
THE INNER PLETHYSM OF S-FUNCTIONS 

D. E. LITTLEWOOD 

1. Introduction. In a previous paper (2), the inner product of two 
S-functions {X}.{M| was defined for (X),(M) partitions of the same integer n. 
Briefly, the ordinary product {X} {\x\ of two S-f unctions corresponds to the 
analysis of the direct product of two corresponding representations of the 
full linear group, while the inner product {X}.{/z} corresponds to the analysis 
of the direct product of two representations of the corresponding symmetric 
group. Thus, if 
-I -, (X) (M) V * „ (?) 

then 

This operation is commutative, 

1.2 {X}.{M} = {M}.{X}, 

and distributive with respect to addition, 

1.3 {x}.(M + M) = {M.{M} + {M.M. 

Also the symbol g\MJ, which arises in this inner product is symmetric with 
respect to all three.suffixes, so that 

1-4 g\nv = g\vp = gMXv = g»v\ = gv\n = gvn\-

In the case of an inner product of two identical S-f unctions, {X} .{X} however, 
a further analysis is possible. The expression {X}.{X} corresponds to the direct 
product of two identical representations of the symmetric group, and such 
a J v ec t product can be analysed into its symmetric and skew-symmetric 
constituents. Thus if Mt is the matrix representing a symmetric group element 
Su then the direct product Mt X Mt may be analysed and shown to be 
equivalent to the direct sum of the second induced matrix and the second 
compound matrix of Mu 

MiXMi± M{
t
2]+Mlinj 

where == denotes equivalence and -j- direct sum. 
The expression {X}-{X} may be analysed correspondingly into two parts 

'which will be denoted respectively by {X} 0{2} and {X} 0{12}. The operation 
which is denoted by the symbol O is called inner plethysrn, and in the general 
case is defined as follows. 
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2 D. E. LITTLEWOOD 

Let Mi be a matrix representation of the symmetric group on n symbols 
corresponding to the group element St and let the spur of Mi be x(X)GS*)« 
Then the invariant matrix of Mt corresponding to the partition (/x), namely, 
Milli), is also a matrix representation of the symmetric group, and its spur is 
a compound character, say 

]C Gxnv x(v (Si). 

Definition 

MOM = Z &*,{*}• 
This operation is not commutative. In fact the partitions (X) and (y) must 

be partitions of the same integer n, while the partition (/x) is not so restricted. 
The laws governing the combination of this operation with other operations 

concerning S-functions are in many respects similar to those relating to the 
ordinary plethysm of S-functions, {X} ® {/*}, except that inner product takes 
the place of ordinary product. 

Ordinary plethysm satisfies the following two laws (1, 240) 

{X} ® (A + B) = {X} ® A + {X} ® B, 

{X} ® (AB) = ({X} ®A) ({X} ®B). 

If M is an invariant matrix corresponding to {X} of a matrix N, then the 
invariant matrix of M corresponding to {ji} + {v) is by definition equivalent 
to the direct sum of invariant matrices corresponding to {fx} and {v} res
pectively. Expressing the result in terms of S-functions of the latent roots of 
N this gives 

M ® (M + M) = M ® {M} + {x} ® {v}. 

If now ilf is taken as a representation of the symmetric group corresponding 
to the partition (X), the result becomes 

{x} o ({M! + \v\) = {x} o {ju} + {X} o \v). 

Similarly, considering an invariant matrix of M which is the direct product 
of invariant matrices corresponding to {AI}, {V} respectively, the result follows, 
in the first case 

{X} ® ( M W) = ({x} ® M) ({x} ® {,}), 

and in the second case, when Af is a representation of a symmetric group, the 
product on the right becoming an inner product, 

{xi o (M M) = ({xj o {M}).({X} G M) . 

Obviously, the simple S-functions {yu}, {v} may be replaced by linear com
binations of S-functions, and thus 

1.5 {X} © (A + B) = (X) O A + {\} © B, 

1.6 {X} O (AB) = ({X} O A).({\} O B). 
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PLETHYSM OF S-FUNCTIONS 3 

The same procedure is available to find the analogue of the equation (1, 290) 

(A + B) ® {X} = £ Y^{A (g) M) (B ® {„}). 

With the nomenclature considered above, this equation is obtained by taking 
a direct sum of two matrices correspondong to A, B respectively. But if 
these are representations of the symmetric group, the result is 

1.7 (A+B)(D{\\ = £ T^(AQ{fi}).(BO{v\). 

For a product on the left the known result is 

(AB) ® {X} = £ & , x (A ® {ix\) (B ® {,}) 

where 

XW XW = E &* X(X) 

which is equivalent to 

To prove this the matrix M is considered as a direct product of two matrices. 
But if it is the direct product of two representations of the symmetric group, 
the same reasoning gives 

1.8 (AB)Q{\\ = E &,x (4 O {/*}). ( S O W ) . 

One result is rather remarkable. Ordinary plethysm is associative, 

(A ® B) ® C = A ® (B ® C). 

If now the basic matrix is taken as a representation of the symmetric group, 
the two plethysms on the left become inner plethysms. But on the right only 
the first of the two plethysm signs is changed to inner plethysm. Hence 

1.9 (A O B) O C = A © (23 ® C). 

In the place of the associative law the inner plethysm sign is converted to 
ordinary plethysm. 

The evaluation of an expansion of an inner plethysm is not at all easy. 
A method will be given here, however, for obtaining the expansion of 
{n — 1,1} © (M- F ° r this purpose formulae will be given for evaluating 
{n — 1,1) O {r} and {n — 1,1} O {l r}. From either of these results by the 
aid of inner products the general expansion {n — 1,1} © {X} is obtainable. 

Some progress may be made by the use of equation 1.9 to evaluate the 
more general expression {X} O {/*}. However, a much more powerful procedure 
is obtained by a method of expanding ({X} {/x}) O {*>}. 

2. Invariant matrices of permutation matrices. The symmetric group 
on n symbols has a representation consisting of permutation matrices of 
degree n. The spur of the representation is x(n) + X(w-1,1\ and it is convenient 
to associate it with the expression 

{n- 1} {1} = {n} + {n- 1,1}. 
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The spurs of the rth induced matrices of these permutation matrices is 
a sum of symmetric group characters which is associated with the expression 

( { n - 1) {1}) O {r\. 

The rth induced matrix is obtained by taking any set of r rows with possible 
repetitions, and a set of r columns, again with possible repetitions, and taking 
the permanent of the r-rowed square matrix so obtained, allowing a numerical 
factor l/i\ for an i-fold repeated column. The matrix obtained from such 
permanents for all choices of r rows and of r columns is the rth induced matrix. 

Since each row of a permutation matrix has only one non-zero element, that 
element being unity, for any choice of r rows there is a unique set of r columns 
which gives a non-zero permanent, and the permanent in this case is unity. 
Thus the induced matrix is also a permutation matrix. Further, if the set of 
r rows has repetitions the set of r columns must have exactly corresponding 
repetitions. 

Let the row of the induced matrix correspond to 
ai ao &i i i i 

ai a2 . . . at , a,\ + a2 + . . . + at = r, 
this indicating that the first row is repeated a,\ times, the second a2 times, and 
so on. This term will be permuted by the symmetric group permutations into 
every expression which appears in the monomial symmetric function 

Z a\ ai ai 

« 1 « 2 • • • Oi\ • 

The induced matrix can thus be analysed into a direct sum of permutation 
matrices each corresponding to a monomial symmetric function. These will 
be considered individually. 

Consider first J^ air. The permutation matrix is simply the matrix of 
permutation of the ai's and thus corresponds to 

i » - i } {i}. 

Consider next J^ ai~la2. The expression ai~la2 is unaltered by all per
mutations on the other n — 2 symbols but is changed by any permutation 
which involves either a\ or a2. The corresponding expression is 

{ n - 2 } { l } { l } . 

Assuming r > 4, X) oiir~2a2
2 yields the same result. 

Consider next £ onr~2a2az. The term ai~2a2az is unaltered by any permu
tation of the other n — 3 symbols and also by the interchange of a2 and a3. 
The corresponding expression is thus 

[n-Z] {2}{1}. 

The result in the general case may now be inferred. Consider the term 

E Xi X2 \i 

ai a2 . . . at 

where (Xi, A2, . . . , X*) is any partition of r. Let the conjugate partition be 
(MI» M2, . . . , Mj), so that m = i. 
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There are n — i = n — MI symbols which do not enter into the expression 
aiXl a2X2 . . . at

Xi and the term is unaltered by the symmetric group of per
mutations on these symbols. There are MI — M2 indices each equal to X*, and 
again the symmetric group of permutations on these symbols is allowable. 
There is another set of fx2 — Ms equal indices, and so on. The corresponding 
expression is 

[n — Ml} {Mi — M2Î ÎM2 — M3Î . . . [Hj-i — fij} JM^}. 

Hence 

THEOREM I. 

({» - 1} {1}) O {r} = ]T {n - Mi} {MI - M2} . . . {nj-i - Mi} ÎM;} 

summed for all partitions (MI, M2, . . • , M;) of r. 

The following examples illustrate. Since 

h2 = X) ai2 + 23 1̂̂ 2 

then 
( { n - 1} {1})0{2} = { * - 1} {1} + {n-2} {2} 

= 2{w} + 2{w - 1,1} + {̂  - 2,2}. 

If (X) = (Xi, X2, • . . , A*) is a partition of 5 it is convenient to denote 
[n — s, Xi, X2, . . . , X*;} by [Xi, X2, . . . , A*] = [X]. The above result may then 
be written 

([0] + [1]) O {2} = 2[0] + 2[1] + [2]. 

Again, corresponding to 

([0] + [1]) O !3( = {n - 1} {1} + {» - 2} {1} {1} + [» - 3} |3} 

= 3[0] + 4[1] + 2[2] + [l2] + 13]. 

Similarly 

([0] + [1]) O {4} = 5[0] + 7[1] + 5[2] + 2[12] + 2[3] + [21] + [4]. 

Using equation (7), 

([0] + [1]) O {r} = [1] O ([r] + [r-l]+ ...+ [!] + [0]). 

Hence 
[1] O {r\ = ([0] + [1]) O ({/"} - [r - 1}). 

Thus 
[1] O {0} = [0], 
[1] G {1} = [1], 
[1] © {2} = [0] + [1] + [2], 
[1] O {3} = [0] + 2[1] + [2] + [P] + [3], 
[1] O {4} = 2[0] + 3[1] + 3[2] + [P] + [3] + [21] + [4]. 
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The compound matrices are in some respects simpler. Consider the rth 
compound matrix of the permutation matrix which permutes the symbols 

ah a2, . . . , an. 

Any set of r distinct rows may be chosen. This gives, for a non-zero deter
minant, a unique set of r columns. The determinant of the minor is ± 1. If it 
were always + 1 the result would be a permutation matrix, but this per
mutation matrix must be modified to allow for possible factors of the form 
- 1. 

The element in the compound matrix will be unaltered by any permutation 
of the remaining n — r symbols, but for a permutation of the r symbols there 
will be a change in sign if the permutation is negative. Thus there is involved 
the symmetric group on a set of n — r symbols and the negative symmetric 
group on the set of r symbols. The corresponding expression is 

({» - 1} {1}) O {lr} = {n - r] {lr} = {n - r + 1, l^1} + \n - r, V}. 

Again from equation (7), 

ao] + [i])o{ir} = m o a n + {r-1}). 
Hence 

THEOREM II. 

{ » - 1,1} O {lr} = {n-r, lr}. 

To illustrate, the expression for [1] O {3} will be obtained by the use of 
Theorem II. 

Since 
{3} = u i 3 + { i 3 } - 2 u n i 2 } , 

therefore 

[1]© {3} = [1]Q ({1}S+{13} - 2 { 1 } {l2}) 
= [1].[1].[1] + [1 3]-2[1] . [1 2] . 

Since 

[!]•[!] = [0] + [1] + [2] + [l2], 

therefore 

[1] O {3} = [l3] + [1].([0] + [1] + [2] - [l2]) 
= [I3] + [1] + [0] + [2] + [l2] + [3] - [l3] 
= [0] + 2[1] + [2] + [l2] + [3], 

which conforms with the result obtained by the use of Theorem I. 
By evaluating inner products in this way the general expansion {w—1,1} 0{X} 

may be evaluated either from Theorem I or from Theorem II. 
A generalization of the method to evaluate {X} O {/*} in the general case 

is not apparent. However, some progress may be made by the use of equation 
1.9. 
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Thus, since 

therefore 

[1] 0 U2} = [I2] 

[p] o {v} = ([i] o {v}) o {v) = [i] o ({p} 0 !P}) 
= t U O { 2 P } = [1]© ({1} {1«} - jP j ) 
= [1]. [I3] - [I4] 
= [P] + [21] + [1«] + [21*]. 

Evaluation of [P] O {X} may be performed by this method. The evaluation 
of [2] O {Xj is a little more complicated. 

Thus, since 
[1] © {2} = [0] + [1] + [2] 

therefore 

([0] + [1] + [2]) O {P} = [1]© ({2} ® [P}) 
= [1]Q{31}, 

which may be evaluated as described above to give 

2[1] + 2[2] + 3[P] + [3] + 2[21] + U3] + [31]. 

But also 

([0] + [1] + [2]) O fP} = ([0] + [1]) O {P} + ([0] + [1]) . [2] + [2]©{P} 
= 2[1] + 2[2] + 2[P] + [3] + [21] + [2] © {P}. 

Hence 

[2] O {l2} = [P] + [21] + [1»] + [31]. 

Theoretically such procedures will allow the evaluation of {X} © {fx} in 
every case, but in practice the calculation may become extremely involved. 

The general method, however, is applicable to any permutation represent
ation, although the only one so far considered has been the permutation of the 
actual symbols, which corresponds to the expression {n — 1} {1}. 

Consider the subgroup corresponding to {n — r) {r}. The corresponding 
permutation representation permutes the sets of r symbols such as «i, a2,...,o:7-. 
The second induced matrix of the representation will correspond to the 
expression 

({n-r} {r}) © {2}. 

Taking a pair of rows from the permutation matrix, these will correspond 
to two sets of r symbols «i, a2, . . . , aT and ai\ a2

f, . . . , a/. If there are r — i 
symbols common to the two sets, then also for the corresponding columns 
which give a non-zero element the two sets of r symbols will have exactly 
r — i symbols in common. The second induced matrix is therefore reducible, 
the constituent matrices corresponding to the different values of i. It is 
therefore pertinent to consider these individually. 
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Consider the two sets of symbols 

aha2, . . . , auQLi+i, . . . , ar ; a[,a2, . . . , a4«i+i, • . • , ar-

the pair of sets is invariant for any permutation confined to the set « ! , . . . , « * , 
or to the set OL\ , . . . , a/, or to the set ai+i, . . . , ar. It is also invariant for the 
interchange of the first two sets of i symbols. The corresponding expression 
is therefore 

({i} <g> {2}) {r - i) {n - r - i). 

Hence 

THEOREM III . 

({» - r) {r}) O {2} = E ({*} 0 {2}) {r - i) {n - r - Î}. 

The second compound matrix gives similarly 

THEOREM IV. 

({» - r} {r}) O fl2} = É ({»} ® {l2}) {r - i } { n - r - i). 

The case i — 0 can be omitted since {0} ® {l2} = 0. 

3. Extension to products of S-functions. These theorems can be 
generalized. There is a matrix representation of this subgroup which is the 
direct product of a representation of the symmetric group on the first r symbols 
corresponding to the partition (X) of r, and a representation of the symmetric 
group on the other n — r symbols corresponding to the partition (/z) of n — r. 
The corresponding representation of the symmetric group on n symbols is 
constructed by taking the direct sum of n \/r ! {n — r) ! such representations 
corresponding to the conjugate subgroups and allowing for the permutation 
of these representations as well as the matrix products in the various represen
tations. The representation1 so obtained, of degree / (X)/ (M) n\/r\ (n — r)\ 
corresponds to the expression 

M M-
The second induced matrix of this representation corresponds to 

({X} M) Q {2}. 

It is convenient to consider at the same time the second compound matrix, 
corresponding to 

(M M) o {P} 
and the following Theorem is obtained. 

^ e e (6) where this representation is extensively used. 
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THEOREM V. If (v) is a partition of 2, 

( |X | ÎMÎ) o {"} = E g « . r a f t r ^ ( { « ! o {a\)({p\ o {*})[({*}.{*})®{r}] 

+ E i t f ^ r k - raexr^){{a}.{*})({?].{p})({4>}.{e})({4,\.{e}) 

+ E ra9x ra.,.x r ^ iwM({«}.{«'})({/?! • {/s'})({*} • {*})({*'} • {*'})• 
In this enunciat ion Tae\ is the coefficient of {X} in {a}{0}, g^v is the 

coefficient of {v} in {£} . {77} . {f} so t h a t (£), (77), (f) mus t be par t i t ions of 2. 
Instead of taking (X) and (/x) as par t i t ions of r and w — r it is ra ther simpler 
to take (X) as a par t i t ion of m and (/x) as a par t i t ion of n. If (0) is a par t i t ion 
of i, then so is (</>), and also (0') and (<£') in the last summat ion . T h e n (a), 
(a') are par t i t ions of m — i, and (/3), (£') par t i t ions oi n — i. In the last two 
summat ions , if (a) and (a'), (ft) and (/3'), (0) and (0'), (</>) and (</>') are inter
changed an identical te rm is obtained, b u t only one of the two identical te rms 
is included in the summat ion . T h e cases for which (a) = (a')» (P) — (&')> 
(0) = (0r), (0) = (0 ;) are excluded from the last summat ion . 

T h e value of ({X} {/1}) O {2} or ({X} {/x}) O {l2} is obtained by summing 
the permanents or de te rminan ts of the two rowed principal minors of the 
representat ion corresponding to {X} {/x}. Consider any pair of rows. Corres
ponding to (X) there are, associated with these two rows, two sets of m symbols. 
Suppose t h a t m — i symbols are common to the two sets. For non-zero 
results permuta t ions mus t be confined to those which permute these m — i 
symbols, pe rmute the n — i symbols which occur in nei ther set, pe rmute each 
set of i symbols which occur in one set only, or interchange these two sets of 
i symbols. 

Proceeding from the symmetr ic group on m symbols to the subgroup which 
permutes separately the m — i and the i symbols, the representat ion corres
ponding to {X} reduces to various representat ions corresponding to {a} {6} 
where (a) is a par t i t ion of m — i and (0) is a par t i t ion of i. Such a represent
at ion occurs with frequency Taex- W e are thus led to a te rm Y, Fae\{a\ {0}. 
Similarly for the second row there is a te rm 2Z Ta>d'\{a'} {6'}-

T o a permuta t ion among the m — i symbols there corresponds the direct 
product of the representat ions corresponding to each of the two rows. Th i s 
leads to 

E r „ , x I W x ( { a U « ' } ) { f i } { * } -

Combining this with an equivalent result in relation to the par t i t ion (/*) 
and remembering t h a t for a set of i symbols, for one row the representat ion 
corresponds to (0), being obtained from the representat ion corresponding to 
(X), while for the other row the representat ion corresponds to some (<£), 
obtained from the representat ion corresponding to (JJL) , it is clear t h a t the final 
result is t h a t given in the last summat ion in the enunciat ion of Theorem V. 

Bu t allowance mus t be made for the possible interchange of the two sets of i 
symbols. This interchange is only possible when (a) = (a), (0) = (/3'), (0) = (0')> 
O ) = (*'). I n t h i s case {a} .{a} is replaced by {a} O {2} + {a} O { l 2 }, of which 
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the first involves a plus, the second a minus sign for the interchange. If ra^x 
is 0 or 1 in every case, this is sufficient. 

Similarly {/3}.{/3} is replaced by {/5} O {2} + {/3\ O {l2}. But the ordinary 
product ({<£}.{0}) ({*}.{»}) is replaced by ({<£}.{#} ® {2} + ({*}.{0}) O {l2}. 

Of the three alternative signs, for ({X} {/z}) O {2} either all must be positive 
or exactly two negative, and for ({X} {/x}) © {l2} either one or three must be 
negative. This accounts for the coefficient y^v. 

Special consideration must be given to the case when Tae\ r ^ > 1. If, 
for example, Tae\ > 1 then terms corresponding to {a} {0} occur more than 
once. In the detailed analysis these will correspond to different Young Tableaux. 
But the interchange of (a) with (a) etc., is only allowable if the same Young 
Tableau is concerned in each case. The reduction from products to plethysms 
can only occur in Tae\ T^M cases. There remain Tae\ r^M — Tae\ r^M cases 
where in the two rows there is a difference in the corresponding Young 
Tableaux. These cases remain as ordinary or inner products, but with only 
half the frequency. This completes the proof of the Theorem. 

As an example consider ({312} {1}) O {2}. For {a} = {312} the terms are 

({31*} O {2}) ({1} © {2}) + ({31*} O {l2}) ({1} O {l2}). 

The second term is zero. To evaluate the first, note that 

{31*} O {2} = ({41} O {1*}) © {2} = {41} © ({l2} ® {2}) 
= {41} O ({22} + {1*}) 
= {312}.{312} - {41}.{213} + {l5} 
= {5} + {41} +2{32} + {221} + {1»}. 

The term is thus 

{6} +2(51} +3(42} + f412} +2{32} + 3(321} + {23} + [2212} + {214} + {1«}. 

For {a} — \a'\ = {31} the terms are 

({31} ©{2}){2} + ({31} Q{12}){12} 
= ({4} + {31} + {22}){2}+{212}{l2} 

= {6} + 2(51} + 3{42} + {412} + {32} 
+ 3{321} + 2{23} + {313} + {2212} + {214}. 

The case {a} = {</} = {212} gives 

({212} Q{2}){2} + ({212} 0{12}){12} 

which yields an identical result. 
The only other case is {a} = {31}, {af} = {212}. The rows are not now 

interchangeable and the terms are 

({31}-{212}) {1} {1} = ({31} + {2*} + {21*} + {l«}) {1} {1} 
= {51} + 3(42} + 3{412} + 2{32} + 6{321} + 2{23} 

+ 4{318} + 4{2212} + 3{214} + j l 6 }. 
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Hence 

({312} {1}) O {2} = 3{6| + 7{51[ + 12{42} + 6{412} + 6{32} + 15{321} 
+ 7{23} + 6{313} + 7{2212} + 6{214} + 2{16}. 

If this is expressed as 

({312} {1}) O {2} = ({4P) 4- {31«} + {321}) © {2} 
= {4P} O {2} + {313} O {2} + {412}.{313} + 

{412}.{321} + {313}.{321} + {321} © {2}, 

the evaluation of the first five terms and substitution leads to 

{321} © {2} = {6} + 2{51} + 3{42} + {4P} + {32} + 3(321} 
+ 2{23} + {313} + {22P} + {21*} + {l6}. 

4. Plethysm and inner plethysm. In the case when (X) = (/*), the left 
hand side of the equation of Theorem V becomes 

({X} {X}) © {,} = ({X} ® {2} + {X} ® {P}) © {y) 
= ({X} ® {2}) © {v} + ({X} © {P}) © {„} + 

({X} ®{2}).({X} ® { P } ) . 

By a careful analysis of the terms which appear on the right of the equation 
it is possible to separate these so as to give expansions for the expressions 
({X} ® {/x}) © {v} when (/x), (v) are partitions of 2. 

I t is more convenient to start with the expansion 

4.1 [{x}{x}].[{x}{x}]= £ r„ftr,nrw,rm({a}.{a'})({^.{^}) 

({«}. {0})({ *'}.{*'})• 

Consider the set of 8 symbols 

4.2 ctfi,4>W, 0 ' ,0 ' ,a ' . 

Let T be an operation which reverses the order of these 8 symbols, and S an 
operation which permutes them cyclically, moving them two steps at a time, so 
that, for example, a —» (j> —» /5r etc. Then 

T2 = I = S\ ST = TS*. 

The operations S,T generate a group G of order 8, and each term on the right 
of 4.1 is converted into an equal term by the operations of this group. 

In general the terms on the right of 4.1 are equal in sets of 8 according to 
the operations of this group. But it may happen that, by reason of certain 
equalities among the 8 symbols, certain operations of G convert the term into 
the same term. If the operations which leave the term invariant form a sub
group r of G of order 7, the term is repeated only 8/7 times. When the term 
is repeated 8 times just one of the 8 terms is included in ({X} ® {/*}) © {v} 
for any partitions (/*), (v) of 2. But when 7 > 1, the term must be further re-
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duced by converting products into plethysms or inner products into inner 
plethysms. 

The result will be enunciated as a Theorem. The full result is rather com
plicated owing to the need to provide for all the exceptional cases that can 
arise, in order to give complete generality. It is thought worth while to give 
this result in its full generality since it is a basic result concerning the inter
action of operations with S-functions. To save space, however, proofs will 
be omitted. Because of the multiplicity of special cases such proof becomes 
intricate and involved. The principle involved is straightforward, representing 
only the operation of the appropriate symmetrizing operator on the general 
term. 

THEOREM VI. If (X), (ju) are partitions of 2, the expansion of ({X} ® {M}) O M 
is obtained from the right hand side of equation 4.1 by selecting one from each set 
of S/y equal terms which appear, and operating on this term with the appropriate 
symmetrizing operator. 

The appropriate symmetrizing operators will now be described, and the 
effects on the term listed for all possible subgroups. 

For simplicity, suppose first that Tao\ and all similar coefficients are either 
Oor 1. 

(1) If T = / , the term is taken unchanged. 
(2) If T = / , T the 8 symbols may be taken as 

a, 0, 4>, P, p , 0 , 0, a. 

The term is replaced by 

4.3 £ ( {«}OU})({ /S}0{ i , } ) [ ( {* } . {* } ) » ( { * } . { „ } . {*})], 

summed for all partitions (£), (rj) of 2. 
(3) If T = / , S2 the 8 symbols can be taken as 

a, 0, 0, 0, a, 0, <£, fi. 

The term is replaced by 

4.4 D [({a}.{0})® {*}][({<»}.{*}) ® {{}]. 

The summation in this and other cases is for (J) = (2), (l2) and when it 
appears, for (rj) = (2), (l2). 

(4) If r = / , TS the symbols can be expressed as 

a, 0, <j>, </>, 0, a, a , a . 

The term is replaced by 

4.5 X [({«}.{«'}) ® {{} ] [({*} . {<#>}) ® ( { * } . M ) 1 . 

(5) If r = I, S, S2, S3 the symbols can be expressed as 

a, 0, a, 0, a, 0, a, 0. 
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The term is replaced by 

4.6 E [({«}•{«})® u n ® ({/*}•{"})• 
(6) If T = I, S2, T, TS2 the symbols can be expressed as 

a, 0, 0, a, a, 6, d, a. 

The term is replaced by 

4.7 [({a} O {2}) ® W + ({a} O {l2!) ® {„}][({*} O {2}) ® {*} 

+ ({<?} O {l2}) ® M l 

+ [({«} O { 2 j ) 0 ({,J.{12}) 

+ ({a} O {l2}) ® (W.{12})]({0} 0 \2})(\6} O {l2}) 

+ K W © { 2 } ) ® ((,}.{12}) 

+ m O {l2j) ® ({,}.{l2J]({aJ O \2})({a\ © {l2}) 

+ ( { « j O { 2 i ) ( { a } O { l 2 ! ) ( { 0 } 0 { 2 j ) ( { e j 0 { l 2 } ) . 

(7) If T = / , S2, T5, 5 T the symbols can be expressed as 

a, a, 0, 0, a, a, 0, 0. 

The term is replaced by 

4.8 E ({«}.{/*}) ® M ® M-
(8) Lastly when r = G so that all 8 symbols represent the same partition 

(a), the term is replaced by 

4.9 ({a} O {2}) ® {M} ® M + ({a} 0 {l2}) ® {M} ® M + [({«} O {l2}) 
® {M}] [({a} © {2}) ® {M}] + [({a} O {2}) ({a} O {l2})] ® {v\ + 
[({a} © {2}) ® {/!} + ({a} © {P}) ® {p}] ({a} © {2}) ({a} 0 {l2}). 

where {ju} = {M} • {l2}-
The cases when Tae\ or a similar coefficient is > 1 must be considered for 

the sake of completeness, although it seems really to be of academic im
portance only. The simplest case occurs with 

({321} ® {2}) O {2} 

which involves representations of the symmetric group on 12 symbols. In 
the application of the theorem several hundreds of different cases arise. 

The required changes occur for subgroups T when the coefficient 

on the right hand side of 4.1 is such that some of the factors such as Tae\ 
are equal and interchangeable by the operations of I\ Thus if (a) = («'), 
(0) = (0') so that Tae\ = IVfl'x, then in the modified expression the coefficient 
is taken as ra0\ rather than ra0x- The remaining terms are halved in number, 
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that is, the coefficient is taken as %(Tao\ — Tae\), and treated as if they 
belonged to the subgroup which does not interchange Tae\ and Ta'e'\. In the 
case when Tae\, IV «'\, r^M, i y ^ are all identical, say when 

(«) = (e) = («') = (e') = os) = (</>) = OS') = (</>') 

the completely modified form is taken with coefficient Tae\- Each of 3 
subgroups which only interchange the coefficients in pairs is taken with 
coefficient %(T%e\ ~~ IVx). Each of two subgroups which make one inter
change of coefficients is taken with coefficient l(Tle\ — T^x). Finally the 
completely unmodified term as in (4.1) is taken with coefficient 

!(ra0\ — 2ra0x — ra0x + 2r«0x). 
The reason for this is that, when Tae\ > 1 the IVx distinct terms correspond 

to different Young Tableaux, and interchange is only allowable if the same 
Young Tableau is involved. For different Young Tableaux, the interchange 
not being allowable, one half only of the terms are selected. 

Although the application of the Theorem for large partitions (X) can be 
so complicated as to be quite beyond calculation, nevertheless for partitions 
(X) of n up to, say, n = 5 application can be quite simple. Thus consider 
({3} 0 { P } ) 0 { 2 } . 

In every case (a) = (a') = (/3) = (0'), (6) = (0') = O) = (<£')• In every 
case T = / , S2, T, TS2 there is the added simplification that in each case 

{a} O {l2! = {6} ©{l 2} = 0 . 

Just two cases arise, 

(a) = (3), (0) = (0); (a) = (2), (6) = (1) 

with Ta0x = 1 in each case. 
Hence 

({3} ® {l2}) O {2} = {3} ® {2J + ({2} ® {2}) {2Î 
= 2(6} + {51} +3{42} + {321} + {23}. 

5. Generalizations to Higher Degrees. The above results can be 
generalized to give expressions for ({X} {/*}) O {v} for (v) a partition of ny 

and for ({X} ® {M}) O {̂ } for (/x) a partition of m, (v) a partition of n. Even 
in the simplest cases the results alone, without any proofs, are highly elaborate. 
It may be worth while to indicate briefly the method. 

Consider first the case 
({m} {n}) O {3} 

where m,n are integers. The third induced matrix is considered of the per
mutation matrix corresponding to sets of m symbols «1,0:2, . . , , am taken from 
a set of m + n symbols. For this, sets of 3 rows are considered, possibly with 
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repetitions. Suppose that there are #m symbols which are present for all 3 
rows, am symbols which are present for the first two rows but absent from 
the third, and so on with finally #222 symbols absent from the sets for all 3 
rows. Then permutation is allowable on each of the respective sets of #m, 
#112, #121, #211, #122, #212, #221, #222 S y m b o l s . 

This leads to 

( M M ) Of3} = E ( I I iam}) 

summed for all solutions of 

J2 aijk = m + n, ^ am = 2 am = 2 &iji = m-

This result must be modified if the set of numbers aijJc is unaltered by a 
group of permutations of the suffixes. In this case products of equal S-functions 
are replaced by appropriate plethysms. 

The modifications for {{m) {n}) © {21} and {{m\ {n}) © {l3} present no 
difficulty. 

If {m} {n} is replaced by {/x} {v}, with (/x) a partition of m, (y) a partition 
of n, then aijjc is replaced by a partition (aijk). 

In the place of equation, say 

#111 + #112 + #121 + #122 = M, 

there is the condition that {/*} appears in the product 

{am} {an2} {«121} {«122} 

and {v} in the product 

{«211} {«212} {«221} {«222Î, 

the appropriate coefficients being introduced into the sum. 
The generalization of ({X} 0 {n}) © {v} when (/*) is a partition of 3 requires 

an analysis of ({X} {X} {X}) © {v}. Repeated application of the result for 
({X} {/x}) O {v} shows that a similar expansion holds for ({X} {X'} {X"}) © {v}. 
Putting (X) = (X;) = (X") the product {X} {X} {X} is expressed in terms of 
plethysms and symmetrizing operators give ({X} © {/x}) O {v}. The procedure 
is in every way similar when (/x) is a partition of 4 or more. 

In the analysis of the last section, when (/x), (v) were partitions of 2, the 
group G of order 8 played a leading rôle. This group may be represented as 
the imprimitive group correspondong to {2} © {2}. When (v) is a partition 
of m and (v) a partition of n the group which plays the corresponding role is 
the imprimitive group corresponding to \m) © \n). The characters and the 
subgroups of this group have significant applications.2 

It may be remarked that while this paper was being written Murnaghan 
(5) has published a result which is equivalent to Theorem IL He gives no 
proof. 

2See (3) for analysis of characters of this group. 
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