MAXIMAL (k, l)-FREE SETS IN $\mathbb{Z} / p \mathbb{Z}$ ARE ARITHMETIC PROGRESSIONS

Alain Plagne

Abstract

Given two different positive integers k and l, a (k, l)-free set of some group ($G,+$) is defined as a set $\mathcal{S} \subset G$ such that $k \mathcal{S} \cap l \mathcal{S}=\emptyset$. This paper is devoted to the complete determination of the structure of (k, l)-free sets of $\mathbb{Z} / p \mathbb{Z}$ (p an odd prime) with maximal cardinality. Except in the case where $k=2$ and $l=1$ (the so-called sum-free sets), these maximal sets are shown to be arithmetic progressions. This answers affirmatively a conjecture by Bier and Chin which appeared in a recent issue of this Bulletin.

1. Introduction

Given two different positive integers k and l and an additively written group G, we say that a subset \mathcal{S} of G is a (k, l)-free set (Bier and Chin call them rather (k, l)-sets in [1]) if

$$
k \mathcal{S} \cap l \mathcal{S}=\emptyset
$$

As usual, the j-fold sum $j \mathcal{S}$ is defined as

$$
j \mathcal{S}=\left\{s_{1}+\cdots+s_{j} \mid s_{1}, \ldots, s_{j} \in \mathcal{S}\right\} .
$$

Note that $(2,1)$-free sets are known under the name of sum-free sets. They already have been widely studied (see [10, Chapter 2] or the last paper by Yap on the subject [11]).

In this paper we consider the case of cyclic groups with odd prime order $\mathbb{Z} / p \mathbb{Z}$ (p prime) and investigate their maximal (k, l)-free subsets (in the sense of $|\cdot|$). Clearly, the existence of a (non-void) (k, l)-free set implies that

$$
\begin{equation*}
k \neq l \bmod p . \tag{1}
\end{equation*}
$$

In [1], Bier and Chin study the maximal cardinality of a (k, l)-free set. They prove the following result.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

Theorem 1.1. Given p an odd prime, k and l two integers subject to (1), then the maximal cardinality of a (k, l)-free set in $\mathbb{Z} / p \mathbb{Z}$ is

$$
\begin{equation*}
\left\lceil\frac{p-1}{k+l}\right\rceil . \tag{2}
\end{equation*}
$$

Furthermore, these authors investigate the structure of maximal (k, l)-free sets in $\mathbb{Z} / p \mathbb{Z}$. In this paper, a (k, l)-free set \mathcal{S} is said to be maximal if it has maximal cardinality, that is if, for any (k, l)-free set \mathcal{T}, one has $|\mathcal{S}| \geqslant|\mathcal{T}|$. Bier and Chin prove that if

$$
\begin{equation*}
p-1-(k+l)\left(\left\lceil\frac{p-1}{k+l}\right\rceil-1\right)<k+l-1 \tag{3}
\end{equation*}
$$

then any maximal (k, l)-free set is an arithmetic progression. This is a significant restriction because if $p=0 \bmod (k+l)($ respectively $p=1 \bmod (k+l))$ then the left-hand side of (3) is $k+l-1$ (respectively $k+l)$. The case $p=0 \bmod (k+l)$ is easy to deal with since the primality of p implies clearly $p=k+l$. Then by (2), maximal (k, l)-free sets have then cardinality 1 and are consequently (trivial) arithmetic progressions. The case $p=1 \bmod (k+l)$ is more serious. In particular, it is known [10] that if $p=1 \bmod 3$, then there are maximal sum-free sets which are not arithmetic progressions, as shown by the following example

$$
\{q, q+2, q+3, \ldots, 2 q-1,2 q+1\}
$$

where $q=(p-1) / 3$.
Nonetheless, Bier and Chin conjecture the remarkable fact that, except for sum-free sets (that is, as soon as $\max (k, l) \geqslant 3$), any maximal (k, l-free set of any cyclic group of prime order is an arithmetic progression.

The purpose of this note is to prove this conjecture. Section 3 of the paper gives a complete proof of the following theorem.

THEOREM 1.2. Let p be an odd prime and let k, l be positive integers which are different modulo p and which satisfy $\max (k, l) \geqslant 3$. Then any maximal (k, l)-free set in $\mathbb{Z} / p \mathbb{Z}$ is an arithmetic progression.

As will clearly follow from the proof, for our method Bier and Chin's exceptional cases are run-of-the-mill cases.

2. TOOLS

Let us recall first that an arithmetic progression is a set of the type

$$
\{a+j d \mid j=0,1, \ldots, s\}
$$

for some integers a, s and d and that an almost-progression is an arithmetic progression from which one element has been removed. In particular an arithmetic progression is an almost-progression.

The useful tools for this study are the addition theorems. We refer to one of the two books $[6,7]$ for a general account on this topic. The first result of this type is almost two hundred years old. It was first proved by Cauchy ([2]) and rediscovered more than one century later by Davenport ($[3,4]$). It is now known as the Cauchy-Davenport Theorem.

TheOrem 2.1. Let \mathcal{A} and \mathcal{B} be non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$ (p prime) then

$$
|\mathcal{A}+\mathcal{B}| \geqslant \min (p,|\mathcal{A}|+|\mathcal{B}|-1) .
$$

Vosper $[8,9]$ studied the equality case. He obtained the following characterisation.
Theorem 2.2. Let \mathcal{A} and \mathcal{B} be non-empty subsets of $\mathbb{Z} / p \mathbb{Z}$ (p prime) such that

$$
|\mathcal{A}+\mathcal{B}|=|\mathcal{A}|+|\mathcal{B}|-1
$$

then one of the following possibilities occurs.
(i) $\mathcal{A}+\mathcal{B}=\mathbb{Z} / p \mathbb{Z}$,
(ii) \mathcal{A} or \mathcal{B} has cardinality one,
(iii) \mathcal{A} coincides with the complementary set of $c-\mathcal{B}$ for some $c \in \mathbb{Z} / p \mathbb{Z}$,
(iv) \mathcal{A} and \mathcal{B} are arithmetic progressions with the same common difference.

A step beyond Vosper's result was done by Hamidoune and Rødseth ([5]) who proved the following crucial result for our work.

Theorem 2.3. Suppose that \mathcal{A} and \mathcal{B} are subsets of $\mathbb{Z} / p \mathbb{Z}$ with $|\mathcal{A}|,|\mathcal{B}| \geqslant 3$ and that

$$
7 \leqslant|\mathcal{A}+\mathcal{B}|=|\mathcal{A}|+|\mathcal{B}| \leqslant p-4
$$

then \mathcal{A} and \mathcal{B} are almost-progressions with the same difference.
From these results, we deduce the following key-corollary.
Corollary 2.4. Suppose that \mathcal{A} and \mathcal{B} are subsets of $\mathbb{Z} / p \mathbb{Z}$ with $|\mathcal{A}| ;|\mathcal{B}| \geqslant 3$, that $7 \leqslant|\mathcal{A}+\mathcal{B}| \leqslant p-4$ and that \mathcal{A} is not an almost-progression. Then

$$
|\mathcal{A}+\mathcal{B}| \geqslant|\mathcal{A}|+|\mathcal{B}|+1
$$

3. Proof of the structural result

In this section we prove our Theorem 1.2 stated in the Introduction. In the sequel, we suppose without loss of generality that $k>l$ and recall that excluding the case of sum-free sets leads to

$$
\begin{equation*}
k+l \geqslant 4 \tag{-4}
\end{equation*}
$$

We proceed by contradiction and suppose that we have a maximal (k, l)-free set $\mathcal{S} \subset \mathbb{Z} / p \mathbb{Z}$ which is not an arithmetic progression. Write

$$
\begin{equation*}
s=|\mathcal{S}|=\left\lceil\frac{p-1}{k+l}\right\rceil \tag{5}
\end{equation*}
$$

as given by Bier and Chin's Theorem 1.1. Since any set with at most two elements is an arithmetic progression, we may freely assume that $s \geqslant 3$. This with assumption (4) shows that

$$
p \geqslant 11 .
$$

Since \mathcal{S} is a (k, l)-free set, we have $k \mathcal{S} \cap l \mathcal{S}=\emptyset$ thus $0 \notin k \mathcal{S}-l \mathcal{S}$ and

$$
\begin{equation*}
|k S-l S| \leqslant p-1 \tag{6}
\end{equation*}
$$

We may apply the Cauchy-Davenport Theorem, that yields

$$
\begin{equation*}
|k S-l \mathcal{S}| \geqslant|(k-1) \mathcal{S}-l \mathcal{S}|+|\mathcal{S}|-1 \tag{7}
\end{equation*}
$$

3.1. Proving that \mathcal{S} is an almost-progression. We now prove that \mathcal{S} is an almost-progression. Indeed suppose the contrary and assume first $s \geqslant 4$. In this case, the Cauchy-Davenport Theorem shows that

$$
|\mathcal{S}-\mathcal{S}| \geqslant \min (p, 2|\mathcal{S}|-1) \geqslant 7
$$

and thus for any $1 \leqslant i \leqslant k, 1 \leqslant j \leqslant l$,

$$
|i \mathcal{S}-j \mathcal{S}| \geqslant|\mathcal{S}-\mathcal{S}| \geqslant 7 .
$$

Moreover, by (6) and (7), we get for $0 \leqslant i \leqslant k-1,0 \leqslant j \leqslant l$, that

$$
|i \mathcal{S}-j \mathcal{S}| \leqslant|(k-1) \mathcal{S}-l \mathcal{S}| \leqslant p-|\mathcal{S}| \leqslant p-4
$$

We are thus in a position to apply Corollary 2.4 to any of the $i \mathcal{S}-l \mathcal{S}(2 \leqslant i \leqslant k-1)$ and to infer

$$
\begin{equation*}
|i S-l S| \geqslant|(i-1) \mathcal{S}-l \mathcal{S}|+|\mathcal{S}|+1 \tag{8}
\end{equation*}
$$

and to any of the $\mathcal{S}-j \mathcal{S}(1 \leqslant j \leqslant l)$ to get

$$
\begin{equation*}
|\mathcal{S}-j \mathcal{S}| \geqslant|\mathcal{S}-(j-1) \mathcal{S}|+|\mathcal{S}|+1 \tag{9}
\end{equation*}
$$

Summing these inequalities for $2 \leqslant i \leqslant k-1$ and $1 \leqslant j \leqslant l$, we obtain

$$
|(k-1) \mathcal{S}-l \mathcal{S}| \geqslant(k+l-2)(|\mathcal{S}|+1)+|\mathcal{S}|
$$

Comparing this with (6) and (7) gives

$$
p-1 \geqslant|k \mathcal{S}-|\mathcal{S}| \geqslant(k+l)| \mathcal{S}|+k+l-3>(k+l)| \mathcal{S} \mid
$$

by (4), contrary to (5).

In the case $s=3$, we have to be more careful because of the restrictions on the application of the Hamidoune-Rødseth Theorem. Note that we still have

$$
\begin{equation*}
|\mathcal{S}-\mathcal{S}| \geqslant 7=2|\mathcal{S}|+1 \tag{10}
\end{equation*}
$$

This follows from the following fact that $|\mathcal{S}-\mathcal{S}|$ is unchanged by a translation or by the multiplication of all the elements of \mathcal{S} by a fixed non-zero element of $\mathbb{Z} / p \mathbb{Z}$, thus we may suppose that \mathcal{S} is of the form $\{0,1, x\}$ with $2 \leqslant x \leqslant p-1$. In this case $\mathcal{S}-\mathcal{S}=\{-x, 1-x,-1,0,1, x-1, x\}$. If two of these elements are equal, we have either $x=p-1, x=(p+1) / 2$ or $x=2$, corresponding to arithmetic progressions with respective differences $1,(p+1) / 2$ and 1 , that is to cases excluded by assumption. This proves (10).

Unfortunately, with (6) and (7) we only get

$$
|(k-1) \mathcal{S}-l \mathcal{S}| \leqslant p-3
$$

which is not sufficient to apply Corollary 2.4 to $|(k-1) \mathcal{S}-l \mathcal{S}|$. Instead, we can use Vosper's Theorem and obtain

$$
|(k-1) \mathcal{S}-l \mathcal{S}| \geqslant|(k-2) \mathcal{S}-l \mathcal{S}|+|\mathcal{S}| .
$$

Still, equations (8) for $2 \leqslant i \leqslant k-2$ and (9) for $1 \leqslant j \leqslant l$ remain valid. By adding all these inequalities and comparing to (6), what we get is only

$$
p-1 \geqslant|k \mathcal{S}-l \mathcal{S}| \geqslant(k+l)|\mathcal{S}|+k+l-4 .
$$

If $k+l>4$, the contradiction with (5) is immediate. The case $k+l=4$ (or equivalently $k=3$ and $l=1$) is not so direct. Thanks to (5), we already know that $p=13$ (recall that $s=3$). Therefore, we are looking for a (3,1)-free set of cardinality 3 in $\mathbb{Z} / 13 \mathbb{Z}$. By multiplying by a non-zero residue modulo p, one can restrict the search to sets \mathcal{S} of the form $\{1, x, y\}$ with $2 \leqslant x<y \leqslant 12$. Now, an exhaustive search by hand (no computer at all is needed!) can be done easily by writing that

$$
3 \mathcal{S}=\{3,2+x, 2+y, 1+2 x, 1+x+y, 1+2 y, 3 x, 2 x+y, 2 y+x, 3 y\}
$$

and $3 \mathcal{S} \cap \mathcal{S}=\emptyset$. We find that, up to multiplication by a non-zero residue modulo p, the only possible subsets \mathcal{S} are $\{1,2,8\}$ and $\{1,4,11\}$ (this corresponds to 6 solutions for \mathcal{S} in the form required, $\{1, x, y\}$ with $2 \leqslant x<y \leqslant 12$). Since these solutions are arithmetic progressions (with respective differences 7 and 10), we come to a contradiction.

This closes the proof that \mathcal{S} is an almost-progression.
3.2. End of the proof. Since \mathcal{S} is an almost-progression, we can write it, for some a and d in $\mathbb{Z} / p \mathbb{Z}(d \neq 0)$, in the form

$$
\mathcal{S}=\{a+j d, j \in \mathcal{E}\}
$$

with $\mathcal{E}=\{-t, \ldots,-1,1, \ldots, u\}$ where $t, u>0$ (this follows from the fact that \mathcal{S} is not an arithmetic progression) and $t+u=|\mathcal{E}|=s$. Up to changing d into $-d$, we may assume $u \geqslant t$. Also, multiplying \mathcal{S} by a non-zero residue modulo p preserves the (k, l)-freeness (and the fact that \mathcal{S} is an almost-progression). We may thus assume $d=1$.

Suppose first that $t=1$. This implies $u \geqslant 2$. Then, by induction it is readily seen that (for any $k, l \geqslant 1$)

$$
k \mathcal{S}=\{k a\}+\{-k,-k+2, \ldots, k u\}
$$

and

$$
l S=\{l a\}+\{-l,-l+2, \ldots, l u\}
$$

We now show that

$$
\begin{equation*}
k a-k+1, l a-l+1 \notin k \mathcal{S} \cup l \mathcal{S} . \tag{11}
\end{equation*}
$$

Since the two proofs are identical, we only show that $k a-k+1 \notin k \mathcal{S} \cup l \mathcal{S}$. That $k a-k+1 \notin k \mathcal{S}$ is an immediate consequence of $k \mathcal{S} \neq \mathbb{Z} / p \mathbb{Z}$. Now suppose that $k a-k+1 \in$ $l \mathcal{S}$. If $k a-k+1=l a-l$, then $k a-k+3=l a-l+2 \in k \mathcal{S} \cap l \mathcal{S}$ (remember that $|\mathcal{E}| \geqslant 3$), a contradiction to the (k, l)-freeness. If $k a-k+1=l a-l+2$, then $k a-k+2=l a-l+3 \in k S \cap l \mathcal{S}$, another contradiction. Finally if $k a-k+1=l a-l+w$ with $3 \leqslant w \leqslant l(u+1)$, then $k a-k=l a-l+(w-1) \in k \mathcal{S} \cap l \mathcal{S}$, a contradiction again. This proves (11).

Now the two elements on the left-hand side of (11) are different. Indeed if it was not so, we would have $a=1$ (because $l-k$ is non-zero modulo p) and thus $0 \in \mathcal{S}$, which contradicts the (k, l)-freeness. What we obtain is therefore

$$
|k \mathcal{S}|+|l \mathcal{S}| \leqslant p-2
$$

But $|k \mathcal{S}|=k(u+1)$ and $|l \mathcal{S}|=l(u+1)$ and we get

$$
(k+l)(u+1) \leqslant p-2
$$

which implies that

$$
|\mathcal{S}|=(u+1) \leqslant \frac{p-2}{k+l}
$$

in contradiction with the value of s given by (5).
We now consider the case where $t \geqslant 2$; thus $u \geqslant 2$ also. We examine two different cases.

Suppose first that k and l are greater than or equal to 2 . We get

$$
k \mathcal{S}=\{k a\}+\{-k t,-k t+1, \ldots, k u-1, k u\}
$$

and

$$
l \mathcal{S}=\{l a\}+\{-l t,-l t+1, \ldots, l u-1, l u\}
$$

Now the (k, l)-freeness is equivalent to $0 \notin k \mathcal{S}-l \mathcal{S}$ which is equivalent to

$$
(l-k) a \notin k \mathcal{E}-l \mathcal{E}=\{-k t-l u,-k t-l u+1, \ldots, k u+l t-1, k u+l t\}=\mathcal{F} .
$$

Since by assumption ($l-k$) is non-zero modulo p, the existence of such an element a is guaranteed if and only if $|\mathcal{F}|<p$. As

$$
|\mathcal{F}|=(k u+l t)+(k t+l u)+1=(k+l)(t+u)+1=(k+l)|\mathcal{S}|+1,
$$

we obtain

$$
(k+l)|\mathcal{S}|+1<p
$$

in contradiction with (5).
The final case to consider is $k \geqslant 3$ and $l=1$. In this case,

$$
k \mathcal{S}=\{k a\}+\{-k t,-k t+1, \ldots, k u-1, k u\}
$$

and

$$
l \mathcal{S}=\mathcal{S}=\{a\}+\{-t, \ldots,-1,1, \ldots, u\} .
$$

We now observe that

$$
\begin{equation*}
a \notin k \mathcal{S} \cup \mathcal{S} \tag{12}
\end{equation*}
$$

Again $a \notin \mathcal{S}$ is immediate while $a \notin k \mathcal{S}$ follows from the fact that, should a belong to $k \mathcal{S}$ then either $a-1$ or $a+1$ would also belong to $k \mathcal{S}$ (the elements of $k \mathcal{S}$ are consecutive); but both $a-1$ and $a+1$ belong to \mathcal{S} and we would get $k \mathcal{S} \cap \mathcal{S} \neq \emptyset$ contrarily to the (k, l)-freeness. Thus (12) holds, which contradicts (5), as above.

The conclusion is that our hypothesis on \mathcal{S} was false or, in other words, that \mathcal{S} is an arithmetic progression. This finishes the proof of our Theorem.

References

[1] T. Bier and A.Y.M. Chin, 'On (k, l)-sets in cyclic groups of odd prime order', Bull. Austral. Math. Soc. 63 (2001), 115-121.
[2] A.L. Cauchy, 'Recherches sur les nombres', J. École Polytech. 9 (1813), 99-123.
[3] H. Davenport, 'On the addition of residue classes', J. London Math. Soc. 10 (1935), 30-32.
[4] H. Davenport, 'A historical note', J. London Math. Soc. 22 (1947), 100-101.
[5] Y.O. Hamidoune and $\emptyset . J$. Rødseth, 'An inverse theorem mod p ', Acta Arith. 92 (2000), 251-262.
[6] H.B. Mann, Addition theorems: the addition theorems of group theory and number theory, Interscience Tracts in Pure and Applied Mathematics 18 (John Wiley, New York, London, Sydney, 1965).
[7] M.B. Nathanson, Additive number theory: Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics 165 (Springer-Verlag, Berlin, Heidelberg, New York, 1996).
[8] A.G. Vosper, 'The critical pairs of subsets of a group of prime order', J. London Math. Soc. 31 (1956), 200-205.
[9] A.G. Vosper, 'Addendum to: "The critical pairs of subsets of a group of prime order", J. London Math. Soc. 31 (1956), 280-282.
[10] W.D. Wallis, A.P. Street and J.S. Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices, Lecture Notes in Mathematics 292 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
[11] H.P. Yap, 'Maximal sum-free sets in finite abelian groups. V', Bull. Austral. Math. Soc. 13 (1975), 337-342.

LIX

École polytechnique
91128 Palaiseau Cedex
France
e-mail: plagne@lix.polytechnique.fr

[^0]: Received 28th June, 2001
 The author was supported by the DGA-Recherche (France).

