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ABSTRACT

Different rating methods which allow for exceptional large claims are discussed.
A robust Bayesian statistical model is proposed which can cope with non nega-
tive, skewed data. An example from fire insurance is analyzed. The performance
of the posterior mean is compared to the performance of a robust credibility
estimator.

KEYWORDS

Experience rating, Bayesian statistics, robust Bayesian statistics, credibility, robust
credibility, Markov Chain Monte Carlo

1. INTRODUCTION

The main advantage of Bayesian statistical methods is to allow the use of a pri-
ori information in a coherent way. This is important in an insurance context
where in addition to the data there is usually a larger quantity of collateral or
of a priori information available. It is essential in a reinsurance context where
large claims play an important role and where by definition the amount of
data is scarce. In such a context Bayesian techniques are especially powerful
(see e.g. R. Schnieper (1993)).

Bayesian statistical models are sometimes criticized for their alleged lack of
robustness. In order to keep the models tractable, practitioners often use distrib-
utions which have natural conjugate priors and are thus closed under sampling:
the posterior density is of the same type as the prior density. The information
conveyed by the data only leads to an update of the parameters of the prior
density. (Examples are found for instance in J. Aitchison and I.R. Dunsmore
(1975).) When it comes to computing the posterior mean, the most commonly
used such likelihoods have indeed the property that they do not weigh down
‘large’ outlying observations thus producing estimates which are not robust.
Credibility estimators can be viewed as another attempt to keep the estimation
of the posterior mean mathematically tractable. They are least squares esti-
mates of the posterior mean which are linear in the observations. As such they
cannot weigh down ‘large’ outlying observations.
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This lack of robustness however is not inherent to Bayesian statistics but
is the consequence of the choice of the statistical model i.e. of the likelihood
and of the prior distribution. We propose statistical models which can cope with
large outlying observations. These models lead to posterior means which have
to be computed numerically. This increased mathematical complexity is com-
pensated by the fact that the models provide an automatic mean of detecting
and accommodating aberrant observations or extraordinary large claims.

We start by giving a short presentation of the general Bayesian framework
and of credibility theory. We look at different models which provide both an
unbiased estimator of the pure risk premium and a robust treatment of large
claims. It is seen that depending on the model, large claims are truncated or
rejected. All our models are scale mixtures of normal distributions.

Claims data often have a skewed distribution and cannot be properly mod-
elled by scale mixtures of normal. We show that many of our results also apply
to properly reparametrized skewed distributions. The case of the reparametrized
gamma distribution is analyzed.

The present paper should be viewed in the broader context of robust
Bayesian analysis. For an overview of the topic see e.g. Berger (1993). We only
consider the case of robustness in respect of the likelihood. Robustness in
respect of prior information can be achieved by applying similar techniques to
the prior distribution. We do not treat robustness in respect of the utility function
since in an insurance context we are primarily interested in the pure risk pre-
mium, i.e. the posterior mean of the data, and hence we want to minimize the
mean square error. We focus on fat-tailed distributions. We have not analyzed
noninformative and partially informative priors as a mean to obtain robust
statistical procedures. Non parametric Bayes procedures are discussed. Special
cases of such procedures — data trimming and, more generally, the use of
credibility techniques applied to robust estimators of the mean (see Gisler
(1980), Künsch (1992) and Gisler, Reinhard (1993)) — are especially worth
mentioning. In the example of section 4 we compare the performance of such
an estimator with the performance of a fully fledged Bayesian analysis.

In general the statistical procedures we propose consist of a simultaneous
sampling of the mean and of the variance.

2. GENERAL FRAMEWORK

2.1. Bayesian Model

Let x“ 1, x“ 2, …, x“ n be a random sample from a common distribution with an
unknown — possibly vector valued — parameter q. The unknown parameter q
is treated as a random variable. Given q = q, the x“ 1 are independent with com-
mon density f (x | q), which is referred to as the likelihood of x“ i. In an insur-
ance context the x“ i’s usually denote claims. As is customary in bayesian sta-
tistics, densities are indexed by their arguments. Thus f (x) and f (q) may be
different densities. A generalization of the following results to the case where
the probability distributions are not differentiable is straightforward and is
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omitted here. The possible values of q“ are given by a density f (q), the prior den-
sity. Bayes’ theorem states that given a realization of x– = (x1, x2,…,xn), the pos-
terior density of q“ is

( )
f x f x

f x f
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q q
=^

^

^
h

h

h

where
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does not depend on q.
Thus

( )f x kf x fq q q=^ ^h h

where k is a constant independent of q.

Often one is interested in some function of q, e.g. in the pure risk premium

( ) .m E xf x dxq q qx= = #^ ^h h

A posteriori, i.e. after one has observed a realization of n claims x– = (x1,…,xn)
the estimate of m(q) which minimizes the mean square error is

( )m x = E(m(q) | x) ( ) .m f x dxq q= # ^ h

The predictive density

f y x f y f x dq q q= #^ ^ ^h h h

is a further quantity of interest.

Example

Let x“ 1, …, x“ n be normally distributed with unknown mean q and known preci-
sion p (the precision is the multiplicative inverse of the variance)
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The prior distribution of q, the unknown sample mean, is itself normal with
known mean m and known precision q
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q
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= - -

According to Bayes’ theorem, the posterior density is
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And it is seen that the posterior distribution of q is again a normal distribu-
tion, i.e. the normal likelihood with a normal prior is closed under sampling.

The posterior mean is

qE x np q
np x qm$

= +
+

` j

The posterior precision is

ar qV x n p q1 $= +-
` j

i.e. it is the sum of the precisions of the observations and of the prior density.
The mean square error of the posterior mean is
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Whereas the mean square error of the classical estimator is

arqE X E V X npq 1
q

2
- = =` ^^j hh

Hence

.q q qE E X E X
n

n
p
q

2 2
$- = -

+
`` `j j j

If n is small compared to the ratio of precisions q/p, the Bayesian estimator is
much more precise than the classical estimator.
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The predictive density is
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After some straightforward simplifications we obtain
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and the predictive distribution is normal with expectation ( ) qm x E x= a k and
with precision arV y x p ( )n p q

np q1
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2.2. Credibility Theory

Let x“ 1, …, x“ n be a random sample characterized by an unknown risk parame-
ter q. Given q, x“ 1, …, x“ n are independent with finite second moments
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The pure risk premium m(q) is to be approximated by a premium which is linear
in the observations
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It is easily seen that the optimal linear premium is a weighted average of the
individual mean and of the a priori mean
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The weight z given to the individual mean x is called the credibility factor.
It is equal to

ar arq
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In the notation of the preceding example we have

ar arqV m q E V pqx1 1= =- -
`` ^^jj hh

and it is seen that in the case of a normal likelihood with known variance and
of a normal prior the credibility formula is equal to the a posteriori mean. This
result generalizes to simple exponential families where the mean is the sufficient
statistic and where the prior is the natural conjugate prior (see W.S. Jewell, (1974)).

The mean square error of the credibility formula is
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The mean square error of the classical estimator is
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From the above it is seen than for n small compared to the ratio of within and
between variances E(Var(x“ |q)) /Var(m(q“ )), the Bayesian estimator is much more
precise than the classical estimator.

The general Bayesian framework and the credibility theory presented here can
be generalized to different cohorts of risks, to observations with heterogeneous
weights, to general linear models, etc.

3. ROBUSTNESS

An estimator is robust if it can cope with ‘large’ outlying observations. In an
insurance rate making context it is usually desirable that exceptional large
claims do not unduly influence the rate charged to a given risk. At the same
time it is essential, that the proposed estimators are biasfree, since insurance
rates must be such, that the premium is sufficient to also cater for the excep-
tional large claims.
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3.1. Bayesian Models

The posterior mean in the example of section 2.1 is a non-robust estimator since

lim qE x
xn

3=
"3

` j

i.e. one ‘large’ claim fully determines the premium charged to a given risk. It is
well known, that replacing the normal likelihood by a t-likelihood leads to a
posterior mean which discards extreme observations.

.lim q qE x E
x

=
"!3

` `j j

For a proof see O’Hagan (1994). In the case of a Laplace (double-exponential)
likelihood the posterior mean is also a robust estimator with extreme observa-
tions being truncated

lim q qE x E p
q2

x
!=

"!3
` `j j

where p and q are the within and between variance components as defined in
section 2.2. For a proof of the statement see appendix 1.

Both the t-distribution and the Laplace distribution are scale mixtures of
normal distributions. The Laplace distribution is obtained as a mixture of nor-
mal distributions with the variance being exponentially distributed. The t-dis-
tribution is obtained as a mixture of normal distributions with the precision
— the multiplicative inverse of the variance — being x2-distributed. Sampling
from a Laplace distribution (or a t-distribution) can thus be viewed as sampling
from a normal distribution with unknown variance. (unknown precision).
Extreme observations are assumed to come from a distribution with a large
variance (small precision) and get truncated (discarded).

The above mentioned models — Laplace respectively t-likelihood with a
normal prior — are not appropriate to model non-life claims data which are
non-negative and usually skewed. The models however hint at the way to robus-
tify non-negative skewed distributions.

Let x denote some piece of claims information — a loss ratio, a burning
cost, a claims intensity, etc. — pertaining to a given risk in a given period. Let
m denote the unknown expected value of x“ and t the unknown variance of x“ .
For a suitable choice of the densities f (x | m,t) and f (t | m) the likelihood

,f x f x f dm m t t m t= #^ ^ ^h h h

and the prior f (m) lead to a posterior mean
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which is robust.
The Gamma density is a convenient choice of skewed density. It is usually

parametrized in the following way
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We also assume that m and t are independent and are themselves gamma dis-
tributed
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Obviously the likelihood of m
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is no longer available in analytical form.

The posterior mean
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can nevertheless be obtained through numerical integration.
It is no longer possible to derive the general behavior of

x "3
limE xm^ h. How-

ever in the case of the example given in appendix 2 it is seen that the posterior
mean is robust.

In practical rate making applications, we usually have more than one piece of
claims data. The design of experiment is usually such that we have N groups
of claims related data. Group number i consists of ni different observations

xi1, xi2, …, xini

with a common unknown mean mi and unknown variances v
t

ij

ij. The vij are typ-
ically known volume measures, such as premium incomes, in the case of loss
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ratios or sums insured in the case of claims intensities. It is assumed that given
the means and the variances, the observations are independent. The likelihood
is thus

,f x m t ,i i i j
j

n

i

N

11 ==
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i

%% _ i

It is also assumed that the parameters pertaining to different groups of claims
data are independent thus
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where D is the set of all claims data. An example is given below.

3.2. Credibility

It is well known that credibility estimators perform poorly in the presence of
large claims (see Bühlmann et al. (1982)).

As mentioned in section 2.2 the credibility estimator is equal to the posterior
mean in the case of likelihoods belonging to the simple exponential family
with natural conjugate priors. Since this models are not outlier prone the above
statement is hardly surprising. This situation has led to different ad hoc adjust-
ments of credibility estimators. Gisler (1980) combines credibility procedures
with data trimming. It is interesting to note that in the case of a Laplace like-
lihood and a normal prior, the posterior mean also leads to data trimming.
Künsch (1992) advocates the replacement of the empirical mean in the credi-
bility formula by a robust estimator of the unknown mean. Gisler and Reinhard
(1993) propose a specific procedure for the data structure presented in section 3.1.
Below we shall apply this procedure to a practical example.

4. EXAMPLE

The following claims data stem from the Swiss Association of Property Insur-
ers. (For confidentiality reasons claims intensities have all been multiplied by
the same undisclosed factor.)

Risk Category Year Sum Insured Claims Intensity
Category in CHF 1’000.- in ‰

1. Stone Industry 1 8’952’537 1.170
2 9’408’941 0.923
3 9’116’202 0.790
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Risk Category Year Sum Insured Claims Intensity
Category in CHF 1’000.- in ‰

4 9’233’632 0.494
5 9’341’821 1.405

2. Metal Industry 1 54’637’719 1.299
2 56’197’669 0.592
3 56’014’549 0.640
4 54’660’986 2.863
5 57’393’239 0.446

3. Wood Industry 1 6’039’217 2.844
2 6’217’858 2.337
3 5’770’074 2.907
4 4’961’525 2.396
5 5’209’193 0.972

4. Paper Industry 1 15’031’003 1.468
2 15’862’988 1.570
3 16’637’453 0.322
4 16’474’230 0.556
5 15’962’600 6.329

5. Textile Industry 1 7’690’266 0.464
2 7’817’476 1.601
3 8’489’434 2.175
4 8’298’066 0.802
5 7’810’418 0.181

6. Food Industry 1 13’518’262 1.122
2 14’101’545 0.985
3 13’027’446 0.763
4 12’654’978 0.395
5 12’395’113 0.564

7. Chemical Industry 1 18’033’514 0.801
2 19’599’797 1.702
3 23’505’751 0.174
4 16’665’459 0.250
5 11’548’235 0.308

8. Energy 1 21’969’611 0.466
2 23’257’289 0.413
3 21’524’998 0.369
4 21’390’824 0.194
5 23’346’584 0.251

9. Shops and Hotels 1 44’119’033 0.544
2 45’321’074 0.411
3 43’405’903 0.583
4 43’309’859 0.790
5 41’759’826 0.601

Total 1 189’991’162 0.990
2 197’784’637 0.857
3 197’491’810 0.663
4 187’649’559 1.260
5 184’767’029 1.016
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The data consist of the claims intensities (claim amount divided by sum
insured) from nine different categories of risks recorded during a period of
five consecutive years. The claim amounts pertain to fire claims and exclude
claims from elemental perils. This latter category must be analyzed separately
since it introduces a positive correlation between categories of risks in any
given year. The claims intensities are of particular interest since they define the
rate to be applied to the sum insured in order to cover the expected loss costs
(i.e. the pure risk rates). The data provide a good example of the typical prob-
lems with which the practitioner is confronted when developing a tariff. Most
of the risk categories are too small to enable a pricing based on the experience
of the individual category only. Even the largest risk category, the metal indus-
try, represents only approximately one quarter of the total sum insured of all
risk categories. It will therefore also benefit from an appropriate pooling of the
experience of all risk categories. Credibility theory seems to be the solution to
this problem since it combines the experience of the individual risk category
and of the collective. For many risk categories, the individual experience varies
strongly from year to year as extraordinary losses occur or fall out of the statis-
tics of the last five years. This leads to undesirable, strong fluctuations in pure
risk premiums, a problem which is well known to practitioners. A robust version
of credibility seems to be the solution to this problem.

We analyze the data with a standard credibility procedure and use the robust
credibility procedure proposed by Gisler and Reinhard (1993). We then perform
a fully fledged Bayesian analysis, based on the model of section 3.1. Finally
we compare the performance of the different methods in this particular case.
In order to analyze the data, we introduce a similar notation to the one used
in section 3.1.

xij denotes the claims intensity from risk category number i in year j
(i = 1, ...,9, j = 1, ...,5). xij is expressed in ‰ of the sum insured.

vij denotes the corresponding sum insured or volume measure attached
to xij .vij is expressed in billions CHF.

Let n = 5 and N = 9 denote the number of years and risk categories respectively.
The individual premium of risk category number i is

x v
v

xi i

i

j

n

i
1

=
$

$=

j
j! with .v vi i

j

n

1

=$
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j!

According to Bühlmann and Straub (1970), the credibility premium of risk cate-
gory number i is

m̂i � xm mi= + -i_ i

where m is the portfolio mean and �i is the credibility factor pertaining to risk
number i
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b and w are the between risks and within risk variance components respectively.
Bühlmann and Straub also propose ways to estimate m,b and w from the

sample
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The estimator of the portfolio mean and of the two variance components are

m̂ = 0.981 · 10–3

w = 19.162 · 10–6

b = 0.108 · 10–6

Note that m is different from the average premium

x = 0.953 · 10–3

The individual premiums x
i $

and the credibility premiums m̂i are tabulated
below.

Gisler and Reinhard (1993) propose a robust version of credibility analysis.
They assume that the individual mean m(qi) = E [xij | qi ] is the sum of an ordinary
part and of an excess-part

m(qi) = m0(qi) + mxs

whereby the excess part is independent of the individual risk category. The
ordinary part m0(qi) is estimated based on robust statistics ti, and mxs is estimated
based on the observed xs claims.
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As robust estimator, Gisler and Reinhard propose a so called M-estimator
ti, which is obtained as the solution of the following implicit equation
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ti has the particularity that the influence of any observation is never larger
than that of a zero observation, i.e. ‘large’ observations are truncated with the
truncation point depending on the individual risk category. The robust credi-
bility estimator proposed by Gisler and Reinhard is of the following form
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bt and wt are obtained from a modified version of the estimators proposed by
Bühlmann Straub (see Gisler and Reinhard, 1993).

Using the above formulae we have obtained

t = (0.956, 0.871, 2.320, 1.349, 1.063, 0.776, 0.532, 0.339, 0.584) · 10–3

and it is seen that with the exception of risk category 2, 4 and 7 we have ti =
xi. The contribution from excess claims is

mxst = 0.152 · 10–3
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The variance components pertaining to ordinary claims are

wt = 10.885 · 10–6

bt = 0.061 · 10–6

The portfolio mean pertaining the ordinary claims is

mt
t = 0.836 · 10–3

The robust credibility premiums are tabulated below.
It is interesting to note that the ratio of within to between variance is

approximately the same in the Bühlmann Straub model

.
. .b

w
0 108
19 2 177 8= =

and in the Gisler Reinhard Model

.
. . .b

w
0 061
10 9 178 7

t

t = =

This means that the credibility factors of a given risk category are approxi-
mately the same in both models.

We now turn to the fully fledged Bayesian model. We assume that for i = 1,
..., N and j = 1, ..., n

,x m ti ij i ju

are independent and gamma distributed with mean mi and variance v
t

i

i

j

j.
The corresponding density is found in section 3.1. As in section 3.1 we

assume that mi(i =1, ..., N) and tij (i =1, ..., N, j =1, ..., n) are all independent and
gamma distributed with
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As in the credibility model we estimate m,b and w based on the sample. We give
t a ‘very large’ value to ensure that t“ ij gets largely determined by the data.

The estimators proposed by Bühlmann Straub are unbiased and we have used
the same values mt , w and b as in the standard credibility model above. We have
set t = 10�000.

For each i (i = 1, ..., N), the least square estimator of mi is
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In this case n = 5 and the above integration is six dimensional. A six dimensional
numerical integration is extremely cumbersome and we have derived the above
quantities through Markov Chain Monte Carlo methods. For details on the
method used see Appendix 3. The posterior means are tabulated below.

The results of the analysis are found in the following table, which displays
the pure risk premiums of the different risk categories computed according to
the methods described above

Risk Category
1 2 3 4 5 6 7 8 9

Portfolio
Mean [‰]

0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981 0.981

Individual
Premium [‰]

0.956 1.155 2.320 2.032 1.063 0.776 0.667 0.339 0.584

Credibility
Premium [‰]

0.976 1.088 1.165 1.308 0.996 0.925 0.876 0.733 0.762

Robust Credibility
Premium [‰]

1.013 1.010 1.190 1.147 1.030 0.973 0.888 0.798 0.850

Posterior
Mean [‰]

1.03 0.80 1.61 1.30 1.13 0.91 0.77 0.63 0.69

Looking at the results of the analysis leads to the following remarks

Risk Category 1, Stone Industry
Credibility premium (0.98), robust credibility premium (1.01), posterior mean
(1.03) individual experience (0.96) and portfolio mean (0.98) are all close.

Risk Category 2, Metal Industry
Credibility premium (1.09) is higher than robust credibility premium (1.01)
and much higher than posterior mean (0.80). This is due to the treatment of
the one outlier in the claims experience (2.863). It is fully taken into account
by the credibility premium, truncated by the robust credibility premium and
nearly discarded by the posterior mean.

Risk Category 3, Wood Industry
Credibility premium (1.17) and robust credibility premium (1.19) are both much
lower than posterior mean (1.61) which gives more weight to the individual
experience of the risk (individual premium 2.32).

Risk Category 4, Paper Industry
The credibility premium (1.31) is considerably higher than the robust credibility
premium (1.15). This is due to the fact that the exceptionally large claims intensity
of the fifth year is truncated by the robust credibility premium. The posterior
mean (1.30) is approximately equal to the credibility premium. This is so
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because the posterior mean weighs down both the exceptionally large claims
intensity of the fifth year, and the exceptionally small claims intensity of the third
year

Risk Category 5, Textile Industry
The credibility premium (1.00) and the robust credibility premium (1.03) are
approximately the same. The posterior mean (1.13) is higher due to the fact that
this estimator weighs down the exceptionally low claims experience of the fifth
year.

Risk Category 6, Food Industry
All three estimators produce similar results.

Risk Category 7, Chemical Industry
The two credibility estimators produce results which are practically identical
(0.88 and 0.89). The posterior mean (0.77) is much closer to the individual
premium (0.67). The posterior mean gives more weight to the individual expe-
rience of the risk.

Risk Category 8, Energy
Same remark as for risk category 7. In addition one notices the higher price charged
by the robust credibility estimator (0.80). compared to the credibility estima-
tor (0.73) which is due to the surcharge for xs risks which is spread across all
risk categories.

Risk Category 9, Shops and Hotels
Same remark as for risk category 8.

The full Bayesian analysis gives more weight to the experience of individual
risk categories while at the same time weighing down both exceptionally large
and exceptionally small claims intensities. The posterior mean yields pure risk
premiums which vary more widely than the risk premiums produced by any
of the two credibility methods. In practical applications price ranges are more
in line with credibility results than with the results of the fully fledged Bayesian
analysis, i.e. they are more narrow. Practitioners however are aware of the fact
that good risk categories are more profitable than average risk categories — in
spite of the price differentials encountered in the market —. They endeavour
to write many of those risks. Practitioners also know that bad risk categories
are less profitable than average risk categories — in spite of market price dif-
ferentials. They try to avoid those risks. Practitioners know that price ranges
encountered in the market are too narrow and take this into account through
qualitive underwriting considerations (write few high hazard risks and many
low hazard risks). A more rational pricing would make this unnecessary.

The posterior mean has the advantage to weigh down both unusually low
claims intensities and unusually high claims intensities.

The robust credibility estimator only takes corrective action for unusually
high claims intensities.
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The posterior mean presented here has the particularity to discard very
large outlying observations. This is a drawback in an insurance context, since
after a certain threshold, the higher the unusual claims intensity, the lower the
pure risk premium. This drawback can probably be corrected by an appropri-
ate choice of the prior distribution of t“ , the unknown variance of the individual
claims intensity, as is shown in the case of symmetric distributions.

Both, in the case of credibility and robust credibility, we have a mathemati-
cal allocation of the total claims amount, in the sense that

.v
v

xm i

j

N

1

=$

=
i! t

In the case of the robust Bayes method presented here this is only true in the
expectation, i.e.

.E E D mm =iu^^ hh

However it is not felt that this is a major drawback, since the claims amount
of the past is the realization of a random variable and is generally not equal
the expected claims amount of the future, which is the quantity of interest.

All three estimators, credibility, robust credibility and posterior mean require
a fair amount of computational work since the prior mean and the two variance
components must be estimated from the data, which is a cumbersome exercise.
In the case of the full Bayesian analysis, one has to also perform a lengthy
Monte Carlo simulation to obtain the posterior mean of each risk category
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APPENDIX 1

Theorem

Assumptions

(i) Given q, the claims are independent and Laplace distributed with mean q
and precision q

f x
q

eq
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q x q2= - -
^ h

(ii) The unknown mean q is normally distributed with mean m and precision p
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mq
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The following statements hold true:
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(ii) qE x9 C is an increasing function of x.
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without loss of generality we set m = 0 which amounts to a choice of the origin
and obtain after some straightforward simplifications
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hence the above term goes to 0 for x → ∞
and
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for x ≥ 1, and it follows that this term also goes to 0 for x → ∞. Hence
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And a similar exercise for x → –∞ proves statement (i) of the theorem.

We now turn to the proof of statement (ii).
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And it is seen that >qdx
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which proves statement (ii) of the theorem.
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APPENDIX 2

As in section 3.1, we assume that the claims data is distributed according to
the following density
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i.e. it is conditionally gamma distributed given the mean m and the variance t.
We assume that the unknown prior mean m and prior variance t are also
gamma distributed.
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We make the following assumptions about the hyperparameters
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and finally
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which means that t is essentially determined by the data.
Based on the above assumptions we have derived the posterior mean E ( m̂ | x)

and the posterior variance E ( t̂ | x) as a function of the claims data x. The
derivation has been performed through numerical integration. The two func-
tions are shown below.

As is seen from the graphs, the posterior mean peaks at approximately x = 10
and decreases sharply thereafter. Whilst the data is not totally discarded, it is
given a very low weight as it increases beyond say x = 20. This is confirmed by
the analysis of the graph of the posterior variance, which increases dramati-
cally in the range between approximately x = 10 and x = 20. The posterior
mean is thus robust, since it dramatically weighs down ‘large’ outlying obser-
vations.
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APPENDIX 3

Markov Chain Monte Carlo

We consider risk category number i. We are interested in the posterior mean
of the unknown parameters

mi, ti1, ti2, …, ti5.

Our primary focus is on the posterior mean of mi i.e. E (mi | D). ti1, ti2, …, ti5
are ancillary statistics. They are only interesting in so far as they give infor-
mation about the influence of xi1, xi2, …, xi5 on E (mi | D).

According to Bayes’ Theorem, and to the assumptions in section 4, the pos-
terior density of the parameters

f (mi, ti1, ti2, …, ti5 | D)

is proportional to

,f x f fm t t mi i i
j

n

i
1

$ $
=

j i j j% _ __ ^i ii h= G

Thereby D = (x11, x12, …, xNn) denotes the data. It is seen, that the computation
of the posterior mean

E (mi | D)

involves a six-dimensional numerical integration.
Another possibility to evaluate E(mi | D) consists in generating a large sam-

ple (m1
i , m2

i , …, ms
i ) from f (mi, ti2, …, ti5 | D) and in approximating

E D sm m1

t

s

1

-
=

i
t

i !^ h

where t is the index numbering individual sample elements, and s is the sam-
ple size which depends on the desired precision of the estimator.

A possible way of generating such a sample is through a Markov Chain having
f (mi, ti1, ti2, …, ti5 | D) as its stationary distribution. The Metropolis-Hastings
algorithm (see W.R. Gilks et al., 1996) provides a way to construct such a sam-
ple. At each time t, the next state is chosen by first sampling a candidate point
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from a proposal distribution
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which may depend on the current point

t , ,..., .X m t ti
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i
t= 1 5_ i

The candidate point is then accepted with probability

t
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If the candidate is accepted, the next state becomes Xt+1 = Y. If the candidate
is rejected, the chain does not move, i.e. Xt+1 = Xt. Remarkably, under very
general conditions, the stationary distribution of the chain is f (. | D). For a proof
of the statement and a discussion on the speed of convergence of the distribu-
tion of Xt to the stationary distribution see Gilks et al., 1996.

As a proposal distribution we have chosen the product of the following
marginal distributions

p (mi,ti1,ti2,ti3,ti4,ti5) = f (mi,t0 , ............,t0 | D).
f (m0,ti1,t0 , .......,t0 | D).
f (m0,t0,ti2,t0, ...,t0 | D).

.......
f (m0,t0,t0, ..,t0,ti5 | D).

where m0 = 0.981 and t0 = 19.162 are the a priori mean and the within variance
estimated from the data. Note that in our case p(Y | Xt) = p(Y) does not depend
on the present state. As a starting point for the Markov Chain, we have cho-
sen the a priori mean and the within variance component estimated from the
data m0 = 0.981, t0 = 19.162.

For a proof of the convergence of the distribution of Xt to the stationary
distribution see Wilks at al., 1996. The convergence of

s m1
i
t

t

s

1=

!

to E (mi | D) is ensured by the ergodic theorem.
The speed of convergence has been checked empirically for a simplified model

with only two observations per risk category. In such a case there are only three
parameters to estimate (mi,ti1,ti2) which leads to a three dimensional numerical
integration. This operation can be performed with a reasonable amount of com-
putational time. It was found that the precision of the Monte Carlo estimator
of the posterior mean was acceptable for s = 10�000 and good for s = 50�000.
The precision of the estimator of the within variances was acceptable for s =
100�000. Thereby we have used the following approximation formulae
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As a consequence two runs of the Monte Carlo estimator with N = 50�000
were performed for each risk category. The differences in estimates between the
two runs give an idea of the precision of the estimators. As final estimates we
have taken the arithmetic mean of the results of the two runs. As an example
we give the result of the two runs performed for risk category number 1

E
. . .

D run run averagem
1 029 1 024

2
1 03

1i^ h

where the result is only recorded up to the first two decimals because of the
limited precision of the estimator.

j : 1 2 3 4 5

x1j 1.170 0.923 0.790 0.494 1.405

t̂1
1j 5.3 2.9 7.5 18.7 9.8

t̂2
1j 5.8 2.7 7.9 18.4 9.5

t̂1j 6 3 8 19 10

where t̂1
1j , t̂2

1j and t̂1j denote the result of the first and second run and the average
of the two runs respectively. We do not record the first decimal of the average
because of the limited precision of the estimator.

The following table provides an overview over the results for all risk cate-
gories.

i E(mi | D) t̂i1 t̂i2 t̂i3 t̂i4 t̂i5

1 1.03 6 3 8 19 10
2 0.80 21 20 18 112 49
3 1.61 17 17 24 13 5
4 1.30 11 12 57 38 115
5 1.13 23 12 19 11 40
6 0.91 6 1 8 21 14
7 0.77 5 31 58 30 13
8 0.63 14 6 20 36 29
9 0.69 14 40 10 19 13
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