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CONVOLUTION OPERATORS WITH TRIGONOMETRIC
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1. Introduction

The Bernstein polynomials are algebraic polynomial approximation operators which
possess shape preserving properties. These polynomial operators have been extended to
spline approximation operators, the Bernstein-Schoenberg spline approximation
operators, which are also shape preserving like the Bernstein polynomials [8].

The trigonometric counterpart of the Bernstein polynomials are the de la Vallee
Poussin means. These are trigonometric polynomial approximation operators of the
convolution type which are shape preserving [7]. Our objective is to study the
properties of a class of convolution operators with trigonometric spline kernels, which
are reminiscent of those of the de la Vallee Poussin means.

2. Trigonometric B-splines

Let k be a positive integer, h = 2x/k and zv = eivh, v=0, l,...,k— 1, be the fcth roots
of unity. Define on the unit circle U, the function

1

0 otherwise, v~ '

and for n = 0, l,...,k— 1, define Mn recursively by convolution, viz.

Mn = M0*Mn-u (2.2)

where the convolution * of two functions / and g on U is defined by

(see [6]).
If we denote the Fourier coefficients of a function / by/v, veZ, i.e.

(2.3)
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(2.4)

Now,

2ni/k v = 0

l -e~ i / l v
(2.5)

Hence

m v-j

1 "fl-e^-v)h\ L .
-— I , otherwise.
27TJ/4V V-J )

The notation IT means that the factor corresponding to j-v is 1.
A straightforward computation gives

where

(2.6)

Hence, we can write

2" « sin (v-j)h2
-r\\ — ; ^—>

2" " sin(v-j)h/2
~ FI — : T i - ' otherwise.

M (eix) = i"e'nxl2 Y t e
i(v-»/2)(i-(»+

(2.7)

Since

it follows that the function

Tn(x) = ]

veZ,

x 6 [0)

(2.8)

(2.9)

(2.10)
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is a real function supported on the interval (0,(« + l)/i). It is called the trigonometric B-
spline of degree n with uniform knots at vh, v = 0, l , . . . ,n + l. From (2.9) and (2.10), Tn(x)
is symmetrical about (n+l)/i/2 and we record the following relation from (2.8) and
(2.10)

Tn(x) = (-i)''e-i'"'l2Mn(e
ix), xe[0,27r], (2.11)

and define Tn to be 2n-periodic.
For the case where n = 2m is an even integer, we define

l)h/2)/tm, xeU. (2.12)

Then

where

(m!)2(sin (m - v)h/2... sin h/2)(sin (m + v)h/2... sin h/2)

(m - v)!(m + v)!(sin h/2... sin m/j/2)2

fc(m!)2sin(|v|-m)ty2sin(|v|-m+l)fc/2...sin(|v| + m)/i/2 . .

n(\v|-m)...(|v| + m)(sinh/2...sinm/i/2)2 ' | V ' > W ' ( ' '

Observe that (KJV=O if and only if |v
particular, if k = 2m + l, then (KJ v =0V|v

=pk—m, pk — m+l,...,pk + m, p=l,2,.... In
^ m + 1, and

so that

are the de la Vallee Poussin kernels and

ym(f;x):=^ J o)m(x-t)f(t)dt, XB[0,2TI) (2.15)

are the de la Vallee Poussin means for a 27t-periodic integrable function / It is well-
known that Vn(f;) converges uniformly to / if / is continuous. Furthermore the
transform (2.15) is cyclic variation diminishing (see [6]). In particular, the kernel u>m(t) is
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convex preserving, in the sense that if y{t) = (fi(t), f2(t)), te [0,2ft], where / are 2ft-
periodic functions, is a convex curve in R2, then

F(x):=-!- } com{x-t)f(t)dt x€[0,27r] (2.16)
Z7t — n

is also a convex curve in U2.
Our objective is to study the shape preserving and approximation properties of the

convolution operators

Bm(/;x):=^- } Km(x-t)At)dt, xsl-n,nl (2.17)
Zft — n

From the above discussions on the Fourier coefficients (Km)v we see that the transform
(2.17) cannot be cyclic variation diminishing because the condition |(£m)v|^|(Km)v+1|,
v = 0,1, . . . is not satisfied (see [5]).

In Section 3 we study the general convolution kernel and give sufficient conditions for
it to be "convex preserving". In Section 4, we show that the curve (T'n(x), Tn(x)),
xe[0,2ft] is a positively convex curve, and deduce that the kernel Tn maps convex
curves onto locally convex curves.

Section 5 deals with the approximation properties of the operator Bm(f; x). We show
that for any continuous 2ft-periodic function f,Bm{f;x) converges uniformly to /(x) as
m-KX). We also give an asymptotic estimate for Bm(f;x) — f(x) when / is twice
differentiable.

3. Convexity preserving convolution kernels

Let K be a piecewise smooth, real 2ft-periodic function and y(t) = (fl(t), f2(t)),
te[0,2ft], where f^t) (i=l,2) are also piecewise smooth and 2ft-periodic, be a closed
curve in IR2. We shall henceforward assume that all curves are piecewise smooth. Then

XG [0,2ft] (3.1)

is also a closed curve in U2. The kernel K is said to be convex preserving if F is convex
whenever y is. By convexity of y we mean that it does not intersect any straight line
more than twice. We also need the concept of local convexity. The curve r(x)=(gl(x),
#2(x))> x 6 [0,2rc] is locally convex if the Wronksian

^ 0 VXG [O,27t]. (3.2)

As usual, anticlockwise direction is taken as the positive orientation.

Theorem 3.1. A necessary and sufficient condition for the convolution transform (3.1) to
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map a positively convex curve onto a positively locally convex curve is that the kernel
(K'(x), K(x)), 0 ̂  x ̂  2n be positively convex.

The necessity of the condition in Theorem 3.1 was proved in [7] by I. J. Schoenberg
who attributed it to Loewner. The converse was recently established by Goodman and
Lee [3].

4. Shape preserving trigonometric B-spline kernel

We shall consider convolution kernels Tmn = l,2,. . . , which are the trigonometric B-
splines defined in Section 2. If y(t), t e [0,2n] is a closed curve, we define

rn(x) = )*Tn(x-t)y(t)dt, xe[0,2nl (4.1)
o

Our main result in this section is

Theorem 4.1. For n = l,2,. . . , the curve zn(x) = (T'n(x), Tn(x)), xe[0,2n~\ is positively
convex.

Since zn(x) = (T'n(x), Tn(x)), xe[0,27i] is positively convex, in view of Theorem 3.1, we
have the following

Corollary. The convolution transform (4.1) maps a positively convex curve onto a
positively locally convex curve.

Remark. Theorem 4.1 is also true for real polynomial B-splines, the proof of which
is much simpler.

We shall show that the curve zn(x) is positively locally convex by establishing
inequality (4.12) by induction on n. That zn(x) is positively convex then follows easily
from the symmetric, bell-shaped nature of Tn(x) proved in Lemma 7. The inductive step
in the derivation of (4.12) requires a series of technical lemmas.

Lemma 1. For n= 1,2,...

nTn(x) = 2sm\xTn_1(x) + 2sin^(n+l)h-x)Tn_1(x-h) (4.2)

T'n(x) = cos$xTn_l(x)-cos&n+l)h-x)Tn-1(x-h). (4.3)

The relations (4.2) and (4.3) are special cases of the recurrence relations for
trigonometric B-splines and their derivatives (see [2], [9]). They can also be obtained
directly and simultaneously by differentiating the convolution formula (2.4) via the
relation (2.11).

Lemma. For n= 1,2,...

1(x-/i). (4.4)
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x)T;_1(x-ft). (4.5)

~Tn(x) = 2Sin$xT?2i(x) + 2sinU(n+l)h-x)Tl2ll(x-h). (4.6)

(4.7)

(n - 3)r<3>(x) - (^^) TJLx) = 2 sin\xT?l t(x) + 2 sini((n + \)h -x)T<3J x(x - * ) . (4.8)

Proof of (4.4). Differentiating (4.2) gives

and (4.4) follows. The other formulas are obtained in a similar manner. •

Lemma 3. Ifzn-l(x)={T'n_1(x), 7^_t(x)) is positively convex, then

^ (4.9)

Proof. From (4.2), (4.3), (4.4) and (4.5),

(n-l)T'n(x)T'n(x)-nTn(x)(rl2\x)+^ Tn(x)

because of the convexity of (T;_^X), Tn_ t(x)). •
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Lemma 4. //zn_1(x)=(T|,_1(x), Tn_j(x)) is positively convex, then

(nTn(x)P2\x)-(2n-l)T'n(x)2)^0 0^x^2n. (4.10)

Proof. nTn(x)T™(x)-(2n-l)T'n(x)2

= nTn(x)T<2>(x) - ( « - l)T;(x)2 + n2Tn(x)2 - f n T ^ x ) 2 + ^ - Tn(x)

= - j ( n - l)T;(x)2-nT{x)(l Tn(x) + T<2 )(x))J-^r^(x)2 + £ Tn(x)

and the result follows by Lemma 3. •

The following lemma is geometrically obvious.

Lemma 5. / / zn _ x(x) = (T'n _ ^x), TB _ j(x)) is positively convex, then

(4.11)

/or a// 0^x^X2^271 /or w/iich the angle from the tangent (T^i^xJ, T^-^Xj)) to
(TS,221(x2), T!,-I(X2)) in the positive direction, does not exceed 180°.

Lemma 6. For n = l,2,. . . ,cos£(w+ l ) n + i ( n -

Proof. For n= 1,2,...,

n-3\fh\2 n(n + 2)

« - 3 \ . 2h^
s i n 2 - ^

An

^ sin \nh sin $(n + 2)h

(1 — cos jh) ^ cos %h—cos ^(n + l)/i

Lemma 7. The function Tn(x) is strictly increasing for 0 £ x g (n + l)/i/2 and strictly
decreasing for (n + l)h/2 ;g x ^ (n + \)h.
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Proof. The function Pn(x) = Tn(x + (n + l)/i/2) is the central trigonometric B-spline
supported on the interval ( - ( « + l)h/2,(n + l)h/2) with knots at
(v - (n + l)/2)/i, v = 0 , 1 , . . . n + 1. It is C~ \ and its restriction on each interval ((v - ( n + l)/2)h,
(v+1— (n + l)/2)h) is a polynomial in sin*^xcos""*^x, k = 0,...,n (see [2]). By the trans-
formation r = tan£x, — n<x<n, we have

sin* \x cos" ~ * \x = tan* ̂ x cos" \x = tk/( 1 +12)"'2

(see [2]) and Pn(x) = Mn(t)/( 1 +12)"/2, (eIR, where Mn(t) is a real polynomial spline of
degree n with knots at tv = 2 arctan(v—(n+ l)/2)fi, v = 0, l , . . . ,n + 1, and supported at
(t0, tn+l). Hence Mn(t) is a positive multiple of a polynomial B-spline of degree n.

If — (n+l)/j/2<Xj < x 2 ^ 0 , then t1: = tan2
tx1<t2: = tan2

tx2g0, which implies that
Mn{tl)<Mn{t2), and (1 + r2j" /2>(l + £2,)n/2. It follows that Pn(x) is strictly increasing for
—(n+ l ) / i / 2 ^ x ^ 0 . Lemma 7 follows by symmetry. •

Proof of Theorem 4.1. The proof will be by induction on n. The convexity of zt(x)
= ( r ; ( x ) , Tx(x)) and z2(x) = (T'2(x), T2(x)) may be verified directly. Suppose Zj(x) is
positively convex for i = 1,2,...,«— 1. We shall first show that

(4.12)

By symmetry we need only to show that Wn(x)^.O for 0 ^ x ^

Differentiating equation (4.4), we obtain

(4.13)

From (4.4), (4.5), (4.7) and (4.13), we have

(n - l)WJLx) +&n- l)(nTn(x)T<2»(x)-(2«-

l)h(Tl,2l1(x-h)T'n_1(x)-Pn
2l1(x)rn_l(x-h)),

(4.14)

The second term on the left of equation (4.14) is non positive by Lemma 4. The second
term on the right of (4.14) is non negative for 0^x<nh/2 by Lemma 5 and Lemma 7.
Hence W^(x)^0 for 0<x<nh/2. In order to complete the proof of (4.12), it remains to
show that the inequality is also true for nh/2^x^(n + l)h/2. To this end, let
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Writing

.l(x) = {[Ti2ll(x-h) + r^Tn_l(x-h))T'n_l(x)

Tn _

and then substituting (4.3) and (4.5) for the first expression on the right and (4.2) and
(4.3) for the second, with n replaced by n— 1, we obtain

where

T'n_2(x-2h) T'n.2(x-h) r._2(x)
Tn_2(x-2h) Tn_2(x-/i) Tn_2(x)

/ln _ t(x): = (n — 2) cos ̂ x cos ̂  (x — h) + sin yx sin ̂  (x — h)

(4.15)

A straightforward computation yields

B,,-i(x)=i(fi-l)cosi(n+l)h+i(n-3)cos(i(n+l)fc-x),

and

C,_1(x)=i(«-3)cos(i(2n+l)/i-x)+i(n-l)cosifc.

If nh/2^x^{n+l)h/2, then

(4.16)

= i(n-3)cosi(n+l)/j + cosi(/i+l)/i+i(n-3), (4.17)
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and

CB-1(x)^i(n-3)cosi(«+l)/i+i(n-l)cos| / i = :an. (4.18)

It is easy to verify that <xn>0 for n ^ 3 . Now, from (4.16) and (4.18), An_1(x)^(xa and
Cn_,(x)^aB for n/i/2^xg(n+l)/i/2, and by Lemma 6 and (4.17), B^^xJ^a,,. It follows
from (4.15) and the inductive hypothesis that for nh/2^x^(n

(4.19)

1 1 1
rm.2(x-2h) T'n_2(x-h) T'n_2(x)
Tn_2(x-2h) Tn_2(x-h) Tn_2(x)

We can conclude by (4.14) and (4.19) that Wn(x)^0 for nli/2£xg(n + l)/i/2. Thus the
relation (4.12) is established.

The inequality (4.12) means that the curve zn{x)=(T'n(x),Tn{x)), 0^,xg,(n + l)h, is
positively locally convex. Also, zn(x) has no loops for 0<x<(n+l)/i. For if za(x1) =
zn(x2) for some xltx2e(0,(n+l)h), then T'n(x1) = T'n(x2) and Tn(Xl) = Tn(x2). The last
equality implies Xj = (w + l)h — x2, by symmetry, which means that T'n(xl)= — T'n(x2).
This is possible if and only if Xj=0 and x2 = (n + l)h or xl=xl=x2=(n + l)h/2, by
Lemma 7.

Since zn(x) is positively locally convex and has no loops for 0<x<(n + l)h, then it
must be positively convex. •

5. Approximation by trigonometric B-spline convolution operators

The trigonometric B-spline convolution operators Bm(f;) defined by (2.17) are
bounded positive linear operators on the space of 27t-periodic continuous functions with
the supremum norm. The kernels Km are even functions whose Fourier series represen-
tations may be expressed as

*m(x) = l + £ 2(KJvcosvx, xeU, (5.1)
v = l

where (£„,)„, v=l ,2 , . . . , are given in (2.13). These operators fit into the rich theory of
positive integral operators of convolution type (see [1], [4]). Here, we shall study only
the convergence behaviour of Bm(/; ).

The kernel Km, in fact depends on two parameters m, the degree of the spline
functions, and h the size of the partition. Whenever we need to emphasize these
parameters we shall write Kh

m = Km, and similarly Bh
m - Bm.

Theorem 5.1. For any continuous 2n-periodic function f,

#JLf ;•)->/ uniformly on [0,2JT], (5.2)

if and only ifm-*<x>.
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Proof. From (2.13), the first Fourier coefficient of the kernel Kj, is

- msin(m+l)/i/2

Clearly (^^,)1 —• 1 if and only if m->oo. The result follows by Korovkin's Theorem
[4]. D

Remark. The operators Bm(f; •) do not converge to / if the degree m is fixed and
the mesh size h->0. This is in contrast to the interpolating spline operators which
converge to the interpolated function as the mesh size tends to zero.

Corollary. For v = 0 ,1 , . . . ,

(K"Jv^l as m^oo. (5.4)

Suppose /<2)(x) exists. If we write f(t) = <p(e''), —n-^t<n, then we have

WW' - eix)+^ ^2\eix)(eu - eix)2

+ s(e")(e"-eix)2, (5.5)

where s is integrable and bounded, and

lims(e") = 0. (5.6)

Applying the convolution operator to both sides of equation (5.5), with fixed x, gives

Bm(f; x) = f{x) + <t>V*)ei*((Kh
m)l - 1)

+W2)(ei*)ei2x((Kh
m)2-2(Kh

m)i + 1) + Rm(x), (5.7)

where the remainder term

Rm(x) = I s(eu)(e" - eix)2Km(x -t)dt. (5.8)
— n

Since f'{x) = <t>\eix)ieix and f(2\x)= - 4>\eix)eix - 4>m{eix)ei2x, we can express (5.7) as

Bm(f; x) - f(x) = (1 - (Kh
m) J / ' ^ x ) +W2\eix){(KhJ2 - 4(KfcJ, + 3} + Rm(x). (5.9)

Lemma 1. When m-*co and mh-nx, (m+ 1)(1— (^ ) i ) -> l— jacotya.

Proof. A straightforward computation gives
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= 1 + 2m sin2 £/i—m cot \mh sin %h

and the result follows on taking limit as m-*co and mh-nx. •

Lemma 2. When m-*co and mh—nx,

tf + aHO. (5.10)

Proof. Writing

^ ^ ( l - ( ^ ) ) , (5.11)

we see that the second term on the right of (5.11) converges to 3—fa cot ̂ a, by Lemma 1.
A similar computation as in Lemma 1 shows that as m->oo and mh-nx, (m + l)((Kh

m)2 —
(£m)i)->2COtia-3, and we obtain (5.10). •

Theorem 5.2. / / / ( 2 ) (x) exists, then

l){Bm(/;x)-/(x)}-Kl-iacot{a)/(2)(x) as m-oo and mh->a. (5.12)

Proof. Observe that from (5.9) and Lemmas 1 and 2, the theorem willl be proved, if
we show that

(m + l)Rm(x)-*0 as m-*co and mh-KX. (5.13)

For e>0, choose <5>0 such that |s(c'(:t~'))|<e whenever |t|<<5. Then from (5.8), we can
write

n

(m+ l)Rm(x) = (m + l) J s(ei(x~'))(eiix'l) — eix)2Km(t)dt
— n

= /i + /2 (5-14)

where

(5.15)
\t\<t

and

J &f*-'*)(t!i'-t>-t?x)2K.Jt)dt. (5.16)
| | S
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Now

e J \e-"-l\2Km(t)dt
U\<i

e ] 2(1-cos t)Km(t)dt (5.17)

< 4 E for sufficiently large m,

by Lemma 1. If \s(e")\^M, teU,

| 4 sin2 \tKm(t)dt

( 5 , 8 )

l)Mn2

2d

which tends to zero as m-*oo and m/i->a. Combining (5.14)—(5.18), we obtain (5.13). •

Recall that when k = 2m + l, Bm(f; ) = Vm(f; ), the de la Vallee Poussin means of
/, defined by (2.15). In this case mh = m2n/(2m+l)-*n, as m->oo, and with <x = n,

= 0. Theorem 5.2 then reduces to the following result of Natanson.

Corollary (I. P. Natanson). If f(2\x) exists, then

Km (m +1){ Vm(f; x) - /(*)} = /<2>(x). (5.19)

6. Kernels which are linear combinations of translates of B-splines

Let c/j,k= 1,2,..., j = 0, l,...,k — 1 be a triangular array of numbers and K^(x) be the
normalised central trigonometric B-splines defined by (2.12), where h = 2n/k. Define

kfx-jh), xel-n,n-] (6.1)
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and S£ is 27t-periodic. The function Sj, is a trigonometric spline of degree m with knots
at (v — («+ l)/2)h, veZ (For detail see [2]). The convolution operator

<£(/;*):=;/- j S"m(x-t)f(t)dt, xe[-7t ,n] (6.2)
In -n

is similar to the summation process for the Fourier series of 27i-periodic functions. We
can write

*£(/ ; x) = *£ a) ) Kh
m(x -1 - jh)f(t) dt. (6.3)

j=o - *

Then

|n^(/;x)|^||/| |Y HI Vx6[0,2jr], (6.4)
j = 0

where || || is the supremum norm. Hence for any m and h, nj,(/; ) is a bounded linear
operator on the space £([ — n, 7i]) of 2^-periodic continuous functions.

Theorem 6.1. Suppose that Yj=o \a>jl k=l,2,..., is bounded. Then for feC([ — n 7t]),

i )~*f uniformly on [ — n,n~] as m-*co if and only if (6.5)

X a)a>vi^\ as k = 2n/h^oo, (6.6)
j=o

where oi — e'lh.

Proof. Substituting f(t) = ev(t): = exp (ivt), v e Z in (6.3), we have

fli(ev;x) = ev(x)(K*)v'X fljeo^. (6.7)
J = 0

It follows from (5.4) that

v; )-»ev uniformly on [-7t TI], as w->oo (6.8)

if and only if (6.6) holds. The result then follows. •
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