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THE COUNTABLE NEIGHBOURHOOD PROPERTY AND
TENSOR PRODUCTS

by JOSE BONET

(Received 21st June 1984)

This article is intended to enlarge the study of spaces satisfying the countable
neighbourhood property and to clarify the incidence of this property in the stability of
some locally convex properties of tensor products.

We shall use the standard notations of locally convex spaces as in [17] and [18]. The
word space will always mean separated locally convex space. If (£, t) is a space, the set of
all continuous seminorms on it will be denoted by cs(E). The linear hull and the
absolutely convex hull of a subset C of a space will be written lin(C) and F(C)
respectively. If (£, t) is a space and F is a subspace of E, by (F, t) we mean F endowed
with the topology induced by t, which we denote t \ F when we refer to it. If t and t' are
two topologies on E we write t<t' if t is coarser than t'. If E and F are spaces and s/ is
a saturated family of bounded subsets of E covering it, we denote by L^(E,F) the space
of linear continuous operators from E into F endowed with the topology of uniform
convergence on the elements of si'. We will denote by EeF the e-product of Schwartz of
the spaces E and F as in [18, vol. II, p. 242].

A space E is said to satisfy the countable neighbourhood property (c.n.p.) if for every
sequence ([/„) of 0-neighbourhoods in E there are cn>0 such that U = r\™=lcnUn is a 0-
neighbourhood in E, or equivalently if for every sequence (pn) in cs(E) there are cn>0
and pecs(E) such that pnScnp, n = l,2,... (see [11, 4.8.]). Floret proved in [11] that the
class of spaces satisfying the c.n.p. is stable under forming subspaces, quotients,
completions and countable inductive limits. A large and useful class of spaces enjoying
this property is provided by the (gDF)-spaces. An exhaustive study of (gDF) and (df)-
spaces can be found in [17, Ch. 12], and we refer the reader to it.

Spaces satisfying the c.n.p. have appeared widely in applications. They appear with
the name of class (Q) in the book of De Wilde [9] in a study of the stability of spaces
with C-web and Suslin spaces. They have been used in infinite holomorphy (see [6] and
[22] for instance). Their incidence in the commutability of inductive limits and tensor
products occurs in [11], [14] and [15]. Spaces satisfying the c.n.p. are utilized in the
study of compactness and weak compactness of sets of operators in [24] and [25]. In
[10] S. Dierolf extensively studies the c.n.p. in the context of spaces of continuous linear
mappings. Colombeau assumes the c.n.p. and other condition in a real space to obtain
extensions of the classical Borel Theorem on C°° functions with a given sequence of
derivatives at a certain point in [5]. Recently in [2] we were able to extend some
projective descriptions of weighted inductive limits given in [1] to spaces of continuous
functions with values in spaces satisfying the cn.p. In view of all this it is our impression
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that spaces satisfying the c.n.p. deserve some attention. In Section 1 we recall some
hereditary properties, and include some counter-examples clarifying the relation of the
c.n.p. and (gDF)-spaces, answering questions of Hollstein and Ruess. In Section 2 we
give a characterization in terms of tensor products and applications of it.

1. Properties and examples

1.1. The following properties can be easily verified: (i) A metrizable space satisfies
the c.n.p. if and only if it is normable.

(ii) Let £ and F be spaces and si a saturated family of bounded subsets of £
covering it. The space L^(E,F) satisfies the c a p . if and only if F and E' endowed with
the topology of the uniform convergence on the elements of si satisfy the c.n.p.

(iii) If E and F are spaces satisfying the c.n.p., then £® n F, £®8£, £® n F and EeF
satisfy the c.n.p.

(iv) Let £ be a space, then (£, a(E, £')) satisfies the c.n.p. if and only if £ is finite
dimensional.

(v) If X is a Hausdorff completely regular space, then the space of continuous
functions on X endowed with the compact open topology is a (DF)-space if and only if
it satisfies the c.n.p.

1.2. By a three-space-problem we understand the following situation: Let F be a
closed subspace of a space (£, t). Suppose that (F,t) and (E/F,t) satisfy a certain
property (P), does (£, t) satisfy property (P)?. The example 3.5 in [23] shows that the
three-space-problem is in general not true for (gDF)-spaces. In contrast to this we have
that it is true for (P) = c.n.p. A proof of this result can be seen in [10, 2.4.].

1.3. The class of spaces satisfying the c.n.p. which are hereditary Lindeloff seems to
be important in infinite holomorphy, since every open subset of a space with these
properties is "uniformly open", i.e. there is pecs(E) such that it is open in the
seminormed space (£, p) (see [6]). Since every open subset of a Suslin space is Lindeloff,
the class (QS) of all^Suslin spaces satisfying the c.n.p. is a rich subclass of the original
one with "good" hereditary properties. More precisely, recalling the properties of Suslin
spaces included in [28, Ch. I §4.4] and [9, Ch. VII], we have: (i) Strong duals of Frechet
Montel spaces and countable inductive limits of separable Banach spaces belong to
(QS). (ii) The dual of every metrizable separable space endowed with the topology of
precompact convergence belongs to (QS). (iii) The class (QS) is stable under forming
separated quotients and countable inductive limits, (iv) The projective and injective
tensor product of spaces belonging to (QS) belong to (QS). This is a consequence of 1.1
(iii) and [27, Theorem 3 and Corollary 1.3]. (v) if £ is a separable metrizable space and
F is a separable Banach space, then LC(E,F) belong to (QS), where c is the class of
precompact subsets of £. (vi) if £ is a separable Frechet space and F is a sequentially
complete space in (QS), then LC(E, F) belongs to (QS). (vii) If £ is a separable Frechet
space and F is a complete space in (QS), then E'c®eF belongs to (QS).

1.4. A space satisfying the c.n.p. without a fundamental system of bounded sets.
In [11] Floret gave an example of this type which was not correct. We modify his
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idea to obtain a new example: Let / be a non countable set of indices. We set

K(" = {x e K'| {i e /1x(0 ± 0} is finite}

KU] = {ueK'\{iel\u(i)i=0} is countable}.

For every u e Kin we define

P.W=I(|*(0«(0|:«e/), for each xeK<".

We consider the space K{1) endowed with the locally convex topology defined by the
system of seminorms {pu\ueKin}.

Let B be a bounded subset of K{1). Then there is a finite subset J of I such that x(i) = 0
for every xeB and ieI\J. If it is not true we can determine a sequence (xn) in B
and a sequence (in) in / such that xn(in)^0, n = l,2, For every positive integer n,
let yn be the element of K(I) such that yn(in) = xn(in) and yn(i) = 0 if i^iB. The set D =
{yn\n = 1,2,...} is bounded in K(/) since B is bounded. Now taking veKln defined by
v(i) = n\xn(in)\~

1 if i = in, n = l,2,..., and v(i) = 0 iel, i=hin, n = l , 2 , . . . , we have tha t
pv(yn) = n, n=l,2,..., which is a contradiction. Thus KU) can not be covered by a
sequence of bounded subsets.

We shall see that K(I) satisfies the c.n.p. We take a sequence (uk) in K[n and we set
Ik = {iel\uk(i)j=0} and J — <uk

x'=iIk, which is a countable subset of/. We put vk to denote
the element of KJ restriction of uk to J. The topology of /C(/) induces on K{J) the finest
locally convex topology, which coincides with the normal topology with respect to its a-
dual KJ (see [18, Vol. I, p. 406]), and satisfies the c.n.p. since it is a (DF)-space. Thus we
can determine weKJ and ck>0 such that

for every x e KlJ) and k = 1,2,
If we take now u e / C m defined by v(i) = w(i) if ieJ and v(i) = 0 if ie'l\J, we have tha t

p U t (x )^c t p u (x ) for every xe/C ( / > and fc= 1,2,...

1.5 A closed subspace of a (gDFj-space which is not a (gDF)-space but is a (df)-space.
Semi-Montel (g£)F)-spaces are called (DCF)-spaces by Hollstein in [14]. It is proved

there that every closed subspace of a (DCF)-space is also a (DCF)-space. The situation
for (gDFj-spaces is different.

We set G=(<fp)(JV), the countable direct sum of copies of the Banach space £p, with
l<p<co, and Gn = ®"=1/P. There is a classical example of Grothendieck, [12], of a
closed subspace F of G such that the topology t induced by G is strictly coarser than
the topology t' of the inductive limit indFnGn. In this case it is easy to see that the
topologies t and t' have the same bounded subsets and coincide on them. Hence (F, t) is
not a (gDF)-space. On the other hand, since G is a reflexive (LB)-space we have that
(F, t) is a (40-space (see [16, p. 262]) and satisfies the c.n.p. as a subspace of G.

A similar situation has been considered in [19].
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1.6. A space satisfying the c.n.p. with a fundamental system of bounded sets whose
strong dual is not locally complete.

Grothendieck in [12] gives an example of a closed subspace F of £=(<fc0)(JV) such that
if t is the topology induced by E on F and t' the topology of the inductive limit of the
sequence F, = F n ( © ] = 1 r ) , n = l,2,..., there is a linear form g on F which is t'-
continuous but not t-continuous (see also [28, Ch. II §5,7]). Clearly (F, t) is a space
satisfying the c.n.p. with a fundamental system of bounded sets. Moreover t|Fn = t'|Fn,
n = l,2,.... Thus for every positive integer n the restriction of g to (Fn,t\Fn) is linear
and continuous, therefore there is a continuous linear form /„ on (F, t) whose restriction
to Fn coincides with g. Since every bounded subset of (F, t) is localized in some Fn, we
have that the sequence n(fn—g) converges to zero uniformly on the bounded subsets of
(F, t). Then the strong dual of (F, t) is not locally complete.

In this case the strong dual of (F, t) is a non-complete metrizable space, and therefore
(F, t) is not a (d/)-space.

We observe that this example shows that the countable neighbourhood property is
not a "quasi-barrelled" type condition.

1.7. An ^""-barrelled space with a fundamental system of bounded sets, hence a (df)-
space, which doed not satisfy the c.n.p.

Ruess in [25, p. 436] says that it is not known if spaces with these properties exist.
We consider an index set / = u" = 1 / n , with Indn+1 and In+l\In not countable. We

take £ = (f2(/) and consider the following seminorms: for a separable weakly bounded
subset A of E' = £\l), we set

pA(x) = sup{\(x,u>\:ueA}, xeE,

and for every positive integer n we set

We denote by t the locally convex topology in E generated by the family of seminorms

{pn | n = 1,2,...}u{pA | A c E' weakly bounded and separable}.

Clearly (E, t) is ^""-barrelled and has a fundamental system of bounded sets.
Suppose that (E,t) satisfies the c.n.p., there are cn>0, «=1,2,. . . , and pecs(E) such

that

Pn(x)^cnp{x) for every xeE.

Therefore p is a continuous norm on E, but this is not possible. Indeed, since p is a
continuous norm there exist a positive integer k, a positive constant C and a separable
weakly bounded subset A of E' such that p^C(pk+pA). Since A is separable and every
element of £2(I) has countably many coordinates distinct from zero, we can determine
a countable subset J of 1 such that u(i) = 0 for every ieI\J and ueA. By the very
construction there exists ioeI\(Ik<uJ). Taking the element y in E with y(io) = 1 and y(i)=0
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if i = J0, we obtain that

0<p{y)£C{sap{\<y,u>\:ueA}+pt(y)} = 0,

which is a contradiction.
This example appears in [3] with a different purpose and it is a modification of

another one given in [19].

2. Incidence in tensor products

In [11] Floret proves that for every tensor norm topology a, if £ is a space satisfying
the c.n.p. and (Fn) is a sequence of spaces, then the algebraic equality £ ® , ( © " = i F J =
®?=i(E@xFn) holds also topologically. This is a result of Grothendieck for a = n, e
and £ a (DF)-space. In [18] Kothe, with the same conditions, proves that (©"= % Fn)eE
is isomorphic to ©™=1 (FnsE). We shall show that the class of spaces satisfying the c.n.p.
is in some sense the best possible in such theorems.

Theorem 2.1. A space E satisfies the c.n.p. if and only if £ ® K/C<N) = £(JV) holds topologically.

Proof. The necessary condition is the result of Grothendieck. Conversely we con-
sider E®nK

(N) and EiN) algebraically equal by means of the linearization of the bilinear
mapping B from ExKiN) into E{N) defined by B(x,(an))=(anx), for every xeE and
(an) e KiN\ The equality holds topologically if and only if B is continuous. We take now a
sequence (Un) of absolutely convex O-neighbourhoods in E. By [18, §18,5. (8)] ©"=i Un

is a O-neighbourhood in E(N). Since B is continuous there are cn>0, n = l , 2 , . . . and an
absolutely convex O-neighbourhood U such that, if F(cn) = {a6/C| |a |^cn}, n = l , 2 , . . . ,
we have that

B[Ux[ e K ( c " ) J) c
A ® U"

from where it follows that

and hence E satisfies the c.n.p. This completes the proof.

By a well-known result of Hollstein KN®aK
iN) is not barrelled (see f.i. [17, p. 333]).

In [4] we prove that for a metrizable space E, E(g>xK
{N) is barrelled if and only if E is

normable. In view of 1.1 (i) our next corollary improves this result.

Corollary 2.2. Let E be a space. £®,,JC(N> is barrelled if and only if E is barrelled and
satisfies the c.n.p.

Proof. If E is barrelled and satisfies the c.n.p., then E®nK
{N) = Eit') is also barrelled.

Conversely the barrelled space £®nX(JV) is the increasing union of the spaces Gn =
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E®®n
j=lK, n = l ,2 , . . . The space Gn endowed with the induced topology coincides

with ®"j=1E algebraically and topologically. By [28, Ch. I §3,1.(9)], the space E®nK
iN)

is the inductive limit of the sequence (Gn), and Theorem 2.1 can be applied. This
completes the proof.

Proposition 2.3. Let F be a barrelled (DF)-space with no total bounded subset, and E a
space. Then E(g>nF is barrelled if and only if E is barrelled and satisfies the c.n.p.

Proof. If F is barrelled (DF)-space with no total bounded subset, then F contains a
complemented subspace isomorphic to K{N). Therefore if E®nF is barrelled, then
E®nK

m is barrelled and we can apply Corollary 2.2. Conversely let (Bn) be a
fundamental sequence of bounded subsets of F and T a barrel in E(g>nF. We set

Vn = {xeE\x®yeT for every yeBn}.

The set Vn is absolutely convex and closed in E. Moreover it is absorbent. Indeed, take
z e E and set

G{z) = {yeF\z®yeT}

which is an absorbent closed absolutely convex subset of F, and hence a 0-
neighbourhood in F. Thus there is a > 0 such that BncaG(z), and consequently zeaVn.
Since E is barrelled, Vn is a 0-neighbourhood in E, n = l ,2 , . . . We apply the c.n.p. to
obtain an absolutely convex 0-neighbourhood V in E and cn>0, n = l ,2 , . . . , such that
Vcn?=lcnVn. Now the set t/ = r(un

oo
=1cn"1Bn) is a 0-neighbourhood in F and

r(V<S)U)czT. This completes the proof.

The following result clarifies our former Proposition. It is a special case of [7,
Theorem 6].

Proposition 2.4. Let E be a space satisfying the c.n.p. and F a (DF)-space. If E and F are
barrelled (resp. bornological, quasi-barrelled), then E®nF is barrelled (resp. bornological,
quasi-barrelled).

Now we shall give an extension of Hollstein's abstract version of the theorem of
Mujica [21] on the commutability of inductive limits and injective tensor products. We
refer the reader to [15] for e-spaces and to [16] for inductive limits with a local
partition of unity.

Proposition 2.5. Let E be a space satisfying the c.n.p. and the Schwartz approximation
property. Let F = ind Fn be a separated inductive limit. If

(i) E is an e-space, or
(ii) F has a local partition of unity,

then ind EeFn is isomorphic to a dense topological subspace of Ee ind Fn.
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Proof. Let jn:Fn->F and j n n + l:Fn->Fn+l be the canonical injections. The mappings
\dEejn:EeFn-*EeF and idEejnn+1:EeFn-*EeFn+l are injective, linear, continuous and
satisfy (idEEJn+l)°(idEsjnn+i) = idEejn. By the universal property of inductive limits
there is a continuous linear injective mapping from ind EsFn into EeF. We prove that this
mapping is also open. Since E satisfies the Schwartz approximation property, £ ® F is
dense in EeF and £ ® F n is dense in £eFn, n = l , 2 , . . . , from where it follows that
u " = 1 £ ® F n , which can be identified £ ® F , is a dense subspace of ind£eFn. We set
H = u™=1EeFn and L = E®F considered as subspaces of £eF. We denote by t the
topology of £eF and by t' the topology of ind£eFn in H. Clearly t' is finer than the
topology t\H, and (L,t\L) coincides with £®£F. Since the injections

E®EFn^EeFn^{H,t'),n= 1,2,...,

are continuous, if we denote by t" the topology on L such that (!,£") = ind £®EFn, we
have that £|L<t'|L-<t". Under condition (i) or (ii) t\L coincides with t", by [15,
Proposition 4.3.] and [16, Proposition 3.2.] respectively. Since t' is finer than t\H on H
and L is a t'-dense subspace of H we can apply [1, Lemma 1.2] to obtain that t' = t\H,
and thus ind £eFn is a topological subspace of £eF. This completes the proof.

The Banach £-spaces are the i f "-spaces, [15], therefore we have

Corollary 2.6. If E is an 3"°-space and F = indFn is a separated inductive limit, then
ind £eFn is a dense topological subspace of EEF.

Corollary 2.7. If E is an Z£™-space and F is an (LF)-space, then EeF is barrelled.

Proof. By Corollary 2.6 EeF contains a dense subspace which is an (LF)-space and
therefore barrelled. This completes the proof.

Now we consider the barrelledness or quasi-barrelledness of the s-product of an <£M-
space and a barrelled or quasi-barrelled space respectively. In [7] Defant and Govaerts
prove that if £ is an i f °°-space then £® e F is quasi-barrelled if and only if F is quasi-
barrelled and its strong dual F'b has the property (B) of Pietsch. Modifying the proof of
[7, Proposition 4] one can show that if £ is a space with the bounded approximation
property, then £ ® e F is a large subspace of £ E F , i.e., every bounded subset of £eF is
included in the closure of a bounded subset of £ ® e F . Since every i£"-space satisfies the
bounded approximation property we obtain.

Proposition 2.8. / / £ is an ££"°-space, then EeF is quasi-barrelled if and only if F is
quasi-barrelled and F'b has the property (B) of Pietsch.

Mendoza proves in [20] that co(F) is barrelled if and only if co(F) is quasi-barrelled
and F is barrelled. Defant and Govaerts ask in [8] if a similar result is true for £eF, £
being an i f "-space. This is not the case. By [26] every infinite dimensional separable
Banach space contains a dense hyperplane F whose absolutely convex compact subsets
are finite dimensional. In this case F is barrelled and £eF coincides with £ ® , F which is
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quasi-barrelled but not barrelled if E is an infinite dimensional if "-space, as can be
seen applying [17, 21.3.3] (a situation also considered in [10, 4.9]). A general result can
be obtained with a completeness assumption on F.

Proposition 2.9. / / E is an J£""-space and F is a locally complete space, then EeF is
barrelled if and only if F is barrelled and F'b has the property (B) of Pietsch.

Proof. If F is locally complete, then EsF is locally complete by [8, Proposition 1.3].
Since every locally complete quasi-barrelled space is barrelled, it is enough to apply
Proposition 2.8. This completes the proof.

Remark 2.10. (a) Proposition 2.9 does not cover completely the barrelledness of the
e-pdoduct of an S£°°-space and a barrelled space. If F is a non regular (LF)-space, then
EeF is barrelled by Proposition 2.7, but F is not locally complete.

(b) The spaces coeF and co(F) are different in general. More precisely, the mapping
A:coeF^co{F) defined by A(u) = (u(e'n)), for every uecoeF, where e'n, n = l,2,..., are the
canonical unit vectors of S1 = c'o, is a topological isomorphism into a sequentially dense
subspace of co(F), and A is onto if and only if F is locally complete.
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