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SYMMETRIC HOMOGENEOUS CONVEX DOMAINS
TADASHI TSUJI

Introduction

Let D be a convex domain in the n-dimensional real number space
R", not containing any affine line and A(D) the group of all affine trans-
formations of R" leaving D invariant. If the group A(D) acts transitively
on D, then the domain D is said to be homogeneous. From a homo-
geneous convex domain D in R", a homogeneous convex cone V = V(D)
in R"*' = R" X R is constructed as follows (cf. Vinberg [11]):

0.1) V(D) = {(tx, ) e R* X R; xe D, t > 0},

which is called the cone fitted on the convex domain D. Let G(V) be
the group of all linear automorphisms of V and g, the canonical G(V)-
invariant Riemannian metric on V (cf. e.g. [8]). Then a natural imbed-
ding

0.2) g: xe€D—>(x,1) e V(D)

is equivariant with respect to the groups A(D) and G(V). Therefore, the
Riemannian metric g, = ¢*g, on D induced from (V, g,) by ¢ is A(D)-
invariant. The Riemannian metric g, is called the canonical metric of D.
We note that the canonical metric g, is given from the characteristic
function ¢, of V as follows: Let us put ¢, = ¢,00. Then

(0.3) gD = Z az IOg S,Dﬂ,dxidxj y
1<ij<n 0x'ox?

where (x, 2%, - .-, x") is a system of affine coordinates of R".

The purpose of the present paper is to determine (up to affine equiv-
alence) all homogeneous convex domains which are Riemannian symmetric
with respect to the canonical metric. The main result obtained is stated
as follows. Every symmetric homogeneous convex domain is affinely equiv-
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alent to one of the following: a homogeneous self-dual cone; an elementary
domain; a direct product of some of these domains (Theorem 4.2). For
the definition of an elementary domain, see § 1. In order to prove the
above result, we need essentially the theory of T-algebras developed by
Vinberg [11], [12]. We remark that for homogeneous convex cones, the
above problem has been solved by Rothaus [5], Shima [7] and the author
(81, [10].

The author would like to express his hearty thanks to Prof. H. Shima
for inviting the author’s attention to homogeneous convex domains, and
to Prof. S. Kaneyuki for his helpful criticism.

§1. Homogeneous convex domains and T-algebras

In this section, we recall the construction theorem of homogeneous
convex domains in terms of T-algebras. The details for them may be
found in [11] or [12].

1.1. Let A = 3 i<, Uy be a T-algebra of rank r provided with an
involutive anti-automorphism x. General elements of %,; will be denoted
as @, by, -+ -, and also an arbitrary element a of U will be written like
as a matrix a = (a,;), where q,, is the %,,-component of a. Let us define
subsets T= T®), V= V() and X = X®) of A by

T={t:(t”)€2[; ti >0(A<<i<r), L =0(1 <J<l<r)},
V={tt*; teT}Cc X={xe¥; x* =x}.
Then it is known in [11] that V is a homogeneous convex cone in the

real vector space X and T is a connected Lie group which acts on V
simply transitively as linear transformations by

(t,ss¥)eT X V—>(ts)(ts)* e V.

Conversely, every homogeneous convex cone is realized in this form up
to linear equivalence.

Throughout this paper, we will use the following notation:
n; =dim%,;; = dim %, n,=14+%>n;,, (A< j<r);
k#1
(1.1) Spa = 1<Z< na; (@ = (au) e¥);

e =(e;), e; = 0,;, (Kronecker delta).

Then the numbers {n,;;} satisfy the condition
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1.2) max {n;, n;} < ny

for all indices i <j < k with n, n; #* 0. Moreover, the element e is
the unit element of T and also e is contained in V. Hence, the tangent
space T, (V) of V at the point e may be naturally identified with the
ambient space X and also with the Lie algebra t of 7. On the other
hand, the Lie algebra t may be identified with the subspace > ;c;<, %y;
of A provided with the bracket product: [a, ] = ab — ba. A canonical
linear isomorphism between t and X is given by
giaet= Y U,—>a+a*eX=T(V).

ISi<j<r

Under this identification, by using the canonical Riemannian metric g,
at the point e, we have an inner product ( , > on t as follows:

{a, b) = gy(e)(¢(a), £(b))

for every a,bet. The inner product ¢ , > has the following expression:

(1.3) {a, b) = Sp (§(a)&(b))
for every a, bet (cf. the formula (34) of [11]). From this, we have
(1~4) <2[ij, 2[u> =0

for all indices i <j and %k < ¢ satisfying (i, ) # (&, 9).

1.2. For a T-algebra U = > ;. Uy of rank r (r > 2), we define
subsets T, C T, X,C X and D=D®) c V= V) by

T,={t=(@,)eT;t, =1}, X, ={x=()eX; x, =0}
and
15 D=DQ) ={x=(x)eVE); x,, =1 = VA N X + e,

respectively. Then it is known in Vinberg [11] that the domain D(¥) is
a homogeneous convex domain in the affine subspace X, + e satisfying
the condition V(D) = V() and T| is a closed subgroup of 7T acting on
D simply transitively as affine transformations by

@, ss*)e Ty X D——> (ts)(ts)* e D.

Conversely, every homogeneous convex domain is realized in this form
up to affine equivalence.
Let us define a subspace t, of t by
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tD = {t = (tu)et; t,r = O}-

Then t, is the Lie subalgebra of t corresponding to the subgroup 7, of T
Similarly as in the case of homogeneous convex cones, we can identify
the Lie algebra t, with the tangent space T.(D) of D at the point e and
also with the vector space X, by the following linear isomorphism:

&raety—>a+ a*eX, = T(D).

From the canonical metric g, of D at the point e, we have an inner
product { , >, on t, by

{a, b)y = gr(e)(&(a), &(D))

for every @, bet, Since the equivariant imbedding ¢: D) — V() de-
fined by (0.2) is the inclusion mapping, we have the following relations:

(@) = &(@) and <a, b), = {a, b)

for every a, bet,. Therefore, we can identify ¢ , », with { , ) restricted
to the subspace 1,, and we may omit the subscript in { , ).

ExampLE ([11]). We now give a typical example of homogeneous
convex domains. Let ( , ) be an inner product on the real number space
R". Then the domain D(n + 1) defined by

Din +1)={(x,)eR X R"; x — (3,5 >0}

is a homogeneous convex domain in R"*!. This domain is called the
elementary domain of dimension n 4 1. The domain D(n + 1) is con-
structed from a 7T-algebra as follows: Let us take a T-algebra % = %,
+ U,y + A + U,y of rank two with U, = R*. Then, the cone V(¥) is the
(n + 2)-dimensional circular cone

C(n +2)= {x = (x: xm) € X(); 2% — (X, Xi) > 0, 2, > O} ’

X1z Xog

where x,,%,, is a usual multiplication of real numbers x, €%, =R (¢ =1,
2), and the domain D(2) given by (1.5) is the elementary domain D(n + 1).

1.3. On the direct product of homogeneous convex domains, we have
the following

ProposiTioN 1.1. Let D, be a homogeneous convex domain in the real
number space R™ (i = 1,2). Then the product domain D = D, X D, is a
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homogeneous convex domain in R* = R™ X R® (n = n, + n,) and the ca-
nonical metric g, of D is the product Riemannian metric of g,, (i =1, 2).

Proof. Let us put the subgroup Ay(D) of A(D) by A(D) = A(D)) X
A(D,). Then A,(D) acts transitively on D and D is a homogeneous convex
domain in R". We now define a function +: V(D) — R by

Y(tx, 1) = tgol(txl’ t)%(tx?y )]
for every (tx,t)e V(D) and x = (x,, x,) e D = D, X D,, where ¢, is the
characteristic function of V, = V(D)) (i =1,2). We want to show that
the function + satisfies the condition
(1.6) W(g(tx, 1)) = Y(tx, t)/|det &|
for every ge G(V) and (tx,t) e V(D). In fact, from a property of the
characteristic function ¢, (cf. [11]), we have

V(Atx, ) = P(tx, t)/2"

for every 2 >0 and (¢x, ) € V(D). In general, for each affine transforma-
tion B on R™, we denote by B the natural extension of B as a linear
transformation on R™*' = R™ X R. Then we have

Vv(A(tx, 1)) = V(tAx, t)
= tSol(tAlxu t)SDZ(tAzxz, D = tle(Ax(txn t))SDZ(Az(txz’ 1)
= to,(tx,, Doytx,, t)/|(det A, det A,)| = o(ix, £)/|det A|

for every A = (A,, A, € A(D) and (ix, t) e V(D). On the other hand, the
subgroup of G(V) generated by A (D) and the similarity transformations
acts on V transitively. Therefore, the function 4 satisfies the condition
(1.6), and we can write ¢, = ¢y by a positive number c. Hence,

SDV(x9 1) = C\I’(x, 1) = c@l(xly 1)902(x2, 1) ’
which means
SDD(x) = C@Dl(xl)SDDQ(xz)

for every x = (x, x,) € D = D, X D,. Therefore, by (0.3), we have g, =
&p, X 8p,- q.e.d.

From the definition (0.1), we can easily see the following

ProrositioN 1.2. Let V, be a homogeneous convex cone and D a homo-
geneous convex domain. Then the cone V(V, X D) (resp. V(V,)) fitted on
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Vy, X D (resp. V) is the product cone V, X V(D) (resp. V, X R*), where R*
is the cone of all positive real numbers.

§2. Connection and curvature for the canonical metric

In this section, we study some of basic properties of the Riemannian
connection for the canonical metric on a homogeneous convex domain.
Let D = D) (resp. V = V(%)) be the homogeneous convex domain (resp.
cone) corresponding to a T-algebra A =, ,.,%;; of rank r(r>2)
(cf. (1.5)).

2.1. The connection function g and the curvature tensor R for the
canonical metric g, are described in terms of the Lie algebra t, and the
inner product ¢ , > as follows (cf. Nomizu [4]):

Bty X t,—> 1,
2<18(a, b)’ C> = <[C, a]’ b> + <[C, b], a> + <[a’ b]7 C>

and
R:f, Xt X t,—> 1,
R(a, b, ¢) = R(a, b)c = p(a, B(b, c)) — p(b, fa, c)) — Bla, b, c)
for every a, b, cet,. Furthermore, the connection function « for the

canonical metric g, on the homogeneous convex cone V = V() = V(D)
is given by the Lie algebra t and the inner product { , ) as follows:

2.1

a:tXt—>1t,
2 ala, b), ¢) = (¢, al, b) + (¢, b, a) + ([a, 0], ¢c)

for every a, b,cet. Now, let us put

(2.2)

1
2.3 e, = ——ey,
( ) 2¢ ] it

where e,; = 1 is the unit element of the subalgebra %, =R (A <i <r).
Then by (1.1) and (1.3), we have

“ei“ = 1 I

where || , || is the norm with respect to the inner product ¢ , >.
We first prove the following

Lemma 2.1. The connection functions o and f satisfy the following
relations:
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D) Blx,y) = alx, y) for every xe %, (<)), y e U, (k<O (G, j) # (k, £).
@ Bz, ) = alx,y) + ~2—;/ln:r<x, e, = E;}nf“’ yde, for every x,ye U,
a<gis<r—1).

_ _Kxyy( 1 1 ,
3 Blx, y) = alx, y) = 5 ( I e ey e]> for every x, ye¥,

a<i<j<r—-10.
4) Pple,x) =0 for every xet,and 1 <i<r—1

Proof. We first remark that the connection functions & and 3 satisfy
the identity

2.4) Bla, b) = ala, b) — {a(a, b), e, e,
for every a,bet, By (2.2), we have
2.5)  2a(xy, Yio)s €,) = {les, xig), Vi) + {[er, Yidl, Xis> + {[%is, Vil €.) -
On the other hand, by the conditions (2.3) and [a, ] = ab — ba for every
a,bet, (cf. (1.1) and (1.2) of [8]), we get
le,, x;] = ﬁ;(&:r — 0;)%y;

and
(%55, Yeel = 036X Yee — 01Yie%ry
Therefore, from (2.5), we have
%y, Yie)s €9 = 0

for all indices i <j and %k < ¢ satisfying (i,7) # (k, £). From this and
the identity (2.4), we get the identity (1). By Lemma 2.2 of [8], we have

=<x,yl( 11 )
oz(x, y) 9 \/717 €; \/n—je]
for all x,ye¥,, A <i<j<r) Combining this with (2.4), we get the

identities (2) and (3). The identity (4) follows from (1) and the condition
ale;, 1) = 0 (cf. (1.12) of [10]). q.e.d.

2.2. We now consider D = (D, g,) as a Riemannian submanifold of
V =(V,gy). Then, from the above lemma, we have the following

THEOREM 2.2. The mean curvature of a homogeneous convex domain
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D at the point e with respect to the unit normal e, is equal to

> nu/2V n,(1— Z ny) .

1Ki<r -1 1IKISj<Sr

Proof. Let 7:1, X t,—%,, be the second fundamental form at the
point e. Then,

T(x, y) = alx, y) — B(x, y)

for every x,yet, (cf. §3 of chap. VII in [2]). Let us put a symmetric
linear mapping h:i,—1t, by (Ax),y> = {J(x,y),e,> for every x,yet,.
Then, using Lemma 2.1, we have

@6 Chlxig), Yoy = 0 (G, )) + (k ), (M), ¥y =0 A<i<j<r-—1),
. <h(xir) yzr> = x/“* <xira yir> (1 Sr— 1)

By (2.6), the principal curvatures (the eigenvalues of the linear mapping

h) are 0 and

\/_ of multiplicities
Ny and Z Ny

1<i<j<r~1 1<i<r-1
respectively. Hence, we get

—-1
trace h = _—=. 3 ng.
n 1<¢<r 1

On the other hand, the mean curvature H of D with respect to the unit
normal e, is given by the following formula.(cf. § 5 of chap. VII in [2]):

H = trace h/dim D.

Therefore,

H= 3 nir/(2*/;"—r(1'_ Z nw)) q.e.d.

1€i<r—1 Li<ji<r
From the above theorem, we have

THEOREM 2.3. For a homogeneous convex domain D and the cone V
fitted on D, the following three conditions are equivalent:

(1) (D, gy) is a totally geodesic submanifold of (V, g,).

@) (D, gp) is a minimal submanifold of (V, g,).

(8) D is affinely equivalent to a convex cone and V is the product
cone of D and R*.
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Proof. The implication (1) — (2) is clear (cf. § 8 of chap. VII in [2]).
We now show that the implication (2) — (3) holds. By Theorem 2.2,
n, = 0 for every index i (1 < i <r — 1. Therefore, % = %, + «,,, where
W = Dicijers Yy is a T-ideal of A (cf. [1]). From the construction
theorem of homogeneous convex cones stated in Section 1, we have

V(Q’I) = V(%[O) X V(?Irr) ’

where V(¥,,) = {x,,€¥,,; x,,>0} = R*. By (1.5), the domain D) is
affinely equivalent to V(%,). Hence, the condition (3) holds. The implica-
tion (3) — (1) follows from Proposition 1.1. g.e.d.

2.3. Finally in this section, we investigate a geometric property of
an elementary domain. By calculating the curvature tensor, we have the
following

ProposiTioN 2.4. The elementary domain D(n 4 1) in R**' is a simply
connected hyperbolic space form of the sectional curvature —1/(2(n + 2)).

Proof. Since D = D(n + 1) is a homogeneous convex domain, D is
simply connected and complete. Hence, in order to prove the above
statement, it suffices to show that the sectional curvature of D is constant
and equal to —1/2(n + 2)). As was stated in Example of Section 1, we
may assume that D is constructed from a T-algebra % = A, 4+ Uy, + UApp
+ %, of rank two with n, = n and t, = %, + UA;,. Let us take arbitrary
orthonormal vectors x = x,; + x, and y = y,, + y,€1. Then, by (1.4),

@7 Nxullf + lxell = lyullf + 1yf =1 and  {xyy, YD + (X Y1) = 0.

By using Lemmas 1.1 and 2.2 of [8], the formula (4) of Lemma 2.1 and
the condition (2.1), we have

R(x,,, Y12y yu) = _ﬁ([xm yxz]y yu) = ’2*_\7]-—‘:<x11, 91>.3(ym yn)
n,

= 1y
4n,

From the formulas (2) of Lemma 2.1 and (2.1), we get

1

R(xm Vi Y1) =
4n,

{Kizy Vi)Y
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and

R(xy5, Y15y Y1) =

1 1
|y, + — = Xigy Yi2) V1o
4n, 4n,

Furthermore, using Bianchi’s identity and the above formulas, we have
the following identities:

_1 —
15777 i R(xy, Y11, Y1) = ——lllyxlnzxn

R(x s 12 ==
(Xi1s Yiz> Y12) in, n,

and
R(x13, Y10, y11) = 0.

On the other hand, R(x’ ¥, y) = R(xyy, y12, Y1) + B(%y1, Yia» Y1) + R(xm Yii> Y1)
+ R(xXi2, Y11 ¥12) + B(Xig, Y10 Y1) + R(%, Y12y ¥12). Hence, using the above
formulas and the condition (2.7), we have

—1

(B, 5, 9), 2) = -

b

where n, = 1 + (n/2) (cf. (1.1)). q.e.d.

Every simply connected hyperbolic space form is Riemannian sym-
metric (cf. e.g. [2]). Therefore, from the above proposition we have the
following

CoOROLLARY 2.5. An elementary domain is Riemannian symmetric with
respect to the canonical metric.

Remark.» It is known in Shima [6] that the sectional curvature of a
homogeneous convex domain D is strictly negative if and only if D is
affinely equivalent to an elementary domain.

§3. Necessary conditions for a domain to be symmetric

In this section, we give necessary conditions for a homogeneous
convex domain D = D(¥) to be Riemannian symmetric with respect to
the canonical metric in terms of the T-algebra U = >, <, U,; corre-
sponding to D (cf. (1.5)).

From now on, we will consider exclusively the canonical Riemannian
metric of a homogeneous convex domain. So, for the sake of brevity,
the terminology with respect to the canonical metric may be omitted.

3.1. We first remark that a homogeneous convex domain D is simply
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connected and complete. Hence, D is Riemannian symmetric if and only
if the following identity

(3.1  Blx, R(y, 2, w)) = R(Bix, y), 2, w) + R(y, fx, 2), w) + R(y, 2, flx, w))
holds for every x,y, z and wet, (cf. [4]).

LemMA 3.1. If a homogeneous convex domain D is Riemannian sym-
metric, then the following three conditions are satisfied:

(1) nyu < ny holds for every triple (i,j, k) of indices 1 <i<j<k<
r — 1 satisfying n;, = 0.

(2) n; < ny; holds for every triple (i,j, k) of indices 1 <i<j<k<
r — 1 satisfying n,, # 0.

) nyn;, =0 holds for every pair (i,)) of indices 1 <i<j<r—1L

Proof. We consider the following identity (cf. (3.1)):
ﬁ(xjk, R(e, xy, X)) = R(‘B(xjka €:), Xy Xur)

3.2) + R(e;, ﬂ(xjk’ Xix)y Xi) + Rles, Xis Ig(xjk’ X))
A<i<j<k«r).

We now want to calculate the left hand side of (3.2). From (2.1) and
Lemma 2.1, we have

R(eh

ik>

wll’es + ——= n”(l — 0| X les -

Hence,

B, Rley, iy Xir) = 1 (1 — O llxar Py

8n.vn,;

On the other hand, the first term of the right hand side of (3.2) is zero

since B(x;, ;) = a(x;, e;) = 0 (cf. (1.11) of [10] and Lemma 2.1). We next

calculate the second and the third terms of the right hand side of (3.2).
By Lemma 2.2 of [8], the formulas (1) of Lemma 2.1 and (2.1), we have

R(e,, By, Xi)y Xi) = -;—R(eiy xikxﬁu Xi) = ;21“.3([91, xikx;!‘k]y Xii)

1
44/]7, ﬁ(x kx]Iu xzk) = 8 n— (xjkx:,;c)xzk .
i

Similarly, we get
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R(e, x4, Bk, X)) = _L:‘(xjkx;‘;c)xik .
8v/n,

Hence, the equality

3.3) (epTE) ot = —-
n

A — S % lfx

(4

holds. Putting 2 < r, we have (x,,x})x; = (1/2n,)|| % |’x;. . Therefore, if
x;, # 0, then the linear mapping: x € %, — x,;,x* € ¥, is injective. Hence,
the condition n, s 0 implies that n, < n,, holds. If x, = 0, then the
linear mapping: x € %,;, — xx} € ¥;, is also injective. This means that the
condition n, # 0 implies n,, < n,;. Hence, the conditions (1) and (2) hold.
Next, putting £ = r in (3.3), we have (x;,x%)x, = 0. Taking the traces
of the both hand sides of ((x,,x})x,)x} = 0, we get

Sp ((xjrx;';)(xjrxﬁ)*) = Sp ((xjrx:l;)xzr)x;kr) =0 ’

which means that x,x} = 0 for every x,, €¥,, and x,,€¥,,. Let us take
arbitrary elements x, € ¥, x;,, €%,,, and put x,, = x;,x;,,. Then by using
the formulas (1.7) of [8] and (2.4) of [10], we have

1
2n ”xijnznxjruz = ”xir”2 = <xijxjr’ xir> = <xij’ xirx_;Fr> = 0 .
i
This implies n;n,;, = 0. q.e.d.

We next prove the following

LemmaA 3.2. If a homogeneous convex domain D is Riemannian sym-
metric, then the following two conditions are satisfied:

(1) ny < ny, holds for every triple (i, j, k) of indices 1<i<j<k<r
satisfying n; + 0.

(2 n, < ny holds for every triple (i, j, k) of indices 1 <i<j<k<r
satisfying n,, + 0.

Proof. Since [e;, x,] = 0 (cf. (1.6) of [8]), using (4) of Lemma 2.1 and
(2.1) we have

R(ej, Koy Xip) = R(eh Xiks ,B(xij’ X)) = 0.

Thus, by (3.1), we get

R(ﬁ(xija ej)’ ey Xz) + R(ej’ ﬁ(xij, i), Xix) = O.
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Similarly as in the proof of Lemma 3.1, we can see that the following
formulas

1

g 1/n—j XX ;)

R(B(15, €3), %oy ) = [l [Py +
8n4/n;

and

R(e;, B(xyy, Xar), X)) = 1~ X XF%:5)
8v/n;
hold. Therefore, we have

xik(x::':cx'lj) = [z [P

2n,

Using this equality in the same way as the proof of Lemma 3.1, we obtain
the above conditions. q.e.d.

3.2, Letus puttheset I =1{1,2,---,r} and define two subsets I, and
I, of I by
I,={iel;n, =0 and I, ={iel;n,; + 0},
respectively. Then,
3.4) I=1,U I (disjoint}.
By making use of the lemmas obtained above, we have

ProposrtioN 3.3. If a homogeneous convex domain D is Riemannian
symmetric, then the following two conditions are satisfied:

(1) n,; =0 holds for every pair (i, J) of indices icl and jeI (r +1
#J#71)

(2) Either ny, = n;, = 0 or ny; = n,, = ny, holds for every triple (i, j, k)
of indices i,je I, (i <)), ke Isatisfying the conditions n; + 0 and k + i, j.

Proof. We now show that the condition (1) holds in the case of j <i.
In fact, the condition n,, = 0 follows from (3) of Lemma 3.1. In the case
of i < j, we suppose that n,, = 0. Then, by (1) or (2) of Lemma 3.2, we
have n;, # 0. Again, by (3) of Lemma 3.1, this is a contradiction. There-
fore, the condition (1) holds. We proceed to showing (2). Combining the
conditions (1) of Lemmas 3.1 and 3.2 with (1.2), we can see that

(3'5) NNy * 0 implies N;; = Nj = Ny
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for every triple (i,j, k) of indices 1 <i<j<k<r—1 We now con-
sider the case of k#<<i<j. If n, +# 0, then from (3.5), we have the
equalities n,; = ny, = ny,. If n; # 0, then (2) of Lemma 3.1 implies n;; <
ny #+ 0. Again, we have n,; = n;, = n,. Therefore, (2) holds in this case.
We next consider the case of i < k< j. By (1) of Lemma 3.2, n, #0
implies n;; < n, = 0. Hence, by (3.5), we have n,; = n;, = n,. Ifn, =0,
then (2) of Lemma 3.1 implies n, = 0. Let us consider the case of i <j
< k <r. Then, by (2) of Lemmas 3.1 and 3.2, the condition n,, = 0 implies
n; = n,, #+ 0. Hence, by (3.5) and (1.2), we have the equalities n,; = n,,

= n, or n,; = n; = 0. Finally, for £ = r, n,, = n,, =0 holds, since
i,jel, Therefore, the condition (2) holds for every index kel with
k+£1,]. q.e.d.

§4. Symmetric domains

In this section, we determine all symmetric homogeneous convex
domains by making use of the results obtained in the preceding sections.
Throughout this section, we assume that a homogeneous convex domain
D is realized as the domain D(¥) given by (1.5) in terms of a T-algebra
A= > iciicr Ay of rank r (r > 2).

4.1. We first prove

PropositioN 4.1. If a homogeneous convex domain D is Riemannian
symmetric and satisfies the condition n,; + 0 for every index i (1 <i <
r — 1), then the following three conditions are satisfied:

1) n, =0 holds for every pair (i, j) of indices 1 <i<j<r—1L

(2) The domain D is the direct product of the elementary domains
Dn,, + ) 1<i<r—1).

(8) The cone V(D) fitted on D is given by

_ _ L XXy — (X, x,) >0 (IK<iSTr—1)
41 WD) = {x = (x) € XQ; T } .

Proof. From (1) of Proposition 3.3, we have n,; = 0 for every 1 < i
< j <r—1. Therefore,

xll 0 xlr]
X =4, xﬂ.‘ x cu.
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By using the inequalities defining the cone V(¥) in X = X(¥) (cf. Pro-
position 2 of p. 385 in [11]), we can see that the cone V(D) = V(¥) is
given by the form (4.1). From this and (1.5), we have

D = {xe V(W); x,, = 1}
= [T A %) € War X W5 x4 — (24, %) > 0}
= [] D, + 1. g.e.d.
1<ig<r-1

We now porve the main theorem stated in Introduction.

THEOREM 4.2. A homogeneous convex domain D in R" is Riemannian
symmetric with respect to the canonical metric if and only if D is affinely
equivalent to one of the following:

Vis D(ml) X D(m2) X «-- X Dmy) (my+my + -+ + my = n);
Vo X D(m)) X D(my) X --- X D(my) (dim Vy, + my + my + --- + my = n),

where V, is an arbitrary homogeneous self-dual cone and D(m)) is the
elementary domain of dimension m,.

Proof. Let us suppose that D is Riemannian symmetric. We first

consider the case of I = 1. Then by Proposition 4.1, D is the direct
product of r — 1 elementary domains. We next consider the case of

I+ 1I. Then by (1) of Proposition 3.3, n,;, = 0 holds for every pair (i, )
of indices ie I, and jel,. Hence, from this and (3.4), the sets I, and I,
are admissible in the sense of Asano [1]. Therefore, by putting

U= 3 Ay, and A= 3 %,,

©j€lo el
we can see that %, and ¥, are T-ideals of U satisfying
A=A + A (direct sum) .
Hence, by Lemma 3 of [1], we have
V() = V() X V().

On the other hand, from (2) of Proposition 3.3, it follows that the kernel
of %, coincides with ¥, (cf. p. 69 of [12] or Lemma 2.2 of [10]). Again,
by a result of [12], V(¥,) is self-dual. If I, = {r}, then %, = ., and V()
= {x,, > 0} = R* the cone of all positive real numbers. By (1.5), we have

D = {xe V(W); x,, = 1} = V() X {1} € V) X R,
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and D is affinely equivalent to the self-dual cone V(%,). Finally, if
L={ii,- -5}t with i, <, <-.---<i,=r 1<k<r), then by (1) of
Proposition 3.3, we have

MiypPlyy »+ Ny, 70 and ny, =0 A<A#=p<k—1).

From Proposition 4.1, it follows that the domain D(¥,) corresponding to
the T-algebra ¥, is the direct product of the elementary domains D(n,,, + 1)
(1 <2< k—1). Hence, by (1.5), we have

DE) = {xe V) = V() X V(); x,, = 1} = V() X D)
= V@) X T D, +1).

ASk—

Conversely, every homogeneous self-dual cone is Riemannian symmetric
(cf. Rothaus [5]). Combining this with Proposition 1.1 and Corollary 2.5,
we can see that the sufficient condition in the above statement is satis-
fied. q.e.d.

Every homogeneous convex cone in R" (n > 2) is always reducible
as a Riemannian manifold (cf. [3] or [9]). Therefore, from the above
theorem, Propositions 1.1 and 2.4, we have the following

CoroLLARY 4.3. A homogeneous convex domain D in R"(n > 2) is
Riemannian symmetric and irreducible with respect to the canonical metric
if and only if D is affinely equivalent to the elementary domain D(n).

4.2. Finally, we determine all homogeneous convex cones which are
to be the cones fitted on symmetric homogeneous convex domains. For
this purpose, we employ the following notation: For positive integers
m,, m,, ---,m,, we put

Vismgooyme = (2,5, ) € R* X R* X R; ¢ >0, P, >0 (1 <i<h},
P, =tx, — (y,5), x=(x,%, -, %)cR"

¥y=00uY " Y)ER"=R™ X R™ X ... X R™,

Then it is easy to see that the cone V,,, is the circular cone C(m, + 2)
(cf. Example in § 1), and for r > 2, the cone V,, ,, ..., _, is non-self-dual
and exactly the one given by (4.1). Combining Theorem 4.2 with Pro-
position 1.2, we have the following
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COROLLARY 4.4. A homogeneous convex cone V in R" (n > 2) is the
cone fitted on some symmetric homogeneous convex domain if and only
if V is linearly equivalent to one of the following:

Vi, X R*; le,mg,-..,mk (ml +my+ -+ m+Ek+1= n);
Vo X Vormgeoome im Vo +my +my+ - +my +k+1=n),

where V, is an arbitrary homogeneous self-dual cone.
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