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Abstract

The random surface measure S� of a stationary Boolean model � with grains from
the convex ring is considered. A sufficient condition and a necessary condition for the
existence of the density of the second-order moment measure of S� are given and a
representation of this density is derived. As applications, the surface pair correlation
functions of a Boolean model with spheres and a Boolean model with randomly oriented
right circular cylinders in R

3 are determined.
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1. Introduction

In connection with the investigation of random closed sets, several related random measures
are helpful tools. Given a random closed set � ⊂ R

d , d ≥ 2, defined on some probability
space [�, F , P], a well-known example is the random volume measure V�, where V�(B)

is the volume content of � in the Borel set B ∈ B(Rd). More formally, it is defined by
V�(·) = Hd(· ∩ �), where Hk , k ≥ 0, is the k-dimensional Hausdorff measure. Assuming
henceforth that � has only realizations in the extended convex ring Sd (Schneider and Weil
(2000)), another example, which is of interest here, is the random surface measure S�, where
S�(B) is the surface content of � inside B ∈ B(Rd). A formal definition of S� can be obtained
in the following way.

Let Kd denote the system of all nonempty compact and convex sets in R
d . Then, for any

K ∈ Kd , the (d − 1)th curvature measure Cd−1(K, B) gives the surface content of K inside
B ∈ B(Rd); see Schneider (1993). The measure Cd−1 can be extended to Sd additively and
nonnegatively; see, e.g. Hug and Last (2000). Therefore, for the random Sd -set �, the random
surface measure S� can be formally defined by

S�(B) = Cd−1(�, B), B ∈ B(Rd),

in which case S� is also the random curvature measure of order d − 1.
If � is stationary then so is S�. From a first-order point of view, S� is then characterized

by its intensity, S
(d)

V , which is also called the specific surface or surface density of �. For
many applications this is not enough: it is desirable also to have knowledge about the second-
order behaviour of S�. For the random volume measure V�, a corresponding second-order
characteristic is the covariance, P(x ∈ �, y ∈ �), of �, which has been extensively discussed
in the literature (see, e.g. Böhm and Schmidt (2003), and Stoyan et al. (1995) for an overview).
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It is well known and easy to prove that the covariance is a density of the second-order moment
measure of V� with respect to H2d .

The second-order characteristic for S� is more complicated. To be more precise, let M
(2)

S ,
defined by

M
(2)

S (A, B) = E[S�(A)S�(B)], A, B ∈ B(Rd),

be the second-order moment measure of S�. It is not directly apparent whether or not M
(2)

S has
a density, �

(2)

S , the second-order surface product density, with respect to H2d , and, if so, how
formulae for �

(2)

S can be derived for certain models.
The product density �

(2)

S has already been frequently used in applied science. It plays a role,
e.g. in the physics of porous media (in which context it is usually denoted by Fss and called
the surface–surface correlation function), where one is interested in bounds for permeability
constants (Torquato (2002)). Further applications in physics are given in a recent paper by
Arns et al. (2005). Therefore, it seems worthwhile, if not necessary, to investigate �

(2)

S more
theoretically.

Although a general theory has hitherto not been developed, �(2)

S has been exactly determined
for some special cases using different approaches. In particular, the paper of Mecke (2001)
should be mentioned. There a formula for the second-order surface product density was
derived for the stationary Boolean model with smooth grains, using arguments from differential
geometry. Using this formula, �

(2)

S was given for the respective Boolean models with discs in
R

2 and with segments in R
2. Nevertheless, conditions for the existence of �

(2)

S were not given.
Furthermore, �

(2)

S has been determined for the Boolean model with spheres in R
3 (Doi

(1976)) as well as approximately for the hard sphere Gibbs model in R
3 (Torquato (1986)). In

the case of stationary and isotropic Boolean models where all grains are (d − 1)-dimensional,
i.e. infinitely thin, one can also think of determining �

(2)

S as the derivative of the K-function
of S� (see Section 7.2.2 of Stoyan et al. (1995)) as in the point process case. Furthermore,
there are similarities to the investigation of product densities for random fibre processes; see,
e.g. Stoyan et al. (1980) for the planar case.

This paper considers the special case of a stationary Boolean model � with grains from the
convex ring Rd . This means that � can be expressed in the form

� =
∞⋃

n=1

(ξn + Zn),

where the (ξn, Zn), n = 1, 2, . . . , are given by a stationary, independently marked Poisson
point process � = ∑∞

n=1 δ(ξn,Zn) in R
d with marks (grains) Zn, n = 1, 2, . . . , in Rd , and

where it is also assumed that �({(x, K) : (x + K) ∩ B �= ∅}) < ∞ almost surely (a.s.) for
all compact sets B ⊂ R

d . Here the grains Zn are all independently and identically distributed
according to a distribution Q on Rd , which is also called the distribution of the typical grain Z.

In this case, denoting by λ the intensity, by V the mean volume, and by S the mean surface
area of the typical grain Z, the specific surface is given by

S
(d)

V = λS exp(−λV );
see, e.g. Stoyan et al. (1995, p. 76).

The present paper presents both a sufficient condition and a necessary condition for the
existence of �

(2)

S and rigorously proves a representation of �
(2)

S using an integral-geometric
approach which is relatively easy to use. Nevertheless, in order to apply the general formula
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for �
(2)

S to concrete grain distributions, some potentially difficult geometrical calculations have
to be carried out. This is demonstrated in two examples in R

3, first for spheres with random
radii and then for the more complicated case of randomly oriented right circular cylinders.

In a manner similar to the point process case, it makes sense to consider a normalized version
of �

(2)

S , namely the surface pair correlation function, gS , of S�:

gS = �
(2)

S

(S
(d)

V )2
.

Owing to the standardization, several models can be compared using gS . Furthermore, for a
stationary random set �, we have gS(x, y) → 1 as ‖x − y‖ → ∞, and values of gS(x, y)

close to unity can be interpreted by saying that point pairs on the boundary of � with distance
vector x − y are uncorrelated.

2. Second-order surface product density

For a set A ⊂ R
d and t ≥ 0, denote by At the outer parallel set A ⊕ tBd of A, where Bd is

the Euclidean unit ball in R
d and ‘⊕’ denotes Minkowski addition. Furthermore, Sd−1 = ∂Bd

is the boundary of the unit ball. In analogy to the random surface measure S�, henceforth
SK(·) = Cd−1(K, ·) will denote the surface measure for a fixed K ∈ Rd . In preparation for
statements concerning the existence of a density of M

(2)

S , we first present an auxiliary result.

Lemma 1. Let K ∈ Rd . Then

∂

∂t

∣∣∣∣
t=0+

∫
1Kt (x)f (x) dx =

∫
f (z)SK(dz)

for all continuous functions f on R
d .

Proof. The assertion is an immediate consequence of the local Steiner formula

∫
1Kt\K(x)f (x) dx = 1

d

d−1∑
i=0

(
d

i

) ∫ t

0

∫
f (z + sb)sd−i−11{δ(K,z,b)>s}	+

i (K, d(z, b)) ds;

see Theorem 3.3 of Hug and Last (2000). Here, for a pair (z, b) in the normal bundle, N(K),
of K , δ(K, z, b) is the reach from z ∈ ∂K in direction z to the exoskeleton of K (see Hug
and Last (2000)). Furthermore, 	+

i (K, ·) is the nonnegative extension of the ith generalized
curvature measure of K defined on B(Rd ×Sd−1). In particular, SK(·) = 	+

d−1(K, ·×Sd−1);
see Theorem 3.9 of Hug and Last (2000). Therefore, for all t ≥ 0 we have

∂

∂t

∫
1Kt (x)f (x) dx = 1

d

d−1∑
i=0

(
d

i

)
td−i−1

∫
f (z + tb)1{δ(K,z,b)>t}	+

i (K, d(z, b)).

Since Kt , t > 0, is compact and f is continuous, f is also bounded. Furthermore, for a fixed
(z, b) ∈ N(K), we have δ(K, z, b) > 0 and, hence, for all sufficiently small t < t , we also
have δ(K, z, b) > t , which implies that

lim
t→0+ 1{δ(K,z,b)>t} = 1{δ(K,z,b)>0}.

The asserted equality now follows by the dominated convergence theorem and the continuity
of f .
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We now need some further notation. Denote by v(x, y) = P(x ∈ �c, y ∈ �c) the covariance
of �c, where Ac = R

d \ A is the set-theoretic complement of any set A ⊆ R
d . Because

stationarity of � implies stationarity of S�, the second-order surface product density �
(2)

S (x, y)

depends only on the distance vector y −x. Therefore, it is completely described by the reduced
product density �̆

(2)

S (y − x) = �
(2)

S (x, y) (see Daley and Vere-Jones (2003) for the point process
case). If, in addition, � is isotropic, then so is S�, meaning that �

(2)

S (x, y) depends only on
the length, ‖y − x‖, of y − x and is completely described by the radial part of the reduced
product density, �̃(2)

S (‖y − x‖) = �
(2)

S (x, y). Nevertheless, since for these densities the domain
of the argument is unambiguous, henceforth �

(2)

S (q) is written for �̆
(2)

S (q), q ∈ R
d , and �

(2)

S (r)

is written for �̃
(2)

S (r), r ≤ 0. Similar notation will be used for v and gS .

Theorem 1. Let � be a stationary Boolean model with intensity λ, 0 < λ < ∞, and typical
grain Z ∈ Rd a.s. satisfying E[Hd(Z ⊕ tBd)] < ∞ for some t > 0 and E[S2

Z(Rd)] < ∞.
Moreover, assume that (∂/∂t)|t=0+ E[SZ(Zt − q)] exists for almost all q ∈ R

d . Then the
second-order moment measure, M

(2)

S , of S� is absolutely continuous with respect to H2d , and
for the reduced second-order surface product density we have

�
(2)

S (q) = v(q)

(
λ2 E[SZ(Zc − q)] E[SZ(Zc + q)] + λ

∂

∂t

∣∣∣∣
t=0+

E[SZ(Zt − q)]
)

for almost all q ∈ R
d . (1)

Proof. Substantial simplification of the proof is possible by applying Lemma 4.2 of Heinrich
and Molchanov (1999). First, with the definition HK(
, ·) = SK(·), K ∈ Rd (the meaning of

 is unimportant here), we must show that the random measure η(
, ·), given by

η(
, B) =
∞∑

n=1

Hξn+Zn

(

, B \

∞⋃
m=1, m�=n

(ξm + Zm)

)
, B ∈ B(Rd),

is a.s. equal to S�. Note that each Zn ∈ Rd can be expressed as Zn = ⋃kn

i=1 Zni , where kn is a
finite number and Zni ∈ Kd . By repeatedly using Corollary 3.5 and Theorem 3.9 of Hug and
Last (2000), we find that, a.s.,

η(
, ·) =
∞∑

n=1

S
ξn+⋃kn

i=1 Zni

(
· \

∞⋃
m=1, m�=n

(ξm + Zm)

)

=
∞∑

n=1

kn∑
i=1

Sξn+Zni

([
· \

∞⋃
m=1, m�=n

(ξm + Zm)

]
\

kn⋃
j=1, j �=i

(ξn + Znj )

)

=
∞∑

n=1

kn∑
i=1

Sξn+Zni

(
· \

[ ∞⋃
m=1, m�=n

km⋃
j=1

(ξm + Zmj ) ∪
kn⋃

j=1, j �=i

(ξn + Znj )

])

= S⋃∞
n=1(ξn+Zn)(·).

Note that SK(·) = SK(· ∩ K) and SK+x(· + x) = SK(·), x ∈ R
d , and that, by Lemma 3.2.1

of Schneider and Weil (2000), the marked point process � = {(ξn, Zn)} is simple. Then,
in view of Remark 4.2 of Heinrich and Molchanov (1999), all assumptions necessary for the
application of Lemma 4.2 are satisfied. Letting D ⊆ R

2d be a Borel set, we obtain the following
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representation of M
(2)

S :

M
(2)

S (D) = λ2
∫ ∫ ∫ ∫ ∫ ∫

1D(x1 + z1, x2 + z2)v(x1 + z1, x2 + z2)

× (1 − 1−K1+z2(x1 − x2))(1 − 1−K2+z1(x2 − x1))

× SK1(dz1)SK2(dz2)Q(dK1)Q(dK2) dx1 dx2

+ λ

∫ ∫ ∫ ∫
1D(x + z1, x + z2)v(x + z1, x + z2)

× SK(dz1)SK(dz2)Q(dK) dx. (2)

Here, owing to the Slivnyak–Mecke formula (Mecke (1967)), v can be written instead of a Palm
quantity. Let µ(2) (D) be the first summand in (2) and let µ(1) (D) be the second. By Fubini’s
theorem it follows, with the change of variables (x1, x2) �→ (x1 − z1, x2 − z2), that µ(2) (D)

can be rewritten as

µ(2) (D) = λ2
∫ ∫ ∫ ∫ ∫ ∫

1D(x1, x2)v(x1, x2)1(K2+x2−z2)c(x1)1(K1+x1−z1)c(x2)

× SK1(dz1)SK2(dz2)Q(dK1)Q(dK2) dx1 dx2;

hence,

µ(2) (D) = λ2
∫

1D(x1, x2)v(x1, x2)

∫
SK1((K1 + x1 − x2)

c)Q(dK1)

×
∫

SK2((K2 + x2 − x1)
c)Q(dK2) d(x1, x2). (3)

In analyzing µ(1), let f : R
2d → [0, ∞) be continuous. Then the changes of variable z1 �→

z1 − x and x �→ x − z2 and Lemma 1 yield∫
f (z1, z2)µ(1) (d(z1, z2))

= λ

∫ ∫ ∫ ∫
f (z1, x)v(z1, x)SK+x−z2(dz1)SK(dz2)Q(dK) dx

= λ

∫ ∫ ∫
∂

∂t

∣∣∣∣
t=0+

∫
1Kt+x−z2(y)f (y, x)v(y, x)Hd(dy)SK(dz2)Q(dK) dx

= λ

∫
∂

∂t

∣∣∣∣
t=0+

∫ ∫ ∫
1Kt+x−y(z2)f (y, x)v(y, x) dySK(dz2)Q(dK) dx

= λ

∫
∂

∂t

∣∣∣∣
t=0+

∫ ∫
f (y, x)v(y, x)SK(Kt + x − y)Q(dK) dy dx

= λ

∫
f (y, x)v(y, x)

∂

∂t

∣∣∣∣
t=0+

∫
SK(Kt + x − y)Q(dK) d(y, x),

where the dominated convergence theorem and Fubini’s theorem have been repeatedly applied.
This is justified by the assumed existence of the right-hand derivative of E[SZ(Zt + x − y)] at
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t = 0. Together with (3), this yields the asserted absolute continuity of M
(2)

S with respect to
H2d , and the corresponding reduced density (1).

Remark 1. In the case in which the typical grain Z is a.s. from Kd , representation (2) can
also be deduced from Theorem 4.2 of Molchanov (1995) if the boundary of the typical grain is
smooth enough in the sense that there is only one tangent point in each direction.

The following corollary gives a simpler formula for �
(2)

S when � is a stationary and isotropic
Boolean model. Recall that, for the stationary Boolean model, isotropy is equivalent to the fact
that the typical grain is isotropic.

Corollary 1. Let the assumptions of Theorem 1 be satisfied and assume that the typical grain Z

is isotropic. Then, for any vector q ∈ R
d of length r > 0, we have

�
(2)

S (r) = v(r)

[
λ2 E[SZ(Zc − q)]2 + λ

∂

∂t

∣∣∣∣
t=0+

E[SZ(Zt − q)]
]

(4)

for the radial part of the reduced second-order surface product density.

Remark 2. Because � is a stationary Boolean model, v(q) can be specified more explicitly.
It is

v(q) = exp(−2λV ) exp(λγZ(q)), q ∈ R
d ,

where γZ(q) = E[Hd(Z ∩ [Z − q])] is the set covariance function. If � is also isotropic then
so is Z, and γZ(q) can be replaced by the isotropized set covariance function γ Z(r), r = ‖q‖;
see Stoyan et al. (1995, p. 68).

Remark 3. It should be stressed that the existence of the right-hand derivative of E[SZ(Zt −q)]
is a condition only on the typical grain Z or the corresponding grain distribution Q, and therefore
has no bearing on the associated stationary (unmarked) Poisson point process.

For a more detailed discussion of the term (∂/∂t)|t=0+ E[SZ(Zt −q)] in the case in which Z

is a.s. in Kd , the reader is referred to Ballani (2006), where conditions ensuring its existence
were given. Assuming, for example, that the typical grain is C2 and strictly convex, it was
shown that

∂

∂t

∣∣∣∣
t=0+

E[SZ(Zt − q)] = E

[∫
∂Z∩∂[Z−q]

| sin � (n(Z, y), n(Z − q, y))|−1Hd−2(dy)

]

for almost all q ∈ R
d , where n(Z, y) is the outer normal unit vector at y ∈ ∂Z. This

representation is useful if the surface of Z can be easily parametrized (see also Mecke (2001)).
Otherwise the direct evaluation of (∂/∂t)|t=0+ E[SZ(Zt − q)] seems to be preferable.

Moreover, in the stationary and isotropic case with a convex typical grain Z with inner
points, it was proved for dimensions d = 2 and d = 3 that, under milder conditions, namely
when each grain has a piecewise C1 (d = 2) or piecewise C2 (d = 3) boundary,

∂

∂t

∣∣∣∣
t=0+

E[SZ(Zt − q)]

= 1

dbdrd−1 E

[∫
∂Z∩∂[Bd(z,r)]

| sin � (n(Bd(z, r), y), n(K, y))|−1Hd−2(dy)SZ(dz)

]

for almost all q ∈ R
d with r = ‖q‖, where Bd(z, r) = z + rBd . Nevertheless, it might

be conjectured that, apart from some integrability conditions, isotropy is sufficient and any
smoothness conditions are redundant.
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The next theorem gives a necessary condition for the existence of the second-order surface
product density �

(2)
S . Denote by Sd−1(K, ·) = 	d−1(K, ∂K × ·) the area measure of order

d − 1 (see Schneider (1993)) of K ∈ Rd , which is a measure on B(Sd−1).

Theorem 2. Let � be a stationary Boolean model with intensity λ, 0 < λ < ∞, and typical
grain Z ∈ Rd a.s. satisfying E[Hd(Z ⊕ tBd)] < ∞ for some t > 0 and E[S2

Z(Rd)] < ∞.
Assume that the second-order moment measure, M

(2)

S , of S� is absolutely continuous with
respect to H2d . Then the measure E[Sd−1(Z, ·)] is diffuse.

Proof. Assume, to the contrary, that E[Sd−1(Z, ·)] has an atom. Without loss of generality,
assume that this atom is at ed = (0, . . . , 0, 1)� ∈ Sd−1. This means that the boundary of the
typical grain a.s. contains a flat piece with normal vector ed . Let

D = {(a1 + ad+1, . . . , ad−1 + a2d−1, ad, ad+1, . . . , a2d−1, ad) : (a1, . . . , a2d−1) ∈ R
2d−1}

be a hyperplane in R
2d . Hence, H2d(D) = 0. Furthermore, consider the measure µ(1) defined

in the proof of Theorem 1. With the change of variable z1 �→ z1 + x − z2 and the mapping
H : R

d × R
d → R

d × R
d given by (x, y) �→ (x − y, y), we obtain

µ(1) (D) = λ

∫ ∫ ∫ ∫
1{(z1,x)∈D}v(z1, x)SK+x−z2(dz1)SK(dz2)Q(dK) dx

= λ

∫ ∫ ∫ ∫
1{(z1−z2+x,x)∈D}v(z1 − z2 + x, x)SK(dz1)SK(dz2)Q(dK) dx

= λ

∫ ∫ ∫ ∫
1{(z1−z2,x)∈Rd−1×{0}×Rd }v(z1 − z2)SK(dz1)SK(dz2)Q(dK) dx.

Since V = E[Hd(Z)] < ∞, by Remark 2 we have v(z1 − z2) > 0. Furthermore, for all z1
and z2 in the flat pieces orthogonal to ed , we have z1 − z2 ∈ R

d−1 × {0}. This implies that
µ(1) (D) > 0 and, hence, µ(1) and M

(2)

S are not absolutely continuous with respect to H2d ,
which contradicts the assumption.

3. Applications

Corollary 1 easily yields the formula for the second-order surface product density of the
stationary Boolean model in R

3 with spheres of constant radius R > 0 as stated by Doi (1976).
In view of (4), for a sphere K the quantities SK(Kc − q), (∂/∂t)|t=0+SK(Kt − q), and, by
Remark 2, γ K(r) have to be determined.

The surface area of a sphere K1 with radius R1 inside a sphere K2 with radius R2 ≥ R1 and
whose centre is a distance r from that of K1 is, for 0 < r < R1 + R2,

SK1(K2) = 2πR2
1 − πR1

R2
1 − R2

2 + r2

r
.

Therefore,
SK(Kc − q) = 4πR2 − (2πR2 − πRr)1(0,2R)(r)

and, for 0 < r < 2R,

∂

∂t

∣∣∣∣
t=0+

SK(Kt − q) = ∂

∂t

∣∣∣∣
t=0+

(
2πR2 − πR

R2 − (R + t)2 + r2

r

)
= 2πR2

r
.
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Finally,

γ K(r) = 4π

3

(
1 − 3r

4R
+ r3

16R3

)
1(0,2R)(r)

(see, e.g. Stoyan et al. (1995, p. 70)), which leads to

�
(2)

S (r) =
[
λ2(4πR2 − (2πR2 − πRr)1(0,2R)(r))

2 + λ
2πR2

r
1(0,2R)(r)

]
v(r) (5)

for the radial part of the reduced second-order surface product density, where

v(r) = exp

(
−λ

(
8π

3
R3 − 4π

3

(
1 − 3r

4R
+ r3

16R3

)
1(0,2R)(r)

))
.

When using spheres of random radii ξ with finite third moment, the surface product den-
sity �

(2)
S is obtained in a similar manner. It is

�
(2)

S (r) =
(

(4πλ)2 E

[
ξ2 − 1(r/2,∞)(ξ)

(
ξ2

2
− rξ

4

)]2

+ 4πλ E

[
1(r/2,∞)(ξ)

ξ2

2r

])
v(r)

for r > 0, where

v(r) = exp

(
−8πλ

3
E

[
ξ3 − 1(r/2,∞)(ξ)

4π

3
ξ3

(
1 − 3r

4ξ
+ r3

16ξ3

)])
,

which coincides with the formula stated by Torquato (2002, p. 165).

As another application, we use Corollary 1 in the case of a stationary and isotropic Boolean
model with randomly oriented, identical right circular cylinders in R

3. Because such cylinders
have both planar and curved faces they might serve well for studying the effects of both face
types on the surface product density. With this grain type the derivation of �

(2)

S is much more
complicated than in the case of spherical grains. Let the typical grain Z be a right circular
cylinder in R

3 with height h, base radius R, and base normal vector uniformly distributed
on S2. Thus, only the orientation of each cylinder, not its size, is random. Here only the case
in which h ≤ 2R (short cylinders) is considered; however, the calculations for h > 2R (long
cylinders) are very similar.

By (4), γ Z(r), E[SZ(Zc − q)], and (∂/∂t)|t=0+ E[SZ(Zt − q)] again have to be considered.
Let

A(r, R1, R2) = R2
1 arccos

(
r2 + R2

1 − R2
2

2rR1

)
+ R2

2 arccos

(
r2 + R2

2 − R2
1

2rR2

)

− 1

2

√
4r2R2

2 − (r2 + R2
2 − R2

1)2

be the intersection area of two discs with radii R1 and R2, R1 ≤ R2, and centre-to-centre
distance r satisfying R2 − R1 < r < R1 + R2; see, e.g. Stoyan and Stoyan (1994, p. 365).
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Writing

qV (α, r, R, h) = 2

π
(h − r cos α)A(r sin α, R, R) sin α,

where (h−r cos α)A(r sin α, R, R) is the intersection volume of the cylinders Z and Z−q(α),
the isotropized set covariance function is

γ Z(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ π/2

0
qV (α, r, R, h) dα, 0 < r ≤ h,

∫ π/2

arccos h/r

qV (α, r, R, h) dα, h < r ≤ 2R,

∫ arcsin 2R/r

arccos h/r

qV (α, r, R, h) dα, 2R < r ≤ √
h2 + 4R2,

0, r >
√

h2 + 4R2;
see, e.g. Gille (1987). In a similar manner we obtain

E[SZ(Z − q)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ π/2

0
qS(α, r, R, h) dα, 0 < r ≤ h,

∫ π/2

arccos h/r

qS(α, r, R, h) dα, h < r ≤ 2R,

∫ arcsin 2R/r

arccos h/r

qS(α, r, R, h) dα, 2R < r ≤ √
h2 + 4R2,

0, r >
√

h2 + 4R2,

where

qS(α, r, R, h) = 2

π
((h − r cos α)l(r sin α, R, R) + A(r sin α, R, R)) sin α

and

l(r, R1, R2) = 2R1 arccos

(
r2 + R2

1 − R2
2

2rR1

)

is the length of that part of the boundary of the smaller disc which lies inside the larger disc.
The derivation of (∂/∂t)|t=0+ E[SZ(Zt −q)] is far more elaborate because each of the cases

0 < r ≤ h, h < r ≤ 2R, and 2R < r ≤ √
h2 + 4R2 has to be investigated separately. The

necessary calculations are given in Appendix A. With the abbreviations

IV (r, R, h, α1, α2) = 2πR2h −
∫ α2

α1

qV (α, r, R, h) dα,

IS(r, R, h, α1, α2) = 2πR(R + h) −
∫ α2

α1

qS(α, r, R, h) dα,

IT (r, R, h, α1, α2) =
∫ α2

α1

8R sin α

π
arccos

(
r sin α

2R

)
+ 8R2h

πr
√

4R2 − r2 sin2 α
dα,
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the second-order product density of the Boolean model with randomly oriented cylinders is
then given by

�
(2)

S (r) = exp

(
−λIV

(
r, R, h, 0,

π

2

))

×
[
λ2IS

(
r, R, h, 0,

π

2

)2

+ λ

(
IT

(
r, R, h, 0,

π

2

)
+ 12R2

πr
arccos

(
r

2R

)
− 4R2

r
−

√
4R2 − r2

π

)]

for 0 < r ≤ h,

by

�
(2)

S (r) = exp

(
−λIV

(
r, R, h, arccos

h

r
,
π

2

))

×
[
λ2IS

(
r, R, h, arccos

h

r
,
π

2

)2

+ λ

(
IT

(
r, R, h, arccos

h

r
,
π

2

)
+ 12R2

πr
arccos

(
r

2R

)

−
√

4R2 − r2

π
− 4R2

πr
arccos

(√
r2 − h2

2R

)

−
√

r2 − h2

πr

√
4R2 − (r2 − h2)

)]
for h < r ≤ 2R,

by

�
(2)

S (r) = exp

(
−λIV

(
r, R, h, arccos

h

r
, arcsin

2R

r

))

×
[
λ2IS

(
r, R, h, arccos

h

r
, arcsin

2R

r

)2

+ λ

(
IT

(
r, R, h, arccos

h

r
, arcsin

2R

r

)
− 4R2

πr
arccos

(√
r2 − h2

2R

)

−
√

r2 − h2

πr

√
4R2 − (r2 − h2)

)]
for 2R < r ≤ √

h2 + 4R2,

and by
�

(2)

S (r) = λ24π2R2(R + h)2 exp(−λ2πR2h) for r >
√

h2 + 4R2.

The integrals in IV , IS , and IT cannot be expressed in closed form. Nevertheless, �
(2)

S (r) or
gS(r) can be obtained from some simple numerical computations.

Figure 1 presents typical examples of the surface pair correlation function gS(r) for different
values of h. It shows that there are discontinuities, namely a finite jump at r = h and a pole at
r = 2R. When the height of the cylinder equals the base diameter then the two discontinuities
coincide. For infinitely thin cylinders (h = 0), gS(r) is continuous for r > 0. The two
discontinuities are consequences of the special geometry of the typical grain. They will vanish
if both the height and the base radius are continuously distributed.
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Figure 1: The pair correlation function gS(r) = �
(2)

S (r)/(S
(d)
V )2 for the random surface measure of the

stationary Boolean model with uniformly oriented right circular cylinders of height h and base diameter D

for the intensity λ = 0.05/D3. In (a) h = 0 (disc), in (b) h = 0.4D, in (c) h = 0.8D, and in (d) h = D.

However, the pole observable at r = 0 does not depend on a particular grain distribution.
It is rather an inherent part of any surface pair correlation function and results from the fact
that any point on a (d − 1)-dimensional surface has infinitely many neighbouring points on the
surface for any arbitrarily small distance r > 0.

Remark 4. Examples suggest that the discontinuities in �
(2)

S (r) and gS(r) smooth out as the
dimension increases. For the stationary Boolean model with identical spheres in R

3, the radial
part of the reduced surface product density �

(2)

S (r) has a finite jump at r = 2R, as can be seen
from (5). Like all the discontinuities here, it results from the term (∂/∂t)|t=0+SK(Kt − q).
Considering a stationary Boolean model with identical spheres in R

d , it was shown in Ballani
(2006) that

∂

∂t

∣∣∣∣
t=0+

SK(Kt − q) = (d − 1)bd−1

2d−3

(
√

4R2 − r2)d−3R2

r
.

Therefore, for d = 2 there is even a pole at r = 2R, whereas for d > 3 there is no discontinuity.

Appendix A. Further details of the calculation for the cylinder case

Let Z be a right circular cylinder in R
3 with height h, base radius R, and base normal vector

uniformly distributed on S2. We will show how the right-hand derivative of E[SZ(Zt − q)]
at t = 0 can be evaluated, which completes the discussion of Section 3. Because only short
cylinders are considered in this paper (see Section 3), it is henceforth assumed that h ≤ 2R.

https://doi.org/10.1239/aap/1175266466 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266466


12 • SGSA F. BALLANI

Let q = (r, 0, 0)�. Furthermore, let K be a right circular cylinder with height h and base
radius R which has its centre at the origin and whose axis coincides with the axis (0, 0, z),
z ∈ R. Then Z can be represented as θK where θ is a random rotation around the origin. Since
SZ(Zt − q) = SθK(θKt − q) = SK(Kt − θ−1q) (see Schneider (1993)), the randomness of
the cylinder can be transferred to the distance vector. Because of cylinder symmetry it suffices
then to consider distance vectors q(α) = (r sin α, 0, r cos α)� with α ∈ [0, π/2), where α is
the polar angle in polar coordinates. The corresponding expectation is then taken with respect
to the probability measure (2/π) sin α dα.

A.1. The case 0 < r ≤ h

Let 0 ≤ t < (
√

2/2)r . Then arcsin t/r < arccos t/r and

SK(Kt − q(α))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

πR2 + 2πR(h − r cos α) + T11(t, α), 0 < α < arcsin t/r,

A(r sin α, R, R + t) + l(r sin α, R, R + t)

× (h − r cos α) + T12(t, α), arcsin t/r < α < arccos t/r,

A(r sin α, R, R + t)

+ A(r sin α, R, R + √
t2 − r2 cos2 α)

+ l(r sin α, R, R + t)(h − r cos α) + T13(t, α), arccos t/r < α < π/2,

where

T12(t, α) =
∫ t

0
l(r sin α, R, R +

√
t2 − s2) ds

and T11 and T13 are unimportant contributions to SK(Kt − q) which will vanish after differen-
tiating at t = 0. We have T11(t, α) ≤ 2πRt and T13(t, α) ≤ 2πRt ; see Figure 2. This implies
that

∂

∂t

∣∣∣∣
t=0+

∫ arcsin t/r

0
T11(t, α) sin α dα = ∂

∂t

∣∣∣∣
t=0+

∫ π/2

arccos t/r

T13(t, α) sin α dα = 0. (6)

2R

h

t

} {

T11

α

(a)

h
t

α

{

T12

2R

(b)

}α

h t

2R

T13

(c)

Figure 2: Section along the plane through the rotational axes of the cylinder and its translated outer
parallel set for the case 0 < r ≤ h. The cylinder surface inside the parallel set is indicated by the thick
segments. In (a) 0 < α < arcsin t/r , in (b) arcsin t/r < α < arccos t/r , and in (c) arccos t/r < α < π/2.
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Since

∂

∂t

∣∣∣∣
t=0+

∫ α2(t)

α1(t)

A(r sin α, R, R + t) sin α dα =
∫ α2(0)

α1(0)

2R arccos

(
r sin α

2R

)
sin α dα

+ A(r sin α2(0), R, R) sin α2(0)
∂

∂t

∣∣∣∣
t=0+

α2(t)

− A(r sin α1(0), R, R) sin α1(0)
∂

∂t

∣∣∣∣
t=0+

α1(t),

we have

∂

∂t

∣∣∣∣
t=0+

∫ π/2

arcsin t/r

A(r sin α, R, R + t) sin α dα =
∫ π/2

0
2R arccos

(
r sin α

2R

)
sin α dα. (7)

Similarly, from

∂

∂t

∣∣∣∣
t=0+

∫ α2(t)

α1(t)

l(r sin α, R, R + t)(h − r cos α) sin α dα

=
∫ α2(0)

α1(0)

4R2h

r
√

4R2 − r2 sin2 α
dα + 4R2

r

[
arccos

(
r sin α2(0)

2R

)
− arccos

(
r sin α1(0)

2R

)]

+ l(r sin α2(0), R, R)(h − r cos α2) sin α2(0)
∂

∂t

∣∣∣∣
t=0+

α2(t)

− l(r sin α1(0), R, R)(h − r cos α1) sin α1(0)
∂

∂t

∣∣∣∣
t=0+

α1(t),

we obtain

∂

∂t

∣∣∣∣
t=0+

∫ π/2

arcsin t/r

l(r sin α, R, R + t)(h − r cos α) sin α dα

=
∫ π/2

0

4R2h

r
√

4R2 − r2 sin2 α
dα − 4R2

r
arcsin

(
r

2R

)
. (8)

Furthermore,

∂

∂t

∣∣∣∣
t=0+

∫ α2(t)

α1(t)

∫ t

0
l(r sin α, R, R +

√
t2 − s2) ds sin α dα

=
∫ α2(0)

α1(0)

2R arccos

(
r sin α

2R

)
sin α dα.

Hence,

∂

∂t

∣∣∣∣
t=0+

∫ arccos t/r

arcsin t/r

T12(t, α) sin α dα =
∫ π/2

0
2R arccos

(
r sin α

2R

)
sin α dα. (9)

Taking into account the relations

∂

∂t

∣∣∣∣
t=0+

∫ π/2

arccos t/r

A(r sin α, R, R +
√

t2 − r2 cos2 α) sin α dα = 1

r
A(r, R, R)
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and
∂

∂t

∣∣∣∣
t=0+

∫ arcsin t/r

0
(πR2 + 2πR(h − r cos α)) sin α dα = 0,

from (6), (7), (8), and (9) we obtain

∂

∂t

∣∣∣∣
t=0+

E[SZ(Zt − q)] = 8R

π

∫ π/2

0
arccos

(
r sin α

2R

)
sin α dα + 12R2

πr
arccos

(
r

2R

)

+ 8R2h

πr

∫ π/2

0

1√
4R2 − r2 sin2 α

dα − 4R2

r
− 1

π

√
4R2 − r2.

We can determine (∂/∂t)|t=0+ E[SZ(Zt − q)] in a similar fashion in the next two cases.

A.2. The case h < r ≤ 2R

Let t < min{√r2 − h2, h}. Then arccos h/r < arccos t/r , and for t <
√

r2 − h2 we have

SK(Kt − q(α))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(r sin α, R, R + √
t2 − (r cos α − h)2)

+ T21(t, α), arccos(h + t)/r < α < arccos h/r,

A(r sin α, R, R + t) + l(r sin α, R, R + t)

× (h − r cos α) + T22(t, α), arccos h/r < α < arccos t/r,

A(r sin α, R, R + t)

+ A(r sin α, R, R + √
t2 − r2 cos2 α)

+ l(r sin α, R, R + t)(h − r cos α)

+ T23(t, α), arccos t/r < α < π/2,

0, otherwise,

where T21(t, α) ≤ 2πRt , T23(t, α) ≤ 2πRt , and T22(t, α) = T12(t, α).

A.3. The case 2R < r ≤
√

h2 + 4R2

Let t < min{√r2 − 4R2, 2R}. Then arccos h/r ≤ arcsin 2R/r and

SK(Kt − q(α))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(r sin α, R, R + √
t2 − (r cos α − h)2)

+ T31(t, α), arccos(h + t)/r < α < arccos h/r,

A(r sin α, R, R + t) + l(r sin α, R, R + t)

× (h − r cos α) + T32(t, α), arccos h/r < α < arcsin 2R/r,

A(r sin α, R, R + t) + l(r sin α, R, R + t)

× (h − r cos α) + T33(t, α), arcsin 2R/r < α < arcsin(2R + t)/r,

0, otherwise,

where T31(t, α) ≤ 2πRt , T33(t, α) ≤ 2πRt , and T32(t, α) = T12(t, α).

A.4. The case r >
√

h2 + 4R2

Let t < r − √
h2 + 4R2. Then K ∩ [Kt − q] = ∅ always and, hence,

∂

∂t

∣∣∣∣
t=0+

E[SZ(Zt − q)] = 0.
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