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Abstract

A simple technique for obtaining bounds in terms of means and variances for the expectations of
certain functions of random variables in a given class is examined. The bounds given are sharp in the
sense that they are attainable by at least one random variable in the class. This technique is applied to
obtain bounds for moment generating functions, the coefficient of skewness and parameters associated
with branching processes. In particular an improved lower bound for the Malthusian parameter in an
age-dependent branching process is derived.

1980 Mathematics subject classification (Amer. Math. Soc): primary 60 E 15; secondary 60 J 80.

1. Introduction

It has been known for some time that one can bound the exponential function
above by a quadratic function over an interval of the form (— oo, B]. This result
was used by Bennett (1962) and by Brook (1966) to obtain an upper bound for
the moment generating function of particular random variables in terms of their
mean and variance. The bounds given by these authors are sharp in the sense that
they are attainable by at least one random variable in the class considered.

We show first that any function with monotone second derivative can be
bounded above or below over intervals of the form (— oo, B] or [A,cc) by a
quadratic function. This simple result is used here to provide attainable bounds
for the expectation of such functions of random variables in terms of the mean
and variance.

The particular case due to Bennett, an upper bound for a moment generating
function, has found more recent use by Serfling (1974) to derive bounds for the
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tail probabilities of a sum of random variables which are sampled from a finite
population without replacement. Our general result enables lower bounds for
moment generating functions to be calculated in certain cases.

A second application results in moment inequalities such as attainable bounds
for the coefficient of Aewness for bounded random variables.

The bounding technique has substantial application in branching processes. It
can be used to provide a convex upper bound for a probability generating
function, which leads to an attainable upper bound for the extinction probability
in the supercritical case of a Galton-Watson process. This upper bound for the
extinction probability can be computed from a knowledge of only the mean and
variance of the offspring distribution. This particular application was noted by
Brook (1966) and rediscovered by Turnbull (1973). In the case of an age-depen-
dent branching process, Brockwell (1969) uses the bound given by Brook to
obtain a sharp upper bound for the Malthusian parameter; and also provides a
sharp lower bound.

To find the upper bound, only the mean number of offspring A (> \) and the
mean and variance of the lifetime distribution need to be finite and known; in the
case of his lower bound the value of the variance need not be finite or known. We
show by an application of the general result of Section 2 that the lower bound
given by Brockwell can be improved if there is an upper bound B < 00 to the
lifetime; the improved bound can be computed from a knowledge of B, the two
means, and the variance of the lifetime. The degree of improvement is illustrated
by numerical examples. In as much as estimation techniques can be used to yield
approximations to the means, and to the variance of the lifetime distribution,
such bounding techniques are of value in approximating the Malthusian parame-
ter.

2. General results

The main theorem relies on the following two lemmas.

LEMMA 1. Let T(X) be a function from (— 00, B] to R, where B is finite. Suppose
T"(X), the second derivative of T, is a strictly monotone function. Then for any
H < B there exist unique values u, v and w such that

f(x) — ux2 + vx + w — r(x)

satisfies (i)f(B) = / ( / / ) = 0 and(ii)f'(H) = 0.

If T" is strictly increasing then the function f also satisfies

f(x)>0, x*ZB

with equality only for x = H, B.
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lft" is strictly decreasing then

f(x)<0, x*zB

with equality only for x — H, B.

PROOF. The system of equations corresponding to (i) and (ii):

B2

H2

2H

B
H
1

1
1
0

u \

w I

T{B)

T(H)

r'(H)j

is non singular and so the existence and uniqueness of u, v and w follow.
From the mean value theorem, since f(B) = f(H) — 0, there is at least one

value y, H <y < B, such that/ '(v) = 0. Also, since/'(y) = f'(H) - 0, there is
at least one value a, H < a < y, such that /"(«) — 0. Since t" is strictly
monotone,/" is strictly monotone and so a is the only value for which /"(a) = 0.

Suppose t" is strictly increasing. Then/" is a strictly decreasing function so

f"(x) > 0 i f x < a and f"(x) < 0 if x > a.

Thus / has a local minimum at x = H and a local maximum at x — y, and these
are the only turning points for/. Hence

f(x)>0, x<B

with equality only for x = H, B.
Similarly, if T" is strictly decreasing then/" is strictly increasing and

with equality only for x = H, B.

One can use a similar argument to prove the following.

LEMMA 2. Let T(X) be a function from [B, oo) to R, where B is finite. Suppose
T"(X) is a strictly monotone function. Then for any H > B there exist unique values
u, v and w such that

f(x) = ux2 + vx + w — T(X)

satisfies (i)f(B) = / ( / / ) = 0 and(ii)f'(H) = 0.
/ / T " is strictly increasing then the function f also satisfies

/(x)<0, x>B

with equality only for x — B, H.
If j " is strictly decreasing then

f(x)>0, x>B

with equality only for x — B, H.
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THEOREM 1. Let X be a random variable with mean 0 and variance a2 (0 < a2 <

oo).
(i) Suppose Xhas support contained in ( — oo, B], where 0 < B < oo, and J(X) is

a function with strictly monotone second derivative on (— oo, B ]. Then
(a) ifr"(x) is strictly increasing

(1) ET(X) <[B2T(-O2/B) + O2T(B)]/ (a2 + B2);

(b) ifj"(x) is strictly decreasing

(2) Er(X) >[B2r(-o2/B) + a2r(B)]/ (c2 + B2),

with equality in (1) and (2) only if X has a two point distribution taking values B and
-o2/B.

(ii) Suppose X has support contained in [ — A, oo), where 0 < A < oo, and T(X) is
a function with strictly monotone second derivative on [ — A, oo). Then

(a) ifr" is strictly increasing

(3) Er(X) ^[A2T(O2/A) + O2T(-A)]/ (O2 + A2);

(b) if J" is strictly decreasing

(4) ET(X) ^[A2T(O2/A) + a2r(-A)]/ (a2 + A2)

with equality in (3) and (4) only if X has a two point distribution taking values —A
and a 2/A.

PROOF, (i) Choose H < B so that the random variable which only takes the
values H and B has mean 0 and variance a2. If we denote this two point random
variable by Y then H — -o2/B and

a n d

The result now follows immediately from Lemma 1. For example, if T" is strictly
increasing then Ef(X) > 0, that is, ET(X) < ua2 + w. In particular, this inequal-
ity is an equality for the random variable Y, so

Er(X) <uo2 + w = Er{Y) =[B2T(-O2/B) + O2T(B)]/ (a2 + B2).

Part (ii) is proved similarly using Lemma 2 with H = a2/A and B = -A.

REMARK. The above results are true (apart from equality being attained only
for a two-point distribution) if the assumption that T"(X) is strictly monotone is
relaxed to T"(X) monotone. The proofs of the corresponding lemmas are similar
but a little more involved.
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3. Applications

1. Moment generating functions.
Bennett, in his 1962 paper, was interested in improving Bernstein's inequality

to obtain a sharper bound for the tail probability of a sum of independent,
bounded random variables. In his paper Bennett developed an inequality similar
to (1) for the specific function r(x) = e'x, t > 0. That is, he developed an upper
bound for the moment generating function of a bounded random variable X,
Mx(t) = Ee'x, t > 0. Brook (1966) developed an upper bound for Ee~'x when
t > 0, and X > 0 with finite variance. Theorem 1 gives the following generalisa-
tion of these two results.

COROLLARY 1. Let X be a zero mean random variable with variance a2

(0 < a2 < oo).
(i) If there is some finite value B such that X =£ B a.s. then for t > 0

(5) Ee'x < (a V s + BV°2/«)/ (a2 + B2),

with equality only if X has a two point distribution taking values B and — a 2/B.
(ii) If there is some finite value A such that X > -A a.s. then for t > 0

(6) Ee~'x < (a2e'A + A2
e-'

a^A)/ (a 2 + A2)

with equality only if X has a two point distribution on —A, a2/A.
(iii) Finally, if\X\<Ba.s. then for all real t

(7)

(Bie\,\°
2/B + a2e-\t\B}/ (ai + B2)< Ee'x < ( 2?VI1"V« + o2e^B)/ ( a 2 + B2).

PROOF. If we set r(x) = e'x, t > 0, then (5) follows immediately from (1).
Similarly, by setting T(X) — e~lx, t > 0, (6) follows from (4).

Also e'x, t > 0, has strictly increasing second derivative on [ -B, oo) so from (3)

Ee'x 7* (B2e'°2/B + a V B ) / (a2 + B2)

which together with (5) yields (7) for / > 0. If t = 0, (7) holds trivially; while if
t < 0, (7) follows from (2) and (6).

The equation (5) is Bennett's inequality; the relevant justification above clari-
fies his proof. If X ~s* 0 with mean ju and variance a2, 0 < a2 < oo, then —ju, < X
— jti, so taking A — fi in (6) we obtain

) a2 + fi2),
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that is, for t > 0,

(8) Ee-'x< (a2 + p2
e-'l

a2+"IV»)/(o2 + ju2),

which is Brook's result.
2. Moment inequalities.
Let | X\< B a.s., where X has zero mean and variance a2, 0 < a 2 < o o . An

application of (1) and (3) of the theorem with T(X) = x2k+] for integer k > 1
yields

) 2 k + i + 2{B)lk+')/ ( 2 + B2) £ EX2k(B2{a2/B)2k+i + o2{-B)lk+')/ (a2 + B2) =£ EX2

< (B2(-a2/B)2k+] + o2B2k+')/(o2 + B2).

Hence

\EX2k+i\^(B2(-a2/B)2k+) + o2B2k+x)/{o2 + B2)

= o2B(B2k + o2k)(\ - (a/B)2k)/(a2 + B2)

and this bound is attained if Stakes only the values {B, —o2/B) or {— B, o2/B).
If we set k — 1, then we obtain a bound for the coefficient of skewness,
Y = EX3/a3:

B2-a2

\y\>
Bo

3. Branching processes.
In the case of a Galton-Watson process, approaches to bounding the various

parameters generally rely on developing an effective approximation to the off-
spring probability generating function. For any non-negative, integer-valued
random variable X with mean n and variance a 2 , 0 < a 2 < o o , we have by putting

(9) Px(s) = Esx

The bound in (9) is a convex function on [0,1], and is itself a probability
generating function when (a2 + ju2)//z is an integer. If Px(s) is the probability
generating function of the offspring distribution and /* > 1, the extinction proba-
bility, q, has as an upper bound the unique root in 5 £ (0,1) of

(10) s = (a2 + j aV^" 2 * /" ) / (a2 + p.2).

This implicit bound on q, depending only on knowledge of the offspring mean and
variance ft and a2 was produced by Brook (1966). Turnbull (1973), without
reference to Brook, obtained a bound for Px(s) which is itself a probability
generating function and also only relies on /t and a2. When (a2 + JU2)/JU, is an
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integer, this bound coincides with (9), but it is tighter than (9) when (a2 + ju2)//x
is not an integer, and hence gives a better bound on q than (10). Turnbull's
bounding procedure relies heavily on the random variable X being integer-valued.
Bounds such as (9) can also be used to obtain bounds for other parameters of the
Galton-Watson process such as the mean time to extinction in the subcritical
case.

In the case of an age-dependent branching process, let M(t) denote the mean
population size at time t of a branching process whch has one ancestor of age zero
at time zero. Let T denote the lifetime of an individual in this process and let T
have distribution function G(t). Suppose each individual gives rise (at death) to
an expected number/I of offspring, 1 < A < oo. Then (Harris (1963), page 143) if
(7(0) = 0 and G is not a lattice distribution,

M(t) as / — oo
cA2Jte~c'dG(t)

where c, the Malthusian parameter for the population, is the unique positive value
of p satisfying

Brockwell (1969) obtained upper and lower bounds for the parameter c based
only on a knowledge of the lifetime mean, it, and variance a 2 , 0 < a 2 < o o . The
upper bound for c given by Brockwell was obtained using Brook's bound for the
moment generating function, bound (8). For if

A-]=Ee~cT<

then

1
log

l-(A-\)v2

provided v < (A — 1)~1 / 2, where v — a/fi is the coefficient of variation for T.
Furthermore, this bound is the least upper bound for c over the class of
distributions G which have mean /x and variance a2.

Brockwell's lower bound for c is JLI~ ] log A. This lower bound can be improved
using Theorem 1 if one has knowledge of an upper bound for the lifetime, T.
Suppose T £ (0, B ], for some finite value B. Then T — / x ^ B - j u , so from (2)

so

Ee'cT> \ { B - M ) V ' ( » — 7 ( » - / . » + a 2 e - c B ] / ( a 2 + ( B - f t ) 2 ) .
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Consider / ( a ) = [(B - Ju)2e-«(e-<'V(«-/0) + aie-aBy^i + ( B _ rfy Be_
cause T is a non lattice random variable, a2 < n(B — /x) so / («) is a strictly
decreasing, continuous function in a, /(0) = 1 and /(oo) — 0. Thus an implicit
lower bound for c is the unique value a, say, given by

(11) A ~ l =[(B - , i ) V « 0 ' - < ' V ( » - ( 0 ) + o 2 e - a B ] / {a2 + (B - / t ) 2 ) .

An explicit lower bound for c, which is appropriate when B is large and
A > 1 + a 2 / (B - ju)2, is a* where

a2

If we put B = (K + l)ft, then

« • = / * - ' ( 1 - V ) log

and a* < a < c. Furthermore, as 5 -> oo, a* -> ju ' log 4̂ which is the lower
bound given by Brockwell (1969). Moreover, a* is an improvement of Brockwell's
bound, that is a* > ju~' log A, provided

(12) log A > — lc

Since log(l + x2) < x2, x ¥= 0, a* is certainly an improvement of Brockwell's
bound if log A > K '.

Also, from Theorem 1, the lower bound given by the root of the equation (11)
is sharp in the sense that it is the greatest lower bound when calculated over all
possible nonlattice random variables, T, with mean ju, variance a2, taking values
in (0, B\. In fact, the lower bound is attained by the distribution

a2

P(T=B)=-—^

which unfortunately is lattice, although it has no mass at the origin.
To illustrate the improvement in the lower bound for c when B is known, the

bounds a and a* are compared with Brockwell's bound for various values of the
coefficient of variation v and bounds B.
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Case 1. A = 2

Coefficient of
Variation, v

0 • 2

0- 8

1 • 0

1 • 5

B/li =
K+ I

5
10
50

5
10
50

5
10
50

5
10
50

Lower Bounds
Jog A a*p

0 • 6931 0 • 6976
0 • 6931 0 • 6957
0 • 6931 0 • 6936

0 • 6931
0 • 6931
0 • 6931

0 • 6931
0 • 6931
0 • 6931

0 • 6931
0 • 6931
0 • 6931

0 • 7784
0 • 7377
0 • 7020

0 • 8433
0 • 7659
0 • 7071

1 • 2835
0 • 8876
0 • 7255

for c/x
an

0 • 6977
0 • 6957
0 • 6936

0 • 7803
0 • 7377
0 • 7020

0 • 8456
0 • 7660
0 • 7071

1 • 2845
0 • 8876
0 • 7255

Upper Bound
for qu
0 • 7058
0 • 7058
0 • 7058

1
1
1

• 0457
• 0457
•0457

00

oo

Case 2. A = 1 • 1

Coefficient of
Variation, v

0-2

0- 8

1 -0

1 • 5

B/P =
K+ 1

5
10
50

5
10
50

5
10
50

5
10
50

0
0
0

0
0
0

0
0
0

0
0
0

Lower
log A
•0953
• 0953
•0953

• 0953
• 0953
• 0953

• 0953

•0953
•0953

• 0953
• 0953
•0953

Bounds
a*n

0 • 0937
0 • 0952
0 • 0953

0 • 0667
0 • 0941

0 • 0963

0 • 0462
0 • 0934

0 • 0968

N/A
0 • 0905
0 • 0989

for cfi
an

0 • 0954
0 • 0954
0 • 0953

0 • 0980
0 • 0976
0 • 0963

0 • 0997
0 • 0990

0 • 0968

0 • 1066
0 • 1045

0 • 0989

Upper Bound
for cju
0 • 0955
0 • 0955
0 • 0955

0 • 0985
0 • 0985
0 • 0985

0 • 1004

0 • 1004
0 • 1004

0 • 1078
0 • 1078

0 • 1078

When A — 1 • 1, the condition for a* to give an improvement for Brockwell's
bound, log A > K~\ implies an improvement when 2?> 11 • 5/i. The above
example suggests, at B/fx — 10, that the conservative condition log .4 > A'"1 is
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close to the precise condition (12). In fact putting fi — (v/K)1 in (12) we see that

~ P2)} - A T 1 as)8->(

so for small v, or large K, the condition (12) can be written log A > K '.
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