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Abstract of the original article 1

Purpose: In the present study, we investigated the association between tumor tissue levels of tissue inhibitor of
metalloproteinase-1 (TIMP-1) and prognosis in patients with primary breast cancer and analyzed whether TIMP-1
may be useful as a prognostic marker in combination with urokinase plasminogen activator (UPA) and plasminogen
activator inhibitor type-1 (PAI-1).

Experimental design: In cytosolic extracts of 2984 primary breast tumors, total levels of TIMP-1 were determined
using an established, validated ELISA. Levels of uPA and PAI-1 have previously been determined in the extracts.

Results: Univariate survival analysis showed a significant relationship between higher levels of TIMP-1 (continu-
ous log-transformed variable) and poor prognosis (recurrence-free survival (RFS), overall survival (OS); P < 0.001).
Performing isotonic regression analysis, we identified a cut point to classify tumors as TIMP-1-low or TIMP-1-high.
Using this cut point, high levels of TIMP-1 were significantly associated with shorter survival in univariate analysis,
both in the total patient group (RFS, OS; P < 0.001), in the node-negative subgroup (RFS, hazard ratio = 1.28,
P = 0.006), and in the node-positive subgroup (RFS, hazard ratio = 1.43, P < 0.001). In multivariate analysis,
including uPA and PAI-1, TIMP-1 was significantly associated with shorter RFS, both when included as a continu-
ous log-transformed (P = 0.03) and as a dichotomized variable (P = 0.002).

Conclusions: This study validates previous findings that tumor tissue levels of TIMP-1 are associated with prog-
nosis in patients with primary breast cancer. It confirms that TIMP-1 may be useful as a prognostic marker in com-
bination with uPA/PAI-1 and adds substantial positive information on the use of TIMP-1 as a prognostic marker in
breast cancer.
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Abstract of the original article 2

Tissue inhibitors of matrix metalloproteinase (TIMPs) may be involved in tumour growth, apoptosis, angiogen-
esis, invasion, and the development of metastases. This study has evaluated the association of the expression
levels of the TIMP forms 1, 2, 3, and 4, measured by quantitative real-time RT-PCR, with classical clinico-
pathological characteristics, i.e. age, menopausal status, tumour size, histological grade, number of involved
lymph nodes, and steroid hormone receptor status, and with disease progression and treatment sensitivity in
273 breast cancer patients. The mRNA levels of TIMP-1 and TIMP-2 were not associated with any known clin-
icopathological tumour feature. TIMP-3 and TIMP-4 levels were significantly higher in steroid hormone receptor-
positive samples, although the levels of TIMP-4 were much lower than those of the other TIMPs. Only TIMP-3
predicted relapse-free survival (RFS) time differently depending on post-surgical treatment as, in particular, the
interaction of TIMP-3 with endocrine therapy (P = 0.008, HR = 0.24, 95% CI = 0.09-0.69) contributed signifi-
cantly to RFS in multivariate Cox regression analysis. In subgroup analyses, the 107 patients treated with
tamoxifen differed greatly in prognosis after dichotomization by the median TIMP-3 level (P = 0.0003). Thus,
high tumour levels of the matrix metalloproteinases inhibitor and pro-apoptotic factor TIMP-3 are associated
with successful tamoxifen treatment of patients with breast cancer. Copyright 2004 Pathological Society of

Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Review

The two articles (Span et al. 2004 and Schrohl et al.
2004) highlight the complexity and specificity of
matrix metalloproteinases (MMPs) and TIMPs in
cancer biology, diagnosis, and treatment. Both pro-
vide novel insights into these issues by focussing on
TIMPs rather than MMPs and extend a growing
number of reports that the roles played by TIMPs in
tumour pathology may be much broader than the
inhibition of MMP action on the extracellular matrix
(ECM), and may extend to the regulation of MMP
influence on many systems and potentially to MMP-
independent functions. Specific TIMP-3 involvement
in tamoxifen-induced apoptosis strongly contrasts
the association between elevated TIMP-1 levels with
poor outcome in breast cancer. Although candidate
apoptotic mechanisms may elegantly explain the effect
of TIMP-3 results, the reasons underlying the TIMP-1
result remain to be fully elucidated.

Tissue inhibitors of metalloproteinases (TIMPs) are
endogenous inhibitors of the matrix metalloproteinase
(MMP) subfamily (matrixins) of the zinc metallopro-
teinases [1]. The four TIMPs (TIMPs-1-4) character-
ized to date share significant homology, and a novel
transmembrane MMP inhibitor RECK has been
recently described [2]. Matrixins are neutral zinc
endopeptidases which derive their name from their
ability to collectively cleave all extracellular matrix
(ECM) components (including collagens which are
otherwise quite resistance to proteolysis).

Since malignant cancer cells degrade connective
tissue structures, a paradigm has developed implicat-
ing MMPs (and other ECM proteases such as plasmin
and cathepsins) in cancer growth, invasion, angio-
genesis, and dissemination [3]. This in turn has led
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to development and clinical testing of a number of
broad spectrum (e.g. BB2516/Marimastat British
Biotech) and more selective (e.g. AG3340/Prinomastat,
Agouron Phizer; BAY 12-9566/Tanomastat, Bayer)
synthetic MMP inhibitors. These have generally failed
to achieve sufficient positive outcomes for further
development [4,5], highlighting the problems of tar-
geting a system that to date comprises 26 MMPs
exhibiting different substrate specificities. Indeed, in
addition to ECM components, MMPs exhibit specific
roles in the processing of an ever-expanding number
of growth factors, cytokines and their cell surface
receptors, angiogenic factors, and inhibitors. It is not
surprising, therefore, that the targeting of specific
MMPs within the tumour context may produce posi-
tive or negative results [6], making the overall effect of
a broad-spectrum or even somewhat selective MMP
inhibitor difficult to predict within the clinical setting.
Furthermore, the high homology in the active sites
may promote inhibitor activity against other MMP and
related subfamilies such as ADAMs [6] which may in
turn underlie the tendon toxicity which has compro-
mised the dosing regimens in most if not all clinical
trials. Finally without knowing the exact target MMP
it is difficult to arrive at effective dosing regimens.
The determination of the MMP(s) critical for
tumour maintenance and progression is critical for
future therapeutic development. The papers described
here demonstrate the benefit of measuring a specific
component in an extensive archive and comparing
the expression levels with clinical outcome. Other
approaches include the laboratory testing of specific
candidate MMPs and TIMPs, use of genetically
engineered mice which lack specific candidates, and
the development of more specific inhibitors such as
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the ADAM-sparing inhibitor BMS 275-291 by Bristol
Myers Squibb, which unfortunately did not escape
the connective tissue toxicity, and several other new
MMP-selective inhibitors in development or clinical
trial (e.g. Novartis, Pharmacia, Collagenex). Each of
these is hoping to avoid toxicity by targeting impor-
tant MMPs whilst sparing those which protect
against tumour progression.

In the paper by Span [7], TIMP-3 associates with
response to tamoxifen therapy in breast cancer illus-
trating a rare insight into the molecular mechanism
through which the MMP/TIMP-3 axis enables tamox-
ifen to activate apoptosis. TIMPs-1-4 mRNA levels
in 273 snap-frozen human breast cancers were
compared to classical clinicopathological character-
istics such as age, menopause status, tumour size,
histological grade, lymph node involvement, and
steroid hormone receptor (HR) status, as well as dis-
ease progression indices and treatment sensitivity.
The authors found that TIMP-3 and -4 levels were
significantly higher in HR-positive samples, and that
the presence of TIMP-3 specifically associated with
better response to endocrine therapy. TIMP-3 has
been shown to inhibit the growth, angiogenesis,
invasion, and metastasis of experimental tumours
[8-13], and has been directly implicated in apoptosis
of normal and malignant cells [9,10,14], in tumour
necrosis factor alpha (TNFa) receptor stabilization in
colon carcinoma cells [15] and in Fas-induced cell
death [16]. In contrast, TIMP-3 deficiency leads to
accelerated apoptosis in the mouse mammary
gland [17], and increased levels of TNF« in TIMP-3-
deficient mice leads to chronic hepatic inflammation
and failure of liver regeneration due to hepatocyte
apoptosis [18]. In relation to the study in review [7],
it has been suggested that TIMP-3 may act as a
mediator or sensitizer of p53-stimulated apopto-
sis driven by Fas:Fas ligand (FaslL) ratios, which
requires the MMP-inhibition capability of TIMP-3
[16,19]. However, complexity of MMP involvement in
the regulation of Fas-mediated apoptosis is high-
lighted by the capacity of several MMPs (e.g. MMP-
3, -7) which are inhibitable by all the TIMPs rather
than TIMP-3 to specifically to degrade FasL. It is also
degraded by certain ADAMSs, but not ADAM-17, also
known as TNFa convertase or TACE, the latter inhib-
ited only by TIMP-3. Thus while the parallels can be
drawn between the current study and previous
observations relating Fas: FasL ratios to tamoxifen
responsiveness they may be unrelated, and could
be due to the production of soluble FasL receptor
splice variants and/or direct tamoxifen regulation of
FasL by oestrogen. The specificity of TIMP-3 for
TACE inhibition and its specificity in predicting
tamoxifen responsiveness certainly favour a role for
TACE in the tamoxifen responsiveness. TNFa is a
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pleitrophic cytokine that can also serve as a potent
tumour cell survival/growth factor [20] and thus
could subvert the anti-proliferative effects of tamox-
ifen. Clearly coordinated research into this question
in both laboratory and clinical arenas is required to
better understand aspects of tamoxifen action that
distinguish it from other chemotherapies, and permit
the design of novel strategies to better predict tamoxi-
fen responsiveness. An important practical consid-
eration will be to determine whether TIMP-3 and
apoptosis feature in aromatase inhibition of breast
cancer cells. Aromatase inhibitors exhibit significant
benefit in prevention trials, and are under conside-
ration (and testing) for first-line adjuvant therapy
against HR-positive breast cancer [21]. The poten-
tial exists for aromatase inhibitors to replace tamox-
ifen, and the pharmacogenomic potential of TIMP-3
to distinguish responsive patients would need to
be assessed for aromatase. Validation of TIMP-3
protein levels and exploration of the mechanisms
underlying loss of TIMP-3 from certain tumours will
be an important next step (the TIMP-3 promoter is
known to be methylated in various cancers) [22-25].
Ideally, TIMP-3 IHC analysis of the biopsy and/or
ultimately a serum/plasma marker indicating TIMP-3
status could be developed and used to stratify
patients likely to respond to tamoxifen.

Span et al. [7] also analysed TIMPs-1, -2, and -4.
TIMP-4 was also associated with oestrogen recep-
tor (ER) status, but was dismissed because the lev-
els were very low. Nonetheless, significant protein
levels of TIMP-4 have been documented in breast
cancer [26] and shown to either inhibit [27] or stimu-
late [28] experimental breast cancer. This is likely
due to the different context of the models used, and
the association here with ER suggests that further
analysis in HR-positive models is warranted. The
lack of association of TIMP-4 with any of the param-
eters may relate to the low mRNA levels, and analy-
sis at the protein level could be more revealing and
has important bearing on the issue of specificity/
mechanism as above. TIMP-1 did not associate with
clinicopathological characteristics in the Span study
[7]. This is surprising in view of the strong data
reported by Schrohl et al. in the second paper under
review [29], which validates their previous report [30]
and other studies [31-34]. Not all breast cancer stud-
ies have shown a positive association with outcome —
Nakopoulou et al. [35] found reduced TIMP-1 in
higher-grade breast cancers and an inverse associa-
tion with proliferation. The different findings may
relate to the methods employed. RNA and protein
analysis in frozen tumour extracts may better indi-
cate the causative TIMP-1 pool.

In any case both studies support the change in
concepts concerning the roles of TIMPs in cancer
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biology in general, and breast cancer in particular
[8]. This change is supported by:

® patterns of MMP expression do not always pre-
dict aggressive tumour behaviour in either human
[386] or animal tumours [20];
® enhanced TIMP expression associates with poor
outcome and tumour recurrence in a variety of
cancers examined (reviewed in [37,38]);
® preoperative plasma levels of TIMP-1 have
proved highly predictive of disease outcome in
colon and rectal carcinoma [39,40];
o MMPs
— degrade components of the plasmin-generating
system downregulating cellular fibrinolytic
activity,
— produce angiostatin from plasminogen-inhibiting
angiogenesis,
— produce microplasminogen altering its macro-
molecular substrate specificity [41-45],
— under certain conditions may actually inhibit the
invasive capacity of breast cancer cells [45,46].

This may provide a basis for the association between
increased tumour TIMP-1 levels and poor prognosis
in breast cancer reported by annulling potential
MMP-dependent protection against tumour progres-
sion/invasion.

Alternatively, it is possible that TIMP MMP-
inhibitory activity at the tumour site may be compro-
mised providing a mechanism by which elevated
tumour TIMP-1 expression could co-exist with MMP-
dependent tumour progression. In support of this,
MMP-inhibitory activity of TIMP-1 and -2, but not
the activity of MMPs is exquisitely sensitive to inhibi-
tion by the thioredoxin redox system at physiologi-
cally attainable concentrations [36] and by HOCI at
concentrations achievable at inflammatory loci [47].
Since the thioredoxin system and HOCI may make a
significant contribution to breast cancer progression
[48,49], such a mechanism(s) for inhibition of TIMP
activity could help explain its association with
apparent disease progression.

In addition to its effects upon the MMP-mediated
ECM degradation, TIMP-1 has been shown to stimu-
late cell proliferation in several cell types [50-52],
which may require its anti-proteolytic activity. It also
indirectly inhibits apoptosis [53] which would also
impact upon tumour progression, and may have a
nuclear function in breast cancer [54]. Thus, unlike the
relatively neat assignment of TIMP-3 into apoptosis
pathways required for tamoxifen responsiveness,
the association of TIMP-1 with poor outcome remains
unclear and could involve several mechanisms.
These possibilities, and the observations reported in
the study under comment, are supported by a
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recent report that overexpression of local tumour
TIMP-1 does not suppress breast tumour growth in
a transgenic mouse model but associates with
increased proliferation [55].

The two papers reviewed here clearly show that
like MMPs (as described above), TIMP expression
cannot be regarded in a class-specific way, since
despite general MMP inhibition each TIMP may
have additional and independent roles. However,
despite this potential complexity of TIMP function,
they continue to hold promise as diagnostic and
possibly therapeutic targets in breast cancer. Further
definitive work along the lines of the excellent
papers reviewed here, and the use of specific exper-
imental models, will permit full understanding of
TIMP involvement and its exploitation in breast can-
cer management.
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