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SYMMETRIC HOMOGENEOUS CONVEX DOMAINS

TADASHI TSUJI

Introduction

Let D be a convex domain in the w-dimensional real number space

Rn, not containing any affine line and A(D) the group of all affine trans-

formations of Rn leaving D invariant. If the group A(D) acts transitively

on D, then the domain D is said to be homogeneous. From a homo-

geneous convex domain D in Rn, a homogeneous convex cone V = V(D)

in Rn+1 = Rn X R is constructed as follows (cf. Vinberg [11]):

(0.1) V(D) = {(tx, t)eRn XR; xeD, t> 0},

which is called the cone fitted on the convex domain D. Let G(V) be

the group of all linear automorphisms of V and gv the canonical G(V)-

invariant Riemannian metric on V (cf. e.g. [8]). Then a natural imbed-

ding

(0.2) σ: xeD > (x, 1) e V(D)

is equivariant with respect to the groups A(D) and G(V). Therefore, the

Eiemannian metric gD = σ*gv on D induced from (V, gv) by σ is A(D)-

invariant. The Riemannian metric g^ is called the canonical metric of D.

We note that the canonical metric gD is given from the characteristic

function ψv of V as follows: Let us put φD — ψv o σ. Then

(0.3) gD= Σ -

where (x\ x2, , xn) is a system of affine coordinates of Rn.

The purpose of the present paper is to determine (up to affine equiv-

alence) all homogeneous convex domains which are Riemannian symmetric

with respect to the canonical metric. The main result obtained is stated

as follows. Every symmetric homogeneous convex domain is affinely equiv-
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alent to one of the following: a homogeneous self-dual cone; an elementary

domain; a direct product of some of these domains (Theorem 4.2). For

the definition of an elementary domain, see § 1. In order to prove the
above result, we need essentially the theory of ϋΓ-algebras developed by
Vinberg [11], [12]. We remark that for homogeneous convex cones, the
above problem has been solved by Rothaus [5], Shima [7] and the author
[8], [10].

The author would like to express his hearty thanks to Prof. H. Shima
for inviting the author's attention to homogeneous convex domains, and
to Prof. S. Kaneyuki for his helpful criticism.

§ 1. Homogeneous convex domains and T-algebras

In this section, we recall the construction theorem of homogeneous
convex domains in terms of T-algebras. The details for them may be
found in [11] or [12].

1.1. Let 31 = Σlκt,s<r%j be a Γ-algebra of rank r provided with an
involutive anti-automorphism *. General elements of Sί̂  will be denoted
as aij9 bij, , and also an arbitrary element a of 3ί will be written like
as a matrix a = (aί3), where aiS is the Sί̂ -component of α. Let us define
subsets T = 2X«), V = V(2ί) and X = X(H) of Si by

T = {t = (ttj) e Si; tu > 0 (1 < i <r), ti$ = 0 (1 < < i < r)},

V= {tt*; teT}aX= {xe%; x* = x}.

Then it is known in [11] that V is a homogeneous convex cone in the
real vector space X and T is a connected Lie group which acts on V
simply transitively as linear transformations by

(ί, ss*) eTx V—• (te)(te)* e V.

Conversely, every homogeneous convex cone is realized in this form up
to linear equivalence.

Throughout this paper, we will use the following notation:

nυ = dim Sί̂  = dim Sί̂ , Wi = l + I Σ ^ 0- < h

(1.1) Sp a = Σ ntau (a = (αy) e Si);
l<i<r

e = (ei}), eυ = δυ (Kronecker delta).

Then the numbers {nυ} satisfy the condition
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(1.2) max {nφ njk\ < nik

for all indices i < j < k with ni3njk Φ 0. Moreover, the element e is

the unit element of T and also e is contained in V. Hence, the tangent

space Te(V) of V at the point e may be naturally identified with the

ambient space X and also with the Lie algebra ί of T. On the other

hand, the Lie algebra t may be identified with the subspace Σ i < ί < J < r SΓ̂

of % provided with the bracket product: [a, b] = ab — ba. A canonical

linear isomorphism between i and X is given by

f : α e t = Σ %υ > a + α* eX = Te(V).
K i j

Under this identification, by using the canonical Riemannian metric gv

at the point e, we have an inner product ( , ) on t as follows:

<α, b) = gv(e)(ξ(ά), £(&))

for every a, bet. The inner product < , ) has the following expression:

(1.3) <α,6>=Sp(f(α)f(6))

for every a, bet (cf. the formula (34) of [11]). From this, we have

(1.4) <«„, %e> = 0

for all indices i < j and k < A satisfying (/, j) Φ (k, £).

1.2. For a Γ-algebra Si = Σ K i ) K r 2ίί; of rank r (r > 2), we define

subsets To c Γ, XQ c X and D = D(SI) c V = V(SI) by

To = {t = (ttj) e Γ; *rr = 1}, Xo - {x = (Xij) e X; xrr = 0}

and

(1.5) D = D(2I) = {x = (xυ) e V(80; x r r = 1} = V(Sί) Π (Xo + β),

respectively. Then it is known in Vinberg [11] that the domain D(3ί) is

a homogeneous convex domain in the affine subspace Xo + e satisfying

the condition V(D) = V(Sί) and To is a closed subgroup of T acting on

D simply transitively as afiine transformations by

(t, ss*) e Γo X D • (te)(te)* e D.

Conversely, every homogeneous convex domain is realized in this form

up to affine equivalence.

Let us define a subspace t0 of t by
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Then to is the Lie subalgebra of t corresponding to the subgroup To of T.

Similarly as in the case of homogeneous convex cones, we can identify

the Lie algebra t0 with the tangent space Te(D) of D at the point e and

also with the vector space Xo by the following linear isomorphism:

ξ0: a e t0 • a + a*eX0 = Te{D).

From the canonical metric gD of D at the point e, we have an inner

product < , >0 on t0 by

for every a,bet0. Since the equivariant imbedding σ: D(2ί) -» V(2ί) de-

fined by (0.2) is the inclusion mapping, we have the following relations:

ξo(a) = ξ(a) and <α, b\ = <α, 6>

for every α, 6 e t0. Therefore, we can identify < , )0 with < , ) restricted

to the subspace t0, and we may omit the subscript in < , >0.

EXAMPLE ([11]). We now give a typical example of homogeneous

convex domains. Let ( , ) be an inner product on the real number space

Rn. Then the domain D(n + 1) defined by

D(n + 1) - {(x, y)eRxRn;x- (y9y) > 0}

is a homogeneous convex domain in Rn+1. This domain is called the

elementary domain of dimension n + 1. The domain D(n + 1) is con-

structed from a Γ-algebra as follows: Let us take a Γ-algebra 21 = 2In

+ 2I22 + 2Ii2 + SΪ21 of rank two with 2I12 = Rn. Then, the cone V(2I) is the

(n + 2)-dimensional circular cone

C(n + 2) = [* = (*£ X l 2 ) e X(SI); xπx2 2 - (*12, x12) > 0, x22 > θ | ,
v ^ ^ 1 2 Λ'22

where xn̂ 22 is a usual multiplication of real numbers xH e%u = R (i = 1,

2), and the domain D(§I) given by (1.5) is the elementary domain D(n + 1).

1.3. On the direct product of homogeneous convex domains, we have

the following

PROPOSITION 1.1. Let Di be a homogeneous convex domain in the real

number space Rnί (i = 1, 2). Then the product domain D = Dx X D2 is a
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homogeneous convex domain in Rn ~ Rni X Rn* (n = nt + n2) and the ca-

nonical metric gD of D is the product Riemannian metric of gDi (i — 1, 2).

Proof. Let us put the subgroup AQ(D) of A(D) by AQ(D) = A(DX) X

A(D2). Then A0(D) acts transitively on D and D is a homogeneous convex

domain in Rn. We now define a function ψ: V(2)) -> R by

Λ|r(ta, 0 = tφx(txu t)φ2(tx?, t)

for every (tx, t) e V(D) and x = (xu x2) e D = Dx X D2> where <pt is the

characteristic function of Vt = V(A) (ί = 1, 2). We want to show that

the function ψ satisfies the condition

(1.6) f(g(tx, £)) = f(tx, 0/1 det ^ |

for every geG(V) and (tx,t)eV(D). In fact, from a property of the

characteristic function ψi (cf. [11]), we have

ψ(λ(tx, t)) = ψ(tx, t)/λn+1

for every λ > 0 and (tx, t) e V(D). In general, for each affine transforma-

tion B on Rm, we denote by B the natural extension of B as a linear

transformation on i?m+1 = i?m X R. Then we have

ίx, t)) = tftAx, t)

= fyXίAA, ίV2(ί-A2x2, ί) = UpiA&tXu t))φ2(Ά2(tx2, t))

= tφx(txu t)φ2(tx2, 0/1 (det Λ det ^Ϊ2)| = φ(tx, 0/1 det A |

for every A = (Au A2) e A0(D) and {tx, t) e V(D). On the other hand, the

subgroup of G(V) generated by AQ(D) and the similarity transformations

acts on V transitively. Therefore, the function ψ satisfies the condition

(1.6), and we can write <pv — cψ by a positive number c. Hence,

φv(x, 1) = Cψ(x, 1) = Cφ1(xl9 ΐ)φ2(x2, 1) ,

which means

φD(x) = cφDι{x1)ψDlx2)

for every x = (x1? x2) e D = A X D2. Therefore, by (0.3), we have gD =

^x X go* q.e d.

From the definition (0.1), we can easily see the following

PROPOSITION 1.2. Let Vo be a homogeneous convex cone and D a homo-

geneous convex domain. Then the cone V(V0 X D) (resp. V(V0)) fitted on
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Vo X D (resp. Vo) is the product cone Vo X V(D) (resp. Vo X R), where R+

is the cone of all positive real numbers.

§ 2. Connection and curvature for the canonical metric

In this section, we study some of basic properties of the Riemannian

connection for the canonical metric on a homogeneous convex domain.

Let D = Z)(2l) (resp. V = V(2ί)) be the homogeneous convex domain (resp.

cone) corresponding to a Γ-algebra 2ί = Σ i < M < r ^U °f r a n ^ r (r > 2)

(cf. (1.5)).

2.1. The connection function β and the curvature tensor R for the

canonical metric gD are described in terms of the Lie algebra t0 and the

inner product < , ) as follows (cf. Nomizu [4]):

β: t0 X to •to,

2(β(a, b\ c) = <[c, α], δ> + <[c, b], a) + <[α, b], c>

and

R ' toX to X to • t o ,

R(a, b, c) = R(a, b)c = β(a, β(b, c)) - ^ 6 , β(a, c)) - ^([α, 6], c)

for every α, 6, c e t0. Furthermore, the connection function α for the

canonical metric gv on the homogeneous convex cone V = V(2Ϊ) = V(.D)

is given by the Lie algebra t and the inner product < , ) as follows:

(2.2) «:fXt->tf
V 2(a(a, 6), c> = <[c, α], 6> + <[c, 6], α> + <[α, 6], c>

for every a, b,c e t. Now, let us put

(2-3) ^

where eu = 1 is the unit element of the subalgebra Sίw = i? (1 < i < r).

Then by (1.1) and (1.3), we have

11**11 = 1,

where || , || is the norm with respect to the inner product < , >.

We first prove the following

LEMMA 2.1. The connection functions a and β satisfy the following

relations:
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(1) β(x, y) = a(x, y) for every x e %ό (ί < j), y e ^uJk < i) ((£, j) =£ (A, 4)).

(2) £(*, y) = a(x, y) + 1 Γ4=-<Λ:, y}er = -A=(x, y}et for every x,ye ST<r

2yn r 2vn4

(1 < i < Γ - 1).

(3) /3(x, y) = «(*, y) = - ^ ( - ^ e , - *eλ for every x, y e%,

( 1 < i < < r - 1).

(4) β(et, x) = 0 /or eyery x e t 0 and 1 < i < r — 1.

Proof. We first remark that the connection functions α and 3̂ satisfy

the identity

(2.4) β(a, b) = a(a, b) - (a(a, b), er)er

for every α, 6 e t0. By (2.2), we have

(2.5) 2(a(xυ, yw), er) = <[er, x j , yfc,> + <[er,

On the other hand, by the conditions (2.3) and [α, b] = ab — ba for every

α, 6 e t0 (cf. (1.1) and (1.2) of [8]), we get

[er, xtj] = --^(δir - δjr)xi}

and

[Xij, Ju] = δjkxί3yu - δuykixtJ.

Therefore, from (2.5), we have

)> er) = 0

for all indices i < j and A < i satisfying (ί, j) Φ (k, &). From this and

the identity (2.4), we get the identity (1). By Lemma 2.2 of [8], we have

2

for all x, y e SΓW (1 < £ < j < r). Combining this with (2.4), we get the

identities (2) and (3). The identity (4) follows from (1) and the condition

a(ei9 t) = 0 (cf. (1.12) of [10]). q.e.d.

2.2. We now consider D = (D, gD) as a Riemannian submanifold of

V— (V, gv). Then, from the above lemma, we have the following

THEOREM 2.2. The mean curvature of a homogeneous convex domain
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D at the point e with respect to the unit normal er is equal to

nί3)).

Proof. Let ϊ:tQ X ί0 —> 3ίrr be the second fundamental form at the

point e. Then,

ϊ(x, y) = a(x, y) - β(x, y)

for every x, y e t0 (cf. § 3 of chap. VII in [2]). Let us put a symmetric

linear mapping h:tQ-+t0 by (h(x), y} = <J(x9 y), er} for every x, yeϊ0.

Then, using Lemma 2.1, we have

< Λ y«> = 0 ((hJ) Φ &,*)), <KXij), yυ> = 0 (1 < ί < j < r -
(2.6) _ χ

< A ) > < ^ ( i ί l)

By (2.6), the principal curvatures (the eigenvalues of the linear mapping

cities

rtij and J] nίr,

h) are 0 and ~~~ of multiplicities
2Vn

respectively. Hence, we get

^
trace /ι = — 7 = 2 n ί r .

On the other hand, the mean curvature H o£ D with respect to the unit

normal er is given by the following formula, (cf. § 5 of chap. VII in [2]):

H — trace /ι/dim D .

Therefore,

H= Σ n,r/(2^ϊΓr(l - Σ Λ W ) ) . q.e.d.

From the above theorem, we have

THEOREM 2.3. For a homogeneous convex domain D and the cone V

fitted on D, the following three conditions are equivalent:

(1) (D,gD) is a totally geodesic submanifold of (V,gv).

(2) (D, gD) is a minimal submanifold of (V,gv).

(3) D is affinely equivalent to a convex cone and V is the product

cone of D and R+.
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Proof. The implication (1) -> (2) is clear (cf. § 8 of chap. VII in [2]).

We now show that the implication (2) -> (3) holds. By Theorem 2.2,

nir = 0 for every index i (1 < ί < r — 1\ Therefore, SI = 3t0 + 3Irr, where

% = Σκϊ,κr- i Sffi is a T-ideal of 81 (cf. [1]). From the construction

theorem of homogeneous convex cones stated in Section 1, we have

V(8t) = V(SI0) x V(Strr),

where V(SIrr) - {xrr e %r) xrr>0} = R\ By (1.5), the domain D(SI) is

aίBnely equivalent to V(8Γ0) Hence, the condition (3) holds. The implica-

tion (3) —> (1) follows from Proposition 1.1. q.e.d.

2.3 Finally in this section, we investigate a geometric property of

an elementary domain. By calculating the curvature tensor, we have the

following

PROPOSITION 2.4. The elementary domain D(n + 1) in Rn+ί is a simply

connected hyperbolic space form of the sectional curvature — l/(2(ra + 2)).

Proof. Since D — D(n + 1) is a homogeneous convex domain, D is

simply connected and complete. Hence, in order to prove the above

statement, it suffices to show that the sectional curvature of D is constant

and equal to — l/(2(n + 2)). As was stated in Example of Section 1, we

may assume that D is constructed from a Γ-algebra SI = SΓn + 8I22 + SI12

+ St21 of rank two with nί2 — n and i0 = SIΠ + St12. Let us take arbitrary

orthonormal vectors x = xn + Xn and y = yn + yvι e t0. Then, by (1.4),

(2.7) | |*π | | 2 + ||x12||
2 = \\yn\f + ||^2 | |

2 = 1 and <*„, yn) + <x12, yί2} = 0.

By using Lemmas 1.1 and 2.2 of [8], the formula (4) of Lemma 2.1 and

the condition (2.1), we have

— 1
R(χ y 3 Ί ) β([χ yΔ yώ <X

From the formulas (2) of Lemma 2.1 and (2.1), we get

R(χ y yώ <^
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and

Λ(̂ i2, yί2, yώ ^\\yn\\χi2 + r < * i 2 , yn)yn.

Furthermore, using Bianchi's identity and the above formulas, we have

the following identities:

R(Xn, JΊ2> yώ = J^L-11^12 IΓ̂ n , R(X 3Ί 3Ί) ^

4 ^

and

On the other hand, R(x, y, y) = R(xny y129 yn) + R(xu, yί29 y12) + R(xί2, yn, yn)

+ R(x12, yn, y12) + R(x12, y129 yn) + R(xί2, y129 yl2). Hence, using the above

formulas and the condition (2.7), we have

(R(x, y, y), x) = ̂ — ,

where n, = 1 + (n/2) (cf. (1.1)). q.e.d.

Every simply connected hyperbolic space form is Riemannian sym-

metric (cf. e.g. [2]). Therefore, from the above proposition we have the

following

COROLLARY 2.5. An elementary domain is Riemannian symmetric with

respect to the canonical metric.

Remark. It is known in Shima [6] that the sectional curvature of a

homogeneous convex domain D is strictly negative if and only if D is

affinely equivalent to an elementary domain.

§3. Necessary conditions for a domain to be symmetric

In this section, we give necessary conditions for a homogeneous

convex domain D = D(Sl) to be Riemannian symmetric with respect to

the canonical metric in terms of the T-algebra SI = Σi« f < κ r ®u corre-

sponding to D (cf. (1.5)).

From now on, we will consider exclusively the canonical Riemannian

metric of a homogeneous convex domain. So, for the sake of brevity,

the terminology with respect to the canonical metric may be omitted.

3.1. We first remark that a homogeneous convex domain D is simply
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connected and complete. Hence, D is Riemannian symmetric if and only

if the following identity

(3.1) β(x, R(y, z, w)) = R(β(x, y)9 z, w) + R(y, β(x, z), w) + R(y, z, β(x, w))

holds for every x, y, z and w e t0 (cf. [4]).

LEMMA 3.1. // a homogeneous convex domain D is Riemannian sym-

metric, then the following three conditions are satisfied:

(1) n i k < Πij holds for every triple (i, j , k) of indices l < i < , / < £ <

r — 1 satisfying n j l c Φ 0.

(2) n j 1 c < n υ holds for every triple (ί, j , k) of indices l < i < j < ^ <

r — 1 satisfying n ί ί c Φ 0.

(3) n υ n j r = 0 h o l d s f o r e v e r y p a i r (i, j ) of i n d i c e s l < i < 7 < r — 1 .

Proof We consider the following identity (cf. (3.1)):

β(xJk, R(ei9 xik, xik)) = R(β(xJk, e<), xik, xik)

(3.2) + R(eί, β(xJk, xik), xik) + R(ei9 xik, β(xJk, xik))

(1 < i < j < k < r).

We now want to calculate the left hand side of (3.2). From (2.1) and

Lemma 2.1, we have

Hence,

R(et, Xtu, *«) = -^WxtkW'et + T 7 i — (1 ~ δkr)\\xik\\*ek.

β(xJk, R(ei9 xik9 xik)) = _ A _ ( 1 - δkr)\\xik\\*xJk.
oJlk\ Jli

On the other hand, the first term of the right hand side of (3.2) is zero

since β(xjk9 ex) = a(xJk, eτ) = 0 (cf. (1.11) of [10] and Lemma 2.1). We next

calculate the second and the third terms of the right hand side of (3.2).

By Lemma 2.2 of [8], the formulas (1) of Lemma 2.1 and (2.1), we have

R(ei9 β(xJk9 xik\ xik) = λ R(ei9 xίkx%, xik) = -^-^( [β, , xikx%]9 xik)

Similarly, we get
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R(et, Xik, β(Xjk, Xik)) = —^(XπX&Xn .

ownt

Hence, the equality

(3.3) (*,**&)*« = -±- (1 - δtr) || xik \\%k

2nk

holds. Putting k < r, we have ( x ^ * ; ) ^ = (l/27ifc)||Λ;ίJb||
2;cJfc. Therefore, if

xjlc φ 0, then the linear mapping: x e %ίlc -* x^x* e %Si is injective. Hence,

the condition njlc Φ 0 implies that nίk < 7iίy holds. If xik Φ 0, then the

linear mapping: x e %k —> JCΛ:̂  e SΓ̂  is also injective. This means that the

condition nίk Φ 0 implies njk < niS. Hence, the conditions (1) and (2) hold.

Next, putting k = r in (3.3), we have (xjrx*)Xir = 0. Taking the traces

of the both hand sides of ((xjrxfr)xir)xfr = 0, we get

Sp ((XjrXΐrXXjrX*)*) = Sp ((xjrXfr)xir)xfr) = 0 ,

which means that xirx% = 0 for every x i r e 2Iir and xjr e %jr. Let us take

arbitrary elements xiS e %φ xjr e 2I r̂, and put xίr = XijXίr. Then by using

the formulas (1.7) of [8] and (2.4) of [10], we have

l2 = (XljXir, Xir> = <*Φ ̂ irXfr} = 0 .

This implies nυnjr — 0. q.e.d.

We next prove the following

LEMMA 3.2. // a homogeneous convex domain D is Rίemannian sym-

metric, then the following two conditions are satisfied:

(1) nίk < njk holds for every triple (i, j , k) of indices l < i < i < £ < r

satisfying ni} Φ 0.

(2) ni} < njk holds for every triple (i, j , k) of indices l < / < . / < £ < r

satisfying nίk Φ 0.

Proof. Since [ej9 xίk] = 0 (cf. (1.6) of [8]), using (4) of Lemma 2.1 and

(2.1) we have

i?(e,, xik, xik) = R(ej9 xίk, β(xw xik)) = 0.

Thus, by (3.1), we get

R(β(xij9 ej), xik, xίk) + R(ejy β(xίp xti), xίk) = 0.
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Similarly as in the proof of Lemma 3.1, we can see that the following

formulas

T?(R(γ P \ V Ύ \ -*- II γ | | 2 r l -*• γ / r * γ \
J-x'\eJ\.iJ9 ^jh Λ'ίk) •A'ik/ o / l l^zfcl l Λ i j i o / >Λ'ikxλ'ik'Λ'ij/

oπ-ί V 7t j o V n3

and

R(ejyβ(xijy xik), xik) = X " ' " * - ^

hold. Therefore, we have

Using this equality in the same way as the proof of Lemma 3.1, we obtain

the above conditions. q.e.d.

3.2. Let us put the set I = {1, 2, , r} and define two subsets 70 and

I, of I by

Io = {ie I; nir = 0} and I, = {i e I; nίr Φ 0},

respectively. Then,

(3.4) I = Io U ϋ (disjoint).

By making use of the lemmas obtained above, we have

PROPOSITION 3.3. If a homogeneous convex domain D is Rίemannίan

symmetric, then the following two conditions are satisfied:

(1) ntj — 0 holds for every pair (ί, j) of indices i e Ix and j e I (r Φ ί

Φjφr).

(2) Either nίk = njlc = 0 or nυ = njk = nik holds for every triple (ί, j , k)

of indices ί, j e Io (ί < j), k e I satisfying the conditions ni3 Φ 0 and k Φ ί, j .

Proof We now show that the condition (1) holds in the case of j < i.

In fact, the condition ni5 = 0 follows from (3) of Lemma 3.1. In the case

of i < j, we suppose that nυ Φ 0. Then, by (1) or (2) of Lemma 3.2, we

have njr Φ 0. Again, by (3) of Lemma 3.1, this is a contradiction. There-

fore, the condition (1) holds. We proceed to showing (2). Combining the

conditions (1) of Lemmas 3.1 and 3.2 with (1.2), we can see that

(3.5) ntjn]k Φ 0 implies ntJ = njk = nίk
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for every triple (£, j , k) of indices l < i < j < ^ < r — 1. We now con-

sider the case of k < ί < j . If raίfc =̂ 0, then from (3.5), we have the

equalities nυ = njlc = nίk. If nJfe Φ 0, then (2) of Lemma 3.1 implies nυ <

nik Φ 0. Again, we have ntj = njk = nik. Therefore, (2) holds in this case.

We next consider the case of ί < k <j. By (1) of Lemma 3.2, nik Φ 0

implies niS < njk Φ 0. Hence, by (3.5), we have ntj = njk — nik. If nίk = 0,

then (2) of Lemma 3.1 implies njk = 0. Let us consider the case of i <Cj

< k < r . Then, by (2) of Lemmas 3.1 and 3.2, the condition ni1c Φ 0 implies

ni5 = nj]c Φ 0. Hence, by (3.5) and (1.2), we have the equalities ntj = njk

= nik or nik = njk — 0. Finally, for k — r, nίr = njr = 0 holds, since

i, j 6 70 Therefore, the condition (2) holds for every index k e I with

k Φ i, j . q.e.d.

§ 4. Symmetric domains

In this section, we determine all symmetric homogeneous convex

domains by making use of the results obtained in the preceding sections.

Throughout this section, we assume that a homogeneous convex domain

D is realized as the domain D(SΪ) given bj?- (1.5) in terms of a T-algebra

2ί = Σwj<r %j of rank r (r ^ 2).

4.1. We first prove

PROPOSITION 4.1. If a homogeneous convex domain D is Riemannian

symmetric and satisfies the condition nίr Φ 0 for every index i (1 < i <

r — 1), then the following three conditions are satisfied:

(1) n υ = 0 h o l d s f o r e v e r y p a i r (ί, j ) of i n d i c e s l < ί < j < r — 1 .

( 2 ) The domain D is the direct product of the elementary domains

D(nir + 1) (1 < i < r - 1).

(3) The cone V(D) fitted on D is given by

(4.1) V(D) = {x = (xtJ) e X(80; *"*« ~ <*"• ^ ) > 0 (1 < ί < r — 1)|

Proof. From (1) of Proposition 3.3, we have ni3 = 0 for every 1 < i

< j < r — 1. Therefore,

Λ: 0 x

X 5fC γ̂ *ί*

lr Λ'2r
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By using the inequalities defining the cone V(2ϊ) in X = X(2ϊ) (cf. Pro-

position 2 of p. 385 in [11]), we can see that the cone V(D) = V(2ί) is

given by the form (4.1). From this and (1.5), we have

= Π {(*«> Xir) € %t X %r\ Xii - (Xir, Xfr) > 0}
KKr-1

= Π D(nir + 1). q.e.d.
UKr-1

We now porve the main theorem stated in Introduction.

THEOREM 4.2. A homogeneous convex domain D in Rn is Rίemannίan

symmetric with respect to the canonical metric if and only if D is affίnely

equivalent to one of the following:

Vo; Dim,) X D(m2) X X D(mk) (m, + m2 + + mb = n);

Vo x Dim,) X D(m2) X X Z>(mfc) (dim F o + rn, + m2 + + mfc = n ) ,

where Vo is an arbitrary homogeneous self-dual cone and D(m^) is the

elementary domain of dimension m^

Proof. Let us suppose that D is Riemannian symmetric. We first

consider the case of / = I,. Then by Proposition 4.1, D is the direct

product of r — 1 elementary domains. We next consider the case of

I φ J1# Then by (1) of Proposition 3.3, nt] = 0 holds for every pair (ί,j)

of indices i eIo and j el,. Hence, from this and (3.4), the sets Jo and I,

are admissible in the sense of Asano [1], Therefore, by putting

8Γo= Σ Sί« and «, = Σ Sty,

we can see that 9Γ0 and 2^ are Γ-ideals of 21 satisfying

21 = % + % (direct sum).

Hence, by Lemma 3 of [1], we have

- V(2ί0) x

On the other hand, from (2) of Proposition 3.3, it follows that the kernel

of 2T0 coincides with 2ί0 (cf. p. 69 of [12] or Lemma 2.2 of [10]). Again,

by a result of [12], V(2T0) is self-dual. If I, - {r}, then 2ί2 = %r and V(%)

— {xrΐ > 0} = R+ the cone of all positive real numbers. By (1.5), we have

D = {xe V(2ί); xrr - 1} = V(2Q x {1} c F(2ί0) x R+,
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and D is affinely equivalent to the self-dual cone V(2ίo) Finally, if

I\ = {h, U> i h} with ίx < ί2 < < ίk = r (1 < k < r), then by (1) of

Proposition 3.3, we have

n i i r n i 2 r - - n i k . , i r Φ 0 a n d n i ι i μ = 0 ( l ^ λ Φ μ ^ k — ΐ ) .

From Proposition 4.1, it follows that the domain D(%) corresponding to

the T-algebra 2Ij is the direct product of the elementary domains D(niχr + 1)

(1 < λ < k — 1). Hence, by (1.5), we have

{xe V(Sί) = V(2ί0) x ^(31,); x r r = 1} = V(2T0) X

= V(%) x Π I>(Λ<2r + 1).

Conversely, every homogeneous self-dual cone is Riemannian symmetric

(cf. Rothaus [5]). Combining this with Proposition 1.1 and Corollary 2.5,

we can see that the sufficient condition in the above statement is satis-

fied, q.e.d.

Every homogeneous convex cone in Rn (n > 2) is always reducible

as a Riemannian manifold (cf. [3] or [9]). Therefore, from the above

theorem, Propositions 1.1 and 2.4, we have the following

COROLLARY 4.3. A homogeneous convex domain D in Rn (n > 2) is

Riemannian symmetric and irreducible with respect to the canonical metric

if and only if D is affinely equivalent to the elementary domain D(ή).

4.2. Finally, we determine all homogeneous convex cones which are

to be the cones fitted on symmetric homogeneous convex domains. For

this purpose, we employ the following notation: For positive integers

ml9 ra2, , mk, we put

Vmi,m2,...,mk = {(*, y, t) e Rk X Rm X R; t > 0, P, > 0 (1 < i <&)},

where

P f = txt - (yi9 yt), x = (xl9 x29 , xk) e Rk

and

y = (yi, y2, , y*) e Rm = Rmi x Rm* x x r .

Then it is easy to see that the cone Vmi is the circular cone C(mι + 2)

(cf. Example in § 1), and for r > 2, the cone Vnirfΐl2rt...>nr_lr is non-self-dual

and exactly the one given by (4.1). Combining Theorem 4.2 with Pro-

position 1.2, we have the following
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COROLLARY 4.4. A homogeneous convex cone V in Rn (n > 2) is the

cone fitted on some symmetric homogeneous convex domain if and only

if V is linearly equivalent to one of the following:

Vo X R+; Vmi,m2,...,mA K + m2 + ••- + mk + k + 1 = ή);

Vo X Vmi>m2>...>mk (dim Vo + mx + m2 + + mk + k + 1 = n),

where Vo is an arbitrary homogeneous self-dual cone.
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