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A CONDITION FOR EQUALITY OF CARDINALS OF 
MINIMAL GENERATORS UNDER CLOSURE 

OPERATORS 

BY 

JAPHETH HALL, JR. 

Let C be an operator on the subsets of a set X with values among the subsets 
of X. We assume that C is a closure operator in X, i.e. a monotone, idempotent 
and extensive operator in X (cf., e.g., Birkhoff [3, p. 39], Schmidt [1], [2]). If 
A^X and B^X, we say that A and B are C-equivalent if C(A) = C(B) (Bleicher-
Marczewski [4, p. 210]). If A^X, we say that A is C-independent if C(B)^C(A) 
for each proper subset B of A. C is said to have finite character in X (cf., e.g., 
Schmidt [2, p. 236]) if the following condition is satisfied: If A^ X and x e C(A), 
then x G C(B) for some finite subset B of ^4. 

It is known that if C has finite character in X, then any two C-independent 
C-equivalent subsets of X9 one of which is infinite, have the same cardinal number 
(see Bleicher-Preston [5, p. 210]). The purpose of this note is to introduce property 
(a) below, to show that it is sufficient for equality of cardinals of C-independent 
C-equivalent infinite subsets of X and to establish some sufficient conditions for 
property (a). (We use the symbol | 5 | to denote the cardinal of a set S.) 

Property (a) : If E and F are C-equivalent subsets of X and x G C(E), then 
x G C(A) for some subset A of F such that \A\ < \E\. 

THEOREM 1. If C has property (a) and E^ X and C(E) includes a C-independent 
set F which is C-equivalent to E, then \F\ < \E\2. 

Proof. We assume the hypothesis of the theorem. We use property (a) and choose 
a family {Fx}xeE of subsets of F such that \FX\ < \E\ and x e C(FX) if x e E. Since 
C is a closure operator in X, it follows that 

« = U W £ U C(FX) £ C ( U Fx) s C(F) = C(E). 
xeE xeE \ xeE / 

Therefore, C(F) = C({JxeE Fx) and, since Fis C-independent and \JXGE FX^F, it 
follows that {JxeE FX=F. Consequently, 

1*1 = I U Fx\ < 2 |F,| < 2 \E\ = \E\\ 
xeE xeE xeE 

This proves the theorem. 
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THEOREM 2. If any two C-independent C-equivalent subsets of X have the same 
cardinal number and each subset B of X includes a C-independent subset which is 
C-equivalent to B, then C has property (a). 

Proof. We assume the hypothesis of the theorem. Suppose there are C-equivalent 
subsets E and F of X and a member x of C(E) such that x <£ C(A) if A^F and 
\A\ < \E\. Using the second assertion in our assumption, we choose a C-indepen­
dent subset E1 of E which is C-equivalent to E and a C-independent subset F± of 
F which is C-equivalent to F. Then x e C(F±) and it follows that li^l > | £ | > l^ l 
while F1 and Ex are C-independent C-equivalent subsets of X. This is a contradic­
tion of our hypothesis. The theorem follows. 

REMARKS. If, in Theorem 1, we take the additional hypothesis that E is C-
independent and F is infinite, then it will follow that | F | < | £ | 2 = | £ , | < | F | 2 = = | F | . 
Therefore, if C has property (a), then any two C-independent C-equivalent sets, 
one of which is infinite, have the same cardinal number. It is obvious that finite 
character is sufficient for property (a) in the case of infinite C-independent C-
equivalent subsets of X. Examples of closure operators which have property (a) 
but not finite character may be found among infinite dimensional inner product 
spaces. A particular example is the following: Let X be the complete inner product 
space of all real-valued sequences / such that 2 £ i 1/(01 < 0 ° - Define C(E) to be 
the closed linear manifold generated by E if E^ X (see Taylor [6, p. 109, p. 84]). 
If i> 1, let/iO') be 0 ify#i and 1 otherwise. Let /( / ) = i _ 1 if i> 1. T h e n / e C({/ t: 
i> 1}). It is easy to verify that C is a closure operator in X and t h a t / £ C(A) if A 
is a finite subset of {/:/> 1}. The hypothesis of Theorem 2 is satisfied (see Taylor 
[6, pp. 106-118]). Therefore, C has property (a). 
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