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TAUBERIAN- AND CONVEXITY THEOREMS
FOR CERTAIN (N, p, g9)-MEANS

RUDIGER KIESEL AND ULRICH STADTMULLER

ABSTRACT.  The summability fields of generalized Norlund means (N, p**,p), a €
N, are increasing with a and are contained in that of the corresponding power series
method (P, p). Particular cases are the Cesaro- and Euler-means with corresponding
power series methods of Abel and Borel. In this paper we generalize a convexity theo-
rem, which is well-known for the Cesaro means and which was recently shown for the
Euler means to a large class of generalized Norlund means.

1. Introduction. We consider throughout complex sequences (s,) and discuss the
relations of certain summability methods.
We say a sequence (s,) of complex numbers is summable to s by the
(1) Cesaro-method of order a > —1, briefly s, — s(Cy), if
1 K fn—k+a-—1
n
(ii) Euler-method of order 0 < p < 1, briefly s, — s(E}), if

En: <n>pk(1 —p)" s — s (n— o0);

k
k=0
(iii) Abel-method, briefly s, — s(A), if

)sk—)s (n—»oo);

fO)=QAQ—=0 sit" existsfor0<r<1landf(r)—s@— 1-);
n=0

(iv) Borel-method, briefly s, — s(B), if
g =¢"' i} -;—':t" exists for z € R and g(r) — s (t — 00).
= n!
The Cesaro- and Abel-method resp. the Euler- and Borel-method are known to be closely
related, see [9, 17, 19].
Especially the following Abelian inclusions are well known, see e.g. [9; Theorems 43,
55, 118, 128]
for —1 < a < B: 5, — 5(Co) = 5p — 5(Cg) = 5, — s(A),
forO0<p < q < 1:s, — S(Ey) = s, — S(Ep) = 5, — s(B).
The following converse or Tauberian theorem for the Cesaro-Abel-case goes back to
Littlewood [14] (o, 8 € N), and Anderson [1] (e, > —1).
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THEOREM TC 1. (i) Let —1 < o < 3 then s, — s(A) and s, = O(1)(Cy) imply
sn— 5(Cp).

(ii) For —1 < a < < B we have the so-called convexity-theorem s, — s(Cp) and
sn = O(1)(Cq) imply s, — 5(Cp).

Quite recently Boos and Tietz [4] proved that the situation is completely analogous
for the Euler-Borel-case.

THEOREM TC 2. (i) Let0 < p < q < 1 then s, — s(B) and s, = O(1)(E,) imply
Sp— S(Ep).

(ii) For0 < p < r < g < 1 we have the convexity-theorem s, — s(E,) and
Sn = O(1)(E,) imply s, — s(E,).

Obviously part (ii) is in both cases a trivial consequence of the Abelian inclusion and
part (i).

The aim of this paper is to show that the above results are special cases of a more
general setting.

For the following assume that (p,) is a sequence of reals with the following properties:

po >0, p, >0, n € N, such that the power series
(1.1) o0
p(t) = Y put” has radius of convergence R > 0.
n=0
Since we can use p,R" as weights in case 0 < R < 0o, we only have to deal with the
two cases R = 1 and R = oo.
Furthermore we define the a-th convolution p;* of a sequence (p,) by

pli=p,, n=0,1,2,... and pi™V .= z”:pf,‘fkpk.
k=0
We now generalize the summability methods used in Theorems TC1 and TC2. To this
end we need a further sequence (g,) of nonnegative reals, also satisfying (1.1), in general
with a different radius of convergence R, for the associated power series.
We then say, that a sequence (s,,) is summable to s by the
(1) power series method of summability (P, p), briefly s, — s(P, p), if

(o]
(1.2)  ps(t) = Y supal” converges for |¢| < R and if 6,(f) = I;s ((:))

n=0

—sast— R—.

(In case R = 1 we have the so-called (J,,)-methods, in case R = oo the (B,)-methods).
(ii) general Norlund-means (N,p**,q*#); a, B € N, briefly s, — s (N, p*®, ¢*#), if

1 n
— Z p;fkq,’:ﬂsk — 5 (n — 00), where we suppose that
Tn k=0

(1.3) n
rei= (P % g%, = Zp:fquﬂ >0 forn=0,1,....
k=0
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We require all methods to be regular. By Theorem 5 in [9], we have regularity for a
power series method if and only if

(A) P, = X}_opx— 00, (n— 00), incase R = 1, and

(1.4 (B) p(?) is not a polynomial, i.e. p, # O for infinitely many » in case R = oco.

By Theorem 3 in [9] the general Norlund mean (N, p**, ¢*#) is regular if and only if

(1.5) Pk _, 0 for any fixed k.

I'n

REMARK 1. Important special cases are
(i) The Cesaro-Abel-methods:

pn=1:(P,p)=(A), N,p**,p)=(Ca) a€EN.

(ii) The generalized Abel-method (§ > 0):

n—1+6 .
pn = ( " ) 1 (P,p) = (As—1), (N,p**,1) = (Cos), @€ N.
(iii) The Euler-Borel-methods:

pn=1/nl:(P,p)=(B), (N,p**,p)=(E), a€N.

(We use the notation 1 for the sequence (1, 1,...)).

We now generalize the above results to our general setting, provided some regularity
assumptions are satisfied.

2. Main results. In [10], Proposition 1, R. Kiesel showed that fora < 8, a,3 € N
the following inclusions hold true:

sn — SN, p**, p) = s, — s(N, p*?, p) = s, — 5(P, p),

provided that for all Y € N the methods (N, p*', p) are regular (for the second inclusion
only the regularity of the (P, p)-method is needed.) This is especially the case, if one of
the following conditions is satisfied.

(A) pn ~ n°L(n), o > 0, n°L(n) is nondecreasing and L(.) is slowly varying,
see [3] §1.2 for the definition;

(B) p, ~ exp{—g(n)}, where g € C,[0,00), with g”(x) | 0, x’g"(x) T oo
(x — 00).

(2.1)

Using the sequence of “maximal weights” (A,) defined by

(2.2) Ap = o g}ﬁ PO
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we have in the above cases the following relationship
2.3) A, = V271¢(n)p,(n — 00),

where ¢(.) is a suitable, positive function.

For (x — 00) we have in case (A) that \/-27r¢(x) ~ T(o+1) ‘%’-)‘”"x and in case (B)
that $() ~ (g"(x)) .

Following [2, 3 §2.11] we call a function : (0,00) — (0, 00) self-neglecting if v
satisfies P¥(x) = o(x) (x — 00), and if 1[1(x+t1,b(x)) /¥(x) — 1 (x — 00) locally uniformly
inteR

Observe that g”(x)"1 is self-neglecting because of (2.1) and since for e.g. t > 0

n to” -1/2 1
(g (x+18"(x) )) 'S 1 and
g"(x)

" ne—=1/2)y —4 nenN=1/2\2 n ney=1/2) —3
(g (x+tg x) )) _ ((x+tg ) ) g (x+tg ) )) (1 N t )

g"(x) x2g"(x) Vx2g" (x)
t

<1+ ———=—1(x— 00), locally uniformly in z.
Vx2g"(x)

Because of this locally uniform convergence ¢(. ) is self-neglecting, too.
We can now state our main theorem

THEOREM 1.. Let o, 8,7,6 € N with a < § < 3 and assume that (p,) satisfies (2.1).
Then
(i) sn— s(P,p*") and s, = O(1) (N, p**,p*") imply s, — s(N, p*#, p*").
(i) sn— s(N,p*2,p*") and s, = O(1) (N, p**,p*") imply s, — s(N, p*, p*").

REMARK 2. Incasep, = 1,7 = lresp.p, = 1/n!, Y = 1 Theorem 1 is Theo-
rem TC1 resp. TC2 in the discrete index case.
In our paradigms Abel- and Borel-method we have the following relations of the meth-
ods (see [5]):
(i) Abel-case: (Ag—1) = (P, (”*‘;’”l)) = (P,1**), a« > 0, thenfor p > X > —1:

Sp— S(A,) = 5, — S(A)).
(ii) Borel-case: Since p}* = o /n!, we have
® = @,1/n)~ (P, ((@)/nt)) = (P.(1/n))).

(Where we use & to note that two methods are equivalent.)
So the question arises what the relation of (P, p**) and (P, p*®) resp. (N, p, p*®) and
(N, p, p*#) in the general case is. Unfortunately we can only present answers to the ques-
tion under additional assumptions.
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PROPOSITION 1. Suppose o, f € N and the sequence (p,) satisfies (1.1) with R = 1
or R = oo and p;* > 0. If we have furthermore that p, = (p:‘,lj )/ (PE%) is a totally
monotone sequence, i.e.

2.4 "rd
@.4) = [ dx(®) < oo
foralln =0,1,... with some (bounded) nondecreasing function x, then we have

sp — S(P, p*®) implies s, — s(P,p*®).

This result can also be obtained using a theorem of Borwein in [5], but we are able
to present a somewhat easier proof. An answer to the question of inclusion in case of
the (N, p, p**)-means, was already given by Das [8], but again only under restricting
additional assumptions.

PROPOSITION 2. Let a, B € N and (p,) a sequence of strictly positive reals. If

2.5) Prl 21 (= o0)

n

and if additionally either

pl Pl
# Z p:';‘l and (N, p,p*?) is regular,
n n+1
or
*B *B *B_xar+]
P < Pul g o lr 00y and  (N.p,p*™®)is regular,
* *a Bt o D,p g
Pn Pur1 Pn Pn

then (N, p, p*®) convergence implies (N, p, p*?)-convergence.
3. Auxiliary results. First we discuss the asymptotic properties of the (N, p, q)-
means.

LEMMA 1. Assume that (p,) satisfies (2.1).
(i) In case (A), i.e. p, = n°L(n), we have

o [0 LB+ 1,0+ 1), ifo>—1,
P\, ifo=—1,

with B(.,.) denoting the beta-integral and L*(.) some slowly varying function.
(ii) In case (B), we have for any « € N

(3.1) i~ Jmet Jag(n/ o) exp{—agn/@)} (n— oo),
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¢()asin(2.3).

PROOF. (i) is a slight generalisation of Theorem 42 in [9] and Theorem 2.3.1 in
Chapter 5 of [20]. (i) For o = 2 the result is contained in Proposition 3 of [10]. We use
induction on « for the general case. By Definition we have

*(a+l) — Epu Dny-
v=0
We define a function

(3.2) e(x) = x(x’g" ()~

Then we can show that the essential part of the sum occurs for v € M(n) with

on
Mo = v o= 75 <e(355))
(Use techniques similar to those in the proof of Lemma 2 in [6], see also related calcu-
lations in [12, 13].)
By the induction hypotheses we find

pre S Jeme! Jagv ] a)* ! exp{—ag(v/a)} exp{—g(n — v)}.

vEM(n)

1/4

We now use the asymptotics for p, and the Taylor-expansion (6,9 € (0, 1)):

a—1
e 2 4 as) enle(s(a) o () - )
e (2o - ) - o))
_g(a’j—l)_gl<aj—l)<ﬂ_y a+1)
(oo 2)

Now we use the basic inequality (13) in [6], namely

g"(®
g"(x)

which is satisfied in our range M(n), and the fact that e(n)/n — 0 as n — o0 to obtain

worn) |1 2r_\*" — "
o i) onlo )

”(a+1)
(a+1l) ,7 n no \2
x 2 el = () (- ) (o)

2me ( n )a { n
~ De( i)}
\a+1¢ a+1l exp| (e +1)g a+l
For the last step use the approximation of the sum with the integral of a Gaussian density

with variance ot/ ((a + l)g”(n/(oc + 1))). n

=)'

-1 < 4| A for all sufficiently large ¢,x, if |t —x| < x/4,
x

/
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COROLLARY. If (py) satisfies (2.1(B)) and a, B € N, then we have for the entry a,
of the (N, p**, p*®)-matrix the asymptotic relation

G~ ;J‘,rlﬁds(aiﬂ)"’exp{—aélf (k¢(.§_ﬂ ) }

if]k — ;"%I < e(n) with e(.) as in (3.2) and furthermore

E any — 0 (n— 00).
Ik— e |>e(n)

PROOE. If [k — 2£| < &(n) then (6,€ € (0, 1))

prep? exp{—ag(®3h) — pe(b)} [@mrT@nP g ()= (a+ B)
*(a+f) (271')"‘*13" //(n;k)a— ”(ﬁ)ﬂ— af

pa exp{—(a + B)g(i5)}
oot o{s(z25) ¢ (25) ("5 - 22)
(e 5 - o))
-s(s(z) ¢ (75) (5 55)
3 (age e ) G- o) )

x exp{(a+ﬁ)g( )}\](1 +o(1))2mgg~(_i_).

a+f

Now |— — -——| €0 and l n=k _ +B| < E—g‘—) Therefore we obtain the desired result by

the same calculatlons as used in Lemma 1. For the second part observe that

n xa *0
DI =1 (1ro) ¥ el v .

k=0 Pn lk— 2 |<e(n)

We now give the asymptotics of the relevant power-series methods and show that for

bounded sequences these methods are equivalent to certain generalized Valiron-type
means, compare [6, 11].

LEMMA 2. Assume that (p,) satisfies (2.1(B)). Then we have as x — 00

(ool @) ~ (w2 ool :2) -3¢}
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(ii) For bounded sequences (s,) the following equivalence holds true

. 2 dt
—-m'(P‘,;l")«‘.:}/(x1 exp{ 2#(‘/’( )) }s(t)\/%_ud’(i)——»s,

where s(t) = sy, for t > 0 and s(t) = 0 elsewhere.

PrROOF. (i) follows directly from [12], Lemma 5, resp. [13], Lemma 8, see also
Lemma 2 in [6].

(ii) In this case the calculations are similar to the calculations used in [6], Lemma 2
and [11], Theorem 2, so we only outline the major steps. We have by using Lemma 1

and part (i) (For the notation see (1.2)).

8= (52 () 1 (3) 0e(3) - 3)

- S Soncon| (2 a(2 - ) (3 2')

1 (1) "
L) S ol )22
_ 2
U A (=1

Next we show that the (N, p*®, p*®)-means generalize some important properties of

the Euler means.
First we consider the well known product-formula for the Euler-means

Eqo Eg = Eqip

This becomes

LEMMA 3. Assume that (p,) and (q,) satisfy (1.1) (with possibly different radii of
convergence)and let a, 3,7 €N, ax < 3.
(i) With rr@P .= p*® x g*8, we have

(3‘ 3) (N,p*ﬂ,qﬂ) — (N’p*(ﬁ—a)’ r*(a+7)) o (N,p*a, q*‘Y)
resp. in case (p,) = (gn)
(N,p*ﬂ,pﬂ) — (N, p*(ﬂ—a),p*(a#y)) ° (N,p*a,Pﬂ).

(i) If (N,p*®=2 r* @My is regular, then s, — s(N,p* ,q”) implies s, —
s(N,p*,g*"). .

PROOF. (i) is a trivial consequence of (i).

https://doi.org/10.4153/CJM-1994-056-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1994-056-6

990 R. KIESEL AND U. STADTMULLER

To prove (i) observe that
(p*(ﬁ—a) * r*(a+‘7))n — (p*ﬁ * q*‘y)n

and
n n—v
o) waty) Y *(f—a)
Z pn(fk k * *(oz+‘7) Z pk—vqu Sy = 20 q: Sy kE: Pn—(?u kp;a Z p,,_,,q,, Sy-
v=i =0

Now s, — s (N, p*B=® @My o (N, p*@, q”) means that

1

*(f—c) *(a+‘Y)
(p*B—) x M), L Ep

k *(m-'y) Z pk—l/qu Sy —§ (}’l - OO),

but by the above identities this is the same as

g, LA s (100
which is (N, p*?, ¢*") convergence. "
A classical result of Knopp [9, Theorem 149] gives a connection between Cesaro
convergence with speed and Euler convergence. We generalize this for general (p,) with
an additional condition on the sequence (s,). (In [10, Theorem 2] this generalization is
given with an additional condition on the (p,), but without conditions on the (s,).)

LEMMA 4. Let (p,) be a sequence of weights satisfying (2.1(B)) and ¢(.) as in (2.3).
Furthermore assume that s, = O(1). Then

nil Z(sk +e) =5+ 0(¢( )), (n — 00), with some nullsequence (e,)
implies s, — s(N, p*®, p*®) for every a, 3 € N.

PROOF. Since s, = O(1) we can use the asymptotic weights computed in the Corol-
lary to Lemma 1 in the (N, p**, p*#) method. By inclusion we have only to show the
implication for the (N, p, p*®) method. Because of regularity and linearity we can sup-
pose s = 0 and omit the convergent sequence (g;). Thus the hypothesis becomes

n
> si=o0(¢(m) (n— o0).
k=0
For givene >0 wecanfindaN € Nsuchthatforn >1>m >N
!
|3 s8] < 00 < e,
k=m

using also the monotonicity of ¢(.). By the Corollary to Lemma 1 and since s, = O(1)
we have for the (N, p, p*#)-transform 1,

— B2
=]é¢1 n_y! {_M(" ﬂn)} i
n '27r,6¢(ﬂ+1) |k_§52;55(n>exp 28 (o ) e
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with a function €(. ) as in (3.2). So the weights are piecewise monotonic and the maximal
weight is for k = E”% We therefore split the sum in two parts, namely

t, = Z S Z <o+ o(1).

B —em<k<gh 2 <k<gE+e(n)

Using Abels partial summation and the monotonicity of the weights we find that each of
the two sums is bounded by EW?%' Since ¢(n/v) = O(¢(n)) for any fixed v > 0,

we obtain the desired result. u
Cesaro-convergence with speed is also connected to the methods of moving-averages
by the following

PROPOSITION 3. The following statements are equivalent for a self-neglecting func-

tion ¢(.)
(i) n]T Sheo(Sk +EK) =5+ 0(%9) (n — o0) for some €, — 0.

(ii) ,3% Cn<k<nrugn) Sk — 5, Yie > 0, (n — 00).

For the proof see [2], for notation and properties of self-neglecting functions consult
(3, §2.111.

In the Euler-Borel case we have the identity (B) o (E,) & (B). A similar identity can
be obtained in the general case. For a related calculation compare [7].

LEMMA 5. Assume that (p,) and (q,) satisfy (1.1) with the same radius of conver-
gence R and let o, f € N then

$p— $(P,q"P) & 5, — s(P, Py o (N, p**, ¢*P).

oo 5 ol

—qoy - S (x — R),and s, — s(P, r*(“+ﬂ))o

PROOF. s, — s(P, g*®) means that
(N, p**, ¢*®) means that

a0 (ZZ=O p:gkskq;ﬂ)x"

—s (x—R).

(p(0)*(q0))°
But
S50 g _ Tolo(Thoo Phusidy )X
(a)” (p(0))*(a)”
and this proves the proposition. =

Using Borwein’s Theorem, i.e. Proposition 1, we obtain

-8
COROLLARY. If the assumptions of Lemma 5 hold true and if ;?gm is a totally mono-

tone sequence, then

sp— 5 (P,q"®) = 5, — 5 (P,q") o (N, p**, *P).

Generalizing Theorem 1 in [10] slightly we obtain the following Tauberian theorem:
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THEOREM 2. Assume that (p,) satisfies (1.1) and (2.1(B)). Then we have under the
Tauberian condition s, = O(1) that for anyY € N

sn — s(P,p*") implies s, — s(N, p**,p*?)

foralla, B € N.

REMARK 3. (i) Under (2.1) (N, p**, p*8) is regular for all o, 3 € N.
(i) s, — sV, p**, p*f) implies always s, — s(P, p*P), since

En—O Snpnﬂ xﬂ Z,,_() P;(a+ﬂ) t(i‘fﬂ) (Ez=0 pZ‘f kP:ﬂSk)x"
O (t) = > 2
() ()" (p)

and since (P, p*@*®) is regular, the Abelian conclusion follows.

PROOF. By Lemma 3(ii), it is sufficient to consider &« = 1. Define s(u) = s, if
u > 0and s(u) = 0if u < 0 and K(x) = 1/+/2mexp{—x*/2}.
Since s, = O(1) we have by Lemma 2(ii), that s, — s(P, p*") implies

(3.4)

LY (f ) ;)0 \/’7¢d(;/7) =

The conditions of Theorem 1 of [15], i.e. K(x) € L!(—00, 00), the Fourier-transform of K
is nonvanishing for any real argument and ¢(. ) is self-neglecting, are trivially satisfied.
It follows now from that theorem that if we choose € > 0 and define

_ L ifxe(—e,0),
He = {o if x & (—e,0),

that

llm

dt 1
= ]. = .
(\/_ Yo(x )) 5O Vb(x/7) x0 e/ Yp(x/7) x5k<x+§7¢(x/7) wee

Because ¢(. ) is self-neglecting and ¢(x/v) = O(d)(x)), for any fixed Y > 0, we obtain
by Proposition 3 , that

1
1 I;}(sk+ek)—s+o(¢( ))

which in turn by Lemma 4 implies that s, — s(N, p, p*?). n
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4. Proofs.

PROOF OF THEOREM 1. Part (i) by Lemma 5:
sn = 5(P,p*) <= 5, — s(P,p* V) o (N, p**, p™).

In case (A): We apply Karamatas’ Tauberian theorem (observe Lemma 1) (see [2, The-
orem 1.7.6, 18]) and obtain

s — s(N, 1, p* @My o (N, p**, p*).

Since s, = O(1)(N, p**, p*") we can use the asymptotic weights and assume w.l.0.g that
p:‘,w—“) is nondecreasing and by Theorem 3 in Das [8] we get

Sy — S(N, p*B=2, p* @) o (N, p**, p*"),

which by Lemma 3(i) implies our result.
In case (B): Since s, = O(1)(N, p**, p*") we can use Theorem 2 to obtain directly

Sy — S(N, pt(ﬂ-a)’p*(avy)) o (N,p*a,px‘y).

The last step is as above.
Part (ii) is directly implied by part (i) and by the Abelian inclusion. [

REMARK 4. Boos/Tietz [4] gave an alternative proof of Theorem 1 in the Borel-case.
The basic steps are as follows (a =7 = 1,8 = 2)

(i) sn — S(P,p) = 5, — s(P,p**)(N, p*, p)

(i) (N,p*%,p) = (N,p,p2)(N, p, p). Hence if (+) (N, p, p2)x), —((N, p, p*)x), | =
0(1 / qS(n)) for bounded sequences (x,), one can use the O-Tauberian theorems
in [12, 13] to conclude

(iii) s, — s(N,p*2, p).

The statement (x) in (ii) is true for some special cases, like p, = 1 / n!, but has not

been obtained in general so far.

PROOF OF PROPOSITION 1.  Observe that e.g. in case R = 0o

pIped sn@‘i—PZ"‘X" o
0ps(X) = W = J ‘; ((f:))ﬁ Ope(xt) dx(1) = L(gp=(.), ).

The interchange of integral and sum is allowed because of the absolute convergence for
x > 0. We now follow the arguments in an unpublished paper by A. Jakimovski (oral
communication, see also [16] for details.)
L(f, x) is a positive linear operator on a linear space of real functions in C[0, co) with
the properties:
(1) There exists e(t) > 0, e(t) — 1,t — 00 such that L(e(. ),x) — 1, x — o0,
namely e(t) = o, (f) with the sequence (s,,) chosen to be (1,1, .. .).
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(i1) There exists some eg(f) > O such that L(eo(. ), x) — 0, x — 00, namely ey(t) =
opa(t) = pp*/p(1)*, with the sequence (s,) chosen to be (1,0,0,...).
From (i) and the assumptions we find

[f(1) — se(n)] < e/2 <ee(r), fort> ty(e),
and by (ii)
) = se] <M < TLeo(, 1€ [0,16)]

with suitable M, m. Hence for ¢t > 0:
M
[f(1) — se(t)| < ee(r) + ;eo(t).

Since L is linear and positive we obtain that L(f(. ), x) — s if f(x) — s, which yields the
desired result. n
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