
BULL. AUSTRAL. MATH. SOC. 47A20

VOL. 14 (1976) , 181-192.

Fixed point theorems in

uniformly rotund metric spaces

John Staples

In recent years fixed point theorems have been proved for non-

expansive and similar mappings on uniformly convex Banach spaces.

The only role the linear structure plays in the statement of

these results occurs in the definition of uniform convexity. It

is therefore natural to ask whether the results depend essentially

on the linear structure, or whether an extension of the notion of

uniform convexity to metric spaces would allow the hypothesis of

linear structure on the underlying space to be removed.

In this paper such an extension is given; however the extended

concept is called uniform rotundity since uniformly rotund metric

spaces need not be convex. The use of uniform rotundity allows

the hypothesis of linear structure to be removed from fixed point

theorems of Edelstein, and Cooper and Michael. A consequence is

that the original results are strengthened, so as to apply to a

wider class of functions on uniformly convex Banach spaces.

1 . Introduction

The link, between uniform rotundity and fixed points of functions is a

suitable notion of centre of a set or sequence. The functions being

considered are used to define a suitable set or sequence, uniform rotundity

allows the existence of a unique centre to be proved, and it follows that

this centre is a fixed point. In what follows we consider two types of

centre.
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182 John S t a p l e s

The following notation will toe used. M denotes a metric space, d

i t s metric, S a non-empty bounded subset of M , and for any a € M and

any nonnegative rea l number r , B{o, r) denotes

{x € M : d(c, x) £ r } .

Similarly, B(S, r ) denotes

{x € M : for some s € S, <2(s, x) 5 r} .

A set B(c, r) as above may be called a ball, with centre a and radius

r .

1.1. If there is a ball B{o, r) of minimum radius which contains

S , then o is called a Chebycnev centre of S in M , and r is called

the Chebychev radius of S in M . The Chebychev radius can be defined

more generally, to be the greatest lower bound of numbers r such that for

some a € M , S c B(o, r) .

1.2. Consider a bounded sequence (x J of points of M . The

greatest lower bound of numbers r such that for some a € M ,

lim sup{d(xw,.c)} £ r ,

is called the asymptotic radius of (x̂ ) . An asymptotic centre of (x )

is any a € M which minimizes lim sup{d(xM, o]} . These two notions are

due to Edelstein [Z]. For example, a Cauchy sequence is just a sequence

with asymptotic radius zero, and its limit, if any, is its only asymptotic

centre.

2. Uniqueness of Chebychev and asymptotic centres

A very weak notion of uniform rotundity, as follows, is sufficient to

prove uniqueness of Chebychev centres. We continue the notation of the

previous section.

2.1. A set N is called locally uniformly rotund in M , if for all

x, y 6 M , x + y , and all positive real numbers p , there is z € M

such that

N n B{x, p) n B(y, p) c S(s, r) ,

for some real number r < p .
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In any case there will be a greatest lower bound m of such numbers

r ; the difference p - m may be denoted ^ (x, y, z, p) . The condition

that N is locally uniformly rotund in M may then be stated as follows:

for all x, y € M , x ? y , and all real p > 0 , there is

3 € M such that

&N(x, y, z, p) > 0 .

If M is locally uniformly rotund in M , we say simply that Af is

locally uniformly rotund.

2.2. The following uniqueness result extends Cooper and Michael [/,

Theorem 2.U2.

If S c M is locally uniformly rotund in M t then S has at most

one Chebychev centre in M .

Proof. If 5 has two distinct Chebychev centres x and y , then S

has positive Chebychev radius in M , say p , so (2.1) there is z € M

such that

S = 5 n B(x, p) n B(y, p) <=_B(z, r)

for some r < p , contradicting the definition of the Chebychev radius p .

2.3. It is convenient for applications of 2.2 to note that:

If N c M ia nonempty and M is locally uniformly rotund, then N

is locally uniformly rotund in M .

2.4. To obtain unique asymptotic centres, local uniform rotundity

needs strengthening as follows: a nonempty set N is called regularly

locally uniformly convex in M if, in the notation of 2.1, for all

x, y € M and all real positive p and q , p < q , there is z € M such

that

p (x, y, z, p, q) = inf 6 (x, y, z, p) > 0 .
PSP^

In particular, if M is regularly locally uniformly convex in M , then M

is called regularly locally uniformly convex.

2.5. If M is regularly locally uniformly convex and (x ) is a

sequence of elements of M 3 then [x ) has at most one asymptotic centre.
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Proof. Suppose on the contrary that [x ) has two distinct

asymptotic centres x and y ; then [x ) is bounded, say

xn € B{x, k) n B{y, k) for al l n , and the asymptotic radius p of [x )

i s positive. Thus, in the notation of 2.\, for some a € M and al l tut
finitely many n ,

^(x> x
n) - P + %-PM(s. 1/, s , p, p+?c) ,x
n)

> x
n) - P + * - P M ( * » J/» s » P .

where p,.(a;, y, 3, p, p+fe) is positive, and so for all but finitely many
M

d[z, xn) £ p + %.p^(x , y, z, p , p+fe) - pM(x, y, z, p, p+k)

< P ,

contradicting the definition of asymptotic radius.

2.6. I t follows from 2.5 that:

If M is regularly locally uniformly convex, if [x ) is a bounded

sequence in M with asymptotic centre o , and if z € M and a real
sequence (6 ) c

and for all n ,

s e q u e n c e ( 6 ) a n d a p o s i t i v e i n t e g e r k a r e s u c h t h a t l i m 6 = 0
n K O

, z) £ d[xn, c)

t h e n z = o .

2.7. Hence we have the following extension of a fixed point theorem
of Edelstein [3] , though the work of Section 4 is needed to prove that i t
is such an extension.

If M is a regularly locally uniformly convex metric space, if
f : M •* M j and x € M are such that {f'x) has asymptotic centre c ,
and if there is a positive integer k and a real sequence (6 ] such that

lim 6 = 0 and for all but finitely many n ,
n

+k

d{f+kx, fc) 5 d[fxt c) *
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then a is a fixed point of f .

3. Existence of Chebychev and asymptotic centres

To obtain existence results the notion of uniform rotundity is further

strengthened. The notation of the first section is again retained.

3.1. A set N c M is called uniformly rotund in M if, in the

notation of 2.1, for all bounded subsets B of M and all real

e , p , < 7 > 0 , p 2 q , there is z € M such that

Yiy(e, B, z, p, q) = inf{6ff(a;, y, z, 6) : x, y € B, d(x, y) i e, p < 6 5 q)

is positive.

In particular, if M is uniformly rotund in M , then M is called

uniformly rotund.

3.2. If M is complete then every nonempty, bounded S C M which is

uniformly rotund in M has a Chebychev centre in M .

Proof. If the Chebychev radius p of 5 in M is zero, then the

result is trivial, so suppose that p > 0 . There is a sequence (p ) of

points of M such that for all n ,

We prove that (p ) is a Cauchy sequence; it then follows that it has a

limit which is a Chebychev centre of 5 in M .

Suppose on the contrary that (p ) is not a Cauchy sequence; then

for some e > 0 , for infinitely many positive integers n , and for each

such n some m > n , d

for all such m and n ,

such n some m > n , d(p , p ) * e . Thus there is z € M such that

n Bipn
c s ( s , p+l/n-Y5(min(E, l ) , T, z, p, p+l)) ,

where T = B(S, p+l) , which for n sufficiently large contradicts the

definition of p as the Chebychev radius of S .

3.3. Similarly:
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Every bounded sequence [x ) in a complete, uniformly rotund metric

space M has an asymptotic centre.

3.4. It is immediate from 3.3 that if the hypotheses of 2.7 are

strengthened by assuming that M is nonempty, bounded, complete and

uniformly rotund, then the hypothesis that {jx) has an asymptotic centre

can be omitted.

The following two fixed point theorems for nonexpansive mappings are

examples of what can then be deduced. The former is the metric space

version of the basic fixed point theorem for nonexpansive mappings; the

latter has apparently not been mentioned previously.

(i) If M is nonempty, bounded, complete and uniformly rotund, and

if f : M •*• M is such that for all x, y € M ,

d(fx, fy) 2 d(x, y) ,

then f has a fixed point.

(ii) If M is as in (i), and if f : M •*• M is such that for all

x, y 6 M ,

00

difx, fy) £ I ajx, y).d{x, fy) ,
171=0

where (a (x, y)) is a sequence of nonnegative real numbers such that

1 am(x, y) S 1 ,
m=0

then f has a fixed point.

Proof of (ii) . Fix x € M . The sequence [f x) has an asymptotic

centre e ; we show that c satisfies the conditions of 2.7 with k = 1

and 6 = 0 .

Write p for the asymptotic radius of (fi) ; then for all e > 0 ,
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d[fc, /*+1x) £ I ajc^.dic, f^x)
m=0 m

CO

- Z a
mia> flx).(p+e) for al l but finitely many n ,

£ p + e .

4. Connections with uniform convexity of Banach spaces

4.1. We shall continue to use the term "uniform rotundity" as defined

in 3.1; it should not be confused with the well known notion of uniform

convexity of normed linear spaces, which may be defined as follows and has

been called uniform rotundity by some authors.

4.2. A normed linear space V is called uniformly convex if for all

real e such that 0 < e < 2 ,

: x, y € V, \\x\\ £ 1 , \\y\\ £ 1 , \\x-y\\ > e} > 1 .

We write 6(e) for the difference between 1 and this supremum. We note

first that:

4.3. If V is a uniformly convex normed linear space, if T c V is

convex and if S c T , then S is uniformly rotund in T .

Proof. Fix real positive e, p , and q , with p 5 q , and a bounded

set B c T . Consider real D such that p < D 5 q , x, y € B such that

\\x-y\\ 2: e , and w € S nB(x, D) n B(y, D) . As T is convex,

%.(x+y) € T , so in the notation of U.2,

D - ||

4.4. It follows from k.3 and 3.3 that 2.7 is indeed an extension of

the fixed point theorem of Edelstein [3, Section 3, Theorem 1].

Consider now the converse of k.3- For that purpose we mention the

following lemma.

4.5. If U is a metric space and S <z_M is uniformly rotund in M ,

then the completion S of S is uniformly rotund in the completion M of

M .
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The following is a part ial converse of it. 3•

4.6. If V is a normed linear space which is tcniformly rotund in the

sense of 3.1, then V is uniformly convex in the sense of k.2.

Proof. From k.5 and h.2 -we may as well suppose that V is a Banach

space. To prove uniform convexity, fix e > 0 . The hypotheses ensure

that there is real r < 1 such that for a l l t , j ( {(0, 1) such that

\\x-y\\ > e , there i s z € V such that

I = B(x, 1) n B(y, 1) c fl(s, r) .

An elementary symmetry argument shows that %.(x-H/) is the (unique)

Chebychev centre of I , so for some p 5 r ,

I c B(%. (x+y), p] .

As in particular, 0 (. I , we have ||%. (rc+i/) j | 5 r , as required.

4.7. On the other hand there can "be no complete converse of ̂ .3,

because:

Real Hilbert spaces (of dimension > 2 ) have subsets which are

uniformly rotund bub'not convex.

Proof. Fix a linear functional f of unit norm on such a real

Hilbert space H , and fix a real number e such that

V15/U < e < 1 .

The following subset S of H will be shown to be uniformly rotund,

though i t is not convex:

S = {x e H : \\x\\ = 1 and fx > e} .

To that end, fix real positive p, q, £ such that p 5 q , and

consider arbitrary x, y € S such that \\x-y\\ = e , real D .such that

p 5 D 5 q , and

W € S n B{x, D) n B(y, D) .

We show that

where fe > 0 is to be defined below.

Note that since there are such x, y , and w , e < 2 and ZJ > e/2 .
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By plane geometry in the plane of x, y , and w , writing M for the

diameter of S ,

/ ) | | 2 5 M 2 - (E/2)2 .

Likewise, working in the plane of x, y , and 0 ,

Hence

£ M - £ /k.(ZfM-l) .

The required inequality then follows from the fact that

M £ 2(l-e2)^ , which implies that

k = hu - l > - l > o .

To see that M 5 2(l-e ) , suppose on the contrary that there are

a, b € S such that ||a-i>|| > 2 (l-e ) , and deduce by elementary geometry

a+in the plane of a, b , and 0 that ||%(a+b)|| < e ; hence /

a contradiction.

> i

5. Extensions of f i x e d po in t theorems of Cooper and Michael

5.1 . The following two fixed point theorems extend theorems of Cooper

and Michael [/ , Theorems 2.5 and U . I ] , by removing a l l l inear i ty

assumptions. The f i r s t of these resul ts also extends the corresponding

resul t of Cooper and Michael in another way, which proves essential to the

proof of the second r e su l t .

5.2 (i). If X is a topologiaal space with lower semicontinuous

metric d , if C c x is locally uniformly rotund and bounded with respect

to d j and compact with respect to the topology, and if D e c is non-

empty, then all nonexpansive maps T : C •*• C which map D onto a dense

subset of D have a common fixed point.

In the above assertion, lower semicontinuity of d means that for al l
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x, y € X and all e > 0 , there is an open set U such that x € U and

for all z € U , d(z, y) 2; d{x, y) - e .

fi-tyl J / X, C are as in (i) and if H is a semigroup of continuous

(with respect to the topology on X ) nonexpansive mappings of C into

C } which is left reversible, then all the mappings of H have a common

fixed point.

In this assertion, left reversibility of H means that for all

T, T' € H ,

TH n T'H i s n o t empty .

5.3. The proofs of these results given below are similar in structure

to the corresponding proofs of Cooper and Michael; we emphasize only the

differences.

5.4. Throughout the rest of this section X, d, C, D , and H are as

in 5.2. We also write T for the topology on X , yn(D) for the set of

Chebychev centres of D in C , and for each x € X , we define *V,(#)

by:

r_(x) = sup d(x, y) .
yZD

5.5. Vj. is lower semioontinuous (with respect to T ) on C .

That i s , for a l l x € C and e > 0 , there is a T-open neighbourhood

U of x such that for a l l y i U ,

rD(y) > rD(x) - e .

5.6. Y/̂ (̂ ) i-8 nonempty, compact (with respect to T ) and bounded

(with respect to d ).

The proofs of both 5-5 and 5-6 are substantially the same as the

corresponding proofs of Cooper and Michael, so we omit them.

5.7. Every nonexpansive mapping T : C •*• C which maps D onto a

dense subset of D , maps YC(D) into yc(D) •

Proof. Given x € yr(D) , show as follows that Tx € Y^(^) • For

arbitrary y € D , write [fy ) for a sequence of points convergent to
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y , where y € D for all n . Then for all n ,

d(Tx, y) < d{Tx, Tyn) + d(Tyn, y)

< d[x, yn) + d{Tyn, y)

where p is the Chebychev radius of D . Hence d(Tx, y) £ p , as

required.

5.8. if in particular, C is locally uniformly rotund, then Y/^C^)

consists of a single point (2.2, 2.3), so we have the result 5.2 (i).

5.9. Consider now the proof of 5-2 (ii). By the usual Zorn's Lemma

argument (as in Cooper and Michael) there is a minimal subset K of C

which is nonempty, compact with respect to T and such that TK c K for
u — o

all T € H . We show that for all T € H , TK = K . The result

5.2 CiiJ then follows from 5.2 (i) when one takes D to be X ; thus

this argument depends on allowing D to be a proper subset of C - a case

not covered by Cooper and Michael's result.
To prove TK = K , define K' = fl TK and use the left-

0 U 0 ygfl U
reversibility of H (as in Cooper and Michael) and the continuity of the

maps in H to show that K is nonempty, compact and invariant under all

T € H . Thus, by the minimality of K in this respect, K' = K , so

W Q = K for all T ( H , as required.
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