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Abstract

We study F-signature under proper birational morphisms π : Y → X , showing that F-signature
strictly increases for small morphisms or if KY 6 π∗K X . In certain cases, we can even show that
the F-signature of Y is at least twice as that of X . We also provide examples of F-signature dropping
and Hilbert–Kunz multiplicity increasing under birational maps without these hypotheses.
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1. Introduction

Kunz showed that a local ring (R,m, k = k p
) of positive characteristic is regular

if and only if F e
∗

R is a free R-module [Kun69]. The F-signature is a measure
of singularities that simply states the percentage of F e

∗
R that is free (measured

in terms of a rank of a maximal free summand). F-signature was implicitly
introduced by Smith and Van Den Bergh [SVdB97] and formally defined by
Huneke and Leuschke in [HL02], although it was not shown to exist until
[Tuc12].

In this paper, we study the behavior of F-signature under birational morphisms.
Our main result is as follows.

MAIN THEOREM (Theorems 4.5 and 3.2). Let X be a strongly F-regular variety
of dimension n over an algebraically closed field k of characteristic p > 0.
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Suppose π : Y → X is a proper birational morphism from a normal variety Y
and fix a point y ∈ Exc(π) with π(y) = x. Suppose additionally that either:

(a) π is small, that is, π is an isomorphism outside a set of codimension at least
two in Y , or;

(b) The canonical divisor K X is Q-Cartier and for every exceptional divisor E
containing y, we have that coeffE(KY − π

∗K X ) 6 0. For instance, if all
discrepancies are nonpositive,

then we have
s(OX,x) < s(OY,y).

Furthermore, if X is not Gorenstein at x and π : Y → X is a small morphism
obtained as the blowup of either OX (K X ) or OX (−K X ), then

2 · s(OX,x) 6 s(OY,y).

The first part of our main theorem is a characteristic p > 0 analog of a result
on normalized volume by Liu and Xu [LX17, Corollary 2.11]. We thank both
Liu and Xu for inspiring discussions about the relation between F-signature and
normalized volume; also see [LLX18, Theorem 6.14] and [Liu18].

We finally note that the condition that the blowup of OX (K X ) (respectively
of OX (−K X )) is small can be interpreted as requiring that the graded ring
S = OX ⊕OX (K X )⊕OX (2K X )⊕ · · · is generated in degree 1 (respectively
that OX ⊕OX (−K X )⊕OX (−2K X )⊕ · · · is generated in degree 1). Note that
smallness of Proj S → X is equivalent to the finite generation of S by [KM98,
Lemma 6.2]. On the other hand, if S is generated in degree 1, then S is in fact
the Rees algebra of OX (K X ) (respectively OX (−K X )). This condition is satisfied
in surprisingly many rings, including determinantal rings [BV88, Corollary 7.10,
Theorem 8.8].

For comparison, in [CRST18], Carvajal-Rojas and the last two authors of this
paper studied the behavior of F-signature under finite morphisms (showing that it
went strictly up in a controllable way) and used their results to show that the étale
fundamental group of the punctured spectrum of a strongly F-regular singularity
was finite. This was a characteristic p > 0 analog of [Xu14] and was later shown
to imply Xu’s result by [BGO17]. Note that Xu’s proof also used ideas related to
volume.

In Section 5, we provide examples showing that the F-signature can decrease
outside of the hypotheses of the main theorem. We also show that the Hilbert–
Kunz multiplicity can increase in that setting as well.
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2. Preliminaries

All schemes and morphisms of schemes considered in this paper will be
separated and all rings and schemes will be Noetherian. Rings and schemes of
prime characteristic p > 0 will be assumed to be F-finite (meaning that the
Frobenius map is a finite map).

We are dealing with F-signature in this paper and so we recall its definition.
First, we give some notation. If R is a ring of characteristic p > 0 and M is an
R-module, we use F e

∗
M to denote M viewed as an R-module under the action

of e-iterated Frobenius. For any R-module M , we use frk(M) to denote the free
rank of M , or in other words, the maximal rank of a free R-module appearing in
a direct sum decomposition of M , M = R⊕frk(M)

⊕ N . On the other hand, if R
is a domain, we use rk(M) to denote the (generic) rank of M , that is, rk(M) =
dimK (R)(M ⊗R K (R)), where K (R) denotes the fraction field of R.

Inspired by the fact that for an F-finite local ring (R,m), F e
∗

R is a free
R-module if and only if R is regular, we make the following definition which
measures how free F e

∗
R is, asymptotically.

DEFINITION 2.1 (F-signature, [HL02]). Suppose that R is an F-finite domain.
The F-signature of R is defined to be

s(R) = lim
e→∞

frk(F e
∗

R)
rk(F e

∗
R)
.

This limit exists by [Tuc12] and [DPY16]; also see [PT18]. Furthermore, by
[DPY16, Theorem B], s(R) = minm⊆R{s(Rm)}, where m runs over maximal
ideals of R. Hence, for any Noetherian integral F-finite scheme X , we can define

s(X) = min
x∈X

s(OX,x).

It is clear that 0 6 s(R) 6 1, and it is a fact that s(R) = 1 if and only if
R is regular by [HL02] and [DPY16]. Furthermore, s(R) > 0 if and only if
R is strongly F-regular by [AL03] and [DPY16]. For our purposes, it will be
important to recall that strongly F-regular rings are Cohen–Macaulay and normal.

One common tool used to study F-signature is Frobenius degeneracy ideals. In
particular, if (R,m) is an F-finite local ring, for each e > 0, following [AE05],
we define

Ie = {a ∈ R | φ(F e
∗
(a R)) ⊆ m, for all φ ∈ HomR(F e

∗
R, R)}.

It is not difficult to see [AE05, Yao06] that

s(R) = lim
e→∞

λR(R/Ie)

pe dim(R)
,
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where λR(•) denotes the length of the module •. We refer the reader to [HL02,
Pol18, PT18, Tuc12] for additional properties of F-signature.

Since we are going to study the behavior of F-signature under birational maps,
we need to understand how maps like F e

∗
OX → OX (for example, picking out

a summand) extend to birational maps. Suppose X is an F-finite normal and
integral scheme. We first note that φ : F e

∗
OX → OX induces a map F e

∗
K (X)→

K (X) (simply by tensoring with the fraction field of X ). If π : Y → X is a
birational map, we obtain an induced map φ̃ : F e

∗
OY → K (Y ) (since the fraction

fields of X and Y are isomorphic). It is natural to ask whether

φ̃(F e
∗
OY ) ⊆ OY

in which case we say that φ extends to a map on Y , φ̃ : F e
∗
OY → OY . On

the other hand, each φ : F e
∗
OX → OX induces a Q-divisor ∆φ > 0 such that

(1− pe)(K X +∆φ) ∼ 0; see [BS13, Section 4].
For a proper birational map π : Y → X with Y normal, we may pick canonical

divisors KY and K X that agree wherever π is an isomorphism. When working on
charts or at stalks of Y and X , we continue to use these fixed canonical divisors
KY and K X .

LEMMA 2.2. Suppose that X is an F-finite normal scheme and that π : Y → X
is a finite-type birational map from a normal scheme Y with fixed KY and K X as
above. A map φ : F e

∗
OX → OX extends to a map φ̃ : F e

∗
OY → OY as above if

and only if KY − π
∗(K X +∆φ) 6 0.

Furthermore, all φ : F e
∗
OX → OX extend to Y if either of the following two

conditions are satisfied:

(a) π is small; in other words, there is a set W ⊆ X of codimension > 2 such
that π−1(W ) also has codimension> 2 in Y and π : Y \π−1(W )→ X \W
is an isomorphism.

(b) K X is Q-Cartier and KY − π
∗K X 6 0.

Proof. The first statement is [BS13, Lemma 7.2.1] (note that ∆φ̃ > 0 if and only
if φ extends to a map on Y ). For (a), note that KY−π

∗(K X+∆φ) = −π
−1
∗
∆φ 6 0.

Condition (b) is immediate.

3. Finitely generated canonical and anticanonical algebras

Before handling the case of more general blowups, we consider the case of
a small proper birational map obtained by blowing up either the canonical or
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anticanonical local algebra under the special assumption that those algebras are
standard graded.

LEMMA 3.1 (See [San15, Proposition 3.10]). Suppose that (R,m, k) is an
F-finite strongly F-regular local ring which is not Gorenstein. Then we can write

F e
∗

R = R⊕ae ⊕ ω
⊕be
R ⊕ Me

where Me has no free R or ωR-summands. Furthermore, lime→∞ (be/rk(F e
∗

R))
= s(R) and in particular lime→∞ (ae/be) = 1.

Proof. Consider a split surjection F e
∗

R→ ω
⊕be
R . Then the induced map

HomR(ω
⊕be
R , ωR)→ HomR(F e

∗
R, ωR)

remains split. Moreover, HomR(F e
∗

R, ωR) ∼= F e
∗

HomR(R, ωR) ∼= F e
∗
ωR and

HomR(ω
⊕be
R , ωR) ∼= R⊕be . Therefore, be is no more than frk(F e

∗
ωR). Conversely,

if we set ce = frk(F e
∗
ωR) and consider a split surjective map F e

∗
ωR → R⊕ce , then

the induced map HomR(R⊕ce , ωR)→ HomR(F e
∗
ωR, ωR) remains split. Moreover,

HomR(R⊕ce , ωR) ∼= R⊕ce and HomR(F e
∗
ωR, ωR) ∼= F e

∗
HomR(ωR, ωR) ∼= F e

∗
R.

Therefore, ce = frk(F e
∗
ωR) is no more than be and so the two numbers coincide.

In particular, be = frk(F e
∗
ωR) and in conclusion

lim
e→∞

be

rk(F e
∗

R)
= lim

e→∞

frk(F e
∗
ωR)

rk(F e
∗

R)
= s(ωR) = s(R) rk(ωR) = s(R).

The equality of s(ωR) and s(R) rk(ωR) is the content of [Tuc12, Theorem 4.11].

THEOREM 3.2. Suppose that an F-finite local ring (R,m) is not Gorenstein and
that either

(a) S =
⊕

n R(nK R) is generated as a graded ring in degree 1 or

(b) S =
⊕

n R(−nK R) is generated as a graded ring in degree 1.

Set Y = Proj S with π : Y → Spec R being the induced map. Then we have
s(Y ) > 2s(R).

Proof. The statement is trivial if R is not strongly F-regular since then s(R) = 0.
Hence, we may assume that R is strongly F-regular. In the case that S =⊕

n R(nK R), we have that the small morphism π : Y → Spec R is the blowup
of R(K R) and, hence, KY is Cartier. In the case that S =

⊕
n R(−nK R), we have
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that Y is the blowup of R(−K R) and so −KY is Cartier, but then the inverse KY

is Cartier too.
Consider the split surjection

F e
∗

R→ R⊕ae ⊕ ω
⊕be
R

guaranteed by Lemma 3.1. We pull back via π∗ and reflexify and we obtain a split
surjection

F e
∗
OY → O⊕ae

Y ⊕OY (KY )
⊕be .

However, OY (KY ) is locally free and, hence, the result follows since be grows at
the same rate as ae, again by Lemma 3.1.

4. Behavior under more general blowups

We now come to the proof of the more general case. Throughout this
section, we work with varieties over an algebraically closed field k of positive
characteristic p. We begin with several lemmas.

LEMMA 4.1 (See [LM09, Lemma 3.9]). Let X be a projective variety, x ∈ X
a closed point of dimension n, and A an ample Cartier divisor on X. For all
1� ε > 0, there exists δ > 0 such that

hi(X,OX (k A)⊗mdεke
x ) = 0 for i > 0

and
h0(X,OX (k A))− h0(X,OX (k A)⊗mdεke

x ) > δ · kn

for all k � 1.

Proof. Let µ : X ′→ X be the blowup of X along mx , with mx ·OX ′ = OX ′(−E).
Since −E is µ-ample, for a sufficiently large integer m > 1, we have that
mµ∗A − E is ample on X ′. Shrinking ε if necessary, we may assume mε < 1
and thus dεkem 6 k for k � 0. Since

kµ∗A − dεkeE = (k − dεkem)µ∗A − dεke(mµ∗A − E),

by Fujita vanishing [Laz04, Ch. 1.4.D, Theorem 1.4.35 and Remark 1.4.36]
(using that µ∗A is nef), we have that

H i(X ′,OX ′(kµ∗A − dεkeE) = 0 for i > 0.

We recall that

µ∗(OX ′(−dεkeE)) = mdεke
x , R jµ∗(OX ′(−dεkeE)) = 0 for j > 0
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provided k � 1 as shown [Laz04, Lemma 5.4.24]. It follows that

H i(X,OX (k A)⊗mdεke
x ) = H i(X ′,OX ′(kµ∗A − dεkeE)) = 0 for i > 0

when k � 1 by the vanishing above. In particular, this holds for i = 1, and, hence,
from the short exact sequence

0→ OX (k A)⊗mdεke
x → OX (k A)→ OX,x/m

dεke
x → 0,

we have

h0(X,OX (k A))− h0(X,OX (k A)⊗mdεke
x ) = dimk(OX,x/m

dεke
x ) = PX,x(dεke),

where PX,x is the Hilbert–Samuel polynomial of OX,x . Thus, choosing 0 < δ <

(εn/n!)e(OX,x) gives

h0(X,OX (k A))− h0(X,OX (k A)⊗mdεke
x ) = PX,x(dεke) >

δ

εn
(dεke)n > δkn

for k � 1.

LEMMA 4.2 (See [LX17, Lemma 2.9]). Let Y be a normal projective variety of
dimension n over a field k of prime characteristic p > 0 and L a nef and big
Cartier divisor on Y . Let y ∈ Y be a closed point of an irreducible curve C
satisfying (L · C) = 0. Then there exists ε > 0 so that

h1(Y,OY (kL)⊗mk
y) > εkn for k � 1.

The following proof was provided to us by Takumi Murayama. We will provide
an alternative (and somewhat longer) proof below.

Proof. Let ψ : Ŷ → Y be the normalized blowup of Y along my and let myOŶ =

OŶ (−E). Let Ĉ be the strict transform of C in Ŷ , in which case Ĉ · E > 0. Let A
be a very ample Cartier divisor on Ŷ so that the Q-Cartier divisor ψ∗L − E + δA
is not ample for 1� δ > 0 since

(ψ∗L − E + δA) · Ĉ = −E · Ĉ + δA · Ĉ,

which is negative for all 1� δ > 0.
Fix 1� δ > 0. Since ψ∗L− E + δA is not ample and ψ∗L− E = ψ∗L− E +

δA − δA, there exists some i > 0 and ε > 0 such that

hi(Ŷ ,OŶ (m(ψ
∗L − E))) > εmn
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for all m � 0 by [Mur18, Theorem B]. By [Laz04, Lemma 5.4.24], for k � 0,
we have

hi(Ŷ ,OŶ (k(ψ
∗L − E)) = hi(Y,OY (kL)⊗mk

y)).

But if i > 2, then the exact sequence of cohomology derived from twisting the
short exact

0→ mk
y → OY → OY/m

k
y → 0

by kL shows
hi(Y,OY (kL)⊗mk

y)) = hi(Y,OY (kL))

for all i > 2. By [Laz04, Theorem 1.4.40],

hi(Y,OY (kL)) = O(kn−i).

Therefore, it is only possible for hi(Y,OY (kL)⊗mk
y)) > εkn for all m � 0 when

i = 1, which completes the proof of the lemma.

Note that the above proof of Lemma 4.2 provides an alternative proof to
[LX17, Lemma 2.9]. One would need to replace the reference of [Mur18,
Theorem B] with [dFKL07, Theorem A]. Nevertheless, we present a second proof
of Lemma 4.2 which closely resembles the proof of [LX17, Lemma 2.9]. We
suspect that the alternative proof will be of independent interest.

LEMMA 4.3. Suppose V is a normal projective variety and D is a Q-Cartier
Q-divisor with nonnegative Iitaka dimension that is not nef. Let Z ⊆ V be an
irreducible curve such that D · Z < 0. Let g : W ′

→ V be a regular alteration
dominating the blowup of IZ such that g−1(Z) has simple normal crossings. Then
τ(W ′,m‖g∗D‖) vanishes along g−1(Z) for all integers m � 1. In particular, if
D is big, every irreducible component of g−1(Z) is contained in the non-nef locus
of g∗(D).

Proof. Replacing D with a positive multiple, we may assume that D is a Cartier
divisor. Let µ : V ′→ V be the normalized blowup of IZ , with IZOV ′ =OV ′(−E),
and f ′ : W ′

→ V ′ the induced map factoring g so that the divisor E ′ = ( f ′)∗E has

simple normal crossing support. Let g : W ′
ν
−→ W

f
−→ V be the Stein factorization

of g (in other words, W := Spec g∗OW ′) so that we have a commutative diagram

W ′
f ′ //

ν

��
g

!!

V ′

µ

��
W

f
// V
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where f is finite, ν is birational, and W is normal. Since f is finite, f −1({Z}) is a
union of finitely many irreducible curves Z1, . . . , Zr that dominate Z . Note that
if C ⊆ W ′ is an irreducible curve that dominates Z , we have, by the projection
formula, that (g∗D) · C = (deg g|C)(D · Z) < 0.

Given m > 1, consider the asymptotic test ideal τ(W ′,m‖g∗D‖) ⊆ OW ′ . If H
is a very ample divisor on W ′ and A = KW ′ + (dim W ′

+ 1)H , then

OW ′(m(g∗D)+ A)⊗ τ(m‖g∗D‖)

is globally generated for all m > 1 by [Mus13, Theorem A]. Therefore, if C ⊆ W ′

is an irreducible curve that is not contained in the zero locus of τ(W ′,m‖g∗D‖),
then

(m(g∗D)+ A) · C > 0. (4.1)

Thus, if C dominates Z and hence (g∗D) · C < 0 similarly to the above, we
must have that C is contained in the zero locus of τ(W ′,m‖g∗D‖) for all m >

−(A · C)/((g∗D) · C). Note that this condition on m comes from negating (4.1)
and solving for m.

Consider a component E ′i of E ′ that dominates Z . A general complete
intersection curve C on E ′i then dominates Z , and, thus, τ(W ′,m i‖g∗D‖) must
vanish along C for some m i � 1. As we vary the complete intersection that
defines C , the condition on m i does not change. Thus, in fact, τ(W ′,m i‖g∗D‖)
must vanish along all of E ′i .

Supposing now that E ′i is a component of E ′ that maps to a point of Z , we again
wish to show that τ(W ′,m i‖g∗D‖) must vanish along all of E ′i for m i � 1. We
have that E ′i necessarily also maps to a point of Zs ⊆ f −1(Z) ⊆ W for some s.
Note that some component of E ′ must dominate Zs (since ν is surjective and
ν−1(Zs) ⊆ Supp(E ′)) and ν−1(Zs) is connected as W is normal. In light of the
previous paragraph, it suffices to show τ(W ′,m i‖g∗D‖) must vanish along all of
E ′i for m i � 1. We may assume that E ′i intersects another component E ′j of E ′

along which τ(W ′,m j‖g∗D‖) is known to vanish for some m j � 0.
Take a general complete intersection curve C ⊆ E ′i that meets E ′j in at least one

point P , which we may assume to be a smooth point of C . We know that

OW ′(lm j(g∗D)+ A)⊗ τ(W ′, lm j‖g∗D‖)

is globally generated for any l > 1. Thus, whenever τ(W ′, lm j‖g∗D‖) does
not vanish along C , we can find an effective divisor F ∼Z (lm j(g∗D) + A)
not containing C that vanishes along τ(W ′, lm j‖g∗D‖). Let us consider what
happens when we restrict F to C . Note that since E ′i maps to a point of Z , so too
does C ⊆ E ′i , whence (g∗D) · C = 0. Furthermore,

τ(W ′,m j‖g∗D‖) ⊆ OW ′(−E ′j)
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by assumption; so we have that

τ(W ′, lm j‖g∗D‖) ⊆ τ(W ′,m j‖g∗D‖)l ⊆ OW ′(−l E ′j)

for all l > 1 by subadditivity [HY03, Theorem 4.5]. Thus, F must vanish at least
to order l at P so that

A · C = (0+ A) · C = F · C > l.

But A does not depend on l; so this is impossible, and so τ(W ′, lm j‖g∗D‖)
vanishes along C . Fix l > A ·C and set m i = lm j . It follows that τ(W ′,m i‖g∗D‖)
must vanish along C and hence also E ′i , as desired.

Thus, taking m ′ sufficiently large and divisible, we conclude from above that

τ(W ′,m ′‖g∗D‖) ⊆ OW ′(−E ′red)

so that τ(W ′,m‖g∗D‖) vanishes along g−1(Z) = E ′red for all integers m � 1. In
particular, if D is big, every irreducible component E ′i of g−1(Z) is contained in
the non-nef locus of g∗(D) by [Mus13, Theorem 6.2].

LEMMA 4.4 (See [dFKL07, Proposition 1.1] and [Mur18, Proposition 4.5]).
Suppose that V is a normal projective variety and Z ⊆ V is an irreducible curve.
Let L and E be Cartier divisors, with L big and E effective. Assume that L ·Z = 0,
that E does not contain Z, and that E · Z > 0.

If 0 < γ1 < γ2 are real numbers such that L − γ2 E remains big, then there
exists ε > 0 and a positive integer c such that b(|kL − m E |) ⊆ I bεkc−c

Z for all
integers m and k such that γ1k 6 m 6 γ2k.

Proof. Without loss of generality, we assume that the base field k = k is
uncountable. Using [dJ96, Theorem 4.1], we may take a regular alteration
g : W ′

→ V , dominating the blowup of IZ such that g−1(Z) has simple normal
crossings. Let µ : V ′ → V be the normalized blowup of IZ , with IZOV ′ =

OV ′(−G) and f ′ : W ′
→ V ′ the induced map factoring g so that g = µ ◦ f ′. For

any t ∈ Q∩ [γ1, γ2], L − t E is big and (L − t E) · Z = −t (E · Z) < 0. Applying
Lemma 4.3, it follows that every irreducible component g−1(Z) is contained in
the non-nef locus of g∗(L − t E).

Thus, if ( f ′)∗G = G ′ =
∑

ai G ′i so that (g−1(Z))red = G ′red, it follows from
[Mus13, Theorem 6.2] that

ordG ′i (‖g
∗L − tg∗E‖) = inf

l>1
tl∈Z

1
l

ordG ′i (b(|l(g
∗L − tg∗E)|)) > 0
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for all t ∈ Q ∩ [γ1, γ2] and any i . Since the asymptotic order of vanishing
ordG ′i (‖−‖) is continuous on the open cone of big divisors in N 1(X)R by [Mus13,
Theorem 6.1], there exists an ε ′ > 0 so that

ordG ′i (‖g
∗L − tg∗E‖) > ε ′

for all t ∈ [γ1, γ2] and any i . In particular, we have that

ordG ′i (b(|kg∗L − mg∗E |)) > kε ′

for all integers m, k satisfying γ1k 6 m 6 γ2k. In this case, setting a = maxi ai

(the largest coefficient of ( f ′)∗G) and ε = ε ′/a gives

b(|kg∗L − mg∗E |) ⊆ OW ′(−bεkcG ′).

Since ( f ′)∗|kµ∗L − mµ∗E | ⊆ |(kg∗L − mg∗E)|, we have

b(|kµ∗L − mµ∗E |) ·OW ′ ⊆ b(|kg∗L − mg∗E)|) ⊆ OW ′(−bεkcG ′),

and pushing forward along f ′ gives

b(|kµ∗L−mµ∗E |)·( f ′)∗OW ′ ⊆ ( f ′)∗OW ′(−bεkcG ′)=OV ′(−bεkcG)·( f ′)∗OW ′ .

Thus, using that OV ′ is normal and OV ′ ⊆ ( f ′)∗OW ′ is a finite and hence integral
extension, we see

b(|kµ∗L − mµ∗E |) ⊆ (OV ′(−bεkcG) · ( f ′)∗OW ′) ∩OV ′ = OV ′(−bεkcG)

from [HS06, Propositions 1.5.2 and 1.6.1]. On the other hand, we have that
H 0(V,OV (kL − m E)) = H 0(V ′,OV ′(kµ∗L − mµ∗E)) again by normality, and
in particular

b(|kL − m E |) ·OV ′ = b(|kµ∗L − mµ∗E |).

Pushing forward along µ : V ′ → V then gives b(|kL − m E |) ⊆ I bεkc
Z . Using

[HS06, Proposition 5.3.4], there exists a positive integer c so that I `Z ⊆ I `−c
Z for

all integers ` > c, and the result now follows.

Second proof of Lemma 4.2. We may assume that k = k is an uncountable field
of prime characteristic. Let ψ : Ŷ → Y be the normalized blowup of Y along my ,
with my ·OŶ = OŶ (−E). Take Ĉ to be the strict transform of C in Ŷ , noting that
Ĉ is not contained in E and Ĉ · E > 0. We have that ψ∗L is big with ψ∗L · Ĉ =
L · C = 0. Moreover, for some sufficiently large integer ` > 0, we have that
`ψ∗L − E is also big. Set γ2 = 1/` and choose 0 < γ1 < γ2.
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Consider the long exact sequence

· · · → H 1(Y,OY (kL)⊗mk
y)→ H 1(Y,OY (kL)⊗mk

y)

→ H 1(Y,OY (kL)⊗mk
y/m

k
y) = 0

where the vanishing holds since (mk
y)/m

k
y is a skyscraper sheaf with support

contained in {y}. Using this sequence and the fact that R jψ∗OŶ (−k E) = 0 for
j > 0 and sufficiently large k (as −E is ψ-ample), we have

h1(Y,OY (kL)⊗mk
y) > h1(Y, ψ∗OŶ (kψ

∗L − k E)) = h1(Ŷ ,OŶ (kψ
∗L − k E))

(4.2)
for all k � 1. Consider now the differences

∆k(m) := h1(Ŷ ,OŶ (kψ
∗L − (m + 1)E))− h1(Ŷ ,OŶ (kψ

∗L − m E))

for k > m > 0. If m � 1, and using that OŶ (ψ
∗L)|E = OE and OŶ (−E)|E ∼

OE(1) is ample, we have that

h1(E,OŶ ((kψ
∗L − m E)|E)) = h1(E,OE(m)) = 0

using Serre vanishing. Thus, if m > γ1k and k � 1, it follows that ∆k(m) > 0.
On the other hand, if additionally γ2k > m > γ1k, we have from Lemma 4.4 that
there is some ε ′ > 0 and a positive integer c so that

b(|kψ∗L − m E |) ⊆ I bε
′kc−c

Ĉ
.

Thus, if ŷ ∈ Ĉ ∩ Supp(E) is a closed point, we have an inclusion

Im
(
H 0(Ŷ ,OŶ (kψ

∗L − m E))→ H 0(E,OŶ (kψ
∗L − m E)|E)

)
⊆ H 0(E,OE(m)⊗mbε

′kc−c
ŷ ). (4.3)

Choosing 0 < ε ′′ < ε ′/γ2, we have that for k � 1,

bε ′kc − c > ε ′k − c − 1 > ε ′′γ2k + 1 > ε ′′m + 1 > dε ′′me. (4.4)

Shrinking ε ′′ further if necessary, by Lemma 4.1, there exists δ > 0 such that

∆k(m) = h0(E,OE(m))
− rk

(
H 0(Ŷ ,OŶ (kψ

∗L − m E))→ H 0(E,OŶ (kψ
∗L − m E)|E)

)
> h0(E,OE(m))− h0(E,OE(m)⊗mbε

′kc−c
ŷ ) by (4.3)

> h0(E,OE(m))− h0(E,OE(m)⊗mdε
′′me

ŷ ) by (4.4)

> δmn−1
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for all γ1k 6 m 6 γ2k and k � 1. Thus, we compute

h1(Ŷ ,OŶ (kψ
∗L − k E)) =

(
k−1∑

m=dγ1ke

∆k(m)

)
+ h1(Ŷ ,OŶ (kψ

∗L − dγ1keE))

>
dγ2ke−1∑
m=dγ1ke

∆k(m) (since the dropped ∆k(m) > 0)

>
dγ2ke−1∑
m=dγ1ke

δmn−1

> δ(dγ1ke)n−1(dγ2ke − dγ1ke)
> δ(dγ1ke)n−1(γ2k − 1− γ1k)
> δγ n−1

1 (γ2 − γ1)kn
− δγ n−1

1 kn−1

for all k � 1. Thus, choosing ε < δγ n−1
1 (γ2 − γ1) implies that

εkn < δγ n−1
1 (γ2 − γ1)kn

− δγ n−1
1 kn−1 6 h1(Ŷ ,OŶ (kψ

∗L − k E))

for k � 1. Therefore, by (4.2),

h1(Y,OY (kL)⊗mk
y) > h1(Ŷ ,OŶ (kψ

∗L − k E)) > εkn

for all k � 1 as desired.

Now we come to the main theorem of the section.

THEOREM 4.5. Let X be a strongly F-regular variety of dimension n over an
algebraically closed field k of characteristic p > 0. Suppose π : Y → X is a
proper birational morphism from a normal variety Y and fix a point y ∈ Exc(π)
with π(y) = x. Suppose additionally that either:

(a) π is small, that is, π is an isomorphism outside of a set of codimension at
least two in Y , or;

(b) the canonical divisor K X is Q-Cartier and for every exceptional divisor E
containing y, we have that coeffE(KY−π

∗K X ) 6 0. For instance, this holds
if all the discrepancies are nonpositive.

Then we have s(OX,x) < s(OY,y).

Proof. If k is not uncountable then we base change by the field obtained by
adjoining uncountably many indeterminants to k and then taking its algebraic
closure. Any closed points on the original varieties will correspond to points
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on the base-changed varieties, and their signatures will not change by [Yao06,
Theorem 5.4]. Thus, we may assume that k is uncountable and algebraically
closed.

Set R = OX,x and S = OY,y so that we have a local inclusion R ⊆ S. By
the assumption that π is either small or has nonpositive discrepancy at y, it
follows that p−e-linear map on R extends naturally to a p−e-linear map on S; see
Lemma 2.2. Consider the Frobenius degeneracy ideals I S

e of S used to define the
F-signature (Section 2) so that s(OY,y) = lime→∞ (1/pne)`(S/I S

e ), and similarly
for the Frobenius degeneracy ideals I R

e of R. Set Je = I S
e ∩ R. Observe that if mR

can be generated by d elements, we have

m
dpe

R ⊆ m
[pe
]

R ⊆ Je ⊆ I R
e .

Indeed, the first inclusion is standard by looking at one monomial in the
generators at a time. The second inclusion follows from the fact that m[p

e
]

R ⊆

m
[pe
]

S ⊆ I S
e . For the last inclusion, suppose that r ∈ R \ I R

e . Then we know
there exists a p−e-linear map φ on R so that φ(r) = 1. But then φ extends to S,
and we still have φ(r) = 1, so that r 6∈ I S

e . Note also that J [p]e ⊆ Je+1 so that
lime→∞ (1/pne)`(R/Je) exists and is at least as large as s(R) = s(OX,x); see
[PT18, Theorem B].

Let us take suitable projective closures of X, Y such that π extends to a
birational morphism between normal projective varieties. Note that condition (a)
or (b) from the statement of the theorem will not necessarily hold on the entire
compactifications; however, we will not need this. Let M ′ be an ample line bundle
on X . By Lemma 4.1, for all 1� ε ′ > 0, i > 0, and k � 1, we have

H i(X, (M ′)⊗k
⊗mdε

′ke
R ) = 0.

Taking ` � 1 so that 1/` < ε ′, it follows that H i(X, (M ′)⊗` dpe
⊗ m

dpe

R ) = 0 for
i > 0 and e � 1. Setting M = M ′⊗`d and using that Je/m

dpe

R is supported only at
x ∈ X , it follows that

H 1(X,M⊗pe
⊗m

dpe

R )� H 1(X,M⊗pe
⊗ Je),

H i(X,M⊗pe
⊗m

dpe

R )
∼=
→ H i(X,M⊗pe

⊗ Je) for i > 2.

Hence, H i(X,M⊗pe
⊗ Je) = 0 for i > 0 and e � 1. Thus, we have

lim
e→∞

1
pen

h0(X,M⊗pe
⊗ Je) =

1
n!

volX (M)− lim
e→∞

1
pne
`(R/Je). (4.5)

On the other hand, since X is strongly F-regular at x , so too is Y at y, and it
follows from the proof of the positivity of the F-signature that there is some e0
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with I S
e ⊆ m

pe−e0

S for all e � 1 ([BST12, Theorem 3.21], see [PT18, Section 5
and the second proof of Theorem 5.1]). We have the following relations:

H 1(Y, π∗M⊗pe
⊗ I S

e )� H 1(Y, π∗M⊗pe
⊗m

pe−e0

S ),

H i(Y, π∗M⊗pe
⊗ I S

e )
∼=
→ H i(Y, π∗M⊗pe

) for i > 2.

Since hi(Y, π∗M⊗pe
) = O(pe(n−1)) for i > 0 as π∗M is nef [Laz04,

Theorem 1.4.40], we have that

lim sup
e→∞

1
pen

h0(Y, π∗M⊗pe
⊗ I S

e )

=
1
n!

volY (π
∗M)− s(OY,y)+ lim sup

e→∞

1
pen

h1(Y, π∗M⊗pe
⊗ I S

e )

>
1
n!

volX (M)− s(OY,y)+ lim sup
e→∞

1
pen

h1(Y, π∗M⊗pe
⊗m

pe−e0

S ).

By Lemma 4.2 applied with L = π∗M⊗pe0 , there exists an ε > 0 so that

h1(Y, π∗M⊗pe
⊗m

pe−e0

S ) = h1(Y, L⊗(p
e−e0 )
⊗m

pe−e0

S ) > εp(e−e0)n

for all e � 1, so that

lim sup
e→∞

1
pen

h0(Y, π∗M⊗pe
⊗ I S

e ) >
1
n!

volX (M)− s(OY,y)+
ε

pne0
. (4.6)

Observe that π∗ I S
e ⊆ π∗OY = OX , and so Je = π∗ I S

e which implies that

lim sup
e→∞

1
pen

h0(Y, π∗M⊗pe
⊗ I S

e ) = lim
e→∞

1
pen

h0(X,M⊗pe
⊗ Je).

Thus, combining equation (4.6) and equation (4.5), we have

1
n!

volX (M)− lim
e→∞

1
pne
`(R/Je) >

1
n!

volX (M)− s(OY,y)+
ε

pne0

whence it follows

s(OY,y) > lim
e→∞

1
pne
`(R/Je)+

ε

pne0
> s(OX,x).

This completes the proof.
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5. Examples of prime characteristic invariants and blowups of
isolated singularities

In this section, we observe that without the hypothesis (a) or (b), the conclusion
of Theorem 4.5 may not hold even if π : Y → X is the blowup of an
isolated singularity. We provide several examples demonstrating various negative
behaviors. We fix the following notation for all of our examples: X will be an
affine scheme of a strongly F-regular hypersurface. Specifically,

X = Spec(R), R = k[x1, . . . , xn]/( f ),

k will be an algebraically closed field of prime characteristic p > 0, and X will
have an isolated singularity at the origin (x1, . . . , xn). We denote by π : Y → X
the blowup of X at the origin. Then π is proper and birational, and has n standard
affine charts:

Yi = Spec
(

R
[

x1

xi
, . . . ,

xn

xi

])
∼= Spec

(
k[x1/xi , . . . , xi , . . . , xn/xi ]

( f : x∞i )

)
where ( f : x∞i ) =

⋃
`∈N{g ∈ k[x1/xi , . . . , xi , . . . xn/xi ] | x`i g ∈ ( f )}.

Our strategy of showing that F-signature can strictly decrease under the blowup
of an isolated singularity avoids any technical computations or explicit formulas
of F-signature. Instead, we show that a strongly F-regular isolated singularity
can be blown up to create a variety which has nonstrongly F-regular points. We
first discuss a method of determining whether an isolated hypersurface singularity
is strongly F-regular.

LEMMA 5.1. Let k be an F-finite field of prime characteristic

p > 0, S = k[x1, . . . , xn], and f ∈ S

an element such that S/( f ) is a domain with isolated singularity at the maximal
ideal (x1, . . . , xn). Then S/( f ) is strongly F-regular if and only if there exists
e ∈ N such that x1 f pe

−1
6∈ (x pe

1 , . . . , x pe

n ).

Proof. The property of being strongly F-regular is a local condition. Let
m = (x1, . . . , xn). Then R is strongly F-regular if and only if Rm is a strongly
F-regular local ring. By [AE05], the set

P =
⋂
e∈N

{
c ∈ Rm | Rm

· c1/pe

−−−→ R1/pe

m does not split
}

is an ideal of Rm satisfying the following:
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(a) Rm is F-pure if and only if P 6= Rm;

(b) if Rm is F-pure, then P is a prime ideal;

(c) if Rm is not strongly F-regular, then the closed set V (P) of Spec(Rm)

defines the nonstrongly F-regular locus of Rm.

Thus, the assumption that R has an isolated singularity implies that P is 0 if R is
strongly F-regular, the unique maximal ideal of Rm if R is F-pure but not strongly
F-regular, or all of Rm if R is not F-pure. Therefore, Rm is strongly F-regular if
and only if x1 6∈ P . It readily follows by the techniques of [Fed83] that x1 6∈ P if
and only if there exists e ∈ N such that x1 f pe

−1
6∈ (x pe

1 , . . . , x pe

n )Sm (see [Gla96,
Theorem 2.3]). Since (x pe

1 , . . . , x pe

n )S is primary to m, we have

x1 f pe
−1
6∈ (x pe

1 , . . . , x pe

n )Sm

if and only if x1 f pe
−1
6∈ (x pe

1 , . . . , x pe

n )S.

EXAMPLE 5.2. Let

R =
k[x1, x2, x3, x4]

(x2
1 + x4

2 + x5
3 + x4

4)

and assume that k is an algebraically closed field of characteristic 7. Then for any
i ∈ {2, 3, 4}, we have xi(x2

1 + x4
2 + x5

3 + x4
4)

6
6∈ (x7

1 , x7
2 , x7

3 , x7
4) and, therefore, R

is strongly F-regular by Lemma 5.1. The chart Y1 is nonsingular. The charts Y2

and Y4 are isomorphic and have coordinate rings isomorphic to the hypersurface

S =
k[a, b, c, d]

(a2 + b2 + c5b3 + d4b2)
.

The hypersurface S is not normal at the point (a, b, c, d), in particular is not
strongly F-regular but is F-pure since (a2

+ b2
+ c5b3

+ d4b2)6 6∈ (a7, b7, c7, d7).
The remaining chart has a coordinate ring isomorphic to

k[a, b, c, d]
(a2 + b4c2 + c3 + d4c2)

,

a ring which is neither normal nor F-pure.
Observe that Rm is a local ring of multiplicity 2. In particular, eHK(Rm) +

s(Rm)= 2; see the proof of [Tuc12, Proposition 4.22] for a justification. The same
holds for the three singular charts of the blowup. In particular, not only does the
F-signature strictly decrease to 0 on points in the exceptional locus of π : Y → X ,
but the Hilbert–Kunz multiplicity of these points has strictly increased to 2.
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We leave it to the reader to verify that if Ỹ → Y is the normalization of Y , that
is, Ỹ → X is the normalized blowup of X at the origin, then Ỹ is nonsingular
and, in particular, the conclusion of Theorem 4.5 is valid for the proper birational
morphism Ỹ → X . This is not an indication that the conclusion of Theorem 4.5
is valid for normalized blowups of isolated strongly F-regular singularities by the
following examples.

EXAMPLE 5.3. Let

R =
k[x1, x2, x3, x4]

(x2
1 + x3

2 + x6
3 + x6

4)

where k is an algebraically closed field of characteristic 7. Then R is strongly
F-regular, but the affine chart Y4 of the blowup has a coordinate ring isomorphic
to

k[a, b, c, d]
(a2 + b3d + c6d4 + d4)

which is normal, F-pure, but is not strongly F-regular.

Our final example illustrates that the normalized blowup of an isolated
F-regular singularity can produce a normal variety with non-F-pure points.
The example is obtained by changing the characteristic of the base field from
Example 5.3.

EXAMPLE 5.4. Let

R =
k[x1, x2, x3, x4]

(x2
1 + x3

2 + x6
3 + x6

4)

where k is an algebraically closed field of characteristic 11. Then R is strongly
F-regular but the affine chart Y4 of the blowup has a coordinate ring isomorphic
to

k[a, b, c, d]
(a2 + b3d + c6d4 + d4)

which is normal but not F-pure.

6. Further questions

We conclude the paper by stating two open questions. First, we hope that
Hilbert–Kunz multiplicity can also be controlled under certain blowups.

QUESTION 6.1. Can we control the Hilbert–Kunz multiplicity of a local ring
(R,m) under (special) blowups π : Y → X = Spec R?
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Second, we would like to generalize the results of Section 3 to the case when
the ring

⊕
i>0 R(i K X ) or

⊕
i>0 R(−i K X ) is finitely generated, instead of being

generated in degree 1. Note that we expect that for any strongly F-regular ring
and any Weil divisor D, the ring

⊕
i>0 R(i D) is finitely generated, and this would

hold, for instance, if the minimal model program is known to hold in characteristic
p > 0 and, hence, we know it if dim R = 3 and p > 5; see [Bir16, Theorem 1.3]
and also [SS10, Theorem 4.3] applied locally.

QUESTION 6.2. If R is a strongly F-regular local ring and S =
⊕

i>0 R(i K X )

(respectively, S =
⊕

i>0 R(−i K X )) is finitely generated, can we control the
F-signature of Proj S?
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singularities via F-signature’, Ann. Sci. Éc. Norm. Supér. (4) 51(4) (2018), 993–1016.

[DPY16] A. De Stefani, T. Polstra and Y. Yao, ‘Globalizing F-invariants’, Preprint, 2016, ArXiv
e-prints.

https://doi.org/10.1017/fms.2019.6 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.6


L. Ma, T. Polstra, K. Schwede and K. Tucker 20

[Fed83] R. Fedder, ‘F-purity and rational singularity’, Trans. Amer. Math. Soc. 278(2) (1983),
461–480.
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