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AVERAGE DISTANCE CONSTANTS FOR POLYGONS
IN SPACES WITH NON-POSITIVE CURVATURE

DEVENDRA K. KULSHESTHA, TOM W. SAG AND LU YANG

In this paper we show that the average distance constant of a general polygon
which is a subset of an Af-space with non-positive curvature can be expressed
as the extreme value of either of two nonlinear programs and discuss the practical
application of one of these nonlinear programs for the determination of the average
distance constant for a polygon in general, and in particular for a planar triangle.

1. INTRODUCTION

Recently the work of Gross [4] concerning the average distance property of compact
connected metric spaces has interested many authors [2, 6, 7, 8, 11, 13, 14]. Gross
and Stadje [10] independently proved the following remarkable result:

THEOREM 1. Let (X, d) be a compact connected metric space with metric d.
Then there exists a unique positive real number a(X, d) (called the average distance
constant of (X, d)) such that for any finite collection of points xlt x2, .. •, xn e X

(not necessarily distinct), there is y 6 X with I £ dixii y) ) ln = a(X> <0 •

The evaluation of the average distance constant of a given compact connected
metric space is an important problem in numerical geometry. Explicit formulae for the
constant have only been found in simple cases many of which are detailed in [2]. In
particular a result is given for the perimeter of a regular polygon in the two dimensional
Euclidean plane. Recently a result for general planar polygons has been obtained in
[5] which expresses the average distance constant of the polygon as the extreme value
of either of two nonlinear programs. In this paper we establish the same result for
general polygons which are subsets of an M-space with not necessarily constant non-
positive curvature. To date all non-trivial results concerning average distance constants
of special subsets have been confined to spaces with constant curvature.

We now introduce some definitions which are essential to our work. Following [3]
we have:
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DEFINITION 1: Let (X, d) be a metric space. Then {X, d) is an M-space if for
each pair of distinct points x, y G X and Va G (0, 1) there is a unique z(a) G X such
that

(1.1) d(x, z(a)) = ad(x, y) and d(y, z(a)) = (1 - a)d(x, y).

We now define the concepts of line segment and midpoint for M-spaces as follows

DEFINITION 2: Let x, y be any pair of distinct points in an M-space (X, d) and
for any a G [0, 1] let z(a) denote the unique point in X such that (1.1) holds. Then

(1.2) {z(a):aG[0, 1]}

defines the line segment xy joining x and y.

DEFINITION 3: Let x, y be any pair of distinct points in an M-space (X,d). Then
the midpoint of xy is the unique point m 6 X such that d(x, TO) = d(y, TO) = d(x, y)/2.

Following [1] we can now define an Af-space with non-positive curvature.

DEFINITION 4: Let (X, d) be an M-space. Then (X, d) is said to have non-
positive curvature if for all triplets of distinct points x, y, z G X the midpoints m, n
of xy and xz respectively, satisfy d(m, n) ^ d(y, z)/2.

2. PRELIMINARY RESULTS

In this section we introduce some lemmas similar to those of [5] which are required
for the proof of the main theorem.

LEMMA 1 . For any positive integer n let r n be n-tuple ( r i , r2, • •., rn) and let

(2.1) C(n) = I rn G Rn : £ > = 1, r, > 0 1 .

Then if xi, xi, • • •, xn is any set of distinct points in a compact connected metric space

{X, d) and r n G C{n),

n n

(2.2) minY'rid(xi, x) < a(X, d) ̂  max Vrid(x,-, x).
zfcA ' * XfcA ' *

t = l t = l

PROOF: If rx, r 2 , . . . , rn are all rational numbers then we can find a positive
integer m and a set of points i/i, y2, ..., ym G X which is formed by suitable repetitions
of the points x,-, i — 1, . . . , n such that
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Thus by Theorem 1 (2.2) holds for any r n € C(n) with rational components but since
the set of rational numbers is dense in R it follows that (2.2) holds for all r n £ C(n). Q

LEMMA 2 . Let x n denote an n-tvtple xi, X2, ...,xn and let Xn denote the set
ol all n-tuples with elements in a compact connected metric space (X, d) and let

1 "
H(n) = max min — Y^ d(x:, x), and

t = i

1
L(n) = min max — >^ d(xi, x).

Then

(2.3) a(X, d) = sup H{n) = inf L{n).
n n

PROOF: From Theorem 1 we clearly have

1 " 1 "

Hence ff (n) ^ o(^", d) ^ -^(n) a11^ thus

sup JI(n) < a(X, d) ^ inf L(n).
n ™

Now for each positive integer n and each xn €. Xn since we have

1 " 1 "
min — y j d(xi, x) ̂  sup 5^(n) and max — \ J ^(*«) x) ̂  in

t=i n t=i

from the connectivity of X it follows that there is y £ X such that I j ^ d(it> 2/) I / n =

o for any a £ [sup ZT(n), inf L(n)] and the result of the lemma follows since the existence
n n

of more than one such a would contradict Theorem 1. D

For the remaining lemmas in this section let (X, d) denote an M-space with non-
positive curvature.

LEMMA 3 . Let ab be a line segment in (X, d) with midpoint m. Then for any
yex

(2.4) d(a,y)+d(b,y)>2d{m,y).
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PROOF: Let p be the midpoint of ay. Then d(m, y) ^ d(p, m) + d(p, y) since d
is a metric, and d(p, m) ^ d(b, y)/2 from Definition 4 since (X, d) has non-positive
curvature, and d(p, y) — d(a, y)/2 from Definition 3. Hence d(m, y) < d(b, y)/2 +
d(a, y)/2 and (2.4) follows. D

LEMMA 4 . Let ab be a line segment in (X, d) and let x be any point on ab.
Then for any y G X,

(2.5) d(x, y)d(a, b) < d(x, a)d(y, b) + d(x, b)d(y, a).

PROOF: Let a - d(a, b) and let / : [0, o] -» R be such that f(d(x, a)) =

d(x,y)Vx € ab. Then, from Lemma 3, /(a/2) < (/(0) + /(a))/2, and since / is
clearly continuous it follows from [12, p.7] that / is a convex function. Thus

/(A*! + (1 - X)t2) < A/(*i) + (1 - A)/(<2)

for any h, t2 6 [0, a] and 0 < A ̂  1. On setting A — d(x, a)/a, tt = a and t2 = 0
(2.5) follows. D

LEMMA 5 . For any positive integer n let rn and C(n) be as defined in Lemma
1. Then for any xly x2, ...,xn in a line segment ab of (X, d)Vy £ X and Vrn €
C(n) there is x £ X such that

n

(2.6) d(x,y)

PROOF: Take x e ab such that d(a, x) = £ " = 1 r^a, i,-); then the result follows

from the convexity of the function / denned in Lemma 4. D

3. THEOREM FOR POLYGONS

THEOREM 2 . Let (X, d) be an M-space with non-positive curvature and let

n

P = |J 9.9.+1
i=l

be the polygon with n vertices g1? q2, . . . , qn € X where qn+i = qi. Then

n

(3.1) a(P, d) = jnaxn ) min ̂  nd(qu x),

and there exist Xi, x2, ..., xn 6 P such that
n

(3.2) a(P, d) = ^mmn) max £ r^Xj, x),
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where r n and C(n) are as defined in Lemma 1.

PROOF: Since P is compact, for any positive integer m we can choose

xi , x2, . • •, x m G P such that

where H(m) is as defined in Lemma 2. Now let 90 = In and for j = 1, 2, . . . , n let

,

for the chosen x<; then rn(Tn) G ^ ( n ) , and by Lemma 4 for x^ e qjqj+i and i f f we

have

^ l ^ l d ( g j , x),

and hence
n . m

(3.3) min ^ ^ ( m ) ^ ^ , x) ^ nun — ^ ^(x i , x) = H{m).
j=i 1=1

From (2.2) it follows that if there exists T*n = (rj, . . . , r*n) e C{n) such that

(3.4)

then the left hand side of (3.4) is equal to the right hand side of (3.1). Now if there
is a finite positive integer m such that H{m) — a(P, d), then from (2.2) and (3.3)
it follows that (3.4) holds with r* = rn(m) and hence (3.1) is valid. Otherwise it
follows from Lemma 2 that there is a subsequence {H(mit)} of {H(m)} such that

lim H(mk) = a(P, d), and thus from (2.2) and (3.3)
tnjt »oo

n
lim min'Y]Tj(mk)d(qj, x) = a(P, d).

T71JL —*OO z £ P " rf

Since C(n) is compact we can again find r^ £ C(n) such that (3.4) holds and thus

(3.1) is valid in this case also.

Also since P is compact, for any positive integer m there are x j , x j , . . . , x*m € P

such that
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where L(m) is as defined in Lemma 2.

Suppose the points x* are numbered so that for j = 1, 2, . . . , n the segment
qj-iqj (excluding qj) contains the tj points s j j . + 1 , *J.+2> •••>xt+t- where 6j = 0
and bj+i = fej + f j , j = 1, 2, . . . , n — 1. Then for each j = 1, 2, . . . , n choose point
Xj{rn) — qj and weight Sj(m) = 0 if tj = 0, and otherwise choose Xj{m) G qj-iqj such
that

and choose Sj(m) = tj/m. Then by Lemma 5

d(xj(m), x) < - Y^d[x*h.+i,

and hence

(3.5)

Also clearly sn(m) = (s^m), s2(m), ..., sn(m)) G C(n).
If there is a finite m such that L(m) = a(P, d) then from (3.5) and (2.2) it follows

that (3.2) is established with Xi = Xi(m), i = 1, . . . , n. Otherwise from Lemma 2
it follows that there is a subsequence {I(mjt)} of {L(m)} such that lim £(mjt) =

T71L — • O O

a(P, d) and thus from (2.2) and (3.5) it follows that

lim max \ Sj(mk)d(xj(mk), x) = a(P, d).

Since both P and C{n) are compact it follows that there is rB G C(n) and
Xi, x2, •.., xn £ P such that

and thus from (2.2) it again follows that (3.2) is valid. D

4. PRACTICAL CONSIDERATIONS

In this section we discuss the practical implementation of the nonlinear program-
ming problem (3.1) for the computation of the average distance constant a(P, d) of a
polygon P with vertices qi, q2, . • •, qn as defined in Theorem 2.
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For r n 6 C(n) and x 6 P let

(4-1) ,(rn,x)

and consider fl(rn, x) for x £ qjqj+i. Firstly let lj = d(qj, g,+i) and let z(i) G
be such that t - d(qj, x(t)). Now let fjk: [0, lj] - t f i b e such that fjk(i) = d(qk, x[t))
for k = 1, 2, . . . , n. Note by analogy with Lemma 4 that each fjk is convex and also
that for x(t) 6 g;g,+i we have g(rn, x(t)) = Fj(rn, t) where

n

(4.2) Fi(rn,t) = (rj

Clearly Fj(rn) <) is a convex function of t for fixed rn G C'(n) and thus has a unique

minimum in [0, lj].

Now let

(4.3) gj(rn) = min g(rn, x);

then clearly S7(rn) — min ^ ( fn , <). If fjk[i) c an be evaluated then </;(rn) can

be found using a one dimensional optimisation search technique which uses function
evaluations, for example [9, Section 8] on Fj[rn, i). In certain cases (for example
see Section 5) we can differentiate Fj(rn, t) with respect to t and find the minimum
analytically.

Now let

(4.4) G(rn) = minfif(rn, a;);

then clearly G(rn) = min 5 ; ( r n ) . From (3.1), (4.3) and (4.4) it now follows that

(4.5) a(P,d)= max G(rn).
rn€C(n)

Now let r ; 6 C(n) and sn e Rn be such that

(4.6) r n = < + fsn € C{n) for t £ [t1} t2};

then for rn given by (4.6) we can write

(4.7) fl(rn, x) = a(x) + tp(x) = h(t, x)
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where

n n

(4.8) a(x) = £ r?d(«,-, x) and /9(x) = £ M(9t-, x).
t=i i=i

Now let F(<) = min h[t, x); then F(t) = a(x(t)) + t(3(x(t)) where x(t) G P is a point

which minimises fe(<, x) for a given <. Note that x(i) may not be unique.

Now take any t* 6 (h, t2).

(a) If there is x(t*) G P which mininises h(t*, x) and is such that f3(x(t*)) <
0 then let /3i be the smallest such 0(x(t*)) and let aj be the correspond-
ing a(x(t*)). Then it follows that for t £ (i*, t3]

(4.9) F{t) < aj + </3i < a i + i*/9! = F(im).

(b) If there is x(t*) G P which minimises h(t*, x) and is such that /3(x(f)) >

0 then let /?2 be the largest such (3(x(t*)) and let 02 D e the corresponding
a(a;(<*)). Then it follows that for t G [tx, t*)

(4.10) F(t) ^a2+ tfa < a2 + t*02 = F(t*).

(c) If /?(x(<*)) = 0Vx(<*) € P which minimise fe(<*, i ) let a3 be the
common value of all corresponding a(x(t*)). Then it follows that for

(4.11) F(t)

Since at least one of (a), (b), (c) must hold, it follows from (4.9), (4.10), and (4.11)
that F(t) cannot have a local minimum for any t £ (ti, t2)- It now follows that a
one dimensional optimisation search technique such as that of [9] can be used to find

max F(t). Furthermore it is clear that any optimisation method which carries out a
telti.u] l '
sequence of suitably chosen one dimensional optimisations can be used to solve (4.5).

Since G(rn) is not differentiable for all rn G C(n) and may not be differentiable at its
maximum, a method which requires only function evaluations is preferable for solving
this problem. One such method which has been tried successfully for planar triangles
(see Section 5) is a modification of the method of [9]. In order to take into account the
constraints on rn , the one dimensional optimisations in this method were limited to
line segments lying in the constraint region C{n).
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5. AVERAGE DISTANCE CONSTANTS OP PLANAR TRIANGLES

In this section we discuss the evaluation of the function G(r3) to be maximised
over r 3 G C{3) in order to find the average distance constant a(T, d) of a triangle T
with vertices Qi, ?2> 9s € R2 where d is the Euclidean metric, and present computed
results for a variety of triangles.

From (3.1) we have

3

(5.1) a(T, d) = max min Y^ ridtqi, x).
K ' K ' r € C ( 3 ) i 6 T ^ ^ ' '

Now for j — 1, 2, 3 define

(5.2) lj = d(qj, qj+i) and 9j =

where 90 = 93 and 94 = 91. Also for convenience we assume lo = h, Z4 = Zj, rg = r3

and r± = T\ .

Now let x(t) be a point on 9j9j+i such that t = d(qj, x(t)) and let fj: [0, I,] -> R
be such that fj(t) = d(9j_j, x(<)); then by analogy with (4.1) and (4.2), after expressing
fj(t) using the cosine rule, we find that g(r3, x(t)) = FJ(T3, t) where

(5.3) Ffa, t) = {rj - rj+1)t + rj+1lj + r,-_! jl)^ + t2 - 2Zi_1< cos 9S.

By differentiation of - ^ ( r s , t) with respect to t and noting its convexity, the following
expressions were obtained in [5] for the function 5j(rs) defined by (4.3) with n = 3
(5.4)

ri+ih + Tj-xlj-i for rj - rj+1 ^ r ; _ i cos9,,

jlj + rj_!lj+1 for TJ - ri+1 ^ -Tj-X cos 9i+1,

rjlj—1 cos 0j + T"^+IZJ-+I cos 9j+i + Ẑ _

otherwise.

Using (5.4), the function G(r3) = min <jj(r3) to be maximised can be readily evaluated

for any r3 6 C(3) and the values can then be used in the optimisation method referred
to in Section 4.

Using this method the average distance constants a(T, d) were successfully com-
puted for a number of planar triangles T. The results are presented in Table 1 which
along with a(T, d), gives the side lengths Zx, . . . , Z3 used for each T, the value of r3 at
which the maximum of G(r3) was found, and references to notes on the results given
below the table.
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Table 1. Average Distance Constants of Planar Triangles

h
1.00

2.00

2.00

2.00

2.00

2.00

3.00

5.00

1.10

0.61

1.00

1.50

3.00

5.00

10.00

100.00

4.00

12.00

0.90

1.40

h
1.00

1.50

3.00

5.00

10.00

100.00

5.00

13.00

1.00

2.00

a(T, d)

0.6220085

1.0351435

1.6666667

2.6000000

5.0500000

50.0050000

2.5000000

6.5000000

0.6213553

1.0000000

0.3333333

0.3511297

0.3000000

0.2692308

0.2549505

0.2500501

0.2604160

0.1965602

0.3352839

0.0000000

0.3333333

0.3511297

0.3000000

0.2692308

0.2549505

0.2500501

0.4062503

0.4710648

0.3187589

0.5000000

0.3333333

0.2977407

0.4000000

0.4615385

0.4900990

0.4998998

0.3333338

0.3333330

0.3459473

0.5000000

Notes

1,2
2
2
2
2

2,3
4
4
5
4

Notes on Table 1:

1. Value of a(T, d) agrees with the value (2 + y/3)/6 for an equilateral tri-
angle with unit length sides given in [2].

2. Values of a(T, d) given agree with the following formulae given in [5] for
an isosceles triangle with two sides of equal length / and base of length 2 .

IJ+2J—v
/JJ-l-2

a(T, d) =

(Z2 + l)/2Z for / > /*

where I* w 2.321285 is the unique real root of 2/5 - 4/4 - 5/2 + 4Z - 1 = 0.
3. The average distance constant of a line segment is half its length, and

the average distance of any triangle is greater than or equal to half the
length of its longest side and the result for this triangle confirms that the
average distance constant for an acute angled triangle which is almost a
line segment is slightly greater than half the length of its longest side.

4. The computations for these triangles confirm the well known result that
the average distance constant of an obtuse or right angled triangle is equal
to half the length of its longest side.

5. As expected the average distance constant of this triangle which is close
to an equilateral triangle with unit length sides is close to that of the
latter triangle.
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