ONE-REGULAR CUBIC GRAPHS OF ORDER A SMALL NUMBER TIMES A PRIME OR A PRIME SQUARE

YAN-QUAN FENG and JIN HO KWAK

(Received 26 July 2001; revised 6 March 2003)

Communicated by B. D. McKay

Abstract

A graph is *one-regular* if its automorphism group acts regularly on the set of its arcs. In this paper we show that there exists a one-regular cubic graph of order 2p or $2p^2$ where p is a prime if and only if 3 is a divisor of p - 1 and the graph has order greater than 25. All of those one-regular cubic graphs are Cayley graphs on dihedral groups and there is only one such graph for each fixed order. Surprisingly, it can be shown that there is no one-regular cubic graph of order 4p or $4p^2$.

2000 Mathematics subject classification: primary 05C25, 20B25. Keywords and phrases: Cayley graph, arc-transitive graph, one-regular graph.

1. Introduction

Throughout this paper a graph means an undirected finite one, without loops or multiple edges. For a graph X, we denote by V(X), E(X) and Aut(X) its vertex set, its edge set and its automorphism group, respectively. For further group- and graph-theoretic notation and terminology, we refer the reader to [12] and [13].

Let G be a finite group and S a subset of G such that $1 \notin S$ and $S = S^{-1}$. The Cayley graph X = Cay(G, S) on G with respect to S is defined to have vertex set

$$V(X) = G$$

and edge set

$$E(X) = \{ (g, sg) \mid g \in G, s \in S \}.$$

Supported by EYTP, SRF for ROCS in China and Com^2MaC -KOSEF in Korea. © 2004 Australian Mathematical Society 1446-7887/04 A2.00 + 0.00

From the definition, Cay(G, S) is connected if and only if S generates the group G.

A permutation group G on a set Ω is said to be *semiregular* if for each $\alpha \in \Omega$, the stabilizer G_{α} of α in G is the identity group, and *regular* if it is semiregular and transitive. Let X be a graph. A subgroup G of Aut(X) is said to be *regular* and *one-regular* if it acts regularly on the vertex set and the arc set of X, respectively. A graph X is said to be *vertex-transitive*, *edge-transitive*, *arc-transitive* and *one-regular* (or *arc-regular*) if Aut(X) is vertex-transitive, edge-transitive, arc-transitive and oneregular, respectively, and *half-transitive* if Aut(X) is vertex-transitive, edge-transitive, but not arc-transitive.

Clearly, a one-regular graph of regular valency must be connected and a graph of valency 2 is one-regular if and only if it is a cycle. Marušič [17] and Malnič et al. [15] constructed two different kinds of infinite families of one-regular graphs of valency 4, and Xu [24] gave a classification of one-regular circulant graphs of valency 4. One-regular cubic graphs have also received considerable attention. The first example of one-regular cubic graph was constructed by Frucht [9] with 432 vertices, and lots of work has been done on one-regular cubic graphs as part of a more general problem dealing with the investigation of a class of arc-transitive cubic graphs (see [4, 6, 20]). In 1997, Marušič and Xu [19] showed a way to construct a one-regular cubic graph Y from a half-transitive graph X of valency 4 with girth 3 by letting the triangles of X be the vertices in Y with two triangles being adjacent in Y when they share a common vertex in X. Thus, one can construct infinitely many one-regular cubic graphs from the infinite family of half-transitive graphs of valency 4 with girth 3 constructed by Alspach et al. in [1] and from another infinite family of half-transitive graphs constructed by Marušič and Nedela in [18]. Recently, Feng et al. [8] classified one-regular cubic Cayley graphs on abelian or dihedral groups. In this paper, we classify one-regular cubic graphs of order 2p, 4p, $2p^2$ or $4p^2$, where p is a prime. A one-regular cubic graph of order 2p or $2p^2$ is a Cayley graph on a dihedral group. Such a graph exists only when 3 is a divisor of p - 1 and the graph has order greater than 25, and it is unique for each fixed order. Thus there exists a unique one-regular cubic Cayley graph on the dihedral group of order 26, which is the least one-regular cubic graph by Conder and Dobcsányi [3]. Surprisingly, there is no one-regular cubic graph of order 4p or $4p^2$.

We know that Cheng and Oxley [2] classified arc-transitive graphs of order 2p. Among the graphs in their classification, there is a unique one-regular cubic graph for each prime $p \ge 13$ such that 3 is a divisor of p - 1. In this paper we show that a oneregular cubic graph of order twice an odd integer is a Cayley graph (Corollary 3.3), which implies that the unique one-regular cubic graph of a fixed order 2p in [2] must be a Cayley graph on a dihedral group. By using Corollary 3.3 we classify one-regular cubic graphs of order $2p^2$ and the same method can be used to classify one-regular cubic graphs of some orders, such as 6p, $6p^2$, $2p^3$, $6p^3$. Note that it is easy to classify one-regular cubic graphs of order 3p, $3p^2$, 5p, $5p^2$, etc. since the valency 3 forces p = 2.

2. Preliminaries

We start with introducing five propositions for later applications in this paper. The first one has achieved a sort of folklore status, whereas the others are well known as group-theoretic results.

PROPOSITION 2.1. A graph X is a Cayley graph if and only if Aut(X) contains a regular subgroup.

PROPOSITION 2.2 ([23, Proposition 4.4]). Any abelian transitive permutation group on a set is regular.

PROPOSITION 2.3 ([23, Theorem 3.4]). Let G be a permutation group on Ω and $\alpha \in \Omega$. Denote by α^{G} the orbit of α under G. Let p be a prime number and let p^{m} be a divisor of $|\alpha^{G}|$. Then p^{m} is also a divisor of $|\alpha^{P}|$ for any Sylow p-subgroup P of G.

Let π be a nonempty set of primes and π' the set of primes which are not in π . A finite group G is called a π -group, if every prime factor of |G| is in the set π . In this case, we also say that |G| is a π -number.

Let G be a finite group. A π -subgroup H of G such that |G:H| is a π' -number is called a Hall π -subgroup of G.

The following proposition is due to Hall [22].

PROPOSITION 2.4 ([22, Theorem 9.1.7]). If G is a finite solvable group, then every π -subgroup is contained in a Hall π -subgroup of G. Moreover, all Hall π -subgroups of G are conjugate.

Let p be a prime. A finite group G is called a p-group if it is a π -group for $\pi = \{p\}$.

PROPOSITION 2.5 ([13, Theorem 7.2]). Let N be a nontrivial normal subgroup of a p-group G and Z(G) the center of G. Then $N \cap Z(G) \neq 1$.

The next two propositions give a classification of one-regular cubic Cayley graphs on abelian or dihedral groups.

PROPOSITION 2.6 ([8, Theorem 3.1]). There is no one-regular cubic Cayley graph on an abelian group.

[3]

PROPOSITION 2.7 ([8, Theorem 4.1]). A cubic Cayley graph X on a dihedral group is one-regular if and only if X is isomorphic to $Cay(D_{2n}, \{a, ab, ab^{-k}\})$ for $n \ge 13$, $3 \le k < n$, and $k^2 + k + 1 \equiv 0 \pmod{n}$, where $D_{2n} = \langle a, b \mid a^2 = b^n = 1$, $aba = b^{-1} \rangle$.

By checking Conder and Dobcsányi's list [3] of arc-transitive cubic graphs up to 768 vertices, we have the following proposition.

PROPOSITION 2.8. For any one-regular cubic graph X, $|V(X)| \ge 26$ and $|V(X)| \ne 4p$ or $4p^2$ for a prime $p \le 13$.

3. One-regular cubic graphs of order 2p or $2p^2$

In this section we classify one-regular cubic graphs of order 2p or $2p^2$, where p is a prime. Let $K_{3,3}$ be the bipartite graph of order 6. It is well-known that $Aut(K_{3,3}) \cong (S_3 \times S_3) \rtimes \mathbb{Z}_2$ and so $Aut(K_{3,3})$ has a normal Sylow 3-subgroup. From this, one may easily show the following lemma.

LEMMA 3.1. Let G be a vertex-transitive automorphism group of the graph $K_{3,3}$. If |G| = 18 then G has a regular subgroup of order 6 and its Sylow 3-subgroup contains a minimal normal subgroup of G isomorphic to \mathbb{Z}_3 .

LEMMA 3.2. A solvable one-regular automorphism group of a connected cubic graph contains a regular subgroup.

PROOF. Suppose to the contrary; let X be a counterexample of least order, that is, X is of the smallest order with the following properties: X is a connected cubic graph and its automorphism group Aut(X) contains a solvable one-regular subgroup G, which has no regular subgroup.

Let N be a minimal normal subgroup of G. Since G is solvable N is elementary abelian, say $N = \mathbb{Z}_p \times \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p = \mathbb{Z}_p^m$, for a prime p and a positive integer m. By Proposition 2.2, N cannot be transitive on V(X). Denote by $\Sigma = \{B_0, B_1, \dots, B_{l-1}\}$ the set of orbits of N on V(X). Since $N \triangleleft G$, Σ is a complete block system of G. Consider the quotient graph \overline{X} of X defined by $V(\overline{X}) = \Sigma$ and $(B_i, B_j) \in E(\overline{X})$ if and only if there exist $v_i \in B_i$ and $v_j \in B_j$ such that $(v_i, v_j) \in E(X)$. If N has more than two orbits, Lorimer [14, Theorem 9] showed that \overline{X} is a cubic graph and G/N is a solvable one-regular subgroup of Aut (\overline{X}) (also see [21]). The minimality of X implies that G/N has a regular subgroup, say H/N on $V(\overline{X})$ and so H acts regularly on V(X), a contradiction. Thus we may assume that N has only two orbits; $\Sigma = \{B_0, B_1\}$. Let K be the subgroup of G which fixes B_0 setwise and let $u \in B_0$. It follows that $G/K \cong \mathbb{Z}_2$ and the one-regularity of G implies $G_u \cong \mathbb{Z}_3$, where G_u is the stabilizer of u in G. We also denote by K_u and N_u the stabilizers of u in K and N, respectively. Then $G_u \leq K$, $G_u = K_u$, and $K = NK_u = NG_u$. If N is not semiregular, $N_u \cong \mathbb{Z}_3$. Since N is abelian N_u fixes B_0 pointwise. This implies $X \cong K_{3,3}$, the complete bipartite graph of order 6, and consequently $N \cong \mathbb{Z}_3 \times \mathbb{Z}_3$, which is impossible since N is not minimal in G by Lemma 3.1. If N is semiregular then $|K| = |N||G_u| = 3p^m$ and $|G| = 6p^m$. Now we consider three cases: p = 2, p = 3 or $p \neq 2, 3$.

Case I: p = 2. In this case $|G| = 2^{m+1} \cdot 3$ and $|V(X)| = 2^{m+1}$. By Proposition 2.3, each Sylow 2-subgroup of G is transitive on V(X) and so is regular because both the Sylow 2-subgroup and the graph X have the same order 2^{m+1} . It is impossible.

Case II: $p \neq 2, 3$. In this case $|G| = 2 \cdot 3 \cdot p^m$ and $|V(X)| = 2p^m$. Let $\pi = \{2, p\}$. By Proposition 2.4, G has a Hall π -subgroup, say H. Then $|H| = 2p^m$. Since $G_u \cong \mathbb{Z}_3$ and |H| has no divisor 3, we have $H_u = 1$, where H_u is the stabilizer of u in H. Thus H has an orbit of length $2p^m$ and so acts regularly on V(X), a contradiction.

Case III: p = 3. In this case $|G| = 2 \cdot 3^{m+1}$ and $|V(X)| = 2 \cdot 3^m$. It is easy to see that K is the unique Sylow 3-subgroup of G. Therefore $Z(K) \neq 1$ (a nilpotent group has a non-trivial center) and $Z(K) \triangleleft d K$, that is Z(K) is a characteristic subgroup of K. Thus $Z(K) \triangleleft G$. By Proposition 2.5 we have $N \cap Z(K) \neq 1$, and since $N \triangleleft G$ and $Z(K) \triangleleft G$, $N \cap Z(K) \triangleleft G$. By the minimality of $N, N \cap Z(K) = N$, which forces $N \leq Z(K)$. Let $u, v \in B_0$. Then $N \leq Z(K)$ implies $K_u = K_v$. It follows that K_u fixes B_0 pointwise and so $X \cong K_{3,3}$. By Lemma 3.1 G has a regular subgroup, a contradiction.

Assume that X is a one-regular cubic graph and let A = Aut(X). If X has order 2n with n an odd integer, then $|A| = 2 \cdot 3 \cdot n$. Since a group of order twice an odd integer is solvable, A is solvable. By Lemma 3.2 and Proposition 2.1 we have the following corollary.

COROLLARY 3.3. A one-regular cubic graph of order twice an odd integer is a Cayley graph.

REMARK. Fang et al. [7] proved that Lemma 3.2 is also true for a connected graph of any prime valency.

Let $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ be the cyclic group of order *n* written additively and let \mathbb{Z}_n^* be the multiplication group of \mathbb{Z}_n consisting of numbers in \mathbb{Z}_n coprime to *n*. Then $\mathbb{Z}_{p^m}^* \cong \mathbb{Z}_{(p-1)p^{m-1}}$ for any odd prime *p* and any positive integer *m*. If 3 is a divisor of p-1 then $\mathbb{Z}_{p^m}^*$ has a unique subgroup of order 3. The proof of the following lemma is easy and we omit it. LEMMA 3.4. Let p > 3 be a prime and n = p or p^2 . Then there exists an integer $1 \le k < n$ such that $k^2 + k + 1 \equiv 0 \pmod{n}$ if and only if k is an element of order 3 in \mathbb{Z}_n^* .

THEOREM 3.5. Let n = p or p^2 for a prime p. Then there exists a one-regular cubic graph X of order 2n if and only if 3 is a divisor of p - 1 and $|V(X)| \ge 26$. Furthermore, for each prime p with 3 being a divisor of p - 1 and $n \ge 13$, there exists a unique one-regular cubic graph X of order 2n and X = Cay(G, S), where $G = \langle a, b | a^2 = b^n = 1, aba = b^{-1} \rangle$ is a dihedral group and $S = \{a, ab, ab^{-k}\}$ with k being an element of order 3 in \mathbb{Z}_n^* .

PROOF. Let X be a one-regular cubic graph of order 2n where n = p or p^2 , and let A = Aut(X). By Proposition 2.8, p > 3 and by Corollary 3.3 X is a Cayley graph, say X = Cay(G, S), where G is a group of order 2n. Thus, Proposition 2.6 implies that G is nonabelian. Let A_1 denote the stabilizer of 1 in A and Aut(G, S) = $\{\alpha \in Aut(G) \mid S^{\alpha} = S\}$. Then $A_1 \cong \mathbb{Z}_3$ and Aut(G, S) $\leq A_1$. Since X is connected, $\langle S \rangle = G$. We claim that G is dihedral. But, it is obvious for |G| = 2p because G is nonabelian.

Assume that $|G| = 2p^2$. From an elementary group theory we know that up to isomorphism there are three nonabelian groups of order $2p^2$ defined as:

$$G_{1}(p) = \langle a, b | a^{2} = b^{p^{2}} = 1, aba = b^{-1} \rangle;$$

$$G_{2}(p) = \langle a, b, c | a^{p} = b^{p} = c^{2} = [a, b] = 1, c^{-1}ac = a^{-1}, c^{-1}bc = b^{-1} \rangle;$$

$$G_{3}(p) = \langle a, b, c | a^{p} = b^{p} = c^{2} = 1, [a, b] = [a, c] = 1, c^{-1}bc = b^{-1} \rangle.$$

Suppose to the contrary that $G \neq G_1(p)$. Let $x, y \in G_2(p)$ with o(x) = 2 and o(y) = p. It is easy to show that $\langle x, y \rangle$ has order 2p, and hence $\langle x, y \rangle \neq G_2(p)$. Thus if $G = G_2(p)$ then S consists of three involutions of $G_2(p)$ since $G = G_2(p)$ has no element of order 2p. Let $z \in G_2(p)$ be an element of order p which is not in $\langle y \rangle$. Then x, y and z satisfy the same relations as do c, a and b, and hence there is an automorphism of $G_2(p)$ mapping x, y and z to c, a and b, respectively. Thus we may assume that $S = \{c, ca, cb\}$ because $\langle S \rangle = G$, and since the automorphism of $G_2(p)$ induced by $c \rightarrow c, a \rightarrow b$ and $b \rightarrow a$, interchanges ca and cb, and fixes c, $|\operatorname{Aut}(G, S)|$ has a divisor 2. By $\operatorname{Aut}(G, S) \leq A_1$, $|A_1|$ has a divisor 2, contrary to the fact that $A_1 \cong \mathbb{Z}_3$. If $G = G_3(p)$ then S consists of one involution, one element of order p or 2p and its inverse because all involutions of $G_3(p)$ can't generate $G_3(p)$. Since the automorphism group of $G_3(p)$ is transitive on the set of involutions of $G_3(p)$, we may assume that $S = \{c, a^i b^j, (a^i b^j)^{-1}\}$ or $\{c, ca^i b^j, (ca^i b^j)^{-1}\}$, where $a^i \neq 1$ and $b^j \neq 1$ since $\langle S \rangle = G$. The mapping $c \rightarrow c, a \rightarrow a^i$ and $b \rightarrow b^j$ induces an automorphism of $G_3(p)$, and so we may assume that $S = \{c, ab, a^{-1}b^{-1}\}$

or $\{c, cab, ca^{-1}b\}$. For $S = \{c, ab, a^{-1}b^{-1}\}$, X has a cycle of length p passing through 1 and ab but there exists no such cycle passing through 1 and c, contrary to the arc-transitivity of X. For $S = \{c, cab, ca^{-1}b\}$, let α be a permutation on $G = G_3(p)$ defined by $(a^i b^j c^k)^{\alpha} = a^{-i} b^j c^k$ where i, j and k are integers. Let $g \in G$ and denote by N(g) the neighborhood of g in X. Now it is easy to check that $N((a^i b^j c^k)^{\alpha}) = (N(a^i b^j c^k))^{\alpha}$, implying that α is an automorphism of X. Since α fixes 1, we have $\alpha \in A_1$ and so $|A_1|$ has a divisor 2, a contradiction.

So far, we have proved that X is a Cayley graph on a dihedral group. By Lemma 3.4 and Proposition 2.7 we have $|V(X)| \ge 26$ and X = Cay(G, S), where $G = \langle a, b | a^2 = b^n = 1, aba = b^{-1} \rangle$ and $S = \{a, ab, ab^{-k}\}$ with k being an element of order 3 in \mathbb{Z}_n^* . Note that \mathbb{Z}_n^* has elements of order 3 if and only if 3 is a divisor of p - 1. To prove Theorem 3.5, we only need to prove the uniqueness of one-regular cubic graph of order 2n when p - 1 has a divisor 3 and $n \ge 13$. Since \mathbb{Z}_n^* has only two elements of order 3, that is k and k^2 , it suffices to prove that $\text{Cay}(G, \{a, ab, ab^{-k}\}) \cong$ $\text{Cay}(G, \{a, ab, ab^{-k^2}\})$, which follows from the fact that the automorphism of G induced by $a \to a$ and $b \to b^{-k^2}$ maps $\{a, ab, ab^{-k}\}$ to $\{a, ab, ab^{-k^2}\}$.

4. No one-regular cubic graphs of order 4p or $4p^2$

To show the non-existence of one-regular cubic graphs of order 4p or $4p^2$, we need to consider regular coverings of the complete graph K_4 of order 4.

A graph \widetilde{X} is called a *covering* of X with projection $p : \widetilde{X} \to X$ if there is a surjection $p : V(\widetilde{X}) \to V(X)$ such that $p|_{N(\widetilde{v})} : N(\widetilde{v}) \to N(v)$ is a bijection for any vertex $v \in V(X)$ and $\widetilde{v} \in p^{-1}(v)$. The covering \widetilde{X} is said to be *regular* (or *K*-covering) if there is a semiregular subgroup K of Aut(\widetilde{X}) such that the graph X is isomorphic to the quotient graph \widetilde{X}/K , say by h, and the quotient map $\widetilde{X} \to \widetilde{X}/K$ is the composition ph of p and h (in this paper all functions are composed from left to right). If the regular covering \widetilde{X} is connected, then K is called a *covering transformation group*. The *fibre* of an edge or a vertex is its preimage under p. The graph \widetilde{X} is called the *covering graph* and X is the *base graph*. The group of automorphisms of \widetilde{X} which maps fibres to fibres is called the *fibre-preserving subgroup* of Aut(\widetilde{X}).

Every edge of a graph X gives rise to a pair of opposite arcs. By e^{-1} , we mean the reverse arc to an arc e. Let K be a finite group and denote by A(X) the arc-set of X. An ordinary voltage assignment (or, K-voltage assignment) of X is a function ϕ : $A(X) \rightarrow K$ with the property that $\phi(e^{-1}) = \phi(e)^{-1}$ for each $e \in A(X)$. The values of ϕ are called voltages, and K is called the voltage group. The ordinary derived graph $X \times_{\phi} K$ derived from an ordinary voltage assignment ϕ : $A(X) \rightarrow K$ has vertex set $V(X) \times K$ and edge set $E(X) \times K$, so that an edge (e, g) of $X \times_{\phi} K$ joins a vertex (u, g) to $(v, \phi(e)g)$ for $e = uv \in A(X)$ and $g \in K$. The first coordinate projection $p_{\phi}: X \times_{\phi} K \to X$ is a regular covering since K is semiregular on $V(X \times_{\phi} K)$.

Let $p: \tilde{X} \to X$ be a K-covering. If $\alpha \in \operatorname{Aut}(X)$ and $\tilde{\alpha} \in \operatorname{Aut}(\tilde{X})$ satisfy $\tilde{\alpha}p = p\alpha$, we call $\tilde{\alpha}$ a lift of α , and α the projection of $\tilde{\alpha}$. Concepts such as a lift of a subgroup of Aut(X) and the projection of a subgroup of Aut(\tilde{X}) are self-explanatory. The lifts and the projections of such subgroups are of course subgroups in Aut(\tilde{X}) and Aut(X), respectively. In particular, if the covering graph \tilde{X} is connected, then the covering transformation group K is the lift of the identity group. Gross and Tucker [11] showed that every K-covering of a graph X can be derived from a K-voltage assignment which assigns the identity voltage 1 to the arcs on an arbitrary fixed spanning tree of X.

Let $X \times_{\phi} K \to X$ be a connected K-covering, where $\phi = 1$ on the arcs of a spanning tree T of X. Such ϕ is called a *T*-reduced voltage assignment. Then the covering graph $X \times_{\phi} K$ is connected if and only if the voltages on the cotree arcs generate the voltage group K.

The problem whether an automorphism α of X lifts can be grasped in terms of voltage as follows. Observe that a voltage assignment on arcs extends to a voltage assignment on walks in a natural way. Define the mapping $\overline{\alpha}$ from the set of voltages of fundamental closed walks based at a vertex v of the base graph X to the voltage group K as the following:

$$(\phi(C))^{\overline{\alpha}} = \phi(C^{\alpha}),$$

where C ranges over all fundamental closed walks at v, and $\phi(C)$ and $\phi(C^{\alpha})$ are the voltages of C and C^{α} , respectively. Note that if K is abelian, $\overline{\alpha}$ does not depend on the choice of the base vertex, and the fundamental closed walks at v can be substituted by the fundamental cycles generated by the cotree edges of X.

LEMMA 4.1 ([16]). Let $X \times_{\phi} K \to X$ be a connected K-covering. Then an automorphism α of X lifts if and only if $\overline{\alpha}$ extends to an automorphism of K.

LEMMA 4.2. Let \tilde{X} be a connected regular covering of the complete graph K_4 , whose covering transformation group is cyclic or elementary abelian, and whose fibre-preserving subgroup is arc-transitive. Then \tilde{X} is not one-regular.

PROOF. Let K be a cyclic or an elementary abelian group and let $\tilde{X} = K_4 \times_{\phi} K$ be a connected regular covering of the graph K_4 satisfying the hypotheses in the theorem, where ϕ is a T-reduced K-voltage assignment with the spanning tree T as illustrated by dark lines in Figure 1. Identify the vertex set of K_4 with $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ and we assign voltages z_1 , z_2 and z_3 in K to the cotree arcs as shown in Figure 1.

Suppose to the contrary that the covering graph $K_4 \times_{\phi} K$ is one-regular. Since K_4 is not one-regular, we get |K| > 1, and since the fibre-preserving subgroup, say \widetilde{L} , acts arc-transitively on $K_4 \times_{\phi} K$ and $K_4 \times_{\phi} K$ is one-regular, we have $Aut(\widetilde{X}) = \widetilde{L}$.

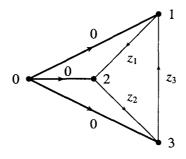


FIGURE 1. The complete graph K_4 with voltage assignment ϕ

Hence, the projection of \tilde{L} , say L, acts regularly on the arc set of K_4 . Then |L| = 12. Since $K_4 \times_{\phi} K$ is connected, $\{z_1, z_2, z_3\}$ generates the voltage group K, that is, $\langle z_1, z_2, z_3 \rangle = K$. Noting that Aut $(K_4) = S_4$ and |L| = 12, we have that $L = A_4$. Let $\alpha = (01)(23), \beta = (123)$ and $\gamma = (12)$. Clearly, α, β and γ are automorphisms of K_4 and $\alpha, \beta \in L$.

By $i_1 i_2 \cdots i_s$, we denote a cycle which has vertex set $\{i_1, i_2, \ldots, i_s\}$, and edge set $\{(i_1, i_2), (i_2, i_3), \ldots, (i_{s-1}, i_s), (i_s, i_1)\}$. There are three fundamental cycles 012, 023 and 031 in K_4 , which are generated by the three cotree edges. Each cycle maps to a cycle of same length under the actions of α , β and γ . We list all these cycles and their voltages in Table 1, in which C denotes a fundamental cycle of K_4 and $\phi(C)$ denotes the voltage on the cycle C.

Consider the mapping $\overline{\alpha}$ from the set of voltages of the three fundamental cycles of K_4 to the voltage group K, defined by $\phi(C)^{\overline{\alpha}} = \phi(C^{\alpha})$, where C ranges over all these three fundamental cycles. Similarly, one can define $\overline{\beta}$ and $\overline{\gamma}$. Since L lifts, by Lemma 4.1 $\overline{\alpha}$ and $\overline{\beta}$ can be extended to automorphisms of K, say α^* and β^* , respectively. However, $\overline{\gamma}$ can't be extended to an automorphism of K because of the one-regularity of $K_4 \times_{\phi} K$. From Table 1, $z_1^{\beta^*} = z_2$ and $z_2^{\beta^*} = z_3$. This implies that z_1, z_2 and z_3 have the same order. Now we consider the cases according to K being cyclic or elementary abelian.

Case I. $K = \mathbb{Z}_n$ (n > 1). Since z_1, z_2 and z_3 have the same order and $\langle z_1, z_2, z_3 \rangle = \mathbb{Z}_n$, each of them generates the cyclic group \mathbb{Z}_n . Thus we may assume that $z_1 = 1$. Let $1^{\beta^*} = k$. Then (k, n) = 1. By $z_1^{\beta^*} = z_2, z_2^{\beta^*} = z_3$ and $z_3^{\beta^*} = z_1$ (see Table 1), we have that $z_2 \equiv k \pmod{n}$, $z_3 \equiv k^2 \pmod{n}$ and $k^3 \equiv 1 \pmod{n}$. Let $1^{\alpha^*} = l$. Then $z_1^{\alpha^*} = z_3$ and $z_3^{\alpha^*} = z_1$ implies that $l \equiv k^2 \pmod{n}$ and $lk^2 \equiv 1 \pmod{n}$. From the latter equation and $k^3 \equiv 1 \pmod{n}$, we have $k \equiv l \pmod{n}$. Thus $l \equiv k^2 \pmod{n}$ implies that $k \equiv 1 \pmod{n}$ because (k, n) = 1. It follows that $z_1 \equiv z_2 \pmod{n} \equiv z_3$ $(\mod n) \equiv 1 \pmod{n}$ and so $\overline{\gamma}$ can be extended to an automorphism of \mathbb{Z}_n induced by $1 \mapsto -1$, a contradiction.

Case II. $K = \mathbb{Z}_p \times \mathbb{Z}_p \times \cdots \times \mathbb{Z}_p = \mathbb{Z}_p^m$ (p prime, $m \ge 2$). By $\langle z_1, z_2, z_3 \rangle = \mathbb{Z}_p^m$, we

C	$\phi(C)$	C ^α	$\phi(C^{\alpha})$	C^{β}	$\phi(C^{\beta})$	Cγ	$\phi(C^{\gamma})$
012	Z1	103	Z3	023	Z2	021	$-z_{1}$
023	<i>z</i> ₂	132	$-z_1 - z_2 - z_3$	031	Z3	013	$-z_{3}$
031	Z3	120	<i>z</i> ₁	012	z_1	032	$-z_{2}$

TABLE 1. Fundamental cycles and their images with corresponding voltages on K_4

may assume that $K = \mathbb{Z}_p^2$ or \mathbb{Z}_p^3 . If $K = \mathbb{Z}_p^3$, then z_1, z_2 and z_3 are linearly independent. Similarly, $-z_1, -z_2$ and $-z_3$ are also linearly independent. This implies that $\overline{\gamma}$ can be extended to an automorphism of \mathbb{Z}_p^3 , a contradiction.

Now suppose that $K = \mathbb{Z}_p^2 = \langle a \rangle \times \langle b \rangle$. By $z_1^{\beta^*} = z_2, z_2^{\beta^*} = z_3$ and $z_3^{\beta^*} = z_1, z_1$ and z_2 must be linearly independent. We may assume that $z_1 = a$ and $z_2 = b$. Let $z_3 = ka + lb = z_2^{\beta^*}$. Then $z_3^{\beta^*} = z_1$ implies that $lk \equiv 1 \pmod{p}$ and $k + l^2 \equiv 0 \pmod{p}$, and by $lk \equiv 1 \pmod{p}$ we have (l, p) = 1. Since $z_1^{\alpha^*} = z_3$ and $z_2^{\alpha^*} = -z_1 - z_2 - z_3$ means that $a^{\alpha^*} = ka + lb$ and $b^{\alpha^*} = -(k+1)a - (l+1)b$, we may deduce that $a = (k^2 - lk - l)a + l(k - l - 1)b$ from $z_3^{\alpha^*} = z_1$, in which b has the coefficient l(k - l - 1). Since $(l, p) = 1, k - l - 1 \equiv 0 \pmod{p}$. Noting that $lk \equiv 1 \pmod{p}$ and $k + l^2 \equiv 0 \pmod{p}$ we have $l^2 + l + 1 \equiv l^2 + l - 1 \pmod{p} \equiv 0 \pmod{p}$, implying that p = 2. This is impossible because the equation $l^2 + l + 1 \equiv 0 \pmod{2}$ has no solution.

THEOREM 4.3. Let p be a prime. Then there is no one-regular cubic graph of order 4p or $4p^2$.

PROOF. By Proposition 2.8 we may assume that $p \ge 17$ and suppose to the contrary that X is a one-regular cubic graph of order 4p or $4p^2$. Since X is connected, $A = \operatorname{Aut}(X)$ is transitive on V(X). By the one-regularity of X, |A| = 12p or $12p^2$. By [10, pp. 12–14], a non-abelian simple $\{2, 3, p\}$ -group is one of the following groups: $A_5, A_6, L_2(7), L_2(8), L_2(17), L_3(3), U_3(3)$, and $U_4(2)$. By Conway *et al.* [5], the orders of these simple groups have divisor 8 or 9 except A_5 . Since |A| has no divisor 8 or 9 and $p \ge 17$, A is solvable. Let $\pi = \{2, p\}$. By Proposition 2.4, A has a Hall π -subgroup, say H.

We claim that A has a normal Sylow p-subgroup. Consider the conjugate action of A on the set of cosets of H in A. Then A/H_A is isomorphic to a subgroup of the symmetric group S_3 of degree 3, where H_A is the largest normal subgroup of A contained in H. Since $H_A \leq H$ and |A : H| = 3, we have $|A/H_A| = 3$ or 6. If $|A/H_A| = 3$ then $H_A = H$, and if $|A/H_A| = 6$ then $|H : H_A| = 2$. Thus $|H_A| = 2p$, 4p, $2p^2$ or $4p^2$. By Sylow's theorem, the Sylow p-subgroup of H_A is normal in H_A and so is normal in A. Since Sylow p-subgroups of H_A are also Sylow p-subgroups of A, A has a normal Sylow p-subgroup.

355

Let N be the normal Sylow p-subgroup of A. Since |N| has no divisor 3, N acts semiregular on V(X). It follows that N has four orbits. Recall that \overline{X} is the quotient graph of X corresponding to the orbits of N, where \overline{X} has the same definition as in the proof of Lemma 3.2. Then \overline{X} is isomorphic to K_4 , and hence X is a regular covering of K_4 with the covering transformation group N and with the fibre-preserving subgroup Aut(X). Since |N| = p or p^2 , N is cyclic or elementary abelian and by Lemma 4.2 X can't be one-regular, a contradiction.

References

- B. Alspach, D. Marušič and L. Nowitz, 'Constructing graphs which are ¹/₂-transitive', J. Austral. Math. Soc. (A) 56 (1994), 391-402.
- [2] Y. Cheng and J. Oxley, 'On weakly symmetric graphs of order twice a prime', J. Combin. Theory (B) 42 (1987), 196-211.
- [3] M. D. E. Conder and P. Dobcsányi, 'Trivalent symmetric graphs on up to 768 vertices', J. Combin. Math. Combin. Comput. 40 (2002), 41–63.
- [4] M. D. E. Conder and C. E. Praeger, 'Remarks on path-transitivity on finite graphs', Europ. J. Combin. 17 (1996), 371–378.
- [5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups (Oxford University Press, Oxford, 1985).
- [6] D. Ž. Djoković and G. L. Miller, 'Regular groups of automorphisms of cubic graphs', J. Combin. Theory (B) 29 (1980), 195-230.
- [7] X. G. Fang, J. Wang and M. Y. Xu, 'On 1-arc-regular graphs', Europ. J. Combin. 23 (2002), 785–791.
- [8] Y. Q. Feng, J. H. Kwak and M. Y. Xu, 's-regular cubic Cayley graphs on abelian or dihedral groups', Research Report No. 53, (Institute of Math. and School of Math. Sci., Peking Univ., 2000).
- [9] R. Frucht, 'A one-regular graph of degree three', Canad. J. Math. 4 (1952), 240-247.
- [10] D. Gorenstein, Finite simple groups (Plenum Press, New York, 1982).
- J. L. Gross and T. W. Tucker, 'Generating all graph coverings by permutation voltage assignment', Discrete Math. 18 (1977), 273-283.
- [12] F. Harary, Graph theory (Addison-Wesley, Reading, MA, 1969).
- [13] B. Huppert, Endliche Gruppen I (Springer, Berlin, 1967).
- [14] P. Lorimer, 'Vertex-transitive graphs: symmetric graphs of prime valency', J. Graph Theory 8 (1984), 55-68.
- [15] A. Malnič, D. Marušič and N. Seifter, 'Constructing infinite one-regular graphs', *Europ. J. Combin.* 20 (1999), 845–853.
- [16] A. Malnič, R. Nedela and M. Škoviera, 'Lifting graph automorphisms by voltage assignments', *Europ. J. Combin.* 21 (2000), 924–947.
- [17] D. Marušič, 'A family of one-regular graphs of valency 4', Europ. J. Combin. 18 (1997), 59-64.
- [18] D. Marušič and R. Nedela, 'Maps and half-transitive graphs of valency 4', Europ. J. Combin. 19 (1998), 345-354.
- [19] D. Marušič and M. Y. Xu, 'A ¹/₂-transitive graph of valency 4 with a nonsolvable group of automorphisms', J. Graph Theory 25 (1997), 133–138.

- [20] R. C. Miller, 'The trivalent symmetric graphs of girth at most six', J. Combin. Theory (B) 10 (1971), 163-182.
- [21] C. E. Praeger, 'Imprimitive symmetric graphs', Ars Combinatoria 19A (1985), 149-163.
- [22] D. J. Robinson, A course in the theory of groups (Springer, New York, 1982).
- [23] H. Wielandt, Finite permutation groups (Academic Press, New York, 1964).
- [24] M. Y. Xu, 'A note on one-regular graphs', Chinese Sci. Bull. 45 (2000), 2160-2162.

Department of Mathematics Beijing Jiaotong University Beijing 100044 P.R. China e-mail: yqfeng@center.njtu.edu.cn Department of Mathematics Pohang University of Science and Technology Pohang 790–784 Korea e-mail: jinkwak@postech.ac.kr

356