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Abstract

We compute the Donaldson–Thomas invariants of a local elliptic surface with section. We introduce
a new computational technique which is a mixture of motivic and toric methods. This allows us to
write the partition function for the invariants in terms of the topological vertex. Utilizing identities
for the topological vertex proved in Bryan et al. [‘Trace identities for the topological vertex’, Selecta
Math. (N.S.) 24 (2) (2018), 1527–1548, arXiv:math/1603.05271], we derive product formulas for
the partition functions. The connected version of the partition function is written in terms of Jacobi
forms. In the special case where the elliptic surface is a K3 surface, we get a derivation of the
Katz–Klemm–Vafa formula for primitive curve classes which is independent of the computation of
Kawai–Yoshioka.

2010 Mathematics Subject Classification: 14N35, 14C05

1. Introduction

Let p : S → B be a nontrivial elliptic surface over a complex smooth projective
curve B. We assume p has a section and all singular fibers are irreducible rational
nodal curves.

In this paper, we study the Donaldson–Thomas (DT) invariants of X = Tot(KS),
that is, the total space of the canonical bundle KS . This is a noncompact Calabi–
Yau threefold. Let β be an effective curve class on S. Consider the Hilbert scheme

Hilbβ,n(X) = {Z ⊂ X : [Z ] = β, χ(OZ ) = n}
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of proper subschemes Z ⊂ X with homology class β and holomorphic Euler
characteristics n. The DT invariants of X can be defined as

DTβ,n(X) := e(Hilbβ,n(X), ν) :=
∑
k∈Z

k e(ν−1(k)),

where e(·) denotes topological Euler characteristic and ν : Hilbβ,n(X) → Z
is Behrend’s constructible function [2]. We also consider an unweighted Euler
characteristic version of these invariants

D̂Tβ,n(X) := e(Hilbβ,n(X)).

We choose a section B ⊂ S and focus on the primitive classes β = B + d F ,
where B is the class of the chosen section and F the class of the fiber. We define
the partition functions by

D̂T(X) =
∞∑

d=0

∑
n∈Z

D̂TB+d F,n(X)pnqd,

DT(X) =
∞∑

d=0

∑
n∈Z

DTB+d F,n(X)ynqd .

We also consider the partition functions for the invariants for multiples of the
fiber class

D̂Tfib(X) =
∞∑

d=0

∑
n∈Z

D̂Td F,n(X)pnqd,

DTfib(X) =
∞∑

d=0

∑
n∈Z

DTd F,n(X)ynqd .

The main results of this paper are closed product formulas for the partition
functions D̂T(X) and D̂Tfib(X). Assuming a general conjecture about the Behrend
function, we also determine DT(X) and DTfib(X).

We use the notation

M(p, q) =
∞∏

m=1

(1− pmq)−m

and the shorthand M(p) = M(p, 1).
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Donaldson–Thomas invariants of local elliptic surfaces 3

THEOREM 1. Let e(S) and e(B) denote the topological Euler characteristics of
the elliptic surface and the base. Then

D̂T(X) =

{
M(p)

∞∏
d=1

M(p, qd)

(1− qd)

}e(S)

×

{
1

(p1/2 − p−1/2)

∞∏
d=1

(1− qd)

(1− pqd)(1− p−1qd)

}e(B)

D̂Tfib(X) =

{
M(p)

∞∏
d=1

M(p, qd)

}e(S) {
∞∏

d=1

1
(1− qd)

}e(B)

.

The formula for D̂Tfib(X) was previously proved using wall-crossing methods
by Toda. (After applying the Pandharipande–Thomas/Donaldson–Thomas
(PT/DT) correspondence [4], this is essentially [18, Theorem 6.9].)

The ratio D̂T(X)/D̂Tfib(X) can be considered as the generating function for the
connected invariants in the classes B+d F . This series has a particularly nice form
and can be written in terms of classical Jacobi forms. Consider the Dedekind eta
function and the Jacobi theta function

η = q1/24
∞∏

k=1

(1− qk),

Θ = (p1/2
− p−1/2)

∞∏
k=1

(1− pqk)(1− p−1qk)

(1− qk)2
.

COROLLARY 2. The partition function of the connected invariants is given as
follows

D̂T(X)
D̂Tfib(X)

= (q−1/24η)−e(S)Θ−e(B).

In the case where S→ P1 is an elliptically fibered K3 surface, the above series
specializes (up to a factor of q) to the reciprocal of η24Θ2, the unique Jacobi cusp
form of weight 10 and index 1. This is the Jacobi form appearing in the well-
known Katz–Klemm–Vafa (KKV) formula. In order to obtain the KKV formula,
we require the connected series, because X is noncompact.

Our result provides a new derivation of the KKV formula for primitive classes.
(At least for the Euler characteristic version of the DT invariants. For the Behrend
function weighted DT invariants, we require Conjecture 21, see Theorem 3.) The
KKV formula was proved in all curve classes in [17]. The appearance of the
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Jacobi form η24Θ2 in previous proofs of the KKV formula [14, 17] ultimately
comes from the calculation of Euler characteristics of relative Hilbert schemes
of points on curves on K3 by Kawai–Yoshioka [10]. Our derivation of the KKV
formula is the first that does not depend on the Kawai–Yoshioka formula.

Our results can be extended to apply to the usual (Behrend function weighted)
DT invariants if we assume a general conjecture that we formulate in Section 8.
Our conjecture relates the Behrend function at subschemes with embedded
points to the value of the Behrend function at the underlying Cohen–Macaulay
subscheme and may be of independent interest.

THEOREM 3. Assume that Conjecture 21 holds, then

DT(X) = (−1)χ(OS)D̂T(X)

and
DTfib(X) = D̂Tfib(X)

under the change of variables
y = −p.

A similar phenomenon to the above is known to hold when X is a toric Calabi–
Yau threefold.

The method of computation that we introduce in this paper has been applied
to other elliptically fibered geometries. Indeed, it has found applications to the
calculation of DT generating functions on K3 × E , where E is an elliptic curve
[5] and abelian threefolds [7], and is expected to apply to (K3× E)/G where G
is a finite group acting symplectically on each factor.

Although the geometry under consideration is not toric, we combine C∗-
localization, motivic methods, and (C∗)3-localization to end up with expressions
that only depend on the topological vertex Vλµν , and the topological Euler
characteristics e(B), e(S). The outline of our method is as follows:

• The C∗-action on X induces an action on Hilb(X) whose Euler characteristic
localizes to the C∗-fixed locus. In Section 3 we show that any C∗-invariant
subscheme has a maximal Cohen–Macaulay subscheme which is a curve of
a special form which we call a partition thickened comb curve (Definition 7).
This curve is determined by data consisting of points xi ∈ B labeled by integer
partitions λ(i). This gives rise to a constructible morphism ρ to Sym B taking
the value

∑
i |λ

(i)
|xi on such a curve (see Theorem 8).

• In Section 4, we push forward the Euler characteristic measure to Sym B via the
map ρ. We show that ρ∗(1), the push-forward measure, has nice multiplicative
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Donaldson–Thomas invariants of local elliptic surfaces 5

properties that allow us to compute the weighted Euler characteristic over
Sym B using a general result about symmetric products (Lemma 32).

• To compute the push-forward measure ρ∗(1) explicitly, we must compute
the Euler characteristics of the fibers of ρ. These fibers are strata in the
Hilbert scheme parameterizing subschemes whose maximal Cohen–Macaulay
subscheme is a fixed partition thickened comb curve C . Here it is useful to
switch from Hilbert schemes with fixed C to Quot schemes of its ideal sheaf
IC . We introduce a further stratification of these Quot schemes by specifying
the set-theoretic support of the quotients. This allows us to write these Quot
schemes as products (in K -theory) of Quot schemes of IC where the quotient is
supported only on one of the nodes of Cred, or only on one of the components of
Cred (minus the nodes), or only on the complement of C . The Quot scheme of
quotients supported at a node of Cred can be expressed (in K -theory) as a Quot
scheme of a partition thickened comb curve (determined by C) on C3. Similarly,
after further push-forwards to further symmetric products, we express the Euler
characteristics of all other Quot schemes in terms of Euler characteristics of
Quot schemes on C3 as well (see Section 5).

• The Quot schemes of C3 of the previous step all carry a natural T = (C∗)3-
action. T -localization then allows us to write their Euler characteristics in terms
of the topological vertex (see Section 6).

• Finally, using the trace formulas for the topological vertex proved in [6],
we write our expression for D̂T(X) as the closed product formula given in
Theorem 1.

Our proof of Theorem 3 requires Theorem 24, an involved computation of
Ext1

0(IC , IC) for partition thickened comb curves C . The proof of Theorem 24
occupies most of Section 9 and while technical in nature, the method we introduce
(again a mixture of formally local toric methods and global geometry) may be of
independent interest to the experts.

2. Definitions, notation, and conventions

Let p : S → B be an elliptic surface over a smooth projective curve B. We
assume:

(1) S is a nontrivial fibration;

(2) p has a section B ⊂ S;

(3) all singular fibers of p are irreducible rational nodal curves.
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We note that the number of singular fibers is equal to e(S).
We write Fx for the fiber p−1(x) over a point x ∈ B. We choose a section

B ⊂ S and denote its class in H2(S) by B as well. We denote the class of the fiber
by F ∈ H2(S).

Let X = Tot(KS) be the total space of the canonical bundle KS . For brevity, we
define

Hilbd,n(X) := HilbB+d F,n(X),
D̂Td,n(X) := D̂TB+d F,n(X).

Since we are dealing with generating functions and our calculations involve
motivic methods on the Hilbert schemes, it is useful to introduce the following
notation. We define

Hilbd,•(X) :=
∑
n∈Z

Hilbd,n(X) pn,

where we view the right hand side (RHS) as a formal Laurent series whose
coefficients are elements in the Grothendieck ring of varieties, that is,
K0(VarC)((p)).

CONVENTION 3.1. When an index is replaced by a bullet, we will multiply
by the appropriate variable and sum over the index. We regard the result as
a formal power (or Laurent) series whose coefficients lie in K0(VarC) and we
extend operations of the Grothendieck group (addition, multiplication, Euler
characteristic) to the series in the obvious way.

For example

Hilb•,•(X) =
∞∑

d=0

∑
n∈Z

Hilbd,n(X)qd pn
∈ K0(VarC)((p))[[q]],

so that we can write
D̂T(X) = e(Hilb•,•(X)).

It is notationally convenient to treat an Euler characteristic weighted by a
constructible function as a Lebesgue integral, where the measurable sets are
constructible sets, the measurable functions are constructible functions, and the
measure of a set is given by its Euler characteristic. In this language we have

D̂Td,n(X) =
∫

Hilbd,n(X)
1 de, DTd,n(X) =

∫
Hilbd,n(X)

ν de
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and following the bullet convention we have

D̂T(X) =
∫

Hilb•,•(X)
1 de, DT(X) =

∫
Hilb•,•(X)

ν de.

We will also need notation for subsets of the Hilbert scheme which
parameterize those subschemes obtained by adding embedded points and/or
zero-dimensional components to some fixed Cohen–Macaulay curve.

DEFINITION 4. Let C ⊂ X be a (not necessarily reduced) Cohen–Macaulay
subscheme of dimension 1. Consider the Hilbert scheme of subschemes Z ⊂ X
of class [Z ] = [C] ∈ H2(X) and χ(OZ ) = χ(OC)+n. Inside this Hilbert scheme,
we define the following closed subset

Hilbn(X,C) = {Z ⊂ X such that C ⊂ Z and IC/IZ has finite length n}.

Once the Cohen–Macaulay curve C ⊂ X is fixed, it is useful to work with the
Quot scheme Quotn

X (IC) of zero-dimensional quotients of IC of length n. We have
the following lemma.

LEMMA 5. The following equality holds in K0(VarC)((p))

Hilb•(X,C) = Quot•X (IC).

Proof. The universal quotient IC×QuotnX (IC ) � Q has flat kernel IZ . This provides
a flat family Z ⊂ X ×Quotn

X (IC) which gives a morphism to the Hilbert scheme.
The kernel of a quotient IC � Q, where Q is zero-dimensional of length n, is an
ideal sheaf IZ ⊂ IC satisfying

n = χ(Q) = χ(IC/IZ ) = χ(OZ )− χ(OC).

Every C-valued point of Hilbn(X,C) arises from a quotient IZ � Q in this
way. This gives a geometric bijection Quotn

X (IC)→ Hilbn(X,C) from which the
lemma follows.

3. Reduction to partition thickened comb curves

The action of C∗ on the fibers of X lifts to the moduli space Hilbd,•(X).
Therefore ∫

Hilbd,•(X)
1 de =

∫
Hilbd,•(X)C∗

1 de.
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The main result of this section is a classification of the subschemes
parameterized by Hilbd,n(X)C

∗ , namely the C∗-invariant subschemes. We find
that the maximal Cohen–Macaulay subscheme of a C∗-invariant subscheme is
determined by a point in Symd(B) along with some discrete data (a collection of
integer partitions). We begin with some notation.

DEFINITION 6. Let T = Tot(KS|B) and let p : X → T be the elliptic fibration
induced by the elliptic fibration p : S→ B. We say that a subscheme C ⊂ X is a
comb curve if C = B ∪ p−1(Z) where Z ⊂ T is a zero-dimensional subscheme
which is set-theoretically supported on B.

Let λ = (λ1 > · · · > λl) be an integer partition. Then λ determines a zero-
dimensional subscheme Zλ ⊂ SpecC[[r, s]] given by the monomial ideal

Iλ = (rλ1, rλ2 s, . . . , rλl sl−1, sl). (1)

In terms of λ as a Young diagram, we note (ρ, σ ) ∈ λ if and only if rρsσ /∈ Iλ.

DEFINITION 7. Let C = B∪ p−1(Z) be a comb curve, let x1, . . . , xn ∈ B ⊂ T be
the points where Z is supported, and let (ri , si) be formal local coordinates on T
about each point xi so that si vanishes on S ∩ T and ri vanishes on Ri ∩ T where
Ri = Tot(KS|Fxi

). We say that C is a partition thickened comb curve if there
exist partitions λ(1), . . . , λ(n) such that Z is given by Zλ(i) in the local coordinates
(ri , si) about xi . We denote such a curve by B ∪i (λ

(i)Fxi ). (Specifically, writing
r := ri , s := si , λ = (λ1 > · · · > λl) := λ(i), x := xi , F := Fxi , and t for a
coordinate at x vanishing on T , the ideal of B ∪ λF in a formal neighborhood
of x is given by (s, t) · (rλ1, rλ2 s, . . . , rλl sl−1, sl) ⊂ C[[r, s, t]].) We say that a
subscheme Z ⊂ X is a partition thickened comb curve with points (PCP) if
the maximal Cohen–Macaulay subscheme ZCM ⊂ Z is a partition thickened comb
curve, in other words, Z is obtained from a partition thickened comb curve by
adding embedded points and/or zero-dimensional components. We denote by

Hilbd,n
PCP(X) ⊂ Hilbd,n(X)

the locus in the Hilbert scheme parameterizing PCP.

In the next section it will be important to notationally distinguish between
singular and smooth fibers. See Figure 1 for an illustration of a partition thickened
comb curve with smooth fibers {Fxi } thickened by partitions {λ(i)} and nodal fibers
{Fy j } thickened by partitions {µ( j)

}.
Crucially, any effective divisor on S in class [B + d F] is a comb curve, that

is, the scheme-theoretic union of B (our chosen section) and some (possibly
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Donaldson–Thomas invariants of local elliptic surfaces 9

Figure 1. A partition thickened comb curve C = B ∪i (λ
(i)Fxi ) ∪ j (µ

( j)Fy j ).

thickened) fibers with total multiplicity d . This is proved in Lemma 31. The main
result of this section is the following:

THEOREM 8. If a subscheme Z ⊂ X in the class [Z ] = B + d F is C∗-invariant,
then it is a PCP. That is

Hilbd,n(X)C
∗

⊂ Hilbd,n
PCP(X) ⊂ Hilbd,n(X).

Moreover, C∗ acts on Hilbd,n
PCP(X) and there exists a constructible morphism

ρd : Hilbd,•
PCP(X)→ Symd(B) (2)

such that if [Z ] ∈ Hilbd,n
PCP(X), where the maximal Cohen–Macaulay subscheme

of Z is B ∪i (λ
(i)Fxi ), then

ρd([Z ]) =
∑

i

|λ(i)| xi .

Proof. We have to prove the following: Let Z ⊂ X be a C∗-fixed subscheme
in the class [Z ] = B + d F , then the underlying Cohen–Macaulay support
curve C is a partition thickened comb curve. Let IC ⊂ OX be the ideal sheaf

https://doi.org/10.1017/fms.2019.1 Published online by Cambridge University Press
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defining C . Pushing forward along the projection π : X = KS → S and using the
decomposition into C∗-weight spaces shows that there exist ideal sheaves

I0 ⊂ · · · ⊂ Il−1 ( OS

such that

π∗ IC =

l−1⊕
i=0

Ii ⊗ K−i
S .

This is essentially proved in [11, Section 4] (albeit in the PT rather than the DT
setting). Each Ii defines a closed subscheme Ci ⊂ S satisfying

S ) C0 ⊃ · · · ⊃ Cl−1,

l−1∑
i=0

[Ci ] = B + d F ∈ H2(S).

Therefore each Ci has dimension 6 1. In fact each Ci ⊂ S is a Cohen–Macaulay
curve, or else C has embedded points. Since a Cohen–Macaulay curve on a
surface is Gorenstein, each Ci is an effective divisor.

By the nesting condition and Lemma 31, we deduce

C0 = B +
n∑

i=1

λ
(i)
1 Fxi ,

C1 =

n∑
i=1

λ
(i)
2 Fxi ,

...

Cl−1 =

n∑
i=1

λ
(i)
l Fxi ,

for some distinct points x1, . . . , xn ∈ B and λ(i)1 > · · · > λ
(i)
l . This proves that the

C∗-fixed locus lies inside the PCP locus.
Since the C∗-invariant Cohen–Macaulay curves just described are exactly the

support curves of PCP curves, it follows that the PCP locus is C∗-invariant.
Finally, since the assignment Z 7→ ZCM which takes a 1-dimensional subscheme
to its maximal Cohen–Macaulay subscheme defines a constructible morphism
Hilb(X) → Hilb(X), its restriction to Hilbd,•

PCP(X) is also constructible and thus
gives the constructible morphism ρd .
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4. Push-forward to the symmetric product

From the C∗-equivariant inclusions in Theorem 8 and C∗-localization of Euler
characteristic, we have

D̂T(X) =
∫

Hilb•,•(X)
1 de =

∫
Hilb•,•(X)C∗

1 de =
∫

Hilb•,•PCP(X)
1 de.

We compute these Euler characteristics by pushing forward along the map ρd

constructed in Theorem 8. That is we use∫
Hilbd,•

PCP(X)
1 de =

∫
Symd (B)

(ρd)∗(1) de,

where (ρd)∗(1) is the Z((p))-valued constructible function on Symd(B) given by
pushing forward the Euler characteristic measure [12]. We denote (ρd)∗(1) by fd

so by definition, the value of fd at a point ax =
∑

i ai xi ∈ Symd(B) is

fd(ax) =
∫
ρ−1

d (ax)
1 de.

We will show that fd has some nice multiplicative properties. Let Bsing
⊂ B be

the points over which the fibers of S → B are singular. Note that #Bsing
= e(S).

Let Bsm
= B − Bsing.

PROPOSITION 9. Let x1, . . . , xn ∈ Bsm and y1, . . . , ym ∈ Bsing and let a1, . . . ,

an , b1, . . . , bm be positive integers summing to d. Let ax and by denote
∑

i ai xi

and
∑

j b j y j respectively. Then there exist F1 ∈ p1/2Z[[p]], F2 ∈ Z[[p]], and
g, h : N→ Z((p)) such that

fd(ax + by) = F e(B)
1 · F e(S)

2 · G(ax) · H(by),

where

G(ax) =
n∏

i=1

g(ai), H(by) =
m∏

j=1

h(b j).

This proposition follows from Proposition 16 which will be stated and proved
in the next section.

COROLLARY 10.

D̂T(X) = F e(B)
1 · F e(S)

2 ·

(
∞∑

a=0

g(a)qa

)e(B)−e(S)

·

(
∞∑

b=0

h(b)qb

)e(S)

,

where we have set g(0) = h(0) = 1.
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Proof. We apply Proposition 9 to the computation of D̂T(X) as follows

D̂T(X) =
∫

Hilb•,•PCP(X)
1 de

=

∫
Sym•(B)

f• de

= F e(B)
1 · F e(S)

2 ·

∫
Sym•(Bsm)

G de ·
∫

Sym•(Bsing)

H de.

Applying Lemma 32 to this last equation yields the corollary.

To prove Proposition 9 and explicitly compute F1, F2, g, and h, we need a good
understanding of the strata ρ−1

d (ax + by) ⊂ Hilbd,•
PCP(X).

For any

x = (x1, . . . , xn), y = (y1, . . . , ym),

λ = (λ(1), . . . , λ(n)), µ = (µ(1), . . . , µ(m)),

we define an associated Cohen–Macaulay curve

Cx, y,λ,µ = B
n⋃

i=1

(λ(i)Fxi )

m⋃
j=1

(µ( j)Fy j ).

From Theorem 8 we obtain the following decomposition of the fibers of ρd in
K0(VarC)((p)):

ρ−1
d (ax + by) =

∑
λ`a

∑
µ`b

pχ(OCx, y,λ,µ ) Hilb•(X,Cx, y,λ,µ)

=

∑
λ`a

∑
µ`b

pχ(OCx, y,λ,µ ) Quot•X (ICx, y,λ,µ), (3)

where the second equality follows from Lemma 5. Here

a = (a1, . . . , an), b = (b1, . . . , bm)

and the meaning of λ ` a and µ ` b is that λ(i) ` ai and µ( j)
` b j for all i and j .

For later use, we state the following:

LEMMA 11. Let

Cx, y,λ,µ := B ∪i (λ
(i)Fxi ) ∪ j (µ

( j)Fy j ),

then

χ(OCx, y,λ,µ) = χ(OB)−

n∑
i=1

λ
(i)
1 −

m∑
j=1

µ
( j)
1 .
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Proof. Since λ(i)Fxi = p−1(Zλ(i)) and p is an elliptic fibration, χ(OFxi
) = 0 and

similarly we have χ(OFy j
) = 0. Note that B ∩ λ(i)Fxi and B ∩ µ( j)Fy j are zero-

dimensional subschemes of length λ(i)1 and µ( j)
1 respectively (see equation (1)).

The lemma then follows from the exact sequence

0→ OC → OB ⊕i Oλ(i)Fxi
⊕ j Oµ( j)Fy j

→⊕iOB∩λ(i)Fxi
⊕ j OB∩µ( j)Fy j

→ 0.

In the next section, we will see that the Euler characteristic of the Quot scheme
Quot•X (ICx, y,λ,µ) does not depend on the exact location of the points xi ∈ Bsm and
y j ∈ Bsing, but only on their number n and m and the partitions λ(i) and µ( j).

5. Stratifying according to embedded points

In the previous two sections, we reduced our consideration to the strata
Quot•X (ICx, y,λ,µ) of Hilbd,•

PCP(X)which parameterize subschemes Z whose maximal
Cohen–Macaulay subscheme ZCM ⊂ Z is the partition thickened comb curve

Cx, y,λ,µ := B ∪i (λ
(i)Fxi ) ∪ j (µ

( j)Fy j ).

In this section, we introduce a further stratification of Quot•X (ICx, y,λ,µ) by
keeping track of the support of the quotients with respect to the geometry of the
underlying reduced curve B ∪i Fxi ∪ j Fy j . This allows us to write Quot•X (ICx, y,λ,µ)

as a product of ‘local’ Hilbert schemes (in K0(VarC)((p))). We then use this
product to compute its Euler characteristic. The main result of this section is
Proposition 16.

5.1. Stratification of X . Given a Cohen–Macaulay curve Cx, y,λ,µ, its reduced
support is given by B ∪i Fxi ∪ j Fy j which is a nodal curve with nodes at (x1, . . . ,

xn), (y1, . . . , ym), and (z1, . . . , zm) where z j is the node of the nodal fiber Fy j (see
Figure 1). Consider the following associated chain of closed subsets of X :

∪i{xi} ∪ j {y j , z j } ⊂ B ∪i Fxi ∪ j Fy j ⊂ X.

This gives the following stratification of X by locally closed subsets:

• ∪i{xi} ∪ j {y j , z j };

• B◦ := B \ ∪i{xi} ∪ j {y j };

• F◦xi
:= Fxi \ {xi};
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• F◦y j
:= Fy j \ {y j , z j };

• W := X \ B ∪i Fxi ∪ j Fy j .

We denote the collection of these locally closed subsets by Σx, y,λ,µ.

DEFINITION 12. Let X be a smooth quasiprojective variety, F a coherent sheaf
on X , and S ⊂ X a locally closed subset. Consider the Quot scheme Quotn

X (F)
of quotients F � Q on X , where Q is zero-dimensional of length n. We define
Quotn

X (F , S) as the locally closed subset of quotients F � Q for which the
reduced support of Q lies in S.

We will useΣ to provide a stratification of Quot•X (IC) by locally closed subsets.
For this, we need the following general result:

PROPOSITION 13. Let X be a smooth quasiprojective variety, S ⊂ X a locally
closed subset, Z ⊂ X a closed subset, and F a coherent sheaf on X. Suppose
Z ⊂ S. For any n, there exists a geometrically bijective constructible morphism

Quotn
X (F , S) −→

⊔
n1+n2=n

Quotn1
X (F , S \ Z)× Quotn2

X (F , Z).

Proof. Denote by X (N )
Z the (N − 1)th order neighborhood of Z ⊂ X . That is, let

IZ ⊂ OX be the ideal defining Z ⊂ X , then X (N )
Z ⊂ X is the closed subscheme

defined by I N
Z ⊂ OX . Denote the inclusion X (N )

Z ⊂ X by ι and let U := X \ Z .
Fix n. We choose N � 0 with the following property. For any quotient F � Q,

where Q is zero-dimensional of length 6 n and supported on Z , the scheme-
theoretic support of Q is contained in X (N )

Z .
We now describe the map of the proposition. Given a quotient F � Q in

Quotn
X (F , S), we obtain

F |U � Q|U
ι∗F � ι∗Q.

The trivial quotient F |X\(Supp Q∩U )� 0 and F |U � Q|U glue on the overlap, so we
obtain an element of Quotn1

X (F , S \ Z) for some n1 6 n. Moreover, push-forward
along a closed embedding is exact, so we obtain an element of Quotn−n1

X (F , Z) as
follows

F � ι∗ι
∗F � ι∗ι

∗Q.
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We have to show that this constructible morphism is a bijection on C-valued
points. We start with injectivity. Suppose F � Qi , for i = 1, 2, map to the same
element. Then they agree on U = X \ Z . So it suffices to show that they agree
on X \ (Supp Q1 ∩U ) = X \ (Supp Q2 ∩U ). By hypothesis, we know that there
exists an isomorphism

ι∗F - ι∗Q1

ι∗F

=

?
- ι∗Q2

∼=

?

It suffices to show that pushing forward ι∗F � ι∗Qi to X \ (Supp Q1 ∩ U )
and composing with F |X\(Supp Q1∩U ) � ι∗ι

∗F |X\(Supp Q1∩U ) gives back
F |X\(Supp Q1∩U ) � Qi |X\(Supp Q1∩U ). This can be checked on an open affine
cover.

Suppose R is a commutative ring (corresponding to an open affine subset
of X \ (Supp Q1 ∩ U )) and I ⊂ R an ideal (corresponding to Z ). Let M �
Q be a quotient of finitely generated R-modules with Q zero-dimensional
(corresponding to either of F |X\(Supp Q1∩U ) � Qi |X\(Supp Q1∩U )). By our choice of
N , we have

I N
⊂ Ann(Q) ⊂ I,

where Ann(Q) ⊂ R denotes the annihilator ideal of Q. Consider the composition

M � M ⊗R R/I N � Q ⊗R R/I N , (4)

viewed as a morphism of R-modules, where the middle and third modules are
R-modules via the map R→ R/I N . Note that

Q ⊗R R/I N ∼= Q/I N Q ∼= Q

since I N
⊂ Ann(Q). Composing (4) with this isomorphism gives back the

original quotient M � Q.
For surjectivity, take two quotients F � Qi , with Q1 of length n1 supported

on S \ Z and Q2 of length n − n1 supported on Z . Then F |U � Q1|U and
F |X\Supp Q1 � Q2|X\Supp Q1 agree on the overlap. They glue to the required quotient
F � Q, with Q of length n supported on S.

LEMMA 14. The following equation holds in K0(VarC)((p))

Quot•X (ICx, y,λ,µ) =
∏

S∈Σx, y,λ,µ

Quot•X (ICx, y,λ,µ, S)

= Quot•X (ICx, y,λ,µ,W ) · Quot•X (ICx, y,λ,µ, B◦)
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·

n∏
i=1

Quot•X (ICx, y,λ,µ, {xi}) · Quot•X (ICx, y,λ,µ, F◦xi
)

·

m∏
j=1

Quot•X (ICx, y,λ,µ, {y j }) · Quot•X (ICx, y,λ,µ, {z j })

·Quot•X (ICx, y,λ,µ, F◦y j
).

Proof. Let C := Cx, y,λ,µ. First apply the previous proposition to Quot•X (IC) with
S = X and Z = Cred in order to obtain

Quot•X (IC) = Quot•X (IC ,W ) · Quot•X (IC ,Cred).

Next, apply the previous proposition to Quot•X (IC ,Cred) with S = Cred and Z =
Fx1 in order to obtain

Quot•X (IC) = Quot•X (IC ,W ) · Quot•X (IC ,Cred \ Fx1) · Quot•X (IC , Fx1).

Repeating this procedure, taking S = Cred \Fx1 and Z = Fx2 , and so on, we obtain

Quot•X (IC) = Quot•X (IC ,W ) · Quot•X (IC , B◦)

·

n∏
i=1

Quot•X (IC , Fxi )

·

m∏
j=1

Quot•X (IC , Fy j ).

Next, apply the previous proposition to Quot•X (IC , Fx1), S = Fx1 , and Z = {x1}.
Then

Quot•X (IC) = Quot•X (IC ,W ) · Quot•X (IC , B◦)
·Quot•X (IC , F◦x1

) · Quot•X (IC , {x1})

·

n∏
i=2

Quot•X (IC , Fxi )

·

m∏
j=1

Quot•X (IC , Fy j ).

Repeating for all points x2, . . . , xn, y1, . . . , ym, z1, . . . , zm , the required identity
follows.
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5.2. Reduction to Quot schemes of C3. Let λ,µ, ν be integer partitions
which we also regard as subsets in (Z>0)

2 by their diagram as in [6]. Consider
the subscheme

Cλµν = Cλ∅∅ ∪ C∅µ∅ ∪ C∅∅ν ⊂ C3
= SpecC[r, s, t]

defined by the monomial ideal

Iλµν = Iλ∅∅ ∩ I∅µ∅ ∩ I∅∅ν,

where

rρsσ t τ ∈ Iλ∅∅ ⇐⇒ (σ, τ ) /∈ λ,

rρsσ t τ ∈ I∅µ∅ ⇐⇒ (τ, ρ) /∈ µ,

rρsσ t τ ∈ I∅∅ν ⇐⇒ (ρ, σ ) /∈ ν.

Consider the Quot scheme Quotn
C3(ICλµν ). Inside, we have the closed subset

of quotients supported set-theoretically at the origin (Definition 12), which we
denote by

Quotn(λ, µ, ν) := Quotn
C3(ICλµν , {0}). (5)

The kernel of such a quotient ICλµν � Q is the ideal sheaf of a one-dimensional
scheme Z with underlying Cohen–Macaulay curve Cλµν and its embedded points
supported set-theoretically at the origin. We emphasize that Z need not be
monomial.

We note that the permutations (r, s, t) 7→ (t, r, s) and (r, s, t) 7→ (s, r, t) induce
the isomorphisms

Quotn(λ, µ, ν) ∼= Quotn(ν, λ, µ), Quotn(λ, µ, ν) ∼= Quotn(µ′, λ′, ν ′),

where λ′ = {(i, j) : ( j, i) ∈ λ} denotes conjugate partition.
We define Ṽλµν ∈ Z[[p]] by

Ṽλµν = e(Quot•(λ, µ, ν))

and note the symmetries

Ṽλµν = Ṽνλµ = Ṽµ′λ′ν′ .

Recall that S ⊂ X is the elliptic surface and T = Tot(KS|B). For any point
p ∈ B, let Rp = Tot(KS|Fp). We choose local formal coordinates at p = xi or
p = y j such that

Rp = {r = 0}, S = {s = 0}, T = {t = 0}
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and when p is z j

Rp = {r t = 0}, S = {s = 0}.

Note that at xi or y j , the curve B is given by {s = t = 0} and the fiber Fxi or
Fy j is given by {s = r = 0}. At the point z j , the fiber is a nodal curve and is given
by {s = r t = 0}.

Let Cx, y,λ,µ be a Cohen–Macaulay curve as in the beginning of this section and
consider the Quot schemes of Lemma 14.

LEMMA 15. We have the following equalities in K0(VarC)

Quotn
X (ICx, y,λ,µ, {xi}) = Quotn(�,∅, λ(i)),

Quotn
X (ICx, y,λ,µ, {y j }) = Quotn(�,∅, µ( j)),

Quotn
X (ICx, y,λ,µ, {z j }) = Quotn(µ( j)′,∅, µ( j)).

Here � is the unique partition of size 1 (whose diagram is a single box) and ∅
is the empty partition. Recall that the kernels of the quotients on the RHS do not
need to be monomial ideals: although their underlying maximal Cohen–Macaulay
subscheme is monomial, they may have arbitrary embedded points at the origin.

Proof. We prove the first equality; the others follow similarly. Let C := Cx, y,λ,µ.
Take N � 0 such that for any quotient IC � Q, where Q is set-theoretically
supported at {xi} and of length n, the scheme-theoretic support of Q lies inside
the (N−1)th order infinitesimal neighborhood X (N )

{xi }
of {xi}. (Recall the definition

of the closed subscheme X (N )
Z from the proof of Proposition 13.) Let ι : X (N )

{xi }
↪→ X

be the closed embedding. We have already seen in the proof of Proposition 13 that
first restricting a quotient IC � Q to ι∗ IC � ι∗Q and then pushing forward to X
loses no information. More precisely:

IC � ι∗ι
∗ IC � ι∗ι

∗Q

is isomorphic to the original quotient IC � Q. Therefore, we have a geometric
constructible morphism

Quotn
X (IC , {xi})→ Quotn

X (N )
{xi }
(ι∗ IC , {xi}). (6)

Similarly, we have a geometric constructible morphism

Quotn
C3(IC�∅λ(i)

, {0})→ Quotn
(C3)

(M)
{0}
(IC�∅λ(i)

, {0}), (7)

where (C3)
(M)
{0} is a large enough infinitesimal neighborhood of 0 ∈ C3 and we

may take M = N � 0. Since X is smooth and three-dimensional, the formal
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completion of its local ring at xi is given by

ÔX,xi
∼= C[[r, s, t]].

Let mxi be the maximal ideal corresponding to xi . Then [1, Cor. 10.4]

ÔX,xi /m̂
N
xi
∼= C[[r, s, t]]/(r, s, t)N ∼= C[r, s, t]/(r, s, t)N .

Therefore X (N )
{xi }
∼= (C3)

(N )
{0} and, by our choice of coordinates r, s, t , we have ι∗ IC

∼=

IC�∅λ(i)
. Hence

Quotn
X (N )
{xi }
(ι∗ IC , {xi}) ∼= Quotn

(C3)
(N )
{0}
(IC�∅λ(i)

, {0})

and the required equality follows from the geometric bijections (6), (7).

A direct consequence of the above lemma and the symmetries of Ṽ is

e(Quot•(ICx, y,λ,µ, {xi})) = Ṽλ(i)�∅, (8)

e(Quot•(ICx, y,λ,µ, {y j })) = Ṽµ( j)�∅,

e(Quot•(ICx, y,λ,µ, {z j })) = Ṽµ( j)µ( j)′∅.

We also choose formal local coordinates at all other points. For each point in
B◦, choose local coordinates (r, s, t) such that T = {t = 0} and S = {s = 0}. For
each point in F◦xi

or F◦y j
, choose local coordinates (r, s, t) such that S = {s = 0}

and Rxi = {r = 0} or Ry j = {r = 0} respectively. For each point in W , choose
any formal local coordinates (r, s, t).

Consider the following constructible support morphisms

σW : Quot•X (ICx, y,λ,µ,W )→ Sym•(W ),

σB◦ : Quot•X (ICx, y,λ,µ, B◦)→ Sym•(B◦),
σF◦xi
: Quot•X (ICx, y,λ,µ, F◦xi

)→ Sym•(F◦xi
),

σF◦y j
: Quot•X (ICx, y,λ,µ, F◦y j

)→ Sym•(F◦y j
).

To each quotient ICx, y,λ,µ � Q with kernel IZ ⊂ ICx, y,λ,µ , these maps assign the set-
theoretic support—weighted by length—of ICx, y,λ,µ/IZ , that is, the location and
lengths of the embedded points or zero-dimensional components of Z .

Consider a point p in W , B◦, F◦xi
, or F◦y j

. Then using the formal local
coordinates chosen above, the same type of argument as in Lemma 15 gives the
following equalities in K0(VarC)

σ−1
W (np) = Quotn(∅,∅,∅),
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σ−1
B◦ (np) = Quotn(�,∅,∅),
σ−1

F◦xi
(np) = Quotn(∅,∅, λ(i)),

σ−1
F◦y j
(np) = Quotn(∅,∅, µ( j)).

Using Proposition 13, we see that the pre-images of the support morphisms satisfy
the following multiplicative property in K0(VarC)((p))

σ−1
U

(∑
i

ni pi

)
=

∏
i

σ−1
U (ni pi).

Pushing forward the Euler characteristic measure along the support maps,
applying Lemma 32, and using the symmetries of Ṽ we find the following
formulas

e(Quot•X (ICx, y,λ,µ,W )) =

∫
Sym•(W )

(σW )∗(1) de = (Ṽ∅∅∅)
e(W ), (9)

e(Quot•X (ICx, y,λ,µ, B◦)) =
∫

Sym•(B◦)
(σB◦)∗(1) de = (Ṽ�∅∅)

e(B◦),

e(Quot•X (ICx, y,λ,µ, F◦xi
)) =

∫
Sym•(F◦xi

)

(σF◦xi
)∗(1) de = (Ṽλ(i)∅∅)

e(F◦xi
)
,

e(Quot•X (ICx, y,λ,µ, F◦y j
)) =

∫
Sym•(F◦y j

)

(σF◦y j
)∗(1) de = (Ṽµ( j)∅∅)

e(F◦y j
)
.

We are now ready to prove the main result of this section:

PROPOSITION 16. Recall that fd = (ρd)∗(1) ∈ Z((p)) is the push-forward of the
Euler characteristic measure by the map ρd . As before, let x1, . . . , xn ∈ Bsm, y1,

. . . , ym ∈ Bsing and let a1, . . . , an, b1, . . . , bm be positive integers summing to d.
Then

fd(ax + by) =

(
p1/2 Ṽ�∅∅

Ṽ∅∅∅

)e(B)

· Ṽe(S)
∅∅∅ ·

n∏
i=1

g(ai)

m∏
j=1

h(b j),

where

g(a) =
∑
λ`a

p−λ1
Ṽ∅∅∅Ṽλ�∅

Ṽ�∅∅Ṽλ∅∅
,

h(b) =
∑
µ`b

p−µ1
Ṽµµ′∅Ṽµ�∅

Ṽ�∅∅Ṽµ∅∅
.
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Note that this proves Proposition 9 and provides the values of the unknowns g, h
(as above) and F1, F2

F1 = p1/2 Ṽ�∅∅

Ṽ∅∅∅
, F2 = Ṽ∅∅∅.

Proof. We apply, in order, equation (3), Lemma 14, equations (8) and (9), and
Lemma 11 to compute

fd(ax + by) = e(ρ−1
d (ax + by))

=

∑
λ`a

∑
µ`b

pχ(OCx, y,λ,µ )e(Quot•X (ICx, y,λ,µ))

=

∑
λ`a

∑
µ`b

pχ(OCx, y,λ,µ ) · e(Quot•X (ICx, y,λ,µ,W )) · e(Quot•X (ICx, y,λ,µ,B
◦)

·

n∏
i=1

e(Quot•X (ICx, y,λ,µ, {xi})) · e(Quot•X (ICx, y,λ,µ, F◦xi
)

·

m∏
j=1

e(Quot•X (ICx, y,λ,µ, {y j })) · e(Quot•X (ICx, y,λ,µ, {z j }))

·e(Quot•X (ICx, y,λ,µ, F◦y j
)

= Ṽe(W )
∅∅∅ · Ṽ

e(B◦)
�∅∅ ·

∑
λ`a

∑
µ`b

pχ(OCx, y,λ,µ )

·

n∏
i=1

Ṽλ(i)�∅ · Ṽ
e(F◦xi

)

λ(i)∅∅ ·

m∏
j=1

Ṽµ( j)�∅ · Ṽµ( j)µ( j)′∅ · Ṽ
e(F◦y j

)

µ( j)∅∅

= pχ(OB ) · Ṽe(W )
∅∅∅ · Ṽ

e(B◦)
�∅∅

·

n∏
i=1

∑
λ(i)`ai

p−λ
(i)
1 Ṽλ(i)�∅ · Ṽ

e(F◦xi
)

λ(i)∅∅

·

m∏
j=1

∑
µ( j)`b j

p−µ
( j)
1 Ṽµ( j)�∅ · Ṽµ( j)µ( j)′∅ · Ṽ

e(F◦y j
)

µ( j)∅∅.

We note that e(Fxi ) = 0 and e(Fy j ) = 1 so that e(F◦xi
) = −1 and e(F◦y j

) = −1.
Also, since e(B◦) = e(B)− n − m, we have

e(W ) = e(S)− e(B◦)−
∑

i

e(Fxi )−
∑

j

e(Fy j )

= e(S)− e(B)+ n.
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The above equations allow us to redistribute the terms of fd(ax + by) as follows

fd(ax + by) = pχ(OB ) · Ṽe(S)
∅∅∅ ·

(
Ṽ�∅∅

Ṽ∅∅∅

)e(B)

·

n∏
i=1

∑
λ(i)`ai

p−λ
(i)
1 ·

Ṽ∅∅∅Ṽλ(i)�∅

Ṽ�∅∅Ṽλ(i)∅∅

·

m∏
j=1

∑
µ( j)`b j

p−µ
( j)
1 ·

Ṽµ( j)µ( j)′∅Ṽµ( j)�∅

Ṽ�∅∅Ṽµ( j)∅∅
.

Noting that χ(OB) = e(B)/2, we see the above proves the proposition.

6. Reduction to the topological vertex

In this section, we express D̂T(X) in terms of the topological vertex, and then
use the trace formulas of [6] to obtain a closed formula for D̂T(X).

6.1. Ṽλµν in terms of Vλµν . Recall that the coefficients of the series Ṽλµν ∈

Z[[p]] are given by the Euler characteristics of Quot schemes on C3

Ṽλµν = e(Quot•C3(ICλµν )).

We can compute the Euler characteristics using the T = (C∗)3-action on the Quot
schemes induced by the T -action on C3. An ideal I ⊂ C[r, s, t] is T -invariant
if and only if it is generated by monomials (such as ICλµν ). Moreover, there is
a bijection between monomial ideals and 3D-partitions (see [6, § 6.3]) where a
monomial ideal I ⊂ C[r, s, t] corresponds to a 3D-partition π ∈ (Z>0)

3 by

(ρ, σ, τ ) ∈ π ⇐⇒ rρsσ t τ /∈ I.

The subschemes represented by points in Quot•C3(ICλµν )
T are given by quotients

ICλµν � Q with kernel equal to a monomial ideal corresponding to a 3D-partition
asymptotic to (λµν), see [6, Defn 1]. Consequently,

Ṽλµν = e(Quot•C3(ICλµν )
T )

=

∑
π

pn(π),

where the sum runs over all 3D-partitions asymptotic to (λµν) and n(π) is the
number of boxes in π which are not contained in any of the legs. We see that Ṽλµν
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differs from the usual topological vertex by an overall normalization

Vλµν = p|πmin|Ṽλµν,

where Vλµν is the usual topological vertex [6, Defn 2] and |πmin| is the
renormalized volume [6, page 2] of the minimal 3D-partition asymptotic to
(λµν).

LEMMA 17. The following hold

Vλ∅∅ = Ṽλ∅∅, Vλ�∅ = p−λ1Ṽλ�∅, Vµµ′∅ = p−‖µ‖
2
Ṽµµ′∅,

where ‖µ‖2
:=
∑
∞

j=1 µ
2
j .

Proof. The renormalized volume of a 3D-partition asymptotic to (λµν) is defined
by

|π | =
∑

(ρ,σ,τ )∈π

(1− # of legs of π containing (ρ, σ, τ )).

For πmin, the minimal 3D-partition asymptotic to (λ�∅), the only cubes
contributing to |πmin| are those contained in both the �-leg and the λ-leg.
They intersect exactly in the cubes corresponding to the first part of λ, namely λ1.
Thus |πmin| = −λ1 in this case.

For the case of (λ∅∅) every cube is in the λ-leg and so |πmin| = 0. For the case
of (µµ′∅), each cube in the intersection of the µ-leg and the µ′-leg contribute
−1 and all other cubes contribute 0. This intersection is a stack of squares of side
lengths µ1, µ2, . . . and hence

|πmin| = −

∞∑
j=1

µ2
j .

6.2. Applying the trace formulas. Substituting the values of F1, F2, g, and h
from Proposition 16 into Corollary 10, and then substituting in the formulas from
Lemma 17 we obtain the following

D̂T(X) =
(

p1/2 V�∅∅

V∅∅∅

)e(B)

· Ve(S)
∅∅∅ ·

(∑
λ

V∅∅∅Vλ�∅

V�∅∅Vλ∅∅
q |λ|
)e(B)−e(S)

·

(∑
µ

p‖µ‖
2 Vµµ′∅Vµ�∅

V�∅∅Vµ∅∅
q |µ|

)e(S)

.
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From the Okounkov–Reshetikhin–Vafa formula for the topological vertex [16],
[6, equation (5)] we get

V∅∅∅ = M(p), V�∅∅ =
M(p)
1− p

,

which we substitute into the above to find

D̂T(X) =
(

1
p−1/2 − p1/2

)e(B)
(∑

λ

(1− p)
Vλ�∅

Vλ∅∅
q |λ|
)e(B)−e(S)

·

(∑
µ

(1− p)p‖µ‖
2
Vµµ′∅

Vµ�∅

Vµ∅∅
q |µ|

)e(S)

.

Applying [6, equations (2)&(4)], we see that

D̂T(X) = (p−1/2
− p1/2)−e(B)

·

(
∞∏

d=1

(1− qd)

(1− pqd)(1− p−1qd)

)e(B)−e(S)

·

(
M(p)

∞∏
d=1

M(p, qd)

(1− pqd)(1− p−1qd)

)e(S)

.

Noting that e(B) is even, the above expression is easily seen to be equivalent to the
formula for D̂T(X) in Theorem 1. Since the formula for D̂Tfib(X) was previously
proven by Toda, we may now regard the proof of Theorem 1 complete. In the next
section, we will outline the proof of the formula for D̂Tfib(X) using our methods.

7. The case of D̂Tfib(X)

The formula for D̂Tfib(X) given in Theorem 1 follows from a wall-crossing
computation of Toda [18, Theorem 6.9] along with the PT/DT correspondence
[4]. However, in this section we describe how to adapt our computation of D̂T(X)
to the easier case of D̂Tfib(X). Our approach yields a proof which is independent
of Toda’s.

DEFINITION 18. We say that a subscheme C ⊂ X is a partition thickened fiber
curve if it is of the form

C = ∪i(λ
(i)Fxi ),

where we are using the notation of Definition 7. We say that a subscheme
Z ⊂ X is a partition thickened fiber curve with points (PFP) if the maximal
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Cohen–Macaulay subscheme ZCM ⊂ Z is a partition thickened fiber curve.
We denote by

Hilbd F,n
PFP (X) ⊂ Hilbd F,n(X)

the locus in the Hilbert scheme parameterizing PFP.

Our proof of Theorem 8 is easily adapted to prove the following:

THEOREM 19. If a subscheme Z ⊂ X in the class [Z ] = d F is C∗-invariant, then
it is a PFP. That is

Hilbd F,n(X)C
∗

⊂ Hilbd F,n
PFP (X) ⊂ Hilbd F,n(X).

Moreover, C∗ acts on Hilbd F,n
PFP (X) and there exists a constructible morphism

ρfib
d : Hilbd F,•

PFP (X)→ Symd(B)

such that if [Z ] ∈ Hilbd F,n
PFP (X), where the maximal Cohen–Macaulay subscheme

of Z is ∪i(λ
(i)Fxi ), then

ρfib
d ([Z ]) =

∑
i

|λ(i)|xi .

Define the following Cohen–Macaulay curve

Cfib
x, y,λ,µ :=

n⋃
i=1

(λ(i)Fxi )

m⋃
j=1

(µ( j)Fy j ).

Similar to equation (3), the previous theorem implies that the pre-images of points
under the map ρfib

d break into components

(ρfib
d )
−1(ax + by) =

∑
λ`a

∑
µ`b

p
χ(O

Cfib
x, y,λ,µ

)

Quot•X (ICfib
x, y,λ,µ

),

where we have adopted the same notation as in Section 4. Since the only nodes of
the reduced support of Cfib

x, y,λ,µ are z1, . . . , zm (adopting the notation of Section 5)
our stratification is simpler in this case

Σfib
x, y,λ,µ = {{z1}, . . . , {zm}, F◦y1

, . . . , F◦ym
, Fx1, . . . , Fxn ,W },

where this time

F◦y j
= Fy j − {z j }, W = X −

(
∪i Fxi ∪ j Fy j

)
.

With virtually the same proof, we obtain the following analog of Lemma 14:
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LEMMA 20. The following equation holds in K0(VarC)((p))

Quot•X (ICfib
x, y,λ,µ

) = Quot•X (ICfib
x, y,λ,µ

,W ) ·

n∏
i=1

Quot•X (ICfib
x, y,λ,µ

, Fxi )

·

m∏
j=1

Quot•X (ICfib
x, y,λ,µ

, F◦y j
) · Quot•X (ICfib

x, y,λ,µ
, {z j }).

We choose the same set of formal local coordinates at each point as we did in
Section 5 and by the same reasoning as in that section, we find

e(Quot•X (ICfib
x, y,λ,µ

, {z j })) = Ṽµ( j)µ( j)′∅,

e(Quot•X (ICfib
x, y,λ,µ

,W )) = Ṽe(W )
∅∅∅,

e(Quot•X (ICfib
x, y,λ,µ

, Fxi )) = Ṽ
e(Fxi )

λ(i)∅∅,

e(Quot•X (ICfib
x, y,λ,µ

, F◦y j
)) = Ṽ

e(F◦y j
)

µ( j)∅∅.

Now since χ(OCfib
x, y,λ,µ

) = 0, e(Fxi ) = e(F◦y j
) = 0, and

e(W ) = e(S)− m,

we have that

f fib
d (ax + by) := e((ρfib

d )
−1(ax + by))

=

∑
λ`a

∑
µ`b

p
χ(O

Cfib
x, y,λ,µ

)

e(Quot•X (ICfib
x, y,λ,µ

))

=

∑
λ`a

∑
µ`b

Ṽe(S)
∅∅∅

m∏
j=1

Ṽµ( j)µ( j)′∅

Ṽ∅∅∅
.

We may rewrite the above as

f fib
d (ax + by) = Ṽe(S)

∅∅∅

n∏
i=1

gfib(ai)

m∏
j=1

hfib(b j),

where

gfib(a) =
∑
λ`a

1 hfib(b) =
∑
µ`b

Ṽµµ′∅

Ṽ∅∅∅
.

We then get the following result, analogous to Corollary 10, with a similar proof

D̂Tfib(X) = Ṽe(S)
∅∅∅ ·

(∑
λ

q |λ|
)e(B)−e(S)

·

(∑
µ

Ṽµµ′∅

Ṽ∅∅∅
q |µ|

)e(S)

.
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Substituting in the equations in Lemma 17, using the well-known generating
function for 2D-partitions, and applying [6, equation (1)] we get

D̂Tfib(X) = M(p)e(S) ·

(
∞∏

d=1

(1− qd)−1

)e(B)−e(S)

·

(
∞∏

d=1

(1− qd)−1 M(p, qd)

)e(S)

which is easily seen to be equivalent to the formula for D̂Tfib(X) given in
Theorem 1.

8. Including the Behrend function

The aim of this section is to prove Theorem 3, which says that up to an overall
sign, the partition functions D̂T(X) and DT(X) are equal after the simple change
of variables y = −p. In order to do this we will need to assume a conjecture
about the Behrend function which we formulate below for general Calabi–Yau
threefolds and may be of independent interest.

Let Y be any quasiprojective Calabi–Yau threefold. Let C ⊂ Y be a (not
necessarily reduced) Cohen–Macaulay curve with proper support. Assume that
the singularities of Cred are locally toric. (This means that formally locally Cred

is either smooth, nodal, or the union of the three coordinate axes. That is at
p ∈ Cred ⊂ Y the ideal ÎCred ⊂ ÔY,p is given by (x1, x2), (x1, x2x3), or (x1x2, x2x3,

x1x3) for some isomorphism ÔY,p
∼= C[[x1, x2, x3]].) Recall that by Definition 4

Hilbn(Y,C) = {Z ⊂ Y such that C ⊂ Z and IC/IZ has finite length n}.

Note that Hilbn(Y,C) ⊂ Hilb(Y ) and let ν denote the Behrend function on
Hilb(Y ). Our conjecture is the following:

CONJECTURE 21. ∫
Hilbn(Y,C)

ν de = (−1)nν([C])
∫

Hilbn(Y,C)
de,

where ν([C]) is the value of the Behrend function at the point [C] ∈ Hilb(Y ).

REMARK 22. Conceivably, the condition that Cred has locally toric singularities
could be weakened, although we do not have any evidence for this case. Our
conjecture is true for Y a (globally) toric Calabi–Yau, with torus T , and C ⊂ Y
any T -fixed Cohen–Macaulay curve. In this case both sides of our conjecture
can be computed by restricting to the T -fixed points, which are isolated. The
Behrend function at such a fixed point P is given by ν(P) = (−1)dim TP Hilb(Y ),
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[3, Theorem 3.4]. The calculation of (−1)dim TP Hilb(Y ) is done in [13]; specifically,
the left hand side of the equation in [13, Theorem 2] is easily seen to be
(−1)dim TP Hilb(Y ) while the RHS clearly obeys the formula in our conjecture.

One could also make the much stronger conjecture that

ν([Z ]) = (−1)nν([C]),

for all [Z ] ∈ Hilbn(Y,C). This would of course imply our conjecture as stated.
However, we do not know whether this stronger version holds, even in the case
where Y is C3 and C is empty. In this case, this stronger conjecture says that the
Behrend function on Hilbn(C3) is the constant function (−1)n .

8.1. Proof of Theorem 3. The Behrend function of any scheme is invariant
under automorphisms. In particular, it is constant on the orbits of the C∗ action on
Hilb(X). We thus have

DT(X) =
∫

Hilb•,•(X)
ν de =

∫
Hilb•,•(X)C∗

ν de =
∫

Hilb•,•PCP(X)
ν de

and so
DT(X) =

∫
Sym•(B)

(ρ•)∗(ν) de.

Let f νd = (ρd)∗(ν) so that in the notation of Section 4, we have

f νd (ax + by) =
∫
ρ−1

d (ax+by)
ν de.

Recall that for the partition function DT(X), the variable tracking the
holomorphic Euler characteristic is y rather than p so f νd (ax + by) ∈ Z((y)).

In Section 4, at the level of C-valued points, we expressed ρ−1
d (ax + by) as a

disjoint union of closed subsets Hilb•(X,Cx, y,λ,µ). We obtain

f νd (ax + by) =
∑
λ`a

∑
µ`b

yχ(OCx, y,λ,µ )+n
∫

Hilbn(X,Cx, y,λ,µ)

ν de,

where ν is the Behrend function of Hilb•,•(X) and Cx, y,λ,µ denotes the following
Cohen–Macaulay curve

Cx, y,λ,µ := B ∪i (λ
(i)Fxi ) ∪ j (µ

( j)Fy j ).

Recall that the factor yχ(OCx, y,λ,µ ) comes from the fact that Hilb•,•(X) is indexed
by χ(OZ ) and Hilb•(X,Cx, y,λ,µ) by the length of ICx, y,λ,µ/IZ (Definition 4). We
apply Conjecture 21 to the above and also use

ν([Cx, y,λ,µ]) = (−1)χ(OS)−χ(OCx, y,λ,µ ),
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the highly nontrivial result given in Corollary 26 and proved in the next section.
We find

f νd (ax + by) =
∑
λ`a

∑
µ`b

yχ(OCx, y,λ,µ )
∞∑

n=0

yn(−1)nν([Cx, y,λ,µ])

∫
Hilbn(X,Cx, y,λ,µ)

de

= (−1)χ(OS)
∑
λ`a

∑
µ`b

∞∑
n=0

(−y)χ(OCx, y,λ,µ )+n
∫

Hilbn(X,Cx, y,λ,µ)

de.

After the substitution −y = p, we find that the above is equivalent to

f νd (ax + by) = (−1)χ(OS) fd(ax + by).

It follows that
DT(X) = (−1)χ(OS)D̂T(X)

after the substitution p = −y as asserted by Theorem 3.
The case of DTfib(X) (previously shown by Toda) proceeds similarly except

that it does not require the difficult deformation result of the next section. Indeed,
in this case, we only need to know that the value of the Behrend function at a
partition thickened fiber curve is 1

ν
([
∪i(λ

(i)Fxi )
])
= 1.

This follows from the fact that subschemes in X of the form p−1(Z), where Z
is a zero-dimensional subscheme of T , form a component of Hilb(X) which is
isomorphic to the Hilbert scheme of points on T and hence smooth and even
dimensional. While this can be proven directly, one can also do a similar (but
easier) computation as we do in the proof of Theorem 24 in Section 9.

9. Smoothness and infinitesimal deformations

In this section we show that the locus of partition thickened comb curves lies
in the nonsingular locus of Hilb(X) and we compute the dimension of Hilb(X)
at those points. As a corollary, we determine the value of the Behrend function at
the points of the Hilbert scheme corresponding to partition thickened comb curves.
This is the key technical result required in Section 8 to promote our computation
of D̂T(X) to a computation of the Behrend function version DT(X).

We begin by stating the three main results of this section.

THEOREM 23. Let B ⊂ T be a smooth curve contained in a smooth surface T .
Define Vl ⊂ Hilbd(T ) to be the locus of points parameterizing zero-dimensional
subschemes Z ⊂ T of length d such that the length of the scheme-theoretic
intersection Z ∩ B is l. Then Vl is locally closed and smooth of dimension 2d − l.
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THEOREM 24. Let λ(1), . . . , λ(n) be partitions and let C = B ∪i (λ
(i)Fxi ) be a

partition thickened comb curve. The Zariski tangent space of Hilb(X) at the point
[C], which is given by Hom(IC ,OC) ∼= Ext1

0(IC , IC), has dimension

h0(NB/T )+

n∑
i=1

(2|λ(i)| − λ(i)1 ).

THEOREM 25. The locus of partition thickened comb curves is contained in the
nonsingular locus of Hilb(X).

COROLLARY 26. The value of the Behrend function at [C] ∈ Hilb(X) for a
partition thickened comb curve C = B ∪i (λ

(i)Fxi ) is given by

ν([C]) = (−1)χ(OS)−χ(OC ).

Proof. By [2], the Behrend function on a smooth scheme V is (−1)dim V and so
by Theorems 25 and 24

ν([C]) = (−1)h
0(NB/X )

n∏
i=1

(−1)λ
(i)
1 .

Lemma 30 and Lemma 11 say that

h0(NB/X ) = χ(OS)− χ(OB), χ(OC) = χ(OB)−
∑

i

λ
(i)
1

which, when substituted into the above, prove the corollary.

The most difficult of the above results is Theorem 24 and its proof occupies the
majority of this section.

Our method for computing the dimension of deformation spaces is an
adaption of Haiman’s method for computing infinitesimal deformations of
zero-dimensional subschemes on a surface [9]. Indeed, the proof of Theorem 23
follows directly using Haiman’s argument. For Theorem 24, we use Haiman’s
method to study local deformations of C in the formal neighborhoods of the points
xi , but we use the global geometry to keep track of which local deformations
extend.

9.1. Setup for the proof of Theorem 24. For notational simplicity we first
treat the case where there is a single partition thickened fiber F = Fx at x ∈ B,

https://doi.org/10.1017/fms.2019.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.1


Donaldson–Thomas invariants of local elliptic surfaces 31

that is
C = B ∪ λF,

where (λ1 > λ2 > · · · > λl) is an integer partition of length l.
Consider the divisors

S, R = Tot(KS|F), T = Tot(KS|B)

and let (r, s, t) be formal local coordinates at x such that

R = {r = 0}, S = {s = 0}, T = {t = 0}.

The formal local ring ÔX,x
∼= C[[r, s, t]] has a basis as a C-vector space given by

monomials {rρsσ t τ } for (ρ, σ, τ ) ∈ (Z>0)
3. We visualize these basis vectors as

unit cubes in the positive octant of R3 with the monomial rρsσ t τ corresponding
to the cube whose corner closest to the origin is at (ρ, σ, τ ).

9.2. Exact sequences. The ideal sheaf IC has a locally free resolution of the
form

0→⊕βRβ →⊕αGα → IC → 0, (10)

where Gα (the “generators”) and Rβ (the “relations”) are of the form

O(−ρR − σ S − τT ).

Indeed, we can explicitly take the collection of (ρ, σ, τ ) for Gα to be

{(λ1, 0, 1), (λ2, 1, 0), (λ3, 2, 0), . . . , (λl, l − 1, 0), (0, l, 0)}.

Note that the τ component is 1 for the first generator, and zero for all others.
We also have the sequence

0→ OC → OB ⊕OλF → Oλ1x → 0,

where λ1x = B ∩ λF is the length λ1 subscheme of B supported at x .
By standard homological algebra, we have that Hom(IC ,OC) is H 0 of the

complex
Hom

([
⊕βRβ →⊕αGα

]
, [OB ⊕OλF → Oλ1x ]

)
.

Namely, we have that Hom(IC ,OC) is given by the kernel of the map

Hom(⊕αGα,OB ⊕OλF)
Φ1⊕Φ2
−−−→ Hom(⊕αGα,Oλ1x)⊕ Hom(⊕βRβ,OB ⊕OλF).

This identification of Hom(IC ,OC) has a straightforward interpretation: a
homomorphism IC → OC is determined by what it is on each of the generators
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Figure 2. Monomials in the local ring ÔX,x
∼= C[[r, s, t]] are represented by cubes.

Cubes shown are the monomials in ÔC,x . The gray balls are located at monomials
which generate ÎC,x .

of IC , considered as maps to OB and to OλF . To be in the kernel of Φ1 just
means that these maps should agree on B ∩ λF and to be in the kernel of
Φ2 means that the images must obey the module relations. We will make this
combinatorially more explicit by studying the restriction of the homomorphisms
⊕αGα → OB ⊕OλF to X̂ x

∼= SpecC[[r, s, t]].

9.3. Combinatorics of Haiman arrows. When restricted to the local ring
ÔX,x

∼= C[[r, s, t]], OC is spanned over C by the monomials rρsσ t τ , where
(ρ, σ, τ ) are of the form (ρ, 0, 0) or (ρ, σ, τ )(ρ,σ )∈λ and IC is spanned by the
complementary monomials. As previously discussed, we view these monomials
as cubes in the positive octant, see Figure 2.

We call the cubes corresponding to (ρ, 0, 0) and (ρ, σ, τ )(ρ,σ )∈λ the B-cubes
and λF-cubes respectively and the cubes in the union are called C-cubes. The
complements of the C-cubes are the IC -cubes.

A Haiman arrow

(ρ, σ, τ )→ (ρ ′, σ ′, τ ′)
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is a vector whose tail (ρ, σ, τ ) is an IC -cube and whose head (ρ ′, σ ′, τ ′) is a C-
cube.

The Haiman arrows form a basis for the C-linear maps from ÎC,x to ÔC,x . We
wish to determine a basis for Hom(IC ,OC) in terms of Haiman arrows.

The generators of IC correspond to the cubes in the corners of the set of IC -
cubes. They are located at (ρ, σ, τ ) where (ρ, σ ) are the corners just outside of λ
and τ = 0 unless σ = 0 in which case τ = 1 (they are indicated by the gray balls
in Figure 2). A generator at (ρ, σ, τ ) corresponds to the image of Gα→ O where
Gα
∼= O(−ρR − σ S − τT ). The summands of

Hom(⊕αGα,OB ⊕OλF) ∼= ⊕αH 0(B,G∨α ⊗OB)⊕ H 0(F,G∨α ⊗OλF)

are interpreted as follows. For Gα
∼= O(−ρR − σ S − τT ), a homomorphism

in Hom(Gα,OB) or Hom(Gα,OλF) is determined by a linear combination of
Haiman arrows from (ρ, σ, τ ) to (respectively) some B-cube or λF-cube (ρ ′,
σ ′, τ ′). The location of the head of such a Haiman arrow is determined by the
order of vanishing of the corresponding section of H 0(B,G∨α ⊗ OB) or H 0(F,
G∨α ⊗ OλF)—the head will occur at (ρ ′, σ ′, τ ′) if the corresponding section is
order rρ

′

sσ
′

t τ
′ .

We wish to determine a basis for Hom(IC ,OC) ∼= Ker(Φ1 ⊕ Φ2) in terms of
Haiman arrows. To be in the kernel of Φ1 just means that a Haiman arrow whose
head is both a B-cube and a λF-cube must arise as sections of both H 0(B,G∨α ⊗
OB) and H 0(F,G∨α ⊗ OλF). As for the kernel of Φ2, the key observation is the
following, essentially due to Haiman [9]:

REMARK 27. The equations defining the kernel ofΦ2 equate two Haiman arrows
which are obtained from one another by translation through other Haiman arrows.
Moreover, if a Haiman arrow can be translated so that its head passes into an
octant with a negative coordinate (without its tail ever leaving the IC -cubes) then
it must be zero.

We now analyze the possible equivalence classes of Haiman arrows.

9.4. Haiman arrows to λF-cubes. Let Gα
∼= O(−ρR − σ S − τT ) be a

generating line bundle and consider the sections H 0(F,G∨α ⊗ OλF). A basis for
this vector space corresponds to the possible Haiman arrows (ρ, σ, τ )→ (ρ ′, σ ′,

τ ′) to λF-cubes. Since the normal bundle of F in X is trivial, O(R) and O(S) are
trivial restricted to F . Thus

G∨α ⊗OλF
∼= OλF(ρR + σ S + τT ) ∼= OλF(τ x).
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Figure 3. Examples of Haiman arrows to λF-cubes. The green arrows are nonzero
and the red arrows are necessarily zero.

Since τ is either 0 or 1 for the generators Gα, the Haiman arrows correspond to

H 0(F,OλF) if τ = 0, H 0(F,OλF(x)) if τ = 1.

In both cases, this space has a basis of sections which in the local coordinates are
given by {rρ′sσ ′ t τ }(ρ′,σ ′)∈λ. Note that the sections we consider above are uniquely
determined by their value on the formal neighborhood X̂ x

∼= SpecC[[r, s, t]], a
property which uses crucially the fact that the genus of F is 1.

We have seen that the possible Haiman arrows to λF-cubes are given by

(ρ, σ, τ )→ (ρ ′, σ ′, τ ′),

where (ρ, σ, τ ) is a generating cube, τ ′ = τ and (ρ ′, σ ′) ∈ λ. In particular, the
direction of the arrows is horizontal since there is no τ component in (ρ − ρ ′,
σ − σ ′, 0).

Since all the Haiman arrows to λF-cubes are horizontal, we view them from
above in the (r, s) plane (see Figure 3).

If the direction of the Haiman arrow is strictly southwest (that is, it has strictly
negative ρ and σ components), then by translating (see Remark 27) along the
contour of λ to the edge of the s-axis, the arrow can be equated to an arrow whose
head has a negative ρ component and is thus zero. There are no strictly northeast
pointing Haiman arrows, so all nonzero Haiman arrows must be weakly northwest
pointing or weakly southeast pointing. Translating a weakly northwest pointing
arrow as far to the northwest as possible, we find that its head will either cross the
s-axis (and hence be 0) or it will be at the top of a column of λ and its tail just
outside a row. Indeed, for each square in λ, there is exactly one equivalence class
of weakly northwest pointing Haiman arrows represented by the arrow going from
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just outside the box’s row to the top of the box’s column. Similarly, there is one
equivalence class of weakly southeast pointing Haiman arrows for each box in λ
represented by the arrow going from just outside the top of the box’s column to
the end of the box’s row.

The above accounts for precisely 2|λ| different equivalence classes of Haiman
arrows to λF-cubes. However, λ1 of these arrows have their head in a B-cube,
namely the southeast pointing arrows whose tails are just above the top of λ and
whose head is the last square in the first row of λ. Note that the northwest pointing
Haiman arrows whose heads are in the first row of λ are necessarily strictly west
pointing and hence originate at the generator whose τ component is 1. Therefore
the heads of these arrows also have τ component 1 and so they are not B-cubes.

We thus have exactly 2|λ| − λ1 distinct equivalence classes of Haiman arrows
to λF-cubes which are not also arrows to B-cubes.

9.5. Haiman arrows to B-cubes. Any nonzero Haiman arrow to a B-cube
must have a tail with coordinates (ρ, 0, 1) or (ρ, 1, 0) since if not, it could
be translated (see Remark 27) to an arrow whose head has negative τ or σ
coordinates by first translating sufficiently far in the positive ρ-direction and then
translating the tail so that it is just outside of the B-cubes. A Haiman arrow to a
B-cube whose tail is (ρ, 0, 1) or (ρ, 1, 0) corresponds respectively to a section in
H 0(B,OB(ρR + T )) or H 0(B,OB(ρR + S)). Since

OB(R) ∼= OB(x), OB(T ) ∼= NB/S, OB(S) ∼= NB/T ,

we see that the Haiman arrows from (ρ, 0, 1) or (ρ, 1, 0) to B-cubes are given by

H 0(B, NB/S(ρx)) or H 0(B, NB/T (ρx))

respectively. The head of such a Haiman arrow is (ρ ′, 0, 0) where ρ ′ is the order
of vanishing at x of the corresponding section.

LEMMA 28. Let (ρ, 0, 1) → (ρ ′, 0, 0) or (ρ, 1, 0) → (ρ ′, 0, 0) be a nonzero
Haiman arrow. Then ρ ′ > ρ.

Proof. Consider a Haiman arrow (ρ, 0, 1) → (ρ ′, 0, 0) with ρ ′ < ρ. Then this
arrow can be translated so that its head is a λF-cube; however, we saw in the
previous subsection that Haiman arrows to λF-cubes must be horizontal and so
this must be zero. Consider next a Haiman arrow (ρ, 1, 0)→ (ρ ′, 0, 0) with ρ ′ <
ρ. Then this arrow may be translated so that it is a strictly southwest pointing
Haiman arrow to a λF-cube which we showed in the previous subsection must be
zero. (Are you still with us dear reader? We are deep in the weeds now, but are
almost done.)
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By the lemma, we conclude that the only sections of H 0(B, NB/S(ρx)) or
H 0(B, NB/T (ρx)) which correspond to nonzero Haiman arrows vanish to order
at least ρ at x , and thus they are necessarily in the image of the maps

H 0(B, NB/S)→ H 0(B, NB/S(ρx)),
H 0(B, NB/T )→ H 0(B, NB/T (ρx)).

By Lemma 30, H 0(B, NB/S) = 0. On the other hand, H 0(B, NB/T ) can be
nonzero and these deformations do occur, they correspond to global deformations
of B in the KS-direction.

In conclusion, we have completely classified all possible Haiman arrows up to
equivalence and have thus constructed an explicit basis for

Hom(IC ,OC) ∼= Ker(Φ1 ⊕Φ2).

They consist of the 2|λ| − λ1 Haiman arrows to λF-cubes which do not go to B-
cubes and the h0(B, NB/T ) = h0(B, NB/X ) dimensional space of Haiman arrows
going to B-cubes. We have thus proved that

dim Hom(IC ,OC) = h0(B, NB/T )+ 2|λ| − λ1

for C = B ∪ λF . Our argument extends essentially word for word to the case
where C = B ∪i (λ

(i)Fxi ) has several partition thickened fibers. Whether the fiber
is smooth or nodal plays no role. We have thus proved Theorem 24.

9.6. Proof of Theorem 25. Let C = B ∪n
i=1 (λ

(i)Fxi ) be a partition thickened
comb curve and let

d =
n∑

i=1

|λ(i)|, l =
n∑

i=1

λ
(i)
1 .

To prove Theorem 25 it will suffice to construct a flat family of distinct
subschemes of X , containing C as a member, and over a base W which is smooth
and of dimension

h0(NB/T )+ 2d − l.

Indeed, Theorem 24 then implies that the induced injective map W → Hilb(X) is
a local isomorphism and the assertion of Theorem 25 follows.

Let
H 0
:= H 0(B, NB/T ),

and let
Vl ⊂ Hilbd(T )
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be the stratum defined in Theorem 23. Let W = H 0
× Vl so by Theorem 23, W is

smooth and of dimension h0(NB/T )+ 2d − l. We wish to construct a family over
W of distinct subschemes.

Since T = Tot(NB/T ), given θ ∈ H 0, we get an automorphism of T , which we
call Θ , given by

Θ : (p, v) 7→ (p, v + θ(p)),

where p ∈ B and v ∈ T |p.
We will construct a family of subschemes of X , flat over the base H 0

× Vl ,
which over a point (θ, Z) ∈ H 0

× Vl is the subscheme

Cθ = Θ(B) ∪ p−1(Θ(Z)).

Clearly, all such subschemes are distinct, and moreover, every partition thickened
comb curve is of the above form (with θ = 0 so that Θ = id).

Formally, we construct the universal subscheme

C ⊂ H 0
× Vl × X

flat over H 0
× Vl as follows. Consider the diagram

H 0
× Vl × X

H 0
× Vl × T

i
6

p
?

Θ- H 0
× Vl × T

B ↪−→ H 0
× T

π1
?

Vl × T

π2
?
� ⊃ Z .

In the above diagram, Z ⊂ Vl × T is the family of subschemes of T induced by
the universal subscheme over Hilbd(T ), B ⊂ H 0

× T is the family of curves in
T given by H 0, explicitly B is given by the set of points (θ, p, θ(p)). The maps
π1 and π2 are the obvious projections and the maps p and i are the projection and
the zero section of the elliptic fibration X → T . We are also adopting the general
abuse of notation that we drop factors of the identity map from the notation, that
is, if f : A→ B we denote also by f the map f × idC : A × C → B × C .

Then the subscheme

C = i(π−1
1 (B)) ∪ (p ◦Θ ◦ π2)

−1(Z) ⊂ H 0
× Vl × X

is the desired universal subscheme over H 0
× Vl .
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9.7. Proof of Theorem 23. The constructible function Hilbd(T ) → Z given
by

Z 7→ leng(Z ∩ B)

is upper semicontinuous and thus Vl is locally closed.
There is a dense open set on Vl isomorphic to

Syml(B)× Hilbd−l(T − B),

which is clearly smooth and of dimension 2d− l. Therefore, to prove the theorem
it suffices to show that

dim T[Z ]Vl = 2d − l,

where Z ⊂ T is a subscheme which is set-theoretically (but not necessarily
scheme-theoretically) supported on B. Moreover, we can easily reduce to the
case where Z is supported at a single point p ∈ B. By choosing formal local
coordinates (r, s) on T at p such that B = {s = 0}, we are reduced to considering
the case

T = SpecC[r, s], B = {s = 0}, and Z ⊂ T supported at 0.

Finally, since (C∗)2 acts on Vl in this case, it suffices to compute dim T[Z ]Vl at
(C∗)2-fixed subschemes Z ⊂ T . Recall that the fixed subschemes are given by
Zλ (see Section 3) defined by monomial ideals Iλ ⊂ C[r, s] corresponding to
partitions λ of d which in this case have λ1 = l, because leng(Zλ ∩ B) = l.

Therefore, we need only to prove the following lemma:

LEMMA 29. Let λ = (λ1 > · · · > λk) be a partition of d with λ1 = l. Let Zλ ⊂
C2
= SpecC[r, s] be defined by the monomial ideal

Iλ = (rλ1, rλ2 s, . . . , rλk sk−1, sk).

Let Vl ⊂ Hilbd(C2) be as in Theorem 23. Then

dim T[Zλ]Vl = 2d − l.

Proof. The tangent space

T[Zλ]Vl ⊂ T[Zλ]Hilbd(C2)

is cut out by the equations obtained by linearizing the condition

leng(Z ∩ {s = 0}) = l

at Zλ. In [9], Haiman has given a very explicit basis for TZλ Hilbd(C2) in terms
of what we called Haiman arrows in Section 9.3. Namely, consider all Haiman
arrows (ρ, σ )→ (ρ ′, σ ′) of one of the following two forms:
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(1) (ρ, σ )→ (ρ ′, σ ′) is a southeast pointing arrow with (ρ, σ ) located at a box
just above the top of a column of λ and (ρ ′, σ ′) located at a box which is the
furthest to the right in a row of λ.

(2) (ρ, σ )→ (ρ ′, σ ′) is a northwest pointing arrow with (ρ, σ ) located at a box
just to the right of a row of λ and (ρ ′, σ ′) located at a box which is at the top
of a column of λ.

There are 2d such arrows, d of each kind. The infinitesimal deformation
corresponding to an arrow (ρ, σ ) → (ρ ′, σ ′) is given by deforming the element
rρsσ ∈ Iλ to

rρsσ + ε rρ
′

sσ
′

,

where ε2
= 0.

For each φ : (ρ, σ )→ (ρ ′, σ ′) let IZλ(φ) be the corresponding deformed ideal
and consider

dim
(

C[r, s]
IZλ(φ)+ (s)

)
.

If σ ′ > 0 then IZλ(φ) + (s) = IZλ + (s): Haiman arrows (ρ, σ )→ (ρ ′, σ ′) with
σ ′ > 0 preserve the condition leng(Z ∩ {s = 0}) = l and hence lie in T[Zλ]Vl .

If σ ′ = 0 there are two possibilities:

(1) (ρ, σ ) is just above a column of λ and (ρ ′, σ ′) = (λ1 − 1, 0); or

(2) φ is of the form (λ1, 0)→ (ρ ′, 0) for 0 6 ρ ′ < λ1.

In Case 2, we have
C[r, s]

IZλ(φ)+ (s)
∼=

C[r ]
(rλ1 + εrρ′)

,

which has dimension λ1 = l for all values of ε since rλ1 + εrρ
′ has degree λ1 for

all values of ε.
In Case 1, we have

C[r, s]
IZλ(φ)+ (s)

∼=
C[r ]

(rλ1, εrλ1−1)

which, for nonzero values of ε, has dimension λ1 − 1.
Thus we have found that T[Zλ]Vl is spanned by all the arrows in the Haiman basis

except for the λ1 = l arrows given by Case 1 above and therefore dim T[Zλ]Vl =

2d − l.
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Appendix A. Odds and Ends

A.1. Elliptic surfaces. Let p : S → B be a nontrivial elliptic surface with
section B ⊂ S. For simplicity, we assume that all singular fibers are irreducible
nodal rational curves.

Let X = Tot(KS) and let T = Tot(KS|B), then clearly we have

NB/X
∼= NB/S ⊕ NB/T .

LEMMA 30. h0(NB/S) = 0 and h0(NB/T ) = χ(OS)− χ(OB).

Proof. By a well-known fact about elliptic surfaces (see [8] or [15, III.1.1]),

KS
∼= p∗(K B ⊗ L),

where
L∨ = R1 p∗OS.

Consequently, c1(KS)
2
= 0 and so Hirzebruch–Riemann–Roch says

χ(OS) =
e(S)
12

> 0,

where positivity of e(S) follows by pushing forward the Euler characteristic
measure on S to B

e(S) =
∫

S
de =

∫
B

p∗(1) de = # of singular fibers.
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On the other hand

χ(OS) = χ(R• p∗OS)

= χ(OB)− χ(L∨)
= deg(L).

By adjunction
NB/S
∼= (K ∨S |B)⊗ K B

∼= L∨.

Thus deg(NB/S) = deg(L∨) = −χ(OS) < 0 and so h0(NB/S) = 0.
Since

NB/T = KS|B = K B ⊗ L ,

we see that

h1(NB/T ) = h1(K B ⊗ L) = h0(L∨) = h0(NB/S) = 0,

and therefore

h0(NB/T ) = χ(NB/T )

= deg(K B)+ deg(L)+ 1− g(B)
= χ(OS)+ g(B)− 1
= χ(OS)− χ(OB).

By our assumption that S is not a product,

p∗ : Pic0(B)
∼=
−→ Pic0(S)

is an isomorphism [15, VII.1.1]. For any β ∈ H2(S), we denote by Hilbβ(S) the
Hilbert scheme of effective divisors on S in class β.

Denote by B ∈ H2(S) the class of the section B ⊂ S and by F ∈ H2(S) the
class of the fiber. Then we have the following commutative diagram

Symd(B) - Picd(B)

Hilbd F(S)

p∗

?
- Picd F(S)

∼= p∗

?

HilbB+d F(S)

+B
?

- PicB+d F(S).

∼= ⊗OS(B)
?

The horizontal arrows are Abel–Jacobi maps. The vertical arrows are induced
by pull-back and adding the section B ⊂ S.
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LEMMA 31. The above maps induce a bijective morphism

Symd(B)→ HilbB+d F(S).

Proof. Clearly p∗ gives an isomorphism Symd(B) ∼= Hilbd F(S) and +B defines
a closed embedding Hilbd F(S) ↪→ HilbB+d F(S). Thus it suffices to show that

Symd(B)→ HilbB+d F(S)

is surjective on closed points.
For surjectivity, suppose D′ is an effective divisor with class B + d F which

does not lie in the image. First, we note that for any fiber F we have D′ · F = 1.
Therefore D′ contains a section B ′ ⊂ S as an effective summand. Moreover,
B 6= B ′ or else D′ would lie in the image. Next, we take any D in the image
and compare D and D′. Then

OS(D − D′) ∈ Pic0(S) ∼= Pic0(B).

Therefore after re-arranging we find that there are distinct fibers Fxi , Fy j , and
ai > 0, b j > 0 such that

B +
∑

i

ai Fxi ∼lin B ′ +
∑

j

b j Fy j ,

where ∼lin denotes linear equivalence. Hence there exists a pencil {Ct}t∈P1 of
effective divisors such that

C0 = B +
∑

i

ai Fxi , C∞ = B ′ +
∑

j

b j Fy j .

Now fix a smooth fiber F . Then Ct · F = 1 for any t ∈ P1, so we get a morphism

P1
−→ F, t 7→ Ct ∩ F.

But F is a smooth elliptic curve so this map is constant. We conclude

B ∩ F = C0 ∩ F = C∞ ∩ F = B ′ ∩ F.

Since F was chosen arbitrary, we deduce that B = B ′ which is a contradiction.

A.2. Weighted Euler characteristics of symmetric products. In this section
we prove the following formula for the weighted Euler characteristic of symmetric
products.
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LEMMA 32. Let B be a scheme of finite type over C and let e(B) be its
topological Euler characteristic. Let g : Z>0 → Z((p)) be any function with
g(0) = 1. Let G : Symd(B)→ Z((p)) be the constructible function defined by

G(ax) =
∏

i

g(ai),

for all ax =
∑

i ai xi ∈ Symd(B) where xi ∈ B are distinct closed points. Then

∞∑
d=0

qd
∫

Symd (B)
G de =

(
∞∑

a=0

g(a)qa

)e(B)

.

REMARK 33. In the special case where g = G ≡ 1, the lemma recovers
MacDonald’s formula

∞∑
d=0

e(Symd(B)) qd
=

1
(1− q)e(B)

.

The lemma is essentially a consequence of the existence of a power structure
on the Grothendieck group of varieties defined by symmetric products and the
compatibility of the Euler characteristic homomorphism with that power structure.
For convenience, we provide a direct proof here.

Proof. The dth symmetric product admits a stratification with strata labeled by
partitions of d . Associated to any partition of d is a unique tuple (m1,m2, . . . ) of
nonnegative integers with

∑
∞

j=1 jm j = d . The stratum labeled by (m1,m2, . . . )

parameterizes collections of points where there are m j points of multiplicity j .
The full stratification is given by

Symd(B) =
⊔

(m1,m2,... )∑
∞

j=1 jm j=d

{(
∞∏
j=1

Bm j

)
−∆

}/
∞∏
j=1

σm j ,

where by convention, B0 is a point, ∆ is the large diagonal, and σm is the mth
symmetric group. Note that the function G is constant on each stratum and has
value

∏
∞

j=1 g( j)m j . Note also that the action of
∏
∞

j=1 σm j on each stratum is free.
For schemes over C, topological Euler characteristic is additive under

stratification and multiplicative under maps which are (topological) fibrations.
Thus ∫

Symd (B)
G de =

∑
(m1,m2,... )∑
∞

j=1 jm j=d

(
∞∏
j=1

g( j)m j

)
e(B

∑
j m j −∆)

m1!m2!m3! . . .
.
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For any natural number N , the projection B N
−∆→ B N−1

−∆ has fibers of
the form B − {N − 1 points}. The fibers have constant Euler characteristic given
by e(B)−(N−1) and consequently, e(B N

−∆) = (e(B)−(N−1))·e(B N−1
−∆).

Thus by induction, we find e(B N
−∆) = e(B) · (e(B)− 1) · · · (e(B)− (N − 1))

and so
e(B

∑
j m j −∆)

m1!m2!m3! · · ·
=

(
e(B)

m1,m2,m3, · · ·

)
,

where the RHS is the generalized multinomial coefficient.
Putting it together and applying the generalized multinomial theorem, we find

∞∑
d=0

qd
∫

Symd (B)
G de =

∑
(m1,m2,... )

∞∏
j=1

(g( j)q j)m j

(
e(B)

m1,m2,m3, . . .

)

=

(
1+

∞∑
j=1

g( j)q j

)e(B)

,

which proves the lemma.
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