REGULAR POLYGONS AND A PROPELLOR PROBLEM FOR CONVEX SETS IN THE PLANE

P.R. Scott

Abstract

We find the convex planar set of maximal area which is partitioned into subsets of equal area by a given propellor. The argument depends on the characterisation of an n-sided polygon which is circumscribed about a regular n-gon P_{n}, and inscribed in a regular n-gon Q_{n}, where P_{n} and Q_{n} are homothetic about their common centre.

1. Introduction

In 1963 Davis [1] described the following problem attributed to Ungar. A cross is defined as the union of two perpendicular segments in the plane. The boundary of a convex set K passes through the endpoints of the cross. If K is partitioned by the cross into four subsets of equal area, find the maximal area of K. Davis shows that the maximal area is assumed by a rectangle with sides parallel to the segments of the cross, and occurs when the segments of the cross bisect each other.

In this paper, we look at a natural analogue of the Ungar-Davis problem, the proof of which leads to some pretty geometry.

A set of n unit segments $O A_{1}, O A_{2}, \ldots, O A_{n}$ in the plane E^{2} meeting at equal angles of $2 \pi / n$ at common endpoint O is said to form an n-propeller. Point O is the centre and points $A_{i}(i=1,2, \ldots, n)$, are the endpoints of the propeller. To fix the scale, we shall assume that $O A_{i}=1$ for all i.

Let K be a compact convex set in E^{2} having area $A(K)$, and such that the boundary of K passes through the endpoints of the propeller.

We prove:
Theorem. If K is partitioned by an n-propeller into n subsets of equal area, then $A(K) \leqslant n \tan \pi / n$.

This result is best possible, and is assumed when and only when K is the regular n-gon with edges perpendicular to the segments of the propeller.

We observe that our result agrees with the conclusion of Davis in the case where the four arms of the cross have equal length. To establish this theorem we shall need the following lemma about regular polygons.

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/97 \$A2.00+0.00.

2. A Lemma about polygons

We say that the n-sided polygon S_{n} is inscribed in the n-sided polygon Q_{n} if just one vertex of S_{n} lies on each edge of Q_{n}, and circumscribed about the n-sided polygon P_{n} if just one vertex of P_{n} lies on each edge of S_{n}.

Lemma. Let $P_{n}=A_{1} A_{2} \ldots A_{n} A_{1}$ be a regular n-sided polygon with centre O, and $Q_{n}=B_{1} B_{2} \ldots B_{n} B_{1}$ a homothet of P_{n} about O having scale factor λ where $1<\lambda \leqslant \lambda^{*}=\sec ^{2}(\pi / n)$. Then for $1<\lambda<\lambda^{*}$ there are exactly two n-sided polygons S_{n} and S_{n}^{\prime} which can be circumscribed about polygon P_{n} and inscribed in polygon Q_{n} : these polygons are congruent and regular, centred at O, and each is the image of the other under reflection in any of the common lines of symmetry of polygons P_{n}, Q_{n}. For $\lambda=\lambda^{*}, S_{n}$ and S_{n}^{\prime} coincide.

We shall see that for $\lambda>\lambda^{*}$ it is not possible for an n-sided polygon to be circumscribed about polygon P_{n} and inscribed in polygon Q_{n}.

Proof: Let the vertices of P_{n}, Q_{n} be labelled in an anti-clockwise direction (see Figure 1). Let the edges of P_{n} which are adjacent to $A_{i} A_{i+1}$ be extended to meet the edge $B_{i} B_{i+1}$ of Q_{n} in points L_{i}, R_{i}, where $B_{i}, L_{i}, R_{i}, B_{i+1}$ now lie in order along this edge. We shall take the subscripts modulo n, reading $n+1$ as 1 . Suppose now that $S_{n}=X_{1} X_{2} \ldots X_{n} X_{1}$ is an n-sided polygon as described in the statement of the lemma, with X_{i} lying on edge $B_{i} B_{i+1}$ of Q_{n}. It is clear from the definition of inscribed and circumscribed that X_{i} must lie between L_{i} and R_{i}.

Figure 1. The case when $n=3$.
For the purpose of this proof, we scale the figure so that $B_{i} L_{i}=R_{i} B_{i+1}=1$ and set $L_{i} R_{i}=l$ for all i. Setting $L_{i} X_{i}=x_{i}$, then $X_{i} R_{i}=l-x_{i}$ for all i. Now for each $i, \triangle X_{i} R_{i} A_{i+1}$ is similar to $\triangle X_{i} B_{i+1} X_{i+1}$, since $R_{i} A_{i+1}$ is parallel to $B_{i+1} X_{i+1}$. Hence $X_{i} R_{i} / R_{i} B_{i+1}=X_{i} A_{i+1} / A_{i+1} X_{i+1}$. In the same way $\triangle X_{i} B_{i+1} X_{i+1}$ is similar
to $\triangle A_{i+1} L_{i+1} X_{i+1}$, since $A_{i+1} L_{i+1}$ is parallel to $X_{i} B_{i+1}$. Hence $X_{i} A_{i+1} / A_{i+1} X_{i+1}=$ $B_{i+1} L_{i+1} / L_{i+1} X_{i+1}$.

Combining these results gives

$$
\frac{X_{i} R_{i}}{R_{i} B_{i+1}}=\frac{B_{i+1} L_{i+1}}{L_{i+1} X_{i+1}}
$$

or

$$
\frac{l-x_{i}}{1}=\frac{1}{x_{i+1}}
$$

We thus obtain for all i,

$$
x_{i+1}=\frac{1}{\left(l-x_{i}\right)}
$$

Beginning at the point X_{1}, we now get:

$$
\begin{gathered}
L_{1} X_{1}=x_{1}=x \text { say, } X_{1} R_{1}=l-x, \\
L_{2} X_{2}=x_{2}=\frac{1}{l-x}, \quad X_{2} R_{2}=l-\frac{1}{l-x}=[[l, l-x]]_{2} \quad \text { say. }
\end{gathered}
$$

The double square bracket denotes a continued fraction, but with minus signs in place of the usual plus signs. We append the subscript 2 to denote the number of terms inside the square brackets. Similarly,

$$
L_{3} X_{3}=x_{3}=\frac{1}{[[l, l-x]]_{2}}, \quad X_{3} R_{3}=l-\frac{1}{[[l, l-x]]_{2}}=[[l, l, l-x]]_{3}
$$

and in general, we have

$$
\begin{aligned}
L_{i} X_{i} & =x_{i}=\frac{1}{[[l, l, \ldots, l, l-x]]_{i-1}} \\
X_{i} R_{i} & =l-\frac{1}{[[l, l, \ldots, l, l-x]]_{i-1}}=[[l, l, \ldots, l, l-x]]_{i}
\end{aligned}
$$

Since the polygon R_{n} closes, after n steps we must have $L_{n+1} X_{n+1}=L_{1} X_{1}$, or

$$
x=\frac{1}{[[l, l, \ldots, l, l-x]]_{n}}
$$

Suppose now that x^{*} is a solution of

$$
x=\frac{1}{l-x} .
$$

We observe that if x^{*} is also a solution of

$$
x=\frac{1}{[[l, l, \ldots, l, l-x]]_{k}},
$$

then x^{*} is a solution of

$$
x=\frac{1}{l-\frac{1}{[[l, l, \ldots, l, l-x]]_{k}}}=\frac{1}{[[l, l, \ldots, l, l-x]]_{k+1}}
$$

It follows by induction that for all values of n, the required condition for the polygon R_{n} to close is that x be a positive solution x^{*} of the equation $x=(l-x)^{-1}$, that is, a solution of

$$
x^{2}-l x+1
$$

Hence

$$
x=\frac{1}{2}\left(l \pm \sqrt{l^{2}-4}\right)
$$

It is now clear that there are two positive solutions $x_{1}=x^{*}$, symmetrically placed about the centre of the segment $L_{1} R_{1}$. These solutions are imaginary for $l<2$ and coincide when $l=2$. In this last case, the vertices of S_{n} are the midpoints of the segments $L_{i} R_{i}$, and it is easily checked that in this case the enlargement factor in obtaining Q_{n} from P_{n} is λ^{*}. From the proof, $x^{*}=x=x_{1}=x_{2}=\ldots=x_{n}$, so the polygons S_{n}, S_{n}^{\prime} are regular, and by symmetry, centred at O as required.

It is interesting to observe that the equation $x^{2}-l x+1$ can be written as

$$
x+\frac{1}{x}=l .
$$

Thus if x^{*} is a solution, then so is $1 / x^{*}$.

3. Proof of the Theorem

Since K is convex, it is bounded by support lines a_{1}, \ldots, a_{n} passing through A_{1}, \ldots, A_{n} respectively, forming a polygon R_{n} having $A\left(R_{n}\right) \geqslant A(K)$. We first show that it is sufficient to establish the theorem when K is such a polygon R_{n}.

Let the 'sectors' $A_{1} O A_{2}, A_{2} O A_{3}, \ldots, A_{n} O A_{1}$ of K each have area α. Since $A\left(R_{n}\right) \geqslant A(K)$, it follows that $\beta=A\left(R_{n}\right) / n \geqslant \alpha$. We first rotate line a_{2} about A_{2} to position a_{2}^{\prime} where the portion of R_{n} bounded by segments $O A_{1}, O A_{2}$, and lines a_{1}, a_{2}^{\prime} has area β. Next we rotate line a_{3} about A_{3} to position a_{3}^{\prime} until the portion of R_{n} bounded by segments $O A_{2}, O A_{3}$ and lines $a_{2}^{\prime}, a_{3}^{\prime}$ has area β. Continue around the polygon, finally rotating a_{n} about A_{n} to position a_{n}^{\prime} until the portion of R_{n} bounded
by segments $O A_{n-1}, O A_{n}$ and lines $a_{n-1}^{\prime}, a_{n}^{\prime}$ has area β. We now observe that the portion of R_{n} bounded by segments $O A_{n}, O A_{1}$ and lines a_{n}^{\prime}, a_{1} has the required area β. Hence it is sufficient to prove the theorem for polygon R_{n}.

Let lines a_{i}, a_{i+1} meet in the vertex X_{i} of R_{n}. The condition of the theorem is that R_{n} is partitioned into n subsets of equal area by the segments of the propeller. Since the triangles $O A_{i} A_{i+1}$ all have the same area, this means that the triangles $A_{i} X_{i} A_{i+1}$ all have the same area. Noting that the base segments $A_{i} A_{i+1}$ of the triangles $A_{i} X_{i} A_{i+1}$ all have the same length, we deduce that the altitudes of these triangles (perpendicular to $A_{i} A_{i+1}$) must all be equal. Thus for each i the vertex X_{i} lies on a line, parallel to $A_{i} A_{i+1}$, and at a distance d from $A_{i} A_{i+1}$ which is independent of i. Thus polygon R_{n} circumscribes the regular polygon $P_{n}=A_{1} A_{2} \ldots A_{n} A_{1}$, and is inscribed in the homothetic regular polygon Q_{n} determined by the lines a_{1}, \ldots, a_{n}.

According to the lemma, polygon R_{n} is a regular n-gon, centred at point O. We can gauge the size of R_{n} by measuring the distance of an edge from the centre O. Clearly the greatest distance from O of an edge through A_{i} occurs when such an edge is perpendicular to $O A_{i}$. Hence the set of maximal area satisfying the conditions of the theorem is the regular n-sided polygon having its edges perpendicular to the segments of the propeller. The area of this polygon is $A(K)=n \tan \pi / n$.

This completes the proof of the theorem.

References

[1] C. Davis, 'An extremal problem for plane convex curves', Proc. Sympos. Pure Math. VII (1963), 181-186.

Department of Pure Mathematics
The University of Adelaide
South Australia 5005
Australia
e-mail: pscott@maths.adelaide.edu.au

[^0]: Received 2nd July, 1996.

