NON-ISOMORPHIC EQUIVALENT AZUMAYA ALGEBRAS

BY

LINDSAY N. CHILDS

ABSTRACT. We explicitly describe an infinite collection of pairs of Azumaya algebras over the ring of integers of real quadratic number fields K which are maximal orders in the usual quaternion algebra over K, hence Brauer equivalent, but are not isomorphic. The result follows from an identification of the groups of norm one units, using the classification of Coxeter.

In [10], R. G. Swan constructed a pair of Azumaya algebras over the ring of integers R of a quartic extension of the rational numbers which were equivalent in the Brauer group of R but were not isomorphic. In this note we describe an infinite collection of such pairs over rings of integers of quadratic fields.

Let m be a rational integer congruent to 3 (mod 4), and $R = \mathbb{Z} [\sqrt{m}]$, the ring of integers of $K = \mathbb{Q} (\sqrt{m})$. Suppose $2R = b^2 R$, the square of a principal ideal. (This will always be the case if m is prime, for then R has odd class number.) Let \overline{b} be the conjugate of b. Our examples are both maximal orders over R in the usual quaternion algebra $H(K)$ over K, the algebra generated over K by i and j with $i^2 = j^2 = -1$, $ij = j = k$.

The two examples have bases as free R-modules as follows:

$$A = \left\{ 1, \frac{1 + i}{\overline{b}}, \frac{1 + j}{b}, \frac{1 + i + j + k}{2} \right\};$$

$$D = \left\{ 1, \frac{\sqrt{m} + i}{2}, j, \frac{\sqrt{mj} + k}{2} \right\}.$$

Both may be seen to be Azumaya R-algebras by recognizing them as smash products. Gainst and Hocchsmann [8] have shown that if S, T are Galois objects (in the sense of [2]) with respect to a dual pair of Hopf algebras H, $H^* = \text{Hom}_R (H, R)$, then the smash product $S \# T$ is an Azumaya R-algebra.

Now D is the smash product of a Galois $(RG)^*$-object S and a Galois RG-object T. Here

$$S = R \left[\frac{\sqrt{m} + 1}{2} \right]$$

Received by the editors January 29, 1986, and, in revised form, September 18, 1986.
AMS Subject Classification (1980): 16A16, 16A18.

340
is the ring of integers of the unramified extension $L = K[i]$ of K, hence S is a Galois extension of R with group $G = \text{Gal}(L/K)$ in the sense of [1], hence a Galois $(RG)^*$-object; and

$$T = R[j], \ j^2 + 1 = 0$$

is a G-graded R-algebra and a Galois RG-object.

If we let H_b be the free Hopf R-algebra, $H_b = R[x]$ with $x^2 = bx$ and comultiplication Δ, counit ϵ and antipode λ defined by

$$\Delta(x) = x \otimes 1 + 1 \otimes x - \frac{2}{b} (x \otimes x)$$

$$\epsilon(x) = 0$$

$$\lambda(x) = x,$$

then $A = S \# T$ where

$$S = R[w], \ w^2 = \frac{b}{b} w$$

$$T = R[z], \ z^2 = \frac{b}{b} z$$

are Galois H-objects for $H = H_b$ and $H_b^* = H^*_b$, respectively. Then $S \# T$ embeds in $H(K)$ by

$$w \# 1 \rightarrow \frac{1 + i}{b}, \ 1 \# z \rightarrow \frac{1 + j}{b}.$$

Theorem. The algebras A and D are in the same class in $Br(R)$ but are not isomorphic.

Proof. Since the map from $Br(R)$ to $Br(K)$ is $1 - 1$ and A and D are both orders over R in the same K-algebra $H(K)$, A and D are in the same class in $Br(R)$. To show A and D are not isomorphic, let A^*_o, D^*_o denote the groups of units of A, D, respectively, of norm 1, where

$$n(\alpha) = n(a + bi + cj + dk) = a^2 + b^2 + c^2 + d^2$$

is the usual norm from H to K. A result of Eichler (c.f. Swan [10], Remark 2) shows that A^*_o and D^*_o are finite. We show that A^*_o and D^*_o are not isomorphic. In fact, we show that

$$A^*_o = \{ \pm 1, \pm i, \pm j, \pm k, \ (\pm 1 \pm i \pm j \pm k) / 2 \}$$

a group of order 24, in Coxeter’s notation of [6], $A^*_o = \langle 2, 3, 3 \rangle$; while D^*_o is a dicyclic group.

Now A^*_o, D^*_o, being finite, are made up of roots of unity in $H(K)$. Since $H(K)$ is a skew field, if ζ is a primitive e th root of 1 in $H(K)$, then $\mathbb{Q}(\zeta)$ is a commutative subfield of $H(K)$. So $\mathbb{Q}(\zeta): \mathbb{Q} \leq 4$, hence $\phi(e) \leq 4$, where ϕ is Euler’s function. Now $\phi(e) = 1$ for $e = 1, 2; \ \phi(e) = 2$ for $e = 3, 4, 6; \ \phi(e) = 4$ for $e = 5, 8, 10, 12,$ and $\phi(e) > 4$ for all other e.

https://doi.org/10.4153/CMB-1987-048-8 Published online by Cambridge University Press
If \(\phi(e) = 4 \), then \(\mathbb{Q}(\xi) \supset K \). But the only real quadratic subfield of \(\mathbb{Q}(\xi) \) for \(e = 5, 8, 10 \) or 12 is \(\mathbb{Q}(\sqrt{m}) \) where \(m = 5, 2, 5 \) and 3, respectively. So \(H(K) \) has no elements of order 5 or 8, and no element of order 12 unless \(m = 3 \).

The known list of finite groups of real quaternions ([11], p. 17) shows that since \(A^*_\varphi \), \(D^*_\varphi \) contain no elements of order 5 or 8, each must be isomorphic either to \(E_{24} \), the binary tetrahedral group of order 24, or to a dicyclic group of order \(4n \).

Now
\[
E_{24} = \{ \pm 1, \pm i, \pm j, \pm k, (\pm 1 \pm i \pm j \pm k) / 2 \} \subseteq A^*_\varphi;
\]
hence \(A^*_\varphi \) is not dicyclic, so \(A^*_\varphi = E_{24} \).

To see that \(D^*_\varphi \neq A^*_\varphi \) we show that if \(m > 3 \) \(\varphi \) contains no cube roots of 1, while if \(m = 3 \) \(D^*_\varphi \) contains a 12th root of 1.

Now any element of \(D \) is of the form
\[
\tau = \frac{\alpha}{2} + \frac{\beta}{2} i + \frac{\gamma}{2} j + \frac{\delta}{2} k, \quad \alpha, \beta, \gamma, \delta \in \mathbb{R}.
\]
If \(\tau \) is a primitive 3rd or 6th root of unity, then \(\tau^2 \pm \tau + 1 = 0 \). Also \(n(\tau) = (\alpha - \tau) = 1 \), so \(\tau^2 - \alpha \tau + 1 = 0 \), so \(\alpha = 1 \) or \(-1 \). Thus
\[
n(\tau) = \frac{1}{4} + \frac{\beta^2}{4} + \frac{\gamma^2}{4} + \frac{\delta^2}{4} = 1
\]
or
\[(*) \quad \beta^2 + \gamma^2 + \delta^2 = 3
\]
Setting \(\beta = c + d \sqrt{m} \), \(\gamma = e + f \sqrt{m} \), \(\delta = g + h \sqrt{m} \), \(c, d, e, f, g, h \) in \(\mathbb{Z} \), (*) becomes
\[
\begin{cases}
c^2 + md^2 + e^2 + mf^2 + g^2 + mh^2 = 3 \\
\quad cd + ef + gh = 0
\end{cases}
\]
If \(m > 3 \), the only solution of (**) is \(c^2 = e^2 = g^2 = 1 \). But, as is easily seen, \((\pm 1 \pm i \pm j \pm k) / 2 \) is not in \(D \). Thus \(D^*_\varphi \) has no elements of order 3, hence cannot be isomorphic to \(E_{24} = A^*_\varphi \).

If \(m = 3 \), \(D^*_\varphi \) contains \(\frac{\sqrt{3} + i}{2} \), a primitive 12th root of 1. Since \(E_{24} \) has no elements of order 12, again \(D^*_\varphi \) is dicyclic for \(m = 3 \), and, in particular, not isomorphic to \(A^*_\varphi \). That completes the proof.

A bit more computation (which we omit) shows that, in Coxeter’s notation of [16], \(D^*_\varphi = (2, 2, 2) \) for \(m > 3 \), while for \(m = 3 \), \(D^*_\varphi = (2, 2, 6) \).

REMARKS. The algebras \(A \) and \(D \), being non-isomorphic representatives of the non-trivial class of \(Br(R) \) give further explicit examples of the failure of cancellation of projective modules [10] and of the failure of the Skolem-Noether theorem for Azumaya algebras [3], [4].
Using Eichler’s class number formula [7], Theorem, and a closed form description of the zeta function of K evaluated at 2 found in [9], page 40, one can show (not without some difficulty) that the number t of isomorphism types of maximal orders in the quaternion algebra $H(K)$, $K = \mathbb{Q}(\sqrt{p})$, satisfies $t = 2$ if and only if $p = 3$. Thus the algebras A and D represent all isomorphism types of maximal orders in $H(\mathbb{Q}(\sqrt{p}))$, $p \equiv 3 \pmod{4}$, if and only if $p = 3$. We omit the details, some of which may be found in [5].

My thanks to the referee for pointing out reference [11].

REFERENCES