader to extend Proposition 7.1 to a categorical equivalence in a
natural way, an extension not needed in the sequel.

Proposition 7.2. Any semigroup A(1, X) belongs to D.

Proof. We may assume that X is nonempty, since S ⊂ D. Let Y be any nonempty set
and consider the semigroup DY . Denote by g the projection all of whose entries are
e. Then |Rg| = 2|Y | and the Rees quotient modulo its complement (as in Section 2) is
isomorphic to A(1, Z), where |Z| = 2|Y | − 1. Any semigroup A(1, X) embeds in such a
semigroup for suitably large Z. �
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Proposition 7.3. Any semigroup A(M, X) is a homomorphic image of M × A(1, X) and
therefore belongs to D ∨M.

Proof. The case X = ∅ is standard [5, Lemma 4.6.10]. Assume otherwise and define
θ : M × A(1,X) −→ A(M,X) by (m,1)θ = m, (m,0)θ = 0 and (m, x)θ = mx, for all m ∈ M
and x ∈ X. The only nonzero products in M × A(1, X) are (m, 1)(n, 1) and (m, 1)(n, x)
and it is easily verified that they are respected by θ. The final statement is then a
consequence of Proposition 7.2. �

We turn now to new identities.

Lemma 7.4. In any left restriction semigroup S , the following are equivalent, and imply
identity (6.1):

(i) S satisfies
y+xz+ = xy+z+; (7.1)

(ii) S satisfies ex f = xe f for all e, f ∈ PS ;
(iii) S satisfies x f = (x f )(x f )+ and x f = f x f for all f ∈ PS .

Proof. Clearly (i) and (ii) are equivalent. Note that by interchanging e and f , the
identity in (ii) implies that ex f = f xe. Let x ∈ S and f ∈ PS . Then x f = x+x f =

f xx+ and so x f = f x f . Now x f = (x f ) f = f (x f )(x f )+ = x f (x f )+. Thus (iii) holds.
Conversely, let x ∈ S and e, f ∈ PS . Then ex f = (ex f )(ex f )+ = (ex f )e(ex f )+, so
ex f = ex f e = exe f = xe f .

Now assuming (iii) holds, we show (6.1) holds, via Lemma 6.1(c). Let e, f , g ∈ PS ,
x, y ∈ Re with x f = x, y f = y and xg = x. Using the first identity in (iii), x, y ∈ Me.
Using the second identity, x = gxg, so e = x+ ≤ g. Therefore y = ye = yg. �

Observe that the first identity in (iii) may be paraphrased as ‘any element a with a
right identity belongs to the monoid Ma+’.

The identities in (iii) are independent. On the one hand, any union of monoids
satisfies the first identity, by virtue of its paraphrase, but by the discussion following
Result 4.4, the union of monoids L1

2 does not belong to B and so cannot satisfy the
second identity. On the other hand, the semigroup D1 = {e, a, 0, 1} is easily seen to
satisfy the second identity but does not satisfy the first, since 1 is a right identity for a.

Theorem 7.5. The following are equivalent for a left restriction semigroup S:

(i) S ∈ D ∨M;
(ii) S satisfies identity (7.1), namely y+xz+ = xy+z+ (or either of its equivalent

formulations in Lemma 7.4);
(iii) S is a subdirect product of monoids and semigroups of the form A(M, X).

Proof. That (iii) implies (i) is a consequence of Proposition 7.3. It is clear that
every monoid satisfies (7.1) (the only projection being the identity element). That
D = {e, a, 0} satisfies (7.1) is also trivially verified: the only essential case is where
x = a, but then x f = 0 for all f ∈ PD. So (i) implies (ii).
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To prove that (ii) implies (iii), suppose that S satisfies (7.1). By Lemma 7.4, it
thereby satisfies (6.1) and so by Proposition 6.5 is a subdirect product monoids and
primitive left restriction semigroups, each with a specified base, that satisfy (7.1). Let
T be such a semigroup, with base e, say. According to the paraphrase following the
last lemma, the only elements of Re with a right identity belong to Me, in which case,
by primitivity, that right identity is e itself. Thus T = Re ∪ {0} and so is 0-R-simple.
Then Proposition 7.1 applies. �

Next we turn to the variety D.

Lemma 7.6. In any left restriction semigroup S , the following are equivalent:

(i) S satisfies the identity
xz+ = (xz+)+; (7.2)

(ii) S satisfies x f = (x f )+ for all f ∈ PS ;
(iii) S satisfies identity (7.1) and has trivial submonoids.

Proof. The equivalence of (i) and (ii) is obvious. Since (7.2) implies that x f is always
a projection, the identity immediately implies both identities in Lemma 7.4(iii) and
therefore (7.1). Also clear is that the submonoids must be trivial. Conversely, if S
satisfies (7.1), then the paraphrase of the first identity in (iii) of that lemma, together
with triviality of submonoids, implies that x f = (x f )+. �

Identity (7.2) may be paraphrased as ‘the only elements with right identities are the
projections’.

Corollary 7.7. The following are equivalent for a left restriction semigroup S:

(i) S ∈ D;
(ii) S satisfies the identity (7.2), namely xz+ = (xz+)+;
(iii) S is a subdirect product of semigroups of the form A(1, X).

Proof. That D satisfies (7.2) is clear from the paraphrase of the latter. Thus (i) implies
(ii). If (ii) holds, then by the previous lemma, (7.1) holds and Theorem 7.5 applies.
Again by the lemma, (7.2) implies that monoids are trivial, so (iii) holds. Finally,
assume (iii) holds. Again applying Theorem 7.5, since S has trivial submonoids,
the same is true for each A(M, X) and so each has the form A(1, X). Applying
Proposition 7.2, S ∈ D. Thus (i) holds. �

Theorem 7.8. The varieties in the interval [D,D ∨M] are precisely those of the form
D ∨ N, for some variety N of monoids.

Proof. Let V be such a variety and let N = V∩M, so V ⊂mon(N). Clearly D∨N ⊆ V.
In the proof of Theorem 7.5, the cited results, Propositions 6.5 and 7.3, preserve the
property that the submonoids belong to N, so V ⊆ D ∨ N. �

Recall from Result 4.4 that T ≺ S ≺ D. Combining this with the second part of
Result 4.2 yields the following.
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Corollary 7.9. The lattice L(D ∨M) is isomorphic to the product of L(M) with the
three-element chain T ≺ S ≺ D.

8. Bases of identities for B2, B0 and B0 ∨M

Observe first that B = B2 ∨M: for by Result 4.7, BR = (B2)R ∨M and so every
Brandt semigroup belongs to B2 ∨M. Once Theorem 8.11 has been proven, this
equation also follows from Result 4.1 (cf. the argument in the proof of Corollary 8.13).
Note that, also by Result 4.1, if S is a finitely generated member of B, then PS is finite,
for there is a projection-separating homomorphism upon S/µ, which belongs to the
locally finite variety B2. (The same argument applies, of course, to members of BR,
finitely generated as restriction semigroups.)

We first introduce the identities relevant to this section and examine them in a
similar fashion to those previously considered.

Lemma 8.1. In any left restriction semigroup S , the following are equivalent, and imply
identity (6.1):

(i) S satisfies
(xz)+(yz) = (yz)+(xz); (8.1)

(ii) S satisfies (x f )+(y f ) = (y f )+(x f ) for all x, y ∈ S , f ∈ PS ;
(iii) if a R b, a f = a and b f = b for some f ∈ PS , then a = b.

Proof. Clear (i) implies (ii). Conversely, given x, y, z ∈ S , from (ii) it follows that
(xz+)+(yz+) = (yz+)+(xz+). Right multiplication by z yields (8.1).

The substitution of a for x and b for y shows that (ii) implies (iii). Conversely, given
any x, y ∈ S and f ∈ PS , it is clear that (x f )+(y f ) R (y f )+(x f ) and these terms each
have f as right identity, so (iii) implies (ii).

That each implies (6.1) is immediate from their paraphrased versions (see the next
paragraph). �

In view of this lemma, identity (8.1) may be paraphrased as ‘for any projection e,
distinct elements ofRe do not share a common right identity’. Note that all submonoids
must therefore be trivial and that, in fact, if S is a restriction semigroup, then H is the
identical relation.

From this interpretation and the corresponding interpretation of (6.1), above, it is
clear that (8.1) implies (6.1).

Lemma 8.2. In any left restriction semigroup S that satisfies identity (6.1), the
following are equivalent:

(i) S satisfies
xyx = xyx(xyx)+; (8.2)

(ii) if x, y ∈ S , yx+ = y and xy+ = x, then x+ = y+ (and, as a result, x, y ∈ Mx+).
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Proof. Assume (i) holds and let x, y be as in (ii). Put e = x+, f = y+. Then (xyx)+ =

(xye)+ = (xy)+ = (x f )+ = x+ = e and, by assumption, xyx ∈ Me. By (the paraphrase of)
(6.1), since f is a right identity for both x and xyx and e is a right identity for xyx, e is
also a right identity for x, that is, x ∈ Me. Since, now, x and e share the latter as a right
identity, they likewise share f as a right identity. So e ≤ f and, by symmetry, f ≤ e,
giving the stated conclusion.

Before proving the reverse implication, we prove that (6.1) implies the identity
xyx = xyxy+. Note that (xyx)+ has both x+ and (xy)+ as a right identity, since each is a
left identity and projections commute. Now xyx+ R (xyx)+ and xyx+ has x+ as a right
identity so that—using the paraphrase of (6.1)—it also has (xy)+ as a right identity, that
is, xyx+ = (xyx+)(xy)+ = xy(xy)+. Then, using the ‘left ample’ identity, xyx = xyxy+.

From this identity we can write xyx = xyxy+ = (xy+)((yxy+)+y)(xy+) and, applying
the identity to the right-hand product, it follows that xyx = (xyx)((yxy+)+y)+ =

xyx(yxy)+. Similarly, yxy = yxy(xyx)+, so (ii) implies that (xyx)+ = (yxy)+ and hence
xyx = xyx(xyx)+. �

Corollary 8.3. If a primitive left restriction semigroup with base e satisfies (8.2), then
the base is unique.

Proof. Suppose f is also a base and let a, b be as in Lemma 5.3. Then by Lemma 8.2,
e = f . �

Lemma 8.4. In any left restriction semigroup S that satisfies identity (8.1), the
following are equivalent:

(i) S satisfies
xyx = (xyx)+; (8.3)

(ii) S satisfies (8.2) and its submonoids are trivial;
(iii) every regular element of S is a projection.

Proof. If (i) holds, then it clearly satisfies (8.2). Further, if e ∈ PS and x ∈ Me, then
x = exe = x+ = e.

If (ii) holds and x is a regular element of S , with inverse y, then x = xyx belongs to
a submonoid and is therefore a projection.

Suppose (iii) holds and let x, y ∈ S be as in Lemma 8.2(ii). Put e = x+ and f = y+.
Then xy R e = x+ and both xy and e have e as a right identity. By (the paraphrase
of) (8.1), xy = e. Similarly yx = f . Therefore, by (iii), x and y are projections and
so x = e = f = y, using commutativity of projections. By the cited lemma, S satisfies
(8.2). Identity (8.1) implies triviality of submonoids. Therefore (ii) holds, and (ii)
clearly implies (i). �

Finally, identity (8.3), namely xyx = (xyx)+, may be paraphrased as ‘the only
regular elements are the projections’; cf. [7, Lemma 10.1] for the variety (B0)R.

Lemma 8.5. Regarded as left restriction semigroups, B2 satisfies (8.1) and B0, in
addition, satisfies (8.3).
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Proof. This is simply checked, using the paraphrased versions of identities (8.1)
and (8.3). �

In the remainder of this section we show that every primitive left restriction
semigroup with base e that satisfies (8.1) divides a suitable restriction semigroup and
therefore belongs to B2 (and to B0 if it also satisfies (8.3)). The next lemma and
the example that follows demonstrate that the method of proof used for B (and for
B ∩mon(N) in general) cannot be followed literally.

Lemma 8.6. Let S be a primitive left restriction semigroup that satisfies (8.1). If x R y
and ax = ay , 0 has a right identity, then x = y. Hence if S can be +-embedded in a
restriction semigroup, then it must satisfy:

if x R y and ax = ay , 0, then x = y. (8.4)

Proof. From Lemma 5.1 it follows that if ax = ay , 0 has a right identity, then so do
both x and y, whence, by (8.1), x = y. �

Note that if S satisfies (8.1) then, according to this lemma, the implication (8.4) is
satisfied in S RI , so it need only be tested for x, y ∈ S NRI . It is not a consequence of
(8.1), nor of (8.3), as the following example illustrates. As noted in the introduction
(for more details, see [4]), for any nonempty set X, the semigroup PT X of partial self-
maps of X is a left restriction semigroup under the unary operation that assigns to each
such map the identity map on its domain.

Proposition 8.7. Let X = {1, 2, 3, 4, 5, 6} and S the unary subsemigroup of PT X

generated by {a, s, t}, where a : 1 7→ 2, s : 2 7→ 4, 3 7→ 5, and t : 2 7→ 4, 3 7→ 6. Then S
satisfies (8.3), but s R t while as = at , 0.

Proof. Since s and t are left zeros and a2 = 0, the ‘plain’ subsemigroup T generated
by {a, s, t} is {a, s, t, b, 0}, where b = as = at : 1 7→ 4. Let e and f be respectively the
identity maps on {1} and {2, 3}, so that e = a+ = b+ and f = s+ = t+. Now both e and f
are either left zeros or left identities for every element of T ; and likewise on the right.
Since e f = 0, it now follows that S = {e, f , a, s, t, b, 0}, that S is primitive with base e,
that S satisfies (8.3) and that (8.4) fails. �

Following Proposition 5.4, it was remarked that that embedding result would not
suffice in this section. The next result serves our purposes. Note that although we
again use the notation S ∗, this new oversemigroup will not in general be isomorphic to
that in Proposition 5.4. (In fact there is a range of such possible embeddings, but we
do not need more general cases and so have not included them.)

Proposition 8.8. Let S be a primitive left restriction semigroup with base e that
satisfies both identity (8.1) and the implication (8.4). Then S may be +-embedded
in a restriction semigroup S ∗ that belongs to (B2)R. If, in addition, S satisfies (8.3),
then S ∗ ∈ (B0)R.
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Proof. Let S ∗ be obtained from S by the adjunction of one right identity for each
a ∈ Re ∩ S NRI . In view of the end result (and consistent with the notation used in
Section 5 for those elements of S RI) we may denote this right identity by a∗. For
convenience, call these the ‘new’ a∗s. Extend this unary operation to all of S NRI as
follows. If x ∈ S NRI , using the paraphrase of (8.1) following Lemma 8.1, there exists a
unique a ∈ Re such that ax ∈ Re. According to Lemma 5.1, ax ∈ S NRI (and conversely).
Consistent with the conclusions of that lemma, set x∗ = (ax)∗.

Extend the binary operation on S to S ∗ as follows. For each new a∗ and each x ∈ S ∗

such that x∗ = a∗, put xa∗ = x; set all other new products equal to 0. In particular,
a∗x = 0 for all new a∗ and all x ∈ S ∗\{a∗}. Extend the unary operation s 7→ s+ to S ∗ by
putting (a∗)+ = a∗ for each new a∗. Thus PS ∗ is the union of PS with the set of new a∗s.

Consider nonzero elements r, s, t ∈ S . If r is a new a∗, then each of (rs)t and r(st)
is nonzero if and only if s = a∗ = t, in which case each product is a∗. If not, suppose
s is a new a∗ and consider (ra∗)t. Then ra∗ is nonzero if and only if (r ∈ S NRI and)
r∗ = a∗, in which case ra∗ = r, and then rt = 0 unless t = a∗, in which case (ra∗)a∗ = r.
Considering instead r(a∗t), a∗t is nonzero if and only if t = a∗, in which case a∗t = a∗

and the previous calculation again applies. Finally, supposing r, s ∈ S and t is a
new a∗, then (rs)a∗ is nonzero if and only if (rs ∈ S NRI and) (rs)∗ = a∗, in which
case (rs)a∗ = rs. Since rs ∈ S NRI , s ∈ S NRI by Lemma 5.1, and (by the definition)
a∗ = (b(rs))∗ for some b ∈ Re. Now (br)s ∈ Re, so s∗ = ((br)s)∗ = (b(rs))∗ = a∗. It
follows that sa∗ = s and so r(sa∗) = rs once more.

Therefore S ∗ is a semigroup. That it is a left restriction semigroup is checked easily,
as in the proof of Proposition 5.4.

To this point we have shown that S ∗ is a left restriction semigroup, clearly primitive,
in which each element now has a right identity. By Proposition 5.2, S ∗ is a restriction
semigroup. Next we show that S ∗ satisfies (8.1). Suppose x R y and x∗ = y∗ in S ∗.
If both x and y are in S RI , then the original hypothesis applies. The case where
one of x and y is in S RI and the other is in S NRI cannot occur, by the construction
of the new projections. If x, y ∈ S NRI , let b ∈ Re be such that bx, by ∈ Re, so that
(bx)∗ = x∗ = y∗ = (by)∗. By the construction, bx = by. But then (8.4) implies that
x = y, as required.

As noted following Lemma 8.1, H is the identical relation on S ∗. Therefore, by
Result 4.6, S ∗ ∈ (B2)R.

If the only regular elements of S are projections, the same is true in S ∗, for
the only new elements are themselves projections. The final statement is therefore
a consequence of Lemma 8.4 and, as already remarked following that lemma, [7,
Lemma 10.1]. �

Proposition 8.9. Let S be a primitive left restriction semigroup. Then there exists
a primitive left restriction semigroup Ŝ with the property that if Ŝ RI satisfies the
implication (8.4), so does Ŝ itself. Further, there exists a surjective homomorphism
θ : Ŝ −→ S that restricts to an isomorphism from Ŝ RI to S RI . Thus θ is projection-
separating and the submonoids of Ŝ are isomorphic to those of S . If S has base e,
then the inverse image of e is a base for Ŝ .
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If S satisfies identity (8.1), then so does Ŝ . In that event, Ŝ also satisfies the
implication (8.4). Further, if S satisfies (8.3), then so does Ŝ .

Proof. If S = S RI , put Ŝ = S . Now assume otherwise. Let Ŝ = U ∪ S RI , where
U = {(a, x) ∈ S RI × S NRI : a , 0 and ax R a}. Recall that, by virtue of Lemma 5.1,
ax R a if and only if a∗ = x+, where a∗ is defined as in Section 5. Note that U contains
(x+, x) for every x ∈ S NRI .

Extend the operations in S RI to Ŝ as follows. Put (a, x)s = 0 for all (a, x) ∈ U and
s ∈ Ŝ . Thus U = Ŝ NRI . If s ∈ S RI and (a, x) ∈ U, put s(a, x) = (sa, x), if s∗ = a+, and 0
otherwise. For (a, x) ∈ U, put (a, x)+ = a+ ∈ S RI .

Define θ : Ŝ −→ S by (a, x)θ = ax, for (a, x) ∈ U, and sθ = s for all s ∈ S RI . If
x ∈ S NRI , then (x+, x)θ = x, so θ is surjective.

Note that if s(a, x) , 0, then by Lemma 5.1, sa R s (so sa , 0) and (sa)∗ = a∗ = x+

(so sa ∈ S RI), whereby (sa)x R sa and s(a, x) ∈ U. Thus the product is closed. The only
consequential case of associativity to be checked is (rs)(a, x) = r(s(a, x)), for r, s ∈ S RI

and (a, x) ∈ U. Here the left-hand side is zero unless r∗ = s+ (so that (rs)∗ = s∗) and
(rs)∗ = a+, in which case the product is ((rs)a, x). The right-hand side is zero unless
s∗ = a+ (so that (sa)+ = s+) and r∗ = (sa)+, in which case the product is (r(sa), x). Thus
equality holds.

Clearly PŜ = PS and so any nonzero element of PŜ is minimal with respect to
this property. To check that it is a left restriction semigroup, first observe that if
(a, x) ∈ U, then a+(a, x) = (a, x) is immediate from the definition. If s ∈ S RI , then
(s+(a, x))+ = (a, x)+ = a+, if s+ = a+, and is 0 otherwise, while the same holds for
(s+(a, x)+)+. Similarly, (s(a, x))+s = (sa)+s = sa+ = s(a, x)+, as long as s∗ = a+;
otherwise both sides are zero. The remaining cases are trivially verified.

If e is a base projection for S , it is likewise for Ŝ , since for any (a, x) ∈ U,
(a, x)+ = a+.

Suppose Ŝ RI = S RI satisfies the implication (8.4). Let s ∈ S RI and (a, x), (b, y) ∈
U = Ŝ NRI . Suppose (a, x) R (b, y), so that a+ = b+; that s(a, x) , 0, so that s∗ = a+ and
s(b, y) , 0; and that s(a, x) = s(b, y). Then x = y and sa = sb , 0, so that, by (8.4) for
S RI , a = b.

To check that θ is a homomorphism, the only case of consequence entails s ∈ S RI

and (a, x) ∈ U. Then (sθ)(a, x)θ = s(ax) is nonzero in S if and only if s∗ = (ax)+ = a+,
in which case s(ax) = (sa)x = (s(a, x))θ. The other stated properties of θ are obvious.

Next suppose S satisfies identity (8.1). Then it holds in Ŝ RI = S RI . But it
holds vacuously otherwise on Ŝ , applying Lemma 8.1(iii). Further, it is clear from
Lemma 5.1 that any regular element of Ŝ must belong to Ŝ RI = S RI . Thus if S satisfies
(8.3), so does Ŝ . �

The combination of Propositions 8.8 and 8.9, together with the second statement of
Proposition 4.8, completes the proof of the following, the essence of the main theorems
of this section.
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Corollary 8.10. Let S be a primitive left restriction semigroup, with base e, that
satisfies identity (8.1). Then S +-divides (Ŝ )∗ ∈ (B2)R and so S ∈ B2. If, in addition, S
satisfies (8.3), then (Ŝ )∗ ∈ (B0)R and so S ∈ B0.

Theorem 8.11. The following are equivalent for a left restriction semigroup S:

(i) S ∈ B2;
(ii) S satisfies identity (8.1), namely (xz)+(yz) = (yz)+(xz) (or its equivalent

formulations given by Lemma 8.1);
(iii) S is a subdirect product of primitive left restriction semigroups (with designated

base) that satisfy (8.1).

Proof. Lemma 8.5 states that (i) implies (ii). Conversely, according to Lemma 8.1,
(8.1) implies identity (6.1) and so, by Corollary 6.5, S is a subdirect product of
primitive left restriction semigroups, with specified base. By Corollary 8.10, each
such semigroup belongs to B2.

The equivalence with (iii) is then immediate from Theorem 6.6 (noting that only
trivial monoids satisfy (8.1)). �

Corollary 8.12. The following are equivalent for a left restriction semigroup S:

(i) S ∈ B0;
(ii) S satisfies identity (8.1) together with identity (8.3), namely xyx = (xyx)+.

Proof. Again, Lemma 8.5 states that (i) implies (ii). The converse follows by the same
argument as for B2, using the paraphrase of (8.3). �

Corollary 8.13. The following are equivalent for a left restriction semigroup S:

(i) S ∈ B0 ∨M;
(ii) S satisfies identity (6.1) together with identity (8.2), namely xyx = (xyx)(xyx)+;
(iii) S is a subdirect product of monoids and primitive left restriction semigroups,

each having a unique base.

Proof. To prove the equivalence of (i) and (ii) recall first, from the remarks at the
beginning of this section, that B = B2 ∨M. Next, by Result 4.1, S ∈ B2 ∨M if and
only if S/µ ∈ B2 and so if and only if S/µ satisfies (8.1). Similarly, S ∈ B0 ∨M if and
only if S/µ ∈ B0 and so if and only if S/µ satisfies both (8.1) and (8.3).

Let x, y ∈ S , with S ∈ B. Then by Lemma 6.3, xyx µ (xyx)+ if and only if
xyx = (xyx)(xyx)+. That is, S/µ satisfies both (8.1) and (8.3) if and only if S satisfies
(8.2). Therefore (i) and (ii) are equivalent.

That (ii) implies (iii) is the combination of Corollaries 6.5 and 8.3. To prove the
converse, we apply Lemma 8.2. Identity (6.1) is already known. Suppose a, b ∈ S
with e = a+, f = b+, a = a f , b = be. Then f ∈ RF(e) and e ∈ RF( f ). Suppose g ∈ PS

and cg = c for some c ∈ Re. Then bc R be = b and (bc)g = bc. That is, RF(e) ⊆ RF( f ).
From symmetry it follows that RF(e) = RF( f ) and so ρe = ρ f = ρ, say, with the classes
of e and f both bases for S/ρ. By (iii), eρ = fρ. So there exists g ∈ PS such that
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ge, g f ∈ RF(e) and ge = g f . Now since ge ∈ RF(e), c = cge for some c ∈ Re. Here e
is a common right identity for c and e itself, and g is a right identity for c, so by (6.1),
eg = e and, therefore, e ≤ f . By symmetry, f = e. �

Intersecting with B2 provides another option for Corollary 8.12, via Lemma 8.4.

Corollary 8.14. A left restriction semigroup belongs to B0 if and only if it is a
subdirect product of primitive left restriction semigroups, each having a unique base
and satisfying (8.1).

We may now deliver the examples promised at the end of Section 4.1, using the
restriction semigroups Λk that played an essential role in showing [7] that (B0)R is
inherently nonfinitely based (for that terminology, see the following section). Let Y be
the semilattice obtained by adjoining to the antichain {e1, . . . , ek+1} both a zero element
and another element f such that f > e1 and f > ek+1, only. For e ∈ Y , the principal ideal
generated by e is denoted Ye. For k ≥ 1, Λk is the subset of PT (Y) consisting of the
identity mappings 1Ye, for e ∈ Y , and partial order isomorphisms {α1, . . . , αk+1}, where
αn : Yen → Yen+1, for n odd, and αn : Yen+1 → Yen for n even. Then [7, Proposition
6.6, Theorem 8.1] for each k ≥ 1, Λk is a restriction semigroup (in fact a restriction
subsemigroup of the Munn semigroup TY ) that does not belong to BR.

Note that Λ1 is isomorphic to B1
0, which, regarded as a left restriction semigroup,

does not belong to B since it does not belong to loc(SM).

Proposition 8.15. For k ≥ 2, the restriction semigroups Λk are not strict, when
regarded as such, but are strict when regarded as left restriction semigroups;in fact
they belong to B0. That is (cf. Proposition 4.8 and the comments that follow it), the
inclusion BR ⊂ BR is strict.

Proof. In view of the discussion above, it remains to show that Λk ∈ B0 for k ≥ 2.
For convenience, we will write εi = 1Yei , for i = 1, . . . , k + 1, and ε f for 1Y f . By
direct calculation (or from [7]) the only nontrivial R- and L-relations are given by
αi ∈ Rεi ∩ Lεi+1 , if i is odd, and αi ∈ Lεi ∩ Rεi+1 , if i is even, for 1 ≤ i ≤ k.

As in [7, Section 5], the subsemigroup ∆k of Λk obtained by deleting ε f is a
connected restriction semigroup that does belong to (B0)R, by an application of
Result 4.6, and so belongs to B0, regarded as a left restriction semigroup. We will
apply Corollary 8.12 and the paraphrase of (8.1) that follows Lemma 8.1 to deduce
that the same is true for Λk. Only the ways in which the additional projection ε f acts
as a right identity can affect the desired outcome.

Clearly ε f is a right identity for ε1 and εk+1. If k is even, it acts as a right zero
otherwise. If k is odd, then ε f is also a right identity for αk R εk. In any event, no two
R-related elements share ε f as a right identity. Thus the conclusion holds. �

It is straightforward to determine the lattice L(B2).

Theorem 8.16 (Cf. Result 4.7). The lattice of subvarieties of B2 consists of the chain
of coverings T ≺ S ≺ D ≺ B0 ≺ B2.
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Proof. By Section 4, T ≺ S ≺ D and this is the only sequence of coverings within B∈
that starts from T.

Suppose V is a subvariety of B2 properly containing D. Applying Corollary 7.7
and the paraphrase of identity (7.2), there is a semigroup S , say, in V containing
projections e, f such that f is a right identity for some a ∈ Re, a , e. The variety
V therefore contains the primitive quotient S/ρe, as in Proposition 6.4, in which we
may identify e, f and a with their congruence classes. In the subset {e, f , a, 0}, the only
nonzero products are ea = a, a f = f , ee = e and f f = f . Therefore this subset forms a
unary subsemigroup isomorphic to B0, which therefore belongs to V.

So any subvariety of B2 that properly contains D must contain B0.
Now suppose V is a subvariety of B2 properly containing B0. By Corollary 8.12,

similar reasoning to the case above shows that V contains a primitive left restriction
semigroup R, say, in which there exist x, y such that x = xyx and y = yxy, but x < PR.
(We could use either e = x+ or e = y+ for ρe.) Applying Lemma 5.1, since xy, yx , 0,
x∗ = y+ = h, say, and y∗ = x+ = g, say, while (xy)+ = x+ = g. Now (xy)(xy)+ = xyg =

xyy∗ = xy, so in fact xy ∈ Mg. From (8.1) and the comments following Lemma 8.1,
xy = g. Similarly, yx = h. Since x, y are not projections, x2 = y2 = 0. The subset
{x, y, g, h, 0} therefore forms a unary subsemigroup isomorphic to B2, which therefore
belongs to V.

So B2 covers B0 and there are no subvarieties other than those listed. �

By Proposition 4.5, both L1
2 and D1 generate varieties that are not contained in B.

Thus, even in the context of varieties that are not unions of monoids, B0 is not the only
cover of D.

Corollary 8.17. The interval [M,B] consists of the chain of coverings M ≺ SM ≺
D ∨M ≺ B0 ∨M ≺ B2 ∨M = B.

Proof. In combination with Corollary 7.9, this is immediate from Result 4.1 upon
confirmation that B2 < B0 ∨M and B0 < D ∨M, by a simple check of the relevant
identities. �

9. Inherent nonfinite basability

A variety of algebras is finitely based if it has a finite basis of identities, and is
nonfinitely based otherwise. An individual algebra A is finitely, or nonfinitely, based
if the respective property holds for the variety it generates. The algebra A is inherently
nonfinitely based (often abbreviated as INFB) if any locally finite variety of algebras
that contains A has no finite basis of identities. If A is finite, then the variety it generates
is locally finite, and so if A is INFB, then it is necessarily nonfinitely based.

Among other results in this paper, we have therefore shown that the left restriction
semigroups B2 and B0 are finitely based as left restriction semigroups (and therefore as
unary semigroups). This is in stark contrast to the two-sided situation where [7] in each
case the semigroup is not only nonfinitely based, but INFB, regarded as a restriction
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semigroup. As shown in [7], it follows that any finite restriction semigroup that is not
simply a semilattice of monoids is INFB.

While the theorem below, due to Marcel Jackson in a private communication, plays
no other role herein, it demonstrates that, a priori, the extreme nonfinite basability
demonstrated for two-sided restriction semigroups cannot occur in the one-sided
situation.

We first need the following well-known lemma. Although deducible from
descriptions of the free left restriction semigroup, it is worthwhile presenting an
elementary proof.

Lemma 9.1. Let T be a left restriction semigroup, generated as such by the set X.
Denote by U the ‘plain’ subsemigroup generated by X. Then every element of T
is expressible in the form w+

1 . . .w
+
n w, where each wi ∈ U and w ∈ U1. Thus T is

generated, as a semigroup, by the union of U with the subsemilattice of projections
generated by {u+ : u ∈ U}.

Proof. Let V be the set of such products. Let u1, . . . , um, v1, . . . , vn ∈ U and u, v ∈ U1.
With u , 1 being the only case of interest, repeated application uv+

i = (uvi)+u of the
left ample identity yields (u+

1 · · · u
+
mu)(v+

1 · · · v
+
n v) = u+

1 · · · u
+
m(uv1)+ · · · (uvn)+uv. Also

(u+
1 · · · u

+
n u)+ = u+

1 · · · u
+
n u+, so V is a unary subsemigroup of T that contains X and is

therefore all of T . The last statement is then clear. �

Theorem 9.2 (Jackson). If a left restriction semigroup (S , · ,+ ) is INFB (as a unary
semigroup), then its semigroup reduct (S , ·) is also INFB (as a ‘plain’ semigroup).

Proof. Suppose the conclusion is false. Then (S , ·) belongs to a locally finite, finitely
based, variety V of semigroups. Let W be the variety of left restriction semigroups
defined, as such, by the same set of ‘plain’ identities that defines V. Clearly W is
finitely based as a unary semigroup variety and contains (S , · ,+ ).

Let (T, · ,+ ) be a member of W that is generated, as a unary semigroup, by the finite
set X. As in the lemma, let V be the plain subsemigroup of T generated by X. Now
V satisfies the identities of V and so is finite. By the last statement of the lemma, T
itself is therefore finite. Hence the variety W is locally finite and so (S , · ,+ ) cannot be
INFB. �

The key semigroups D, B0 and B2, for instance, are known to be finitely based
as plain semigroups, since that is true for all semigroups of order less than six [14].
Therefore, a priori they cannot be INFB.
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